-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path27_Length_of_Longest_Fibonacci_Subsequence.cpp
76 lines (63 loc) · 2.52 KB
/
27_Length_of_Longest_Fibonacci_Subsequence.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
// 873. Length of Longest Fibonacci Subsequence
// A sequence x1, x2, ..., xn is Fibonacci-like if:
// n >= 3
// xi + xi+1 == xi+2 for all i + 2 <= n
// Given a strictly increasing array arr of positive integers forming a sequence, return the length of the longest Fibonacci-like subsequence of arr. If one does not exist, return 0.
// A subsequence is derived from another sequence arr by deleting any number of elements (including none) from arr, without changing the order of the remaining elements. For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].
// Example 1:
// Input: arr = [1,2,3,4,5,6,7,8]
// Output: 5
// Explanation: The longest subsequence that is fibonacci-like: [1,2,3,5,8].
// Example 2:
// Input: arr = [1,3,7,11,12,14,18]
// Output: 3
// Explanation: The longest subsequence that is fibonacci-like: [1,11,12], [3,11,14] or [7,11,18].
// Constraints:
// 3 <= arr.length <= 1000
// 1 <= arr[i] < arr[i + 1] <= 109
class Solution
{
public:
int lenLongestFibSubseq(vector<int> &arr)
{
int n = arr.size();
vector<vector<int>> dp(n, vector<int>(n, 0));
int maxLen = 0;
for (int curr = 2; curr < n; curr++)
{
int start = 0, end = curr - 1;
while (start < end)
{
int pairSum = arr[start] + arr[end];
if (pairSum > arr[curr])
{
end--;
}
else if (pairSum < arr[curr])
{
start++;
}
else
{
dp[end][curr] = dp[start][end] + 1;
maxLen = max(dp[end][curr], maxLen);
end--;
start++;
}
}
}
return maxLen == 0 ? 0 : maxLen + 2;
}
};
/*
This code finds the length of the longest Fibonacci-like subsequence in a sorted array. Here's how it works:
1. Uses a 2D DP array where dp[i][j] represents the length of Fibonacci subsequence ending at indices i,j
2. For each position 'curr', tries to find two previous numbers that sum up to arr[curr]
3. Uses two pointers 'start' and 'end' to find pairs that sum to arr[curr]
4. When a valid pair is found (pairSum == arr[curr]):
- Updates dp[end][curr] by adding 1 to the length of previous Fibonacci subsequence
- Updates maxLen to track the longest subsequence found
5. Returns maxLen + 2 (adding 2 for the first two numbers) if a sequence exists, 0 otherwise
Time Complexity: O(n^2)
Space Complexity: O(n^2)
*/