-
Notifications
You must be signed in to change notification settings - Fork 0
/
GP.F90
120 lines (84 loc) · 2.48 KB
/
GP.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
module GP
#include "definition.h"
use grid_data
use sim_data
use linalg
contains
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!! Quadrature Rules for Integrated Kernel!!!!!!
function intg_kernel(x, y) result(f)
implicit none
real, intent(IN) :: x, y
real :: f
f = quad_exact(x, y)
return
end function intg_kernel
function quad_cross(x, t) result(f)
implicit none
real, intent(IN) :: x, t
real :: f
f = 0.
f = 0.5*sim_sigdel*SQRT(2.*PI)*int_egrand(x,t)
return
end function quad_cross
function intg_predvec(x) result(T)
implicit none
real, intent(IN) :: x
real, dimension(2) :: T
T(1) = quad_cross(x, -0.5)
T(2) = quad_cross(x, 0.5)
return
end function intg_predvec
function SE(x, y) result(f)
implicit none
real, intent(IN) :: x, y
real :: f, r
r = abs(x-y)
f = EXP( -0.5*(r/sim_sigdel)**2 )
return
end function SE
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!! SE Kernel !!!!!!!!!!!!!!!!!!!
function int_egrand(x, t) result(f)
implicit none
real, intent(IN) :: x, t
real :: f, sigdel
sigdel = sim_sigdel*SQRT(2.)
f = ERF( (x + .5 - t)/sigdel) - ERF( (x - .5 - t)/sigdel )
!f = ERF( (x + .5*gr_dx - t)/sigdel) - ERF( (x - .5*gr_dx - t)/sigdel )
end function int_egrand
function quad_exact(x1,x2) result(Integ)
!exact quadrature, only good for SE kernel
real, intent(IN) :: x1, x2
real :: Integ, yxp, yxn, yxm, sigdel
sigdel = sim_sigdel*SQRT(2.)
yxp = (x1 - x2 + 1.)/sigdel
yxn = (x1 -x2)/sigdel
yxm = (x1 - x2 -1.)/sigdel
Integ = 0.5*SQRT(PI)*(sigdel)**2 *( yxp*ERF(yxp) + yxm*ERF(yxm) &
- 2.*( yxn*ERF(yxn) + 1./SQRT(PI) *EXP(-yxn**2) ) &
+ 1./SQRT(PI) * ( EXP(-yxp**2) + exp(-yxm**2) ) )
return
end function quad_exact
function cross_cor(x) result(T)
!returns the cross-correlation between the left and right states and the cell centered at x
!see eq 24
implicit none
real, intent(IN) :: x
real, dimension(2) :: T
real :: sigdel
sigdel = sim_sigdel*SQRT(2.)
!sim_sigdel = sim_sigma/gr_dx
T(1) = int_egrand(x, -.5)
T(2) = int_egrand(x, 0.5)
T = T*.5*sigdel*SQRT(PI)
end function cross_cor
function K(x, y) result(f)
implicit none
real, intent(IN) :: x, y
real :: f
f = 0.
f = SE(x,y)
return
end function K
end module GP