-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path18_Longest_Nice_Subarray.cpp
70 lines (54 loc) · 2.03 KB
/
18_Longest_Nice_Subarray.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
// 2401. Longest Nice Subarray
// You are given an array nums consisting of positive integers.
// We call a subarray of nums nice if the bitwise AND of every pair of elements that are in different positions in the subarray is equal to 0.
// Return the length of the longest nice subarray.
// A subarray is a contiguous part of an array.
// Note that subarrays of length 1 are always considered nice.
// Example 1:
// Input: nums = [1,3,8,48,10]
// Output: 3
// Explanation: The longest nice subarray is [3,8,48]. This subarray satisfies the conditions:
// - 3 AND 8 = 0.
// - 3 AND 48 = 0.
// - 8 AND 48 = 0.
// It can be proven that no longer nice subarray can be obtained, so we return 3.
// Example 2:
// Input: nums = [3,1,5,11,13]
// Output: 1
// Explanation: The length of the longest nice subarray is 1. Any subarray of length 1 can be chosen.
// Constraints:
// 1 <= nums.length <= 105
// 1 <= nums[i] <= 109
class Solution
{
public:
int longestNiceSubarray(vector<int> &nums)
{
int n = nums.size(), left = 0, right = 1, maxi = 1, mask = nums[0];
while (right < n)
{
while ((mask & nums[right]) != 0)
mask ^= nums[left++];
mask |= nums[right];
maxi = max(maxi, right - left + 1);
right++;
}
return maxi;
}
};
/*
This code finds the longest nice subarray in the given array nums where bitwise AND of any two elements in the subarray is 0.
Algorithm:
1. Uses sliding window approach with two pointers - left and right
2. Maintains a mask to track the bits set in current window
3. For each new element (right pointer):
- If it has common bits with mask (AND != 0), remove elements from left until no common bits
- Add new element to mask using OR
- Update maximum length found so far
4. Returns the maximum length found
Time Complexity: O(n) where n is length of nums
- While loop runs n times
- Inner while loop total operations across all iterations is O(n)
Space Complexity: O(1)
- Uses only constant extra space for variables
*/