-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path05_Sum_of_All_Subset_XOR_Totals.cpp
74 lines (57 loc) · 2.13 KB
/
05_Sum_of_All_Subset_XOR_Totals.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
// 1863. Sum of All Subset XOR Totals
// The XOR total of an array is defined as the bitwise XOR of all its elements, or 0 if the array is empty.
// For example, the XOR total of the array [2,5,6] is 2 XOR 5 XOR 6 = 1.
// Given an array nums, return the sum of all XOR totals for every subset of nums.
// Note: Subsets with the same elements should be counted multiple times.
// An array a is a subset of an array b if a can be obtained from b by deleting some (possibly zero) elements of b.
// Example 1:
// Input: nums = [1,3]
// Output: 6
// Explanation: The 4 subsets of [1,3] are:
// - The empty subset has an XOR total of 0.
// - [1] has an XOR total of 1.
// - [3] has an XOR total of 3.
// - [1,3] has an XOR total of 1 XOR 3 = 2.
// 0 + 1 + 3 + 2 = 6
// Example 2:
// Input: nums = [5,1,6]
// Output: 28
// Explanation: The 8 subsets of [5,1,6] are:
// - The empty subset has an XOR total of 0.
// - [5] has an XOR total of 5.
// - [1] has an XOR total of 1.
// - [6] has an XOR total of 6.
// - [5,1] has an XOR total of 5 XOR 1 = 4.
// - [5,6] has an XOR total of 5 XOR 6 = 3.
// - [1,6] has an XOR total of 1 XOR 6 = 7.
// - [5,1,6] has an XOR total of 5 XOR 1 XOR 6 = 2.
// 0 + 5 + 1 + 6 + 4 + 3 + 7 + 2 = 28
// Example 3:
// Input: nums = [3,4,5,6,7,8]
// Output: 480
// Explanation: The sum of all XOR totals for every subset is 480.
// Constraints:
// 1 <= nums.length <= 12
// 1 <= nums[i] <= 20
class Solution
{
public:
int subsetXORSum(vector<int> &nums)
{
int total = 0;
for (int num : nums)
{
total |= num;
}
return total * (1 << (nums.size() - 1));
}
};
/*
This solution uses a mathematical approach to calculate the sum of XOR totals for all subsets:
1. We use bitwise OR (|=) to combine all numbers in the array, stored in 'total'
2. Each number appears in exactly half of all possible subsets
3. For n elements, there are 2^(n-1) subsets containing each element
4. By multiplying total with 2^(n-1), we get the sum of all subset XOR totals
Time Complexity: O(n) where n is the length of nums array
Space Complexity: O(1) as we only use a constant amount of extra space
*/