Skip to content

Latest commit

 

History

History
318 lines (248 loc) · 20.5 KB

README-en.md

File metadata and controls

318 lines (248 loc) · 20.5 KB

中文

Introduction

Based on the bahir-flink,the contents adjusted relative to bahir include:

  1. Use Lettuce to replace Jedis, change sync IO to async IO
  2. Add Table/SQL API, Add dimension table query support
  3. Increase query cache (support incremental and full)
  4. Added support for saving the entire row, which is used for multi-field dimension table associated query
  5. Add current limiting function for Flink SQL online debugging function
  6. Added support for Flink higher versions (including 1.12, 1.13, 1.14+)
  7. Unify or increase other functions such as expiration policy, number of concurrent writes, etc.

Because the version of the flink interface used by bahir is relatively old, the changes are relatively large. During the development process, the stream computing products of Tencent Cloud and Alibaba Cloud were referenced, taking the advantages of the two, and adding richer functions.

Redis Command

The command value corresponds to the redis command:

command insert select join delete(Flink CDC's RowKind.delete)
set set get get del
hset hset hget hget hdel
get set get get del
hset hset hget hget hdel
rpush rpush lrange
lpush lpush lrange
incrBy incrByFloat incrBy incrByFloat get get eg:incrby 2 -> incryby -2
hincrBy hincryByFloat hincrBy hincryByFloat hget hget eg:hincrby 2 -> hincryby -2
zincrby zincrby zscore zscore eg:zincrby 2 -> zincryby -2
sadd sadd srandmember 10 srem
zadd zadd zscore zscore zrem
pfadd(hyperloglog) pfadd(hyperloglog)
publish publish
zrem zrem zscore zscore
srem srem srandmember 10
del del get get
hdel hdel hget hget
decrBy decrBy get get

Note: The cdc update operation has the same effect as the cdc insert.

Instructions:

After executing mvn package on the command line, import the generated package flink-connector-redis-1.3.2.jar into flink lib, no other settings are required.


The project depends on Lettuce(6.2.1) and netty-transport-native-epoll(4.1.82.Final),flink-connection-redis-1.4.2.jar if these packages are available. Otherwise, use flink-connector-redis-1.4.2-jar-with-dependencies.jar.

Development environment engineering direct reference:

<dependency>
  <groupId>io.github.jeff-zou</groupId>
  <artifactId>flink-connector-redis</artifactId>
  <version>1.4.2</version>
  <!-- When the Lettuce netty-transport-native-epoll dependency is not imported separately -->
    <!--            <classifier>jar-with-dependencies</classifier>-->
</dependency>

Instructions for use:

value.data.structure = column

There is no need to map the key in redis through the primary key, the key is directly determined by the order of the fields in the ddl, such as:

#Where username is the key and passport is the value.
create table sink_redis(username VARCHAR, passport VARCHAR)  with ('command'='set') 

#The name is the key of the map structure, the subject is the field, and the score is the value.
create table sink_redis(name VARCHAR, subject VARCHAR, score VARCHAR)  with ('command'='hset') 

value.data.structure = row

value is taken from the entire row, separated by '\01'

create table sink_redis(username VARCHAR, passport VARCHAR)  with ('command'='set') 
#key: username , value: username\01passport.

create table sink_redis(name VARCHAR, subject VARCHAR, score VARCHAR)  with ('command'='hset') 
key: name, field:subject, value: name\01subject\01score.
with parameter description:
Field Default Type Description
connector (none) String redis
host (none) String Redis IP
port 6379 Integer Redis port
password null String null if not set
database 0 Integer db0 is used by default
timeout 2000 Integer Connection timeout, in ms, default 1s
cluster-nodes (none) String Cluster ip and port, not empty when redis-mode is cluster, such as:10.11.80.147:7000,10.11.80.147:7001,10.11.80.147:8000
command (none) String Corresponds to the redis command above
redis-mode (none) Integer mode type: single cluster
lookup.cache.max-rows -1 Integer Query cache size, reduce the query for redis duplicate keys
lookup.cache.ttl -1 Integer Query cache expiration time, in seconds. The condition for enabling query cache is that neither max-rows nor ttl can be -1
lookup.max-retries 1 Integer Number of retries on failed query
lookup.cache.load-all false Boolean when command is hget, query all elements from redis map to cache,help to resolve cache penetration issues
sink.max-retries 1 Integer Number of retries for write failures
value.data.structure column String column: The value will come from a field (for example, set: key is the first field defined by DDL, and value is the second field)
row: value is taken from the entire row, separated by '\01'
set.if.absent false Boolean set/hset only when the key absent
io.pool.size (none) Integer the size of io thread pool for Lettuce's netty. By default, this is the number of threads currently available to the JVM and is greater than 2
event.pool.size (none) Integer the size of event thread pool for Lettuce's netty. By default, this is the number of threads currently available to the JVM and is greater than 2
scan.key (none) String redis key
scan.addition.key (none) String redis addition key,eg: map hashfield
scan.range.start (none) Integer lrange start
scan.range.stop (none) Integer lrange start
scan.count (none) Integer srandmember count
zset.zremrangeby (none) String After executing zadd, whether to execute zremrangeby,Valid values are:SCORE、LEX、RANK
sink with ttl parameters
Field Default Type Description
ttl (none) Integer key expiration time (seconds), each time sink will set the ttl
ttl.on.time (none) String The expiration time of the key in LocalTime.toString(), eg: 10:00 12:12:01, if ttl is not configured
ttl.key.not.absent false boolean Used with ttl, which is set when the key doesn't exist
Additional sink parameters when u debugging sql online which need to limit the resource usage:
Field Default Type Description
sink.limit false Boolean if open the limit for sink
sink.limit.max-num 10000 Integer the max num of writes per thread
sink.limit.interval 100 String the millisecond interval between each write per thread
sink.limit.max-online 30 * 60 * 1000L Long the max online milliseconds per thread
Additional connection parameters when the cluster type is sentinel:
Field Default Type Description
master.name (none) String master name
sentinels.info (none) String
sentinels.password none) String

Data Type Converter

flink type redis row converter
CHAR String
VARCHAR String
String String
BOOLEAN String String.valueOf(boolean val)
boolean Boolean.valueOf(String str)
BINARY String Base64.getEncoder().encodeToString
byte[] Base64.getDecoder().decode(String str)
VARBINARY String Base64.getEncoder().encodeToString
byte[] Base64.getDecoder().decode(String str)
DECIMAL String BigDecimal.toString
DecimalData DecimalData.fromBigDecimal(new BigDecimal(String str),int precision, int scale)
TINYINT String String.valueOf(byte val)
byte Byte.valueOf(String str)
SMALLINT String String.valueOf(short val)
short Short.valueOf(String str)
INTEGER String String.valueOf(int val)
int Integer.valueOf(String str)
DATE String the day from epoch as int
date show as 2022-01-01
TIME String the millisecond from 0'clock as int
time show as 04:04:01.023
BIGINT String String.valueOf(long val)
long Long.valueOf(String str)
FLOAT String String.valueOf(float val)
float Float.valueOf(String str)
DOUBLE String String.valueOf(double val)
double Double.valueOf(String str)
TIMESTAMP String the millisecond from epoch as long
timestamp TimeStampData.fromEpochMillis(Long.valueOf(String str))

Usage example:

  • Dimension table query:
create table sink_redis(name varchar, level varchar, age varchar) with ( 'connector'='redis', 'host'='10.11.80.147','port'='7001', 'redis-mode'='single','password'='******','command'='hset');

-- Insert data into redis first, which is equivalent to the redis command: hset 3 3 100 --
insert into sink_redis select * from (values ('3', '3', '100'));
                
create table dim_table (name varchar, level varchar, age varchar) with ('connector'='redis', 'host'='10.11.80.147','port'='7001', 'redis-mode'='single', 'password'='*****','command'='hget', 'maxIdle'='2', 'minIdle'='1', 'lookup.cache.max-rows'='10', 'lookup.cache.ttl'='10', 'lookup.max-retries'='3');
    
-- Randomly generate data within 10 as data source --
-- One of the data will be: username = 3 level = 3, which will be associated with the data inserted above -- 
create table source_table (username varchar, level varchar, proctime as procTime()) with ('connector'='datagen',  'rows-per-second'='1',  'fields.username.kind'='sequence',  'fields.username.start'='1',  'fields.username.end'='10', 'fields.level.kind'='sequence',  'fields.level.start'='1',  'fields.level.end'='10');

create table sink_table(username varchar, level varchar,age varchar) with ('connector'='print');

insert into
	sink_table
select
	s.username,
	s.level,
	d.age
from
	source_table s
left join dim_table for system_time as of s.proctime as d on
	d.name = s.username
	and d.level = s.level;
-- The line where username is 3 will be associated with the value in redis, and the output will be: 3,3,100
  • Muti-field dimension table query

In many cases, dimension tables have multiple fields. This example shows how to use 'value.data.structure'='row' to write multiple fields and associative queries.

-- init data in redis --
create table sink_redis(uid VARCHAR, score double, score2 double ) with ( 'connector'='redis', 'host'='10.11.69.176','port'='6379', 'redis-mode'='single','password'='***','command'='SET', 'value.data.structure'='row')
insert into sink_redis select * from (values ('1', 10.3, 10.1))
-- 'value.data.structure'='row':value is taken from the entire row and separated by '\01' 
-- the value in redis will be: "1\x0110.3\x0110.1" --
-- init data in redis end --

-- create join table --
create table join_table with ('command'='get', 'value.data.structure'='row') like sink_redis

-- create result table --
create table result_table(uid VARCHAR, username VARCHAR, score double, score2 double) with ('connector'='print')

-- create source table --
create table source_table(uid VARCHAR, username VARCHAR, proc_time as procTime()) with ('connector'='datagen', 'fields.uid.kind'='sequence', 'fields.uid.start'='1', 'fields.uid.end'='2')

-- query --
insert
	into
	result_table
select
	s.uid,
	s.username,
	j.score,
	j.score2
from
	source_table as s
join join_table for system_time as of s.proc_time as j on
	j.uid = s.uid
	
result:
2> +I[2, 1e0fe885a2990edd7f13dd0b81f923713182d5c559b21eff6bda3960cba8df27c69a3c0f26466efaface8976a2e16d9f68b3, null, null]
1> +I[1, 30182e00eca2bff6e00a2d5331e8857a087792918c4379155b635a3cf42a53a1b8f3be7feb00b0c63c556641423be5537476, 10.3, 10.1]
  • DataStream query method

    Sample code path: src/test/java/org.apache.flink.streaming.connectors.redis.datastream.DataStreamTest.java
    hset example, equivalent to redis command: hset tom math 150

Configuration configuration = new Configuration();
configuration.setString(REDIS_MODE, REDIS_CLUSTER);
configuration.setString(REDIS_COMMAND, RedisCommand.HSET.name());

RedisSinkMapper redisMapper = (RedisSinkMapper)RedisHandlerServices
.findRedisHandler(RedisMapperHandler.class, configuration.toMap())
.createRedisMapper(configuration);

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

GenericRowData genericRowData = new GenericRowData(3);
genericRowData.setField(0, "tom");
genericRowData.setField(1, "math");
genericRowData.setField(2, "152");
DataStream<GenericRowData> dataStream = env.fromElements(genericRowData, genericRowData);

RedisSinkOptions redisSinkOptions =
        new RedisSinkOptions.Builder().setMaxRetryTimes(3).build();
FlinkConfigBase conf =
        new FlinkSingleConfig.Builder()
                .setHost(REDIS_HOST)
                .setPort(REDIS_PORT)
                .setPassword(REDIS_PASSWORD)
                .build();

RedisSinkFunction redisSinkFunction =
        new RedisSinkFunction<>(conf, redisMapper, redisSinkOptions, resolvedSchema);

dataStream.addSink(redisSinkFunction).setParallelism(1);
env.execute("RedisSinkTest");
  • redis-cluster write example

    Sample code path: src/test/java/org.apache.flink.streaming.connectors.redis.table.SQLInsertTest.java
    set example, equivalent to redis command: set test test11

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
EnvironmentSettings environmentSettings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build();
StreamTableEnvironment tEnv = StreamTableEnvironment.create(env, environmentSettings);

String ddl = "create table sink_redis(username VARCHAR, passport VARCHAR) with ( 'connector'='redis', " +
              "'cluster-nodes'='10.11.80.147:7000,10.11.80.147:7001','redis- mode'='cluster','password'='******','command'='set')" ;

tEnv.executeSql(ddl);
String sql = " insert into sink_redis select * from (values ('test', 'test11'))";
TableResult tableResult = tEnv.executeSql(sql);
tableResult.getJobClient().get()
.getJobExecutionResult()
.get();

Development and testing environment

ide: IntelliJ IDEA

code format: google-java-format + Save Actions

code check: CheckStyle

flink 1.12/1.13/1.14+

jdk1.8 Lettuce 6.2.1

Switch to branch flink-1.12 if you need flink1.12 support(note: use jedis)

<dependency>
    <groupId>io.github.jeff-zou</groupId>
    <artifactId>flink-connector-redis</artifactId>
    <version>1.1.1-1.12</version>
</dependency>