-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn.py
26 lines (18 loc) · 966 Bytes
/
cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import tensorflow as tf
def create_model():
model = tf.keras.Sequential([
# feature extraction: layer1
tf.keras.layers.Conv2D(32, filter=3, activation='relu'), #the output's == 32 feature maps
tf.keras.layers.MaxPool2D(pool_size=2, strides=2), #downsizing by 2
# layer2: 2nd conv layer
tf.keras.layers.Conv2D(64, filters=3, activation='relu'),
tf.keras.layers.MaxPool2D(pool_size=2, strides=2),
# observe the trade off in increase of featuremaps (32 to 64) and reduction in input size
# since we've succesfully downsampled our input after conv layer1, we can afford to increase
# the resolution of our feature dimension
# fully connected classifier
tf.layers.Flatten(), #flatten our dense information
tf.layers.Dense(1024, activation="relu"), # classifier layer
tf.layers.Dense(10, activation="softmax") # number of outputs=10
])
return model