-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path17_Letter_Tile_Possibilities.cpp
90 lines (78 loc) · 2.42 KB
/
17_Letter_Tile_Possibilities.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
// 1079. Letter Tile Possibilities
// Solved
// Medium
// Topics
// Companies
// Hint
// You have n tiles, where each tile has one letter tiles[i] printed on it.
// Return the number of possible non-empty sequences of letters you can make using the letters printed on those tiles.
// Example 1:
// Input: tiles = "AAB"
// Output: 8
// Explanation: The possible sequences are "A", "B", "AA", "AB", "BA", "AAB", "ABA", "BAA".
// Example 2:
// Input: tiles = "AAABBC"
// Output: 188
// Example 3:
// Input: tiles = "V"
// Output: 1
// Constraints:
// 1 <= tiles.length <= 7
// tiles consists of uppercase English letters.
class Solution
{
public:
int numTilePossibilities(string tiles)
{
int n = tiles.length();
vector<int> counts(26, 0);
vector<int> fac(n + 1, 1);
for (int i = 1; i <= n; i++)
{
fac[i] = i * fac[i - 1];
}
for (char c : tiles)
{
counts[c - 'A']++;
}
vector<int> lengthcounts(n + 1, 0);
lengthcounts[0] = 1;
for (int i = 0; i < 26; i++)
{
if (counts[i] > 0)
{
vector<int> temp(n + 1, 0);
for (int j = 0; j <= n && lengthcounts[j] > 0; j++)
{
for (int k = 1; k <= counts[i]; k++)
{
int totallength = j + k;
temp[totallength] += lengthcounts[j] * fac[totallength] / (fac[k] * fac[j]);
}
}
for (int j = 0; j <= n; j++)
{
lengthcounts[j] += temp[j];
}
}
}
int ans = 0;
for (int i = 1; i <= n; i++)
{
ans += lengthcounts[i];
}
return ans;
}
};
/*
This code solves the Letter Tile Possibilities problem using combinatorics:
1. First calculates factorial values up to n for later use
2. Counts frequency of each letter in input string
3. Uses dynamic programming approach where:
- lengthcounts[i] stores number of possible sequences of length i
- For each letter that exists in input:
* Calculates new possibilities by adding 1 to k occurrences of current letter
* Uses combination formula with factorials for calculation
4. Finally sums up all possibilities of lengths 1 to n
The solution handles repeated letters correctly by using combinatorial mathematics
*/