-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path09_Alternating_Groups_II.cpp
83 lines (59 loc) · 2.12 KB
/
09_Alternating_Groups_II.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
// 3208. Alternating Groups II
// There is a circle of red and blue tiles. You are given an array of integers colors and an integer k. The color of tile i is represented by colors[i]:
// colors[i] == 0 means that tile i is red.
// colors[i] == 1 means that tile i is blue.
// An alternating group is every k contiguous tiles in the circle with alternating colors (each tile in the group except the first and last one has a different color from its left and right tiles).
// Return the number of alternating groups.
// Note that since colors represents a circle, the first and the last tiles are considered to be next to each other.
// Example 1:
// Input: colors = [0,1,0,1,0], k = 3
// Output: 3
// Explanation:
// Alternating groups
// Example 2:
// Input: colors = [0,1,0,0,1,0,1], k = 6
// Output: 2
// Explanation:
// Alternating groups:
// Example 3:
// Input: colors = [1,1,0,1], k = 4
// Output: 0
// Explanation:
// Constraints:
// 3 <= colors.length <= 105
// 0 <= colors[i] <= 1
// 3 <= k <= colors.length
class Solution
{
public:
int numberOfAlternatingGroups(vector<int> &colors, int k)
{
int maxLen = 1, ans = 0, n = colors.size();
for (int i = 1; i <= n + k - 2; i++)
{
if (colors[i % n] != colors[(i - 1 + n) % n])
{
maxLen++;
}
else
{
maxLen = 1;
}
if (maxLen >= k)
ans++;
}
return ans;
}
};
/*
This code finds the number of alternating groups in a circular array of colors. Here's how it works:
1. Takes a vector of colors (0s and 1s) and group size k as input
2. Uses maxLen to track current length of alternating sequence
3. Iterates through array considering circular nature using modulo (%)
4. For each position, compares current color with previous color:
- If different: increases maxLen
- If same: resets maxLen to 1
5. Whenever maxLen reaches or exceeds k, increments answer counter
6. Returns total count of valid alternating groups
The loop runs n+k-2 times to handle circular wrapping and ensure all possible groups are checked.
*/