-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathML.py
758 lines (600 loc) · 35.8 KB
/
ML.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
# -*- coding: utf-8 -*-
"""
Created on Wed Apr 5 09:39:22 2023
@author: zmzhai
"""
import grid2op
import pandas as pd
import numpy as np
import pickle
import random
import time
import matplotlib.pyplot as plt
from sklearn.metrics import f1_score
from sklearn.model_selection import train_test_split, StratifiedKFold, cross_val_score, KFold
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, accuracy_score
from sklearn.utils import class_weight
from sklearn.utils.multiclass import unique_labels
from sklearn.preprocessing import MinMaxScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn import svm
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import RandomizedSearchCV as RSCV
import tensorflow as tf
from keras.models import Sequential, Model
from keras.layers import Conv2D, LSTM, Dense, Flatten, Conv1D, Input, add
from keras.layers import Dropout, MaxPooling2D, TimeDistributed, MaxPooling1D
from keras.layers import TimeDistributed, Bidirectional
from keras import backend as K
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier
from random import shuffle
class ML:
def __init__(self, input_dim=[-2], obs_prop=0.1, attack_out='single', norm_multi='softmax'):
self.input_dim = input_dim
self.obs_prop = obs_prop
self.attack_out = attack_out
self.norm_multi = norm_multi
def read_data(self, file_path='./data/', file_name='data_case14'):
pkl_file = open(file_path + file_name + '_train' + '.pkl', 'rb')
self.data_train = pickle.load(pkl_file)
pkl_file.close()
pkl_file = open(file_path + file_name + '_val' + '.pkl', 'rb')
self.data_val = pickle.load(pkl_file)
pkl_file.close()
pkl_file = open(file_path + file_name + '_test' + '.pkl', 'rb')
self.data_test = pickle.load(pkl_file)
pkl_file.close()
def data_process(self, cut_data=1, random_choose=True, centrality=None):
if cut_data > 0.95:
cut_data = 0.95
# suppose that we can only observe one indicator
# train data
cut_length = round(np.shape(self.data_train)[0] * cut_data)
start_length = random.randint(0, int(np.shape(self.data_train)[0]-cut_length-1))
self.input_train = self.data_train[start_length:cut_length+start_length, :, self.input_dim]
self.output_train = self.data_train[start_length:cut_length+start_length, :, -1]
# self.maintain_train = self.data_train[start_length:cut_length+start_length, :, -3]
cut_length = round(np.shape(self.data_val)[0] * cut_data)
start_length = random.randint(0, int(np.shape(self.data_val)[0]-cut_length-1))
self.input_val = self.data_val[start_length:cut_length+start_length, :, self.input_dim]
self.output_val = self.data_val[start_length:cut_length+start_length, :, -1]
# self.maintain_val = self.data_val[start_length:cut_length+start_length, :, -3]
cut_length = round(np.shape(self.data_test)[0] * cut_data)
start_length = random.randint(0, int(np.shape(self.data_test)[0]-cut_length-1))
self.input_test = self.data_test[start_length:cut_length+start_length, :, self.input_dim]
self.output_test = self.data_test[start_length:cut_length+start_length, :, -1]
# self.maintain_test = self.data_test[start_length:cut_length+start_length, :, -3]
# get the number of lines and the observed lines
self.lines_num_full = np.shape(self.input_train)[1]
self.obs_num = int(round(self.obs_prop * self.lines_num_full))
if random_choose:
random_x = list(range(self.lines_num_full))
shuffle(random_x)
random_x = sorted(random_x[:self.obs_num])
self.obs_lines = random_x
else:
self.obs_lines = list(centrality[:self.obs_num, 0])
self.obs_lines = [int(i) for i in self.obs_lines]
# train
self.input_train = self.input_train[:, self.obs_lines]
self.input_train = self.input_train[:, :, 0]
# val
self.input_val = self.input_val[:, self.obs_lines]
self.input_val = self.input_val[:, :, 0]
# test
self.input_test = self.input_test[:, self.obs_lines]
self.input_test = self.input_test[:, :, 0]
# delete maintain
# train_maintain = np.logical_not(np.any(self.maintain_train==1, axis=1))
# self.input_train = self.input_train[train_maintain]
# self.output_trian = self.output_train[train_maintain]
# val_maintain = np.logical_not(np.any(self.maintain_val==1, axis=1))
# self.input_val = self.input_val[val_maintain]
# self.output_val = self.output_val[val_maintain]
# test_maintain = np.logical_not(np.any(self.maintain_test==1, axis=1))
# self.input_test = self.input_test[test_maintain]
# self.output_test = self.output_test[test_maintain]
self.train_length = np.shape(self.input_train)[0]
self.val_length = np.shape(self.input_val)[0]
self.test_length = np.shape(self.input_test)[0]
def normalization(self, add_noise=False):
# use the same scaler.
input_train_val_test = np.concatenate((self.input_train, self.input_val, self.input_test))
scaler = MinMaxScaler()
input_all = scaler.fit_transform(input_train_val_test)
self.X_norm_train = input_all[:self.train_length, :]
self.X_norm_val = input_all[self.train_length:self.train_length+self.val_length, :]
self.X_norm_test = input_all[self.train_length+self.val_length:, :]
# self.X_norm_val_record = self.X_norm_val
self.X_norm_test_record = self.X_norm_test
if add_noise:
self.X_norm_train += np.multiply(self.X_norm_train, np.random.normal(0.0, 0.02, size=np.shape(self.X_norm_train)))
if self.attack_out == 'single':
y_norm_train = np.zeros((np.shape(self.input_train)[0], 1))
y_norm_val = np.zeros((np.shape(self.input_val)[0], 1))
y_norm_test = np.zeros((np.shape(self.input_test)[0], 1))
for t_i in range(np.shape(self.input_train)[0]):
if 1 in self.output_train[t_i, :]:
y_norm_train[t_i] = 1
for t_i in range(np.shape(self.input_val)[0]):
if 1 in self.output_val[t_i, :]:
y_norm_val[t_i] = 1
for t_i in range(np.shape(self.input_test)[0]):
if 1 in self.output_test[t_i, :]:
y_norm_test[t_i] = 1
elif self.attack_out == 'multi':
if self.norm_multi == 'softmax':
y_norm_train = np.zeros((np.shape(self.input_train)[0], self.lines_num_full+1))
y_norm_val = np.zeros((np.shape(self.input_val)[0], self.lines_num_full+1))
y_norm_test = np.zeros((np.shape(self.input_test)[0], self.lines_num_full+1))
for t_i in range(np.shape(self.input_train)[0]):
for n_i in range(self.lines_num_full):
if self.output_train[t_i, n_i] != 0:
y_norm_train[t_i, n_i+1] = 1
if 1 in self.output_train[t_i, :]:
pass
else:
y_norm_train[t_i, 0] = 1
for t_i in range(np.shape(self.input_val)[0]):
for n_i in range(self.lines_num_full):
if self.output_val[t_i, n_i] != 0:
y_norm_val[t_i, n_i+1] = 1
if 1 in self.output_val[t_i, :]:
pass
else:
y_norm_val[t_i, 0] = 1
for t_i in range(np.shape(self.input_test)[0]):
for n_i in range(self.lines_num_full):
if self.output_test[t_i, n_i] != 0:
y_norm_test[t_i, n_i+1] = 1
if 1 in self.output_test[t_i, :]:
pass
else:
y_norm_test[t_i, 0] = 1
elif self.norm_multi == 'sigmoid':
y_norm_train = np.zeros((np.shape(self.input_train)[0], 1))
y_norm_val = np.zeros((np.shape(self.input_val)[0], 1))
y_norm_test = np.zeros((np.shape(self.input_test)[0], 1))
for t_i in range(np.shape(self.input_train)[0]):
for n_i in range(self.lines_num_full):
if self.output_train[t_i, n_i] != 0:
y_norm_train[t_i] = n_i + 1
for t_i in range(np.shape(self.input_val)[0]):
for n_i in range(self.lines_num_full):
if self.output_val[t_i, n_i] != 0:
y_norm_val[t_i] = n_i + 1
for t_i in range(np.shape(self.input_test)[0]):
for n_i in range(self.lines_num_full):
if self.output_test[t_i, n_i] != 0:
y_norm_test[t_i] = n_i + 1
self.y_norm_train = y_norm_train
self.y_norm_val = y_norm_val
self.y_norm_test = y_norm_test
def calculate_attack_happens(self):
if self.attack_out == 'single':
attack_happens_train = np.count_nonzero(self.y_norm_train == 1)
attack_happens_prob_train = attack_happens_train / (np.shape(self.y_norm_train)[0])
attack_happens_val = np.count_nonzero(self.y_norm_val == 1)
attack_happens_prob_val = attack_happens_val / (np.shape(self.y_norm_val)[0])
attack_happens_test = np.count_nonzero(self.y_norm_test == 1)
attack_happens_prob_test = attack_happens_test / (np.shape(self.y_norm_test)[0])
elif self.attack_out == 'multi':
if self.norm_multi == 'softmax':
attack_happens_vector_train = np.zeros((np.shape(self.y_norm_train)[1], 1))
for n_i in range(0, np.shape(self.y_norm_train)[1]):
attack_happens_vector_train[n_i] = np.count_nonzero(self.y_norm_train[:, n_i] == 1)
attack_happens_prob_train = attack_happens_vector_train / np.shape(self.y_norm_train)[0]
attack_happens_vector_val = np.zeros((np.shape(self.y_norm_val)[1], 1))
for n_i in range(0, np.shape(self.y_norm_val)[1]):
attack_happens_vector_val[n_i] = np.count_nonzero(self.y_norm_val[:, n_i] == 1)
attack_happens_prob_val = attack_happens_vector_val / np.shape(self.y_norm_val)[0]
attack_happens_vector_test = np.zeros((np.shape(self.y_norm_test)[1], 1))
for n_i in range(0, np.shape(self.y_norm_test)[1]):
attack_happens_vector_test[n_i] = np.count_nonzero(self.y_norm_test[:, n_i] == 1)
attack_happens_prob_test = attack_happens_vector_test / np.shape(self.y_norm_test)[0]
elif self.norm_multi == 'sigmoid':
attack_happens_vector_train = []
for i in range(self.lines_num_full+1):
attack_happens_vector_train.append(np.count_nonzero(self.y_norm_train == i))
attack_happens_prob_train = attack_happens_vector_train / np.shape(self.y_norm_train)[0]
attack_happens_vector_val = []
for i in range(self.lines_num_full+1):
attack_happens_vector_val.append(np.count_nonzero(self.y_norm_val == i))
attack_happens_prob_val = attack_happens_vector_val / np.shape(self.y_norm_val)[0]
attack_happens_vector_test = []
for i in range(self.lines_num_full+1):
attack_happens_vector_test.append(np.count_nonzero(self.y_norm_test == i))
attack_happens_prob_test = attack_happens_vector_test / np.shape(self.y_norm_test)[0]
return attack_happens_prob_train, attack_happens_prob_val, attack_happens_prob_test
def create_dataset(self):
pass
def create_dataset_lstm(self, seq_length=8):
dataX_train, dataY_train = [], []
dataX_val, dataY_val = [], []
dataX_test, dataY_test = [], []
self.seq_length = seq_length
if self.attack_out == 'single':
for i in range(np.shape(self.y_norm_train)[0]-self.seq_length-1):
dataX_train.append(self.X_norm_train[i:(i+self.seq_length), :])
dataY_train.append(self.y_norm_train[i+self.seq_length-1])
for i in range(np.shape(self.y_norm_val)[0]-self.seq_length-1):
dataX_val.append(self.X_norm_val[i:(i+self.seq_length), :])
dataY_val.append(self.y_norm_val[i+self.seq_length-1])
for i in range(np.shape(self.y_norm_test)[0]-self.seq_length-1):
dataX_test.append(self.X_norm_test[i:(i+self.seq_length), :])
dataY_test.append(self.y_norm_test[i+self.seq_length-1])
elif self.attack_out == 'multi':
if self.norm_multi == 'softmax':
for i in range(np.shape(self.y_norm_train)[0]-self.seq_length-1):
dataX_train.append(self.X_norm_train[i:(i+self.seq_length), :])
dataY_train.append(self.y_norm_train[i+self.seq_length-1, :])
for i in range(np.shape(self.y_norm_val)[0]-self.seq_length-1):
dataX_val.append(self.X_norm_val[i:(i+self.seq_length), :])
dataY_val.append(self.y_norm_val[i+self.seq_length-1, :])
for i in range(np.shape(self.y_norm_test)[0]-self.seq_length-1):
dataX_test.append(self.X_norm_test[i:(i+self.seq_length), :])
dataY_test.append(self.y_norm_test[i+self.seq_length-1, :])
elif self.norm_multi == 'sigmoid':
for i in range(np.shape(self.y_norm_train)[0]-self.seq_length-1):
dataX_train.append(self.X_norm_train[i:(i+self.seq_length), :])
dataY_train.append(self.y_norm_train[i+self.seq_length-1])
for i in range(np.shape(self.y_norm_val)[0]-self.seq_length-1):
dataX_val.append(self.X_norm_val[i:(i+self.seq_length), :])
dataY_val.append(self.y_norm_val[i+self.seq_length-1])
for i in range(np.shape(self.y_norm_test)[0]-self.seq_length-1):
dataX_test.append(self.X_norm_test[i:(i+self.seq_length), :])
dataY_test.append(self.y_norm_test[i+self.seq_length-1])
self.X_norm_train = np.array(dataX_train)
self.X_norm_val = np.array(dataX_val)
self.X_norm_test = np.array(dataX_test)
self.y_norm_train = np.array(dataY_train)
self.y_norm_val = np.array(dataY_val)
self.y_norm_test = np.array(dataY_test)
def create_dataset_ngrc(self, seq_length=8):
dataX_train, dataY_train = [], []
dataX_val, dataY_val = [], []
dataX_test, dataY_test = [], []
self.seq_length = seq_length
if self.attack_out == 'single':
for i in range(np.shape(self.y_norm_train)[0]-self.seq_length-1):
dataX_train.append(self.X_norm_train[i:(i+self.seq_length), :].flatten())
dataY_train.append(self.y_norm_train[i+self.seq_length-1])
for i in range(np.shape(self.y_norm_val)[0]-self.seq_length-1):
dataX_val.append(self.X_norm_val[i:(i+self.seq_length), :].flatten())
dataY_val.append(self.y_norm_val[i+self.seq_length-1])
for i in range(np.shape(self.y_norm_test)[0]-self.seq_length-1):
dataX_test.append(self.X_norm_test[i:(i+self.seq_length), :].flatten())
dataY_test.append(self.y_norm_test[i+self.seq_length-1])
elif self.attack_out == 'multi':
if self.norm_multi == 'softmax':
for i in range(np.shape(self.y_norm_train)[0]-self.seq_length-1):
dataX_train.append(self.X_norm_train[i:(i+self.seq_length), :].flatten())
dataY_train.append(self.y_norm_train[i+self.seq_length-1, :])
for i in range(np.shape(self.y_norm_val)[0]-self.seq_length-1):
dataX_val.append(self.X_norm_val[i:(i+self.seq_length), :].flatten())
dataY_val.append(self.y_norm_val[i+self.seq_length-1, :])
for i in range(np.shape(self.y_norm_test)[0]-self.seq_length-1):
dataX_test.append(self.X_norm_test[i:(i+self.seq_length), :].flatten())
dataY_test.append(self.y_norm_test[i+self.seq_length-1, :])
elif self.norm_multi == 'sigmoid':
for i in range(np.shape(self.y_norm_train)[0]-self.seq_length-1):
dataX_train.append(self.X_norm_train[i:(i+self.seq_length), :].flatten())
dataY_train.append(self.y_norm_train[i+self.seq_length-1])
for i in range(np.shape(self.y_norm_val)[0]-self.seq_length-1):
dataX_val.append(self.X_norm_val[i:(i+self.seq_length), :].flatten())
dataY_val.append(self.y_norm_val[i+self.seq_length-1])
for i in range(np.shape(self.y_norm_test)[0]-self.seq_length-1):
dataX_test.append(self.X_norm_test[i:(i+self.seq_length), :].flatten())
dataY_test.append(self.y_norm_test[i+self.seq_length-1])
self.X_norm_train = np.array(dataX_train)
self.X_norm_val = np.array(dataX_val)
self.X_norm_test = np.array(dataX_test)
self.y_norm_train = np.array(dataY_train)
self.y_norm_val = np.array(dataY_val)
self.y_norm_test = np.array(dataY_test)
def lstm_layers(self):
self.model = Sequential()
self.model.add(LSTM(128, input_shape=(self.seq_length, self.obs_num), return_sequences=True))
self.model.add(Dropout(0.2))
self.model.add(LSTM(64,return_sequences=False))
self.model.add(Dropout(0.2))
if self.attack_out == 'single':
self.model.add(Dense(16))
self.model.add(Dense(1,activation='sigmoid'))
self.model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy', custom_f1])
elif self.attack_out == 'multi':
if self.norm_multi == 'softmax':
self.model.add(Dense(64))
self.model.add(Dense(self.lines_num_full+1, activation='softmax'))
self.model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy', custom_f1])
elif self.norm_multi == 'sigmoid':
self.model.add(Dense(32))
self.model.add(Dense(1,activation='sigmoid'))
self.model.compile(loss='mean_squared_error', optimizer='adam', metrics=['accuracy', custom_f1])
def fnn_layers(self):
self.model = Sequential()
self.model.add(Dense(128, activation='relu', input_shape=(np.shape(self.X_norm_train)[1], )))
self.model.add(Dropout(0.2))
self.model.add(Dense(64))
self.model.add(Dropout(0.2))
if self.attack_out == 'single':
self.model.add(Dense(16))
self.model.add(Dense(1,activation='sigmoid'))
self.model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy', custom_f1])
elif self.attack_out == 'multi':
if self.norm_multi == 'softmax':
self.model.add(Dense(64))
self.model.add(Dense(self.lines_num_full+1, activation='softmax'))
self.model.compile(loss="categorical_crossentropy", optimizer='adam', metrics=['accuracy', custom_f1])
elif self.norm_multi == 'sigmoid':
self.model.add(Dense(32))
self.model.add(Dense(1, activation='linear'))
self.model.compile(loss='mean_squared_error', optimizer='adam', metrics=['accuracy', custom_f1])
def train_nn(self, epoch=10, batch_size=64, class_weight={0:1, 1:1}):
if self.attack_out == 'single':
n_splits = 5
kfold = KFold(n_splits=n_splits, shuffle=False)
fold = 1
for train_index, val_index in kfold.split(self.X_norm_train):
X_train_fold, X_val_fold = self.X_norm_train[train_index], self.X_norm_train[val_index]
y_train_fold, y_val_fold = self.y_norm_train[train_index], self.y_norm_train[val_index]
self.history = self.model.fit(X_train_fold, y_train_fold, validation_data=(X_val_fold, y_val_fold), shuffle=True, epochs=3, batch_size=128, class_weight=class_weight)
fold += 1
self.history = self.model.fit(self.X_norm_train, self.y_norm_train, validation_data=(self.X_norm_val, self.y_norm_val), shuffle=True, epochs=epoch, batch_size=batch_size, class_weight=class_weight)
self.y_pred = self.model.predict(self.X_norm_test)
y_pred_labels = self.y_pred
y_pred_labels[y_pred_labels >= 0.5] = 1
y_pred_labels[y_pred_labels < 0.5] = 0
y_test_labels = self.y_norm_test
f1 = f1_score(y_test_labels, y_pred_labels)
accuracy = accuracy_score(y_test_labels, y_pred_labels)
self.y_pred_labels = y_pred_labels
self.y_test_labels = y_test_labels
elif self.attack_out == 'multi':
if self.norm_multi == 'softmax':
n_splits = 5
kfold = KFold(n_splits=n_splits, shuffle=False)
fold = 1
for train_index, val_index in kfold.split(self.X_norm_train):
X_train_fold, X_val_fold = self.X_norm_train[train_index], self.X_norm_train[val_index]
y_train_fold, y_val_fold = self.y_norm_train[train_index], self.y_norm_train[val_index]
self.history = self.model.fit(X_train_fold, y_train_fold, validation_data=(X_val_fold, y_val_fold), shuffle=True, epochs=3, batch_size=128)
fold += 1
self.history = self.model.fit(self.X_norm_train, self.y_norm_train, validation_data=(self.X_norm_val, self.y_norm_val), shuffle=True, epochs=epoch, batch_size=batch_size)
self.y_pred = self.model.predict(self.X_norm_test)
y_pred_labels = self.y_pred
y_pred_labels[y_pred_labels >= 0.5] = 1
y_pred_labels[y_pred_labels < 0.5] = 0
y_test_labels = self.y_norm_test
y_pred_multi, y_test_multi = np.zeros((np.shape(y_pred_labels)[0], 1)), np.zeros((np.shape(y_pred_labels)[0], 1))
for ti in range(np.shape(y_pred_labels)[0]):
for ni in range(np.shape(y_pred_labels)[1]):
if y_pred_labels[ti, ni] == 1:
y_pred_multi[ti] = ni
if y_test_labels[ti, ni] == 1:
y_test_multi[ti] = ni
f1 = f1_score(y_test_multi, y_pred_multi, average='weighted')
accuracy = accuracy_score(y_test_labels, y_pred_labels)
self.y_pred_labels = y_pred_multi
self.y_test_labels = y_test_multi
elif self.norm_multi == 'sigmoid':
print('error: do not use sigmoid for lstm!')
return f1, accuracy
def train_rf(self, n_estimators=100, max_depth=30):
self.y_norm_train = self.y_norm_train.ravel()
rf = RandomForestClassifier(n_estimators=n_estimators, max_depth=max_depth, n_jobs=-1)
rf.fit(self.X_norm_train, self.y_norm_train)
self.y_pred = rf.predict(self.X_norm_test)
y_pred_labels = self.y_pred
y_pred_labels = [round(i) for i in y_pred_labels]
y_test_labels = self.y_norm_test
if self.attack_out == 'single':
f1 = f1_score(y_test_labels, y_pred_labels)
elif self.attack_out == 'multi':
f1 = f1_score(y_test_labels, y_pred_labels, average='weighted')
accuracy = accuracy_score(y_test_labels, y_pred_labels)
self.y_pred_labels = y_pred_labels
self.y_test_labels = y_test_labels
return f1, accuracy
def hyper_tunning_rf(self):
param_choose = {'n_estimators': np.arange(20, 520, 20),
'max_depth': np.arange(1, 30, 2)
}
self.model = RSCV(RandomForestClassifier(n_jobs=-1), param_choose, n_iter=20).fit(self.X_norm_val, self.y_norm_val)
best_rf = self.model.best_estimator_
return best_rf
def train_svm(self):
clf = svm.SVC(kernel='linear')
clf.fit(self.X_norm_train, self.y_norm_train)
self.y_pred = clf.predict(self.X_norm_test)
y_pred_labels = self.y_pred
y_pred_labels = [round(i) for i in y_pred_labels]
y_test_labels = self.y_norm_test
if self.attack_out == 'single':
f1 = f1_score(y_test_labels, y_pred_labels)
elif self.attack_out == 'multi':
f1 = f1_score(y_test_labels, y_pred_labels, average='weighted')
accuracy = accuracy_score(y_test_labels, y_pred_labels)
return f1, accuracy
def train_knn(self, n_neighbors=3):
knn = KNeighborsClassifier(n_neighbors=n_neighbors, n_jobs=-1)
knn.fit(self.X_norm_train, self.y_norm_train)
self.y_pred = knn.predict(self.X_norm_test)
y_pred_labels = self.y_pred
y_pred_labels = [round(i) for i in y_pred_labels]
y_test_labels = self.y_norm_test
if self.attack_out == 'single':
f1 = f1_score(y_test_labels, y_pred_labels)
elif self.attack_out == 'multi':
f1 = f1_score(y_test_labels, y_pred_labels, average='weighted')
accuracy = accuracy_score(y_test_labels, y_pred_labels)
return f1, accuracy
def naive_method(self, threshold=1.0):
# make this only on testing data, and write the multi attack scenario
x_test = self.X_norm_test_record[-np.shape(self.X_norm_test)[0]:, :]
# x_val = self.X_norm_val_record[-np.shape(self.X_norm_val)[0]:, :]
if self.attack_out == 'single':
# val_f1_set = []
# thre_range = np.arange(0.1, 1.1, 0.1)
# for thre in thre_range:
# input_val = np.zeros((np.shape(x_val)[0], 1))
# for t_i in range(np.shape(x_val)[0]):
# if 0 in x_val[t_i, :] or all(x_val[t_i, :] > thre):
# input_val[t_i] = 1
# val_f1 = f1_score(self.y_norm_val, input_val)
# val_f1_set.append(val_f1)
# max_threshold = thre_range[np.argmax(val_f1_set)]
input_naive = np.zeros((np.shape(x_test)[0], 1))
for t_i in range(np.shape(x_test)[0]):
if 0 in x_test[t_i, :] or all(x_test[t_i, :] > threshold):
input_naive[t_i] = 1
naive_f1 = f1_score(self.y_norm_test, input_naive)
elif self.attack_out == 'multi':
if self.norm_multi == 'softmax':
# val_f1_set = []
# thre_range = np.arange(0.1, 1.1, 0.1)
# for thre in thre_range:
# input_val = np.zeros((np.shape(x_val)[0], self.lines_num_full+1))
# for t_i in range(np.shape(x_val)[0]):
# for n_i in range(self.obs_num):
# if x_val[t_i, n_i] == 0 or x_val[t_i, n_i] > thre:
# input_val[t_i, self.obs_lines[n_i] + 1] = 1
# if 1 in input_val[t_i, :]:
# pass
# else:
# input_val[t_i, 0] = 1
# val_f1 = f1_score(self.y_norm_val, input_val, average='weighted')
# val_f1_set.append(val_f1)
# max_threshold = thre_range[np.argmax(val_f1_set)]
input_naive = np.zeros((np.shape(x_test)[0], self.lines_num_full+1))
for t_i in range(np.shape(x_test)[0]):
for n_i in range(self.obs_num):
if x_test[t_i, n_i] == 0 or x_test[t_i, n_i] > threshold:
input_naive[t_i, self.obs_lines[n_i] + 1] = 1
if 1 in input_naive[t_i, :]:
pass
else:
input_naive[t_i, 0] = 1
naive_f1 = f1_score(self.y_norm_test, input_naive, average='weighted')
elif self.norm_multi == 'sigmoid':
# val_f1_set = []
# thre_range = np.arange(0.1, 1.1, 0.1)
# for thre in thre_range:
# input_val = np.zeros((np.shape(x_val)[0], 1))
# for t_i in range(np.shape(x_val)[0]):
# for n_i in range(self.obs_num):
# if x_val[t_i, n_i] == 0 or x_val[t_i, n_i] > thre:
# input_val[t_i] = self.obs_lines[n_i]
# val_f1 = f1_score(self.y_norm_val, input_val, average='weighted')
# val_f1_set.append(val_f1)
# max_threshold = thre_range[np.argmax(val_f1_set)]
input_naive = np.zeros((np.shape(x_test)[0], 1))
for t_i in range(np.shape(x_test)[0]):
for n_i in range(self.obs_num):
if x_test[t_i, n_i] == 0 or x_test[t_i, n_i] > threshold:
input_naive[t_i] = self.obs_lines[n_i]
naive_f1 = f1_score(self.y_norm_test, input_naive, average='weighted')
# naive_f1 = f1_score(self.y_norm, input_naive)
naive_accuracy = accuracy_score(self.y_norm_test, input_naive)
return naive_f1, naive_accuracy
def plot_accuracy(self):
classes = unique_labels(self.y_test_labels, self.y_pred_labels)
classes = [int(i) for i in classes]
cm = confusion_matrix(self.y_test_labels, self.y_pred_labels)
cmn = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
if self.attack_out == 'single':
fig, ax = plt.subplots(figsize=(10, 10))
else:
fig, ax = plt.subplots(figsize=(20, 20))
im = ax.imshow(cmn, interpolation='nearest', cmap='coolwarm')
cb = fig.colorbar(im, ax=ax)
ax.set(xticks=np.arange(cm.shape[1]),
yticks=np.arange(cm.shape[0]),
xticklabels=classes, yticklabels=classes,
title='Normalized Confusion Matrix',
xlabel='Predicted label',
ylabel='True label')
thresh = cmn.max() / 2.
for i in range(cmn.shape[0]):
for j in range(cmn.shape[1]):
if cmn[i, j] < 0.01:
text = format(int(cmn[i, j]), 'd')
else:
text = format(cmn[i, j], '.2f')
ax.text(j, i, text,
ha="center", va="center",
color="white" if cmn[i, j] > thresh else "black")
plt.show()
def custom_f1(y_true, y_pred):
def recall_m(y_true, y_pred):
TP = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
Positives = K.sum(K.round(K.clip(y_true, 0, 1)))
recall = TP / (Positives+K.epsilon())
return recall
def precision_m(y_true, y_pred):
TP = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
Pred_Positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
precision = TP / (Pred_Positives+K.epsilon())
return precision
precision, recall = precision_m(y_true, y_pred), recall_m(y_true, y_pred)
return 2*((precision*recall)/(precision+recall+K.epsilon()))
if __name__ == '__main__':
print('ML1.0 ...')
# file_name = 'data_wcci2022'
file_name = 'data_case14' # two datasets
seq_length = 5
# small network observe 0.3, and the large network observe 0.5
ml = ML(input_dim=[-2], obs_prop=0.3, attack_out='single', norm_multi='softmax')
ml.read_data(file_path='./data/', file_name=file_name)
ml.data_process(cut_data=0.9, random_choose=True, centrality=None)
ml.normalization(add_noise=True)
ml.create_dataset_lstm(seq_length=seq_length)
ml.lstm_layers()
# ml.lstm_res_layers()
# f1_lstm, accuracy_lstm = ml.train_nn(epoch=5, batch_size=64, class_weight={0:1, 1:1})
# ml.plot_accuracy()
f1_lstm, accuracy_lstm = ml.train_nn(epoch=5, batch_size=64, class_weight={0:1, 1:2})
# # ml.create_dataset_ngrc(seq_length=seq_length)
# # # ml.create_dataset()
# # ml.fnn_layers()
# # f1_fnn, accuracy_fnn = ml.train_nn(epoch=10, batch_size=64, class_weight={0:1, 1:1})
# # ml.plot_accuracy()
# ml.norm_multi = 'sigmoid'
# ml.normalization()
# # # ml.create_dataset_ngrc(seq_length=seq_length)
# ml.create_dataset()
# f1_rf, accuracy_rf = ml.train_rf()
# ml.plot_accuracy()
# # best_rf = ml.hyper_tunning_rf()
# print('rf finished')
# # f1_svm, accuracy_svm = ml.train_svm()
# # ml.plot_accuracy()
# # print('svm finished')
# f1_knn, accuracy_knn = ml.train_knn()
ml.plot_accuracy()
# print('knn finished')
# naive_f1, naive_accuracy = ml.naive_method()
# attack_happens_prob_train, attack_happens_prob_val, attack_happens_prob_test = ml.calculate_attack_happens()
# save_file = open('./data_save/' + 'small_multi_cm' + '.pkl', 'wb')
# pickle.dump(ml.y_test_labels, save_file)
# pickle.dump(ml.y_pred_labels, save_file)
# pickle.dump(ml.attack_out, save_file)
# save_file.close()
# save_file = open('./data_save/' + 'large_single_roc' + '.pkl', 'wb')
# pickle.dump(ml.X_norm_test, save_file)
# pickle.dump(ml.y_test_labels, save_file)
# pickle.dump(ml.y_pred, save_file)
# pickle.dump(ml.y_pred_labels, save_file)
# pickle.dump(ml.attack_out, save_file)
# pickle.dump(ml.obs_lines, save_file)
# pickle.dump(f1_lstm, save_file)
# save_file.close()
save_file = open('./data_save/' + 'small_single_change_weight' + '.pkl', 'wb')
pickle.dump(ml.X_norm_test, save_file)
pickle.dump(ml.y_test_labels, save_file)
pickle.dump(ml.y_pred, save_file)
pickle.dump(ml.y_pred_labels, save_file)
pickle.dump(ml.attack_out, save_file)
pickle.dump(ml.obs_lines, save_file)
pickle.dump(f1_lstm, save_file)
save_file.close()