-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path26_Maximum_Absolute_Sum_of_Any_Subarray.cpp
59 lines (46 loc) · 1.84 KB
/
26_Maximum_Absolute_Sum_of_Any_Subarray.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
// 1749. Maximum Absolute Sum of Any Subarray
// You are given an integer array nums. The absolute sum of a subarray [numsl, numsl+1, ..., numsr-1, numsr] is abs(numsl + numsl+1 + ... + numsr-1 + numsr).
// Return the maximum absolute sum of any (possibly empty) subarray of nums.
// Note that abs(x) is defined as follows:
// If x is a negative integer, then abs(x) = -x.
// If x is a non-negative integer, then abs(x) = x.
// Example 1:
// Input: nums = [1,-3,2,3,-4]
// Output: 5
// Explanation: The subarray [2,3] has absolute sum = abs(2+3) = abs(5) = 5.
// Example 2:
// Input: nums = [2,-5,1,-4,3,-2]
// Output: 8
// Explanation: The subarray [-5,1,-4] has absolute sum = abs(-5+1-4) = abs(-8) = 8.
// Constraints:
// 1 <= nums.length <= 105
// -104 <= nums[i] <= 104
class Solution
{
public:
int maxAbsoluteSum(vector<int> &nums)
{
int sum = 0, minSum = 0, maxSum = 0;
for (int num : nums)
{
sum += num;
if (sum > maxSum)
maxSum = sum;
if (sum < minSum)
minSum = sum;
}
return abs(maxSum - minSum);
}
};
/*
This solution finds the maximum absolute sum of any subarray using Kadane's algorithm variant:
1. It maintains a running sum (sum) and tracks both maximum (maxSum) and minimum (minSum) sums encountered
2. For each number in array, it adds to running sum and updates maxSum/minSum if needed
3. The maximum absolute sum possible will be the absolute difference between maxSum and minSum
4. This works because the maximum absolute sum will either be:
- The maximum positive sum (maxSum)
- The absolute value of the minimum negative sum (-minSum)
- The absolute difference between a peak and valley (maxSum - minSum)
Time complexity: O(n) where n is length of input array
Space complexity: O(1) as we only use constant extra space
*/