-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexec.py
502 lines (442 loc) · 18.1 KB
/
exec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
import subprocess
import os
import csv
import shutil
import dataset_mapper
import classifier_mapper
import svm
import statistics
from collections import defaultdict
import crime.crime_adversarial_region
import adult.adult_adversarial_region
import compas.compas_adversarial_region
import german.german_adversarial_region
import health.health_adversarial_region
import matplotlib.pyplot as plt
import numpy as np
import time
training_name = "dataset/training-set.csv"
test_name = "dataset/test-set.csv"
adversarial_name = "adversarial-region.dat"
svm_loc = "./domains/{data_folder}/model/"
exceptions = []
def test_SVM(model,data_folder):
from sklearn import metrics
dataset_path = f"./{data_folder}/{test_name}"
dataset_mapper1 = dataset_mapper.DatasetMapper()
x, y = dataset_mapper1.read(dataset_path)
y_pred = model.predict(x)
print("Accuracy:",metrics.accuracy_score(y, y_pred))
print("Balanced Accuracy:",metrics.balanced_accuracy_score(y, y_pred))
def mlxtrendPrint(svm,data_folder,features):
from mlxtend.evaluate import feature_importance_permutation
dataset_path = f"./{data_folder}/{test_name}"
dataset_mapper1 = dataset_mapper.DatasetMapper()
x, y = dataset_mapper1.read(dataset_path)
imp_vals = []
for i in range(5):
x, y = dataset_mapper1.shuffle(x,y)
with open(f"./{data_folder}/dataset/columns.csv", 'r') as f:
columns = [line for line in csv.reader(f)][0]
imp_v, imp_all = feature_importance_permutation(
predict_method=svm.predict,
X=np.array(x),
y=np.array(y),
metric='accuracy',
num_rounds=10,
seed=1)
if(imp_vals == []):
imp_vals = imp_v
else:
for j in range(len(imp_v)):
imp_vals[j] += imp_v[j]
for j in range(len(imp_vals)):
imp_vals[j] /= 5
mlxScore = defaultdict(float)
for col_id in range(1,len(columns)):
mlxScore[columns[col_id]] = imp_vals[col_id-1]
mlxGrade,mlxScore = score_to_grade(mlxScore, canBeZero = True)
if(features == []):
print(f"MLX Score: {mlxScore}")
print(f"MLX Grade: { dict(sorted(mlxGrade.items(), key = lambda kv:abs(float(kv[1]))))} \n")
else:
for k,v in mlxScore.items():
if k in features:
print(f"mlxScore: {k} -> {v}")
def skltrendPrint(svm,data_folder,features):
from sklearn.inspection import permutation_importance
dataset_path = f"./{data_folder}/{test_name}"
dataset_mapper1 = dataset_mapper.DatasetMapper()
x, y = dataset_mapper1.read(dataset_path)
with open(f"./{data_folder}/dataset/columns.csv", 'r') as f:
columns = [line for line in csv.reader(f)][0]
result = permutation_importance(svm, x, y, n_repeats = 10, random_state = 0)
Score = defaultdict(float)
for col_id in range(1,len(columns)):
Score[columns[col_id]] = result.importances_mean[col_id-1]
Grade,Score = score_to_grade(Score, canBeZero = True)
if(features == []):
print(f"SKL Score: {Score}")
print(f"SKL Grade: { dict(sorted(Grade.items(), key = lambda kv:abs(float(kv[1]))))} \n")
else:
for k,v in Score.items():
if k in features:
print(f"SKL Score: {k} -> {v}")
def create_model(kernel_name,reg_param = 1,gamma = 1,degree = 1, coef0 = 0,data_folder = "",PerturbFeature = [], ifmlx = False):
#s = subprocess.check_call(f"python3 {data_folder}-get.py", shell = True)
dataset_path = f"./{data_folder}/{training_name}"
output_path = f"./{data_folder}/svm/{data_folder}-svm_{kernel_name}_g{gamma}_d{degree}_c{coef0}_C{reg_param}.dat"
if ((os.path.isfile(output_path)==False) or (ifmlx)):
#if(True):
print(f"Creating SVM: {output_path}")
# Trains model
dataset_mapper1 = dataset_mapper.DatasetMapper()
x, y = dataset_mapper1.read(dataset_path)
trainer = svm.SVM(kernel_name, gamma, degree, coef0, reg_param)
model = trainer.train(x, y)
classifier_mapper1 = classifier_mapper.ClassifierMapper()
classifier_mapper1.create(model, output_path)
test_SVM(model,data_folder)
if(ifmlx):
start = time.time()
#mlxtrendPrint(model,data_folder,PerturbFeature)
skltrendPrint(model,data_folder,PerturbFeature)
end = time.time()
print(f"Time mlx: {end-start}")
else:
print(f"SVM Already present: {output_path}")
return output_path
def run_saver(svm_addr,abstraction,perturbation,data_folder,is_OH, get_CE, if_part):
os.chdir("../saver")
print(f"\n")
#os.system("ls")
print(f"\n")
perturbation_file = f"../Data/{data_folder}/perturbation/{data_folder}-{perturbation}-{adversarial_name}"
rel_svm_loc = f"../Data/{svm_addr}"
rel_dataset_loc = f"../Data/{data_folder}/{test_name}"
tier_file = f"../Data/{data_folder}/perturbation/{data_folder}-tier.dat"
is_binary = "1"
is_top = 1 if (perturbation == "top") else 0
print(f"Start Analysis")
print(f"bin/saver {rel_svm_loc} {rel_dataset_loc} {abstraction} from_file {perturbation_file} {tier_file} {is_binary} {is_top} {is_OH} {get_CE} {if_part}")
s = subprocess.check_call(f"bin/saver {rel_svm_loc} {rel_dataset_loc} {abstraction} from_file {perturbation_file} {tier_file} {is_binary} {is_top} {is_OH} {get_CE} {if_part}", shell = True)
os.chdir(f"../Data/")
print(f"Finished Analysis")
# Loop over reg parameters
def loop_model2(kernel_name,reg_params,gammas,degrees,coef0s,abstractions,perturbations,data_folder,is_OH, get_CE, if_part, ifmlx):
for reg in reg_params:
if kernel_name == 'linear':
svm_addr = create_model(kernel_name,reg,data_folder = data_folder, ifmlx = ifmlx)
loop_saver(svm_addr,abstractions,perturbations,data_folder,is_OH, get_CE, if_part)
if kernel_name == 'rbf':
for gamma in gammas:
svm_addr = create_model(kernel_name,reg, gamma = gamma,data_folder = data_folder, ifmlx = ifmlx)
loop_saver(svm_addr,abstractions,perturbations,data_folder,is_OH, get_CE, if_part)
if kernel_name == 'poly':
for degree in degrees:
for coef0 in coef0s:
try:
svm_addr = create_model(kernel_name,reg, degree = degree, coef0 = coef0,data_folder = data_folder, ifmlx = ifmlx)
loop_saver(svm_addr,abstractions,perturbations,data_folder,is_OH, get_CE, if_part)
except:
print(f"\t-----Exception Occured for (degree= {degree},coeff = {coef0})--------")
exceptions.append((degree,coef0))
# Each reg parameter is for a variable.
def loop_model(kernel_name,reg_params,gammas,degrees,coef0s,abstractions,perturbations,data_folder,is_OH, get_CE, if_part,PerturbFeature, ifmlx):
#for reg in reg_params:
#for kernel_name in kernel_names:
if kernel_name == 'linear':
svm_addr = create_model(kernel_name,reg_params[0],data_folder = data_folder,PerturbFeature = PerturbFeature, ifmlx = ifmlx)
loop_saver(svm_addr,abstractions,perturbations,data_folder,is_OH, get_CE, if_part)
if kernel_name == 'rbf':
for gamma in gammas:
svm_addr = create_model(kernel_name,reg_params[1], gamma = gamma,data_folder = data_folder, PerturbFeature = PerturbFeature, ifmlx = ifmlx)
loop_saver(svm_addr,abstractions,perturbations,data_folder,is_OH, get_CE, if_part)
if kernel_name == 'poly':
for degree in degrees:
for coef0 in coef0s:
try:
svm_addr = create_model(kernel_name,reg_params[2], degree = degree, coef0 = coef0,data_folder = data_folder, PerturbFeature= PerturbFeature, ifmlx = ifmlx)
loop_saver(svm_addr,abstractions,perturbations,data_folder,is_OH, get_CE, if_part)
except:
print(f"\t-----Exception Occured for (degree= {degree},coeff = {coef0})--------")
exceptions.append((degree,coef0))
def loop_saver(svm_addr,abstractions,perturbations,data_folder,is_OH, get_CE, if_part):
for abstraction in abstractions:
for perturbation in perturbations:
start = time.time()
run_saver(svm_addr,abstraction,perturbation,data_folder,is_OH, get_CE, if_part)
end = time.time()
print(f"Time Saver: {end-start}")
def get_avg(rawPath,kernel_types,reg_params,gammas,degrees,coef0s,abstractions,perturbations):
kernel = kernel_types[0]
file1 = open(rawPath,"r+")
lines = file1.readlines()
lineNo = 0
Bac,Rob = [],[]
if kernel == "linear":
print(f"reg \t Acc. \t\t B. Acc. \t Robustness")
for reg in reg_params:
average = [0,0,0]
c = 0
for i in range(len(perturbations)*len(abstractions)):
line = lines[lineNo]
line = line.split()
for i in range(3):
average[i] += float(line[i])
c+=1
lineNo += 1
for i in range(3):
average[i] /= c
Bac.append(average[1])
Rob.append(average[2])
print(f"{reg} \t {average[0]} \t {average[1]} \t {average[2]}")
if kernel == "poly":
print(f"reg \t deg. \t coef0 \t Acc. \t\t B. Acc. \t Robustness")
for reg in reg_params:
for degree in degrees:
for coef0 in coef0s:
if (degree,coef0) in exceptions:
print(f"{reg} {degree} {coef0} exception")
continue
average = [0,0,0]
c = 0
for i in range(len(perturbations)*len(abstractions)):
line = lines[lineNo]
line = line.split()
for i in range(3):
average[i] += float(line[i])
c+=1
lineNo += 1
for i in range(3):
average[i] /= c
Bac.append(average[1])
Rob.append(average[2])
print(f"{reg} {degree} {coef0} {average[0]} {average[1]} {average[2]}")
if kernel == "rbf":
print(f"reg \t gamma \t\t Acc. \t\t B. Acc. \t Robustness")
for reg in reg_params:
for gamma in gammas:
average = [0,0,0]
c = 0
for i in range(len(perturbations)*len(abstractions)):
line = lines[lineNo]
line = line.split()
for i in range(3):
average[i] += float(line[i])
c+=1
lineNo += 1
for i in range(3):
average[i] /= c
Bac.append(average[1])
Rob.append(average[2])
print(f"{reg} \t {gamma} \t {average[0]} \t {average[1]} \t {average[2]}")
print()
file1.close()
return(Bac,Rob)
def boxplotCrime(Bac,Rob,is_OH,kernel_types,abstractions):
txt = "with OH" if is_OH else ""
title = f"Kernel: {kernel_types[0]}; Abs. Domain: {abstractions[0]} {txt}"
boxplotter(Bac,Rob,title)
def boxplotDatasets(Bac,Rob,data_folder):
title = data_folder
boxplotter(Bac,Rob,title)
def boxplotter(Bac,Rob,title):
fig = plt.figure(figsize =(10, 7))
ax = fig.add_axes([0.1, 0.1, 0.9, 0.9])
bp = ax.boxplot([Bac,Rob])
ax.set_xticklabels(['B. Acc', 'Robust.'])
plt.title(title)
plt.show()
def ThreeDpolyPlotter(Bac,Rob,degrees,coef0s):
x = []
y = []
for degree in degrees:
for coef0 in coef0s:
x.append(degree)
y.append(coef0)
fig = plt.figure()
ax = plt.axes(projection ='3d')
ax.plot_surface(np.array(x), np.array(y), np.array(Bac), cmap ='viridis', edgecolor ='red', alpha=0.5)
ax.plot_surface(np.array(x), np.array(y), np.array(Rob), cmap ='viridis', edgecolor ='blue', alpha=0.5)
ax.set_title('Dataset: Crime, Kernel: Poly ')
plt.show()
def raw_print(rawPath):
Bac = []
Rob = []
print(f"Acc. \t B. Acc. \t Robustness")
file1 = open(rawPath,"r+")
average = [0,0,0]
c = 0
for line in file1.readlines():
line = line.split()
print(f"{line[0]}\t{line[1]}\t{line[2]}")
Bac.append(float(line[1]))
Rob.append(float(line[2]))
for i in range(3):
average[i] += float(line[i])
c+=1
for i in range(3):
average[i] /= c
print(f"AVERAGE RESULT :\n Accuracy: {average[0]} Balanced Accuracy: {average[1]} Robustnedd: {average[2]}")
print()
file1.close()
return Bac,Rob
def score_to_grade(score,canBeZero = False):
stdev = statistics.stdev(score.values())
mean = statistics.mean(score.values())
grade = dict()
score2 = dict()
for k,v in score.items():
if(v == 0 and not canBeZero):
continue
score2[k] = v
if(v > mean + 3*stdev):
grade[k] = 10
elif(v > mean + 2*stdev):
grade[k] = 9
elif(v > mean + stdev):
grade[k] = 8
elif(v > mean):
grade[k] = 7
elif(v > mean - stdev):
grade[k] = 6
elif(v > mean - 2*stdev):
grade[k] = 5
elif(v > mean - 3*stdev):
grade[k] = 4
else:
grade[k] = 3
grade = dict(sorted(grade.items(), key = lambda kv:abs(float(kv[1]))))
score2 = dict(sorted(score2.items(), key = lambda kv:abs(float(kv[1]))))
#print(f"G->{len(grade)}: {grade}\n\nS->{len(score)}: {score}")
return grade,score2
def get_feature_score(dataDirPath,kernel_types,data_folder,reg_params,gammas,degrees,coef0s):
fileR = open(f"{dataDirPath}/{data_folder}-feature_score_raw.txt","r+")
fileW = open(f"{dataDirPath}/{data_folder}-feature_analysis.txt","w+")
with open(dataDirPath+"/dataset/columns.csv", 'r') as f:
columns = [line for line in csv.reader(f)][0]
CG_L,CG_R,CG_P,CG = defaultdict(float),defaultdict(float),defaultdict(float),defaultdict(float)
count = [0,0,0]
rawdata = fileR.readlines()
pos = 0
for kernel in kernel_types:
feature_score = dict()
if 'linear' == kernel:
fileW.write(f"\n\n\n\nSVM Type: Linear; Reg. Param: {reg_params[0]}\n")
weights = rawdata[pos].split()
pos += 1
for col_i in range(1,len(columns)):
feature_score[columns[col_i]] = abs(float(weights[col_i]))
feature_grade,feature_score = score_to_grade(feature_score)
fileW.write(f"{feature_score} \n")
for k,v in feature_grade.items():
CG_L[k] += v
count[0] += 1
if 'poly' == kernel:
for degree in degrees:
for coef0 in coef0s:
fileW.write(f"\n\n\n\nSVM Type: POLY; Reg. Param: {reg_params[2]}; degree: {degree}; coef0: {coef0}\n")
weights = rawdata[pos].split()
pos += 1
for col_i in range(1,len(columns)):
feature_score[columns[col_i]] = abs(float(weights[col_i]))
feature_grade,feature_score = score_to_grade(feature_score)
fileW.write(f"{feature_score} \n")
for k,v in feature_grade.items():
CG_P[k] += v
count[1] += 1
if 'rbf' == kernel:
for gamma in gammas:
fileW.write(f"\n\n\n\nSVM Type: RBF; Reg. Param: {reg_params[1]}; gamma:{gamma}\n")
weights = rawdata[pos].split()
pos += 1
for col_i in range(1,len(columns)):
feature_score[columns[col_i]] = abs(float(weights[col_i]))
feature_grade,feature_score = score_to_grade(feature_score)
fileW.write(f"{feature_score} \n")
for k,v in feature_grade.items():
CG_R[k] += v
count[2] += 1
print(f"Before -> {CG_P} ;;;; {count[2]}")
for col in CG_R.keys():
CG_L[col] = CG_L[col]/count[0]
CG_R[col] = CG_R[col]/count[1]
CG_P[col] = CG_P[col]/count[2]
CG[col] = (CG_L[col] + CG_R[col] + CG_P[col])/3
print(f"After -> {CG_P} ;;;; {count[2]}")
print(f"After -> {CG_P} ;;;; {count[2]}")
fileW.write(f"\n\n\n----CUMMULATIVE RESULT (Linear)---\n")
fileW.write(f"{ dict(sorted(CG_L.items(), key = lambda kv:abs(float(kv[1]))))} \n")
fileW.write(f"\n\n\n----CUMMULATIVE RESULT (RBF)---\n")
fileW.write(f"{ dict(sorted(CG_R.items(), key = lambda kv:abs(float(kv[1]))))} \n")
fileW.write(f"\n\n\n----CUMMULATIVE RESULT (Poly)---\n")
fileW.write(f"{ dict(sorted(CG_P.items(), key = lambda kv:abs(float(kv[1]))))} \n")
fileW.write(f"\n\n\n----CUMMULATIVE RESULT---\n")
fileW.write(f"{ dict(sorted(CG.items(), key = lambda kv:abs(float(kv[1]))))} \n")
print(f"\n\n\n----CUMMULATIVE RESULT (Linear)---\n")
print(f"{ dict(sorted(CG_L.items(), key = lambda kv:abs(float(kv[1]))))} \n")
print(f"\n\n\n----CUMMULATIVE RESULT (RBF)---\n")
print(f"{ dict(sorted(CG_R.items(), key = lambda kv:abs(float(kv[1]))))} \n")
print(f"\n\n\n----CUMMULATIVE RESULT (Poly)---\n")
print(f"{ dict(sorted(CG_P.items(), key = lambda kv:abs(float(kv[1]))))} \n")
print(f"\n\n\n----CUMMULATIVE RESULT---\n")
print(f"{ dict(sorted(CG.items(), key = lambda kv:abs(float(kv[1]))))} \n")
def createDir(data_folder):
if(not os.path.isdir(f"./{data_folder}/dataset")):
os.system(f"mkdir ./{data_folder}/dataset")
if(not os.path.isdir(f"./{data_folder}/perturbation")):
os.system(f"mkdir ./{data_folder}/perturbation")
if(not os.path.isdir(f"./{data_folder}/svm")):
os.system(f"mkdir ./{data_folder}/svm")
def caller(data_folder,reg_params,gammas,degrees,coef0s,abstractions,perturbations,kernel_types,regType = 1,get_avg_bool= False,is_OH = 1,get_CE = 0,if_part = 0,if_print_raw= False,plot = 'None',PerturbFeature = [], epsilon = 0.3, ifmlx = False):
createDir(data_folder)
os.system('rm ../saver/result1.txt')
os.system('rm ../saver/feature_score_raw.txt')
os.system('rm ../saver/result_raw.txt')
os.system('touch ../saver/result1.txt')
os.system('touch ../saver/result_raw.txt')
os.system('touch ../saver/feature_score_raw.txt')
os.chdir(f"./{data_folder}")
s = subprocess.check_call(f"python3 {data_folder}-get.py", shell = True)
os.chdir("..")
if(data_folder == "adult"):
adult.adult_adversarial_region.execute(perturbations, PerturbFeature, epsilon)
if(data_folder == "compas"):
compas.compas_adversarial_region.execute(perturbations, PerturbFeature, epsilon)
if(data_folder == "crime"):
crime.crime_adversarial_region.execute(perturbations, PerturbFeature, epsilon)
if(data_folder == "german"):
german.german_adversarial_region.execute(perturbations, PerturbFeature, epsilon)
if(data_folder == "health"):
health.health_adversarial_region.execute()
for kernel in kernel_types:
if(regType == 1):
loop_model(kernel,reg_params,gammas,degrees,coef0s,abstractions,perturbations,data_folder,is_OH, get_CE, if_part,PerturbFeature,ifmlx)
if(regType == 2):
loop_model2(kernel,reg_params,gammas,degrees,coef0s,abstractions,perturbations,data_folder,is_OH, get_CE, if_part, ifmlx)
dest = shutil.move("../saver/result1.txt", f"./{data_folder}/{data_folder}-results.txt") #shutil.move(source, destination)
dest = shutil.move("../saver/result_raw.txt", f"./{data_folder}/{data_folder}-results_raw.txt")
if('top' in perturbations):
dest = shutil.move("../saver/feature_score_raw.txt", f"./{data_folder}/{data_folder}-feature_score_raw.txt")
get_feature_score(f"./{data_folder}",kernel_types,data_folder,reg_params,gammas,degrees,coef0s)
if(get_avg_bool):
Bac,Rob = get_avg(f"./{data_folder}/{data_folder}-results_raw.txt",kernel_types,reg_params,gammas,degrees,coef0s,abstractions,perturbations,)
if (plot == 'boxplotCrime'):
boxplotCrime(Bac,Rob,is_OH,kernel_types,abstractions)
if (plot == '3DplotPoly'):
ThreeDpolyPlotter(Bac,Rob,degrees,coef0s)
if(if_print_raw):
Bac,Rob = raw_print(f"./{data_folder}/{data_folder}-results_raw.txt")
if (plot == 'boxplotDatasets'):
boxplotDatasets(Bac,Rob,data_folder)
if __name__ == '__main__':
data_folder = "german"
reg_params = [1,10,0.01]
gammas = [0.05]
degrees = [6]
coef0s = [6]
abstractions = ['interval','raf']
perturbations = ["cat", "noisecat","noise"]#["top","cat", "noisecat","noise"]
kernel_types = ['linear','rbf','poly']
caller(data_folder,reg_params,gammas,degrees,coef0s,abstractions,perturbations,kernel_types,is_OH=1)