-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathTetrahedron_test.cpp
261 lines (225 loc) · 8.03 KB
/
Tetrahedron_test.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
/*******************************************************************************
Causal Dynamical Triangulations in C++ using CGAL
Copyright © 2017 Adam Getchell
******************************************************************************/
/// @file Tetrahedron_test.cpp
/// @brief Tests for 3D triangulated and foliated tetrahedrons
/// @author Adam Getchell
/// @details Tests that 3D triangulated and foliated tetrahedrons are
/// constructed correctly.
#include <doctest/doctest.h>
#include <numbers>
#include "Foliated_triangulation.hpp"
using namespace std;
using namespace foliated_triangulations;
static inline auto constexpr RADIUS_2 = 2.0 * std::numbers::inv_sqrt3_v<double>;
SCENARIO("Construct a tetrahedron in a Delaunay triangulation" *
doctest::test_suite("tetrahedron"))
{
using Point = Point_t<3>;
GIVEN("A vector of 4 vertices.")
{
vector vertices{
Point{0, 0, 0},
Point{1, 0, 0},
Point{0, 1, 0},
Point{0, 0, 1}
};
vector<std::size_t> timevalues{1, 2, 2, 2};
auto causal_vertices = make_causal_vertices<3>(vertices, timevalues);
WHEN("A triangulation is constructed using the vector.")
{
FoliatedTriangulation_3 const triangulation(causal_vertices, 0, 1);
THEN("The triangulation has dimension 3.")
{
REQUIRE_EQ(triangulation.dimension(), 3);
}
THEN("The triangulation has 4 vertices.")
{
REQUIRE_EQ(triangulation.number_of_vertices(), 4);
}
THEN("The triangulation has 6 edges.")
{
REQUIRE_EQ(triangulation.number_of_finite_edges(), 6);
}
THEN("The triangulation has 4 faces.")
{
REQUIRE_EQ(triangulation.number_of_finite_facets(), 4);
}
THEN("The triangulation has 1 cell.")
{
REQUIRE_EQ(triangulation.number_of_finite_cells(), 1);
}
THEN("The triangulation is Delaunay.")
{
REQUIRE(triangulation.is_delaunay());
}
THEN("The triangulation data structure is valid.")
{
REQUIRE(triangulation.is_tds_valid());
}
THEN("The vertices are valid.")
{
REQUIRE(triangulation.check_all_vertices());
}
}
}
}
SCENARIO("Find distances between points of the tetrahedron" *
doctest::test_suite("tetrahedron"))
{
using Point = Point_t<3>;
using Causal_vertices = Causal_vertices_t<3>;
using FoliatedTriangulation = FoliatedTriangulation_3;
using squared_distance = TriangulationTraits<3>::squared_distance;
GIVEN("Points in a tetrahedron.")
{
auto origin = Point{0, 0, 0};
// These points have a radius of 1
auto v_1 = Point{1, 0, 0};
auto v_2 = Point{0, 1, 0};
auto v_3 = Point{0, 0, 1};
auto v_4 = Point{RADIUS_2, RADIUS_2, RADIUS_2};
Causal_vertices causal_vertices;
causal_vertices.emplace_back(v_1, 1);
causal_vertices.emplace_back(v_2, 1);
causal_vertices.emplace_back(v_3, 1);
causal_vertices.emplace_back(v_4, 2);
WHEN("The Foliated triangulation is constructed with these points.")
{
FoliatedTriangulation triangulation(causal_vertices);
squared_distance constexpr r_2;
THEN("The triangulation is initialized correctly.")
{
REQUIRE(triangulation.is_initialized());
}
THEN("The squared distances of vertices from origin are correct.")
{
fmt::print("v_1 is {}\n", utilities::point_to_str(v_1));
fmt::print("v_2 is {}\n", utilities::point_to_str(v_2));
fmt::print("v_3 is {}\n", utilities::point_to_str(v_3));
fmt::print("v_4 is {}\n", utilities::point_to_str(v_4));
auto d_1 = r_2(origin, v_1);
fmt::print("The squared distance between v_1 and the origin is {}\n",
d_1);
CHECK_EQ(d_1, doctest::Approx(1.0));
auto d_2 = r_2(origin, v_2);
fmt::print("The squared distance between v_2 and the origin is {}\n",
d_2);
CHECK_EQ(d_2, doctest::Approx(1.0));
auto d_3 = r_2(origin, v_3);
fmt::print("The squared distance between v_3 and the origin is {}\n",
d_3);
CHECK_EQ(d_3, doctest::Approx(1.0));
auto d_4 = r_2(origin, v_4);
fmt::print("The squared distance between v_4 and the origin is {}\n",
d_4);
CHECK_EQ(d_4, doctest::Approx(4.0));
}
THEN("The squared distance between radius=1 vertices are 2.")
{
auto d_1 = r_2(v_1, v_2);
CHECK_EQ(d_1, doctest::Approx(2.0));
fmt::print("The squared distance between v_1 and v_2 is {}\n", d_1);
auto d_2 = r_2(v_1, v_3);
CHECK_EQ(d_2, doctest::Approx(2.0));
fmt::print("The squared distance between v_1 and v_3 is {}\n", d_2);
auto d_3 = r_2(v_2, v_3);
CHECK_EQ(d_3, doctest::Approx(2.0));
fmt::print("The squared distance between v_2 and v_3 is {}\n", d_3);
}
THEN("All vertices have correct timevalues.")
{
CHECK(triangulation.check_all_vertices());
// Human verification
auto print = [&triangulation](Vertex_handle_t<3> const& vertex) {
fmt::print(
"Vertex ({}) with timevalue of {} has a squared radius of {} and "
"a squared expected radius of {} with an expected timevalue of "
"{}.\n",
utilities::point_to_str(vertex->point()), vertex->info(),
squared_radius<3>(vertex),
std::pow(triangulation.expected_radius(vertex), 2),
triangulation.expected_timevalue(vertex));
};
ranges::for_each(triangulation.get_vertices(), print);
}
}
}
}
SCENARIO("Construct a foliated tetrahedron in a foliated triangulation" *
doctest::test_suite("tetrahedron"))
{
using Point = Point_t<3>;
using FoliatedTriangulation = FoliatedTriangulation_3;
GIVEN("A vector of vertices and a vector of timevalues.")
{
vector Vertices{
Point{ 1, 0, 0},
Point{ 0, 1, 0},
Point{ 0, 0, 1},
Point{RADIUS_2, RADIUS_2, RADIUS_2}
};
vector<std::size_t> timevalue{1, 1, 1, 2};
WHEN("A foliated triangulation is constructed using the vectors.")
{
auto causal_vertices = make_causal_vertices<3>(Vertices, timevalue);
FoliatedTriangulation const triangulation(causal_vertices);
THEN("The triangulation is initialized correctly.")
{
REQUIRE(triangulation.is_initialized());
}
THEN("The triangulation has dimension 3.")
{
REQUIRE_EQ(triangulation.dimension(), 3);
}
THEN("The triangulation has 4 vertices.")
{
REQUIRE_EQ(triangulation.number_of_vertices(), 4);
}
THEN("The triangulation has 6 edges.")
{
REQUIRE_EQ(triangulation.number_of_finite_edges(), 6);
}
THEN("The triangulation has 4 faces.")
{
REQUIRE_EQ(triangulation.number_of_finite_facets(), 4);
}
THEN("The triangulation has 1 cell.")
{
REQUIRE_EQ(triangulation.number_of_finite_cells(), 1);
}
THEN("Timevalues are correct.")
{
CHECK(triangulation.check_all_vertices());
}
THEN("The cell info is correct.")
{
auto cell = triangulation.get_delaunay().finite_cells_begin();
CHECK_EQ(expected_cell_type<3>(cell), Cell_type::THREE_ONE);
// Human verification
triangulation.print_cells();
}
THEN("There is one (3,1) simplex.")
{
REQUIRE_EQ(triangulation.get_three_one().size(), 1);
}
THEN("There are no (2,2) simplices.")
{
REQUIRE(triangulation.get_two_two().empty());
}
THEN("There are no (1,3) simplices.")
{
REQUIRE(triangulation.get_one_three().empty());
}
THEN("There are 3 timelike edges.")
{
REQUIRE_EQ(triangulation.N1_TL(), 3);
}
THEN("There are 3 spacelike edges.")
{
REQUIRE_EQ(triangulation.N1_SL(), 3);
}
}
}
}