diff --git a/.github/workflows/gh_pages.yml b/.github/workflows/gh_pages.yml index f64fbe6a1..517ab0578 100644 --- a/.github/workflows/gh_pages.yml +++ b/.github/workflows/gh_pages.yml @@ -42,11 +42,11 @@ jobs: # Upload the book's HTML as an artifact - name: Upload artifact - uses: actions/upload-pages-artifact@v2 + uses: actions/upload-pages-artifact@v3 with: - path: "_build/html" + path: "docs/_build/html" # Deploy the book's HTML to GitHub Pages - name: Deploy to GitHub Pages id: deployment - uses: actions/deploy-pages@v2 + uses: actions/deploy-pages@v4 diff --git a/.readthedocs.yaml b/.readthedocs.yaml index 02abf7463..e1f1f632d 100644 --- a/.readthedocs.yaml +++ b/.readthedocs.yaml @@ -4,6 +4,9 @@ # Required version: 2 +sphinx: + # Path to your Sphinx configuration file. + configuration: docs/conf.py # Set the version of Python and other tools you might need build: diff --git a/README.md b/README.md index 7a027675b..d3d3eb2b0 100644 --- a/README.md +++ b/README.md @@ -6,12 +6,12 @@ [![License](https://img.shields.io/badge/License-BSD%203--Clause-blue.svg)](https://opensource.org/licenses/BSD-3-Clause) As part of NREL's [Hybrid Energy Systems Research](https://www.nrel.gov/wind/hybrid-energy-systems-research.html), this -software assesses optimal designs for the deployment of utility-scale hybrid energy plants, particularly considering wind, +software assesses optimal designs for the deployment of distributed, commercial, and utility-scale hybrid energy plants, particularly considering wind, solar and storage. ## Software requirements -- Python version 3.10, and 3.11 only (PySAM 4.2 is incompatible with 3.12) +- Python version 3.10, and 3.11 only ## Installing from Package Repositories diff --git a/RELEASE.md b/RELEASE.md index 48070d1f0..1dd49ee3a 100644 --- a/RELEASE.md +++ b/RELEASE.md @@ -1,5 +1,49 @@ # Release Notes +## Version 3.2.0, March 21, 2025 + +* Updates related to PySAM: + + Updated PySAM version from 4.2.0 to >6.0.0. Main changes noted in [PR #425](https://github.com/NREL/HOPP/pull/425) + + PySAM generation plant defaults have been updated. Current defaults can be found [here](https://github.com/NREL/SAM/tree/develop/api/api_autogen/library/defaults) + + PySAM SingleOwner financial model update investment-tax credit and depreciation basis calculations to remove financing fees and reserve account funding from basis. + + PySAM MHKWave update marine energy device cost curves. + + PySAM Detailed PV update module and inverter libraries, snow module, tracking, losses. + +* Wind-focused usability additions that are detailed [here](https://github.com/NREL/HOPP/pull/429#issue-2852391571) + + Feature add: new wind layout method called `basicgrid` that makes the most-square layout that has the option to be site-constrained. + + Updated wind layout methods to classes + + Bug-fix: grid angle converted from degrees to radians in `make_grid_lines()` function in `wind_layout_tools.py` + + Updated floris initialization to set attributes from `floris_config` + + Update: raise errors when using floris if theres a discrepancy between inputs in `WindConfig` and information in `floris_config` (such as `num_turbines` and the `floris_config` layout, and turbine parameters like rotor diameter and turbine rating.) + + Integrated wind layout functionality when using floris + + Updated wind layout parameters. + + Minor clean up to floris.py - removed unnecessary data exportation and fixed bug in value() + +* Integrated [turbine-models library](https://github.com/NREL/turbine-models/tree/master). For further details see [here](https://github.com/NREL/HOPP/pull/435) + + Wind turbines from the turbine-models library can now be simulated by specifying the turbine name. This feature is compatible with floris and PySAM WindPower simulations. + + Added wind turbine power-curve tools to estimate thrust coefficient, power coefficient, and power-curve. +* Added two distributed wind-hybrid examples that highlight the turbine-models library package and other recent features for wind system modeling and simulations. These examples are: + - `examples/08-distributed-residential-example.ipynb` + - `examples/09-distributed-residential-midsize.ipynb` +* Added tidal models + + Added TidalResource to load tidal resource data for simulating tidal energy. + + Added MHKTidalPlant to simulate tidal energy. + + Add tidal energy to HybridSimulation. + + Add tidal energy to dispatch. + +* Other feature additions: + + Added option and functionality to load wind and solar resource data from NSRDB and Wind Toolkit data files if user-specified. + + Added ability and option to initialize site_info with preloaded and formatted wind and solar resource data + + Feature add: added alternative method to defining site boundary. + + Feature add: added function to adjust air density based on site elevation + + Added weighted average wind resource parsing method option when using floris. + + Update deprecated methods in wave_resource.py + +* Bug fixes: + + Remove erroneous 100 multiples for percentages and add clarifying parentheses for correct 100 multiples for percentages. + + Fixed a bug in site_info that set resource year to 2012 even if otherwise specified. + + Bug fix in load following heuristic method: only using beginning of variable load signals + ## Version 3.1.1, Dec. 18, 2024 * Enhanced PV plant functionality: added tilting solar panel support, improved system design handling, and refined tilt angle calculations. diff --git a/docs/_toc.yml b/docs/_toc.yml index 05da9a2d2..5742ceefd 100644 --- a/docs/_toc.yml +++ b/docs/_toc.yml @@ -14,6 +14,15 @@ parts: chapters: - file: api/hopp_interface - file: api/site_info + sections: + - file: api/resource/index + sections: + - file: api/resource/solar_api + - file: api/resource/wind_api + - file: api/resource/solar_hpc + - file: api/resource/wind_hpc + - file: api/resource/wave_data + - file: api/resource/tidal_data - file: api/hybrid_simulation - file: api/technology/index sections: @@ -23,6 +32,7 @@ parts: - file: api/technology/battery - file: api/technology/grid - file: api/technology/mhk_wave_plant + - file: api/technology/mhk_tidal_plant - file: api/dispatch/index sections: - file: api/dispatch/storage/index @@ -38,8 +48,11 @@ parts: - file: api/dispatch/sources/pv_dispatch - file: api/dispatch/sources/wind_dispatch - file: api/dispatch/sources/wave_dispatch + - file: api/dispatch/sources/tidal_dispatch - file: api/dispatch/sources/csp_dispatch - caption: Additional Tools chapters: - file: api/technology/flicker - - file: api/cost_calculator \ No newline at end of file + - file: api/cost_calculator + - file: api/tools/site_shape_tools + - file: api/tools/mhk_cost \ No newline at end of file diff --git a/docs/api/dispatch/sources/index.md b/docs/api/dispatch/sources/index.md index a39a0b075..4139d8104 100644 --- a/docs/api/dispatch/sources/index.md +++ b/docs/api/dispatch/sources/index.md @@ -9,6 +9,7 @@ HOPP includes a variety of power source (technology) dispatch options based on t - [Molten Salt Tower Power Plant](dispatch:csp-molten-tower) - [Parabolic Trough Plant](dispatch:csp-parabolic-trough) - [Wave Plant](dispatch:wave) +- [Wave Plant](dispatch:tidal) (dispatch:power-source-dispatch)= ## Power Source Dispatch diff --git a/docs/api/dispatch/sources/tidal_dispatch.md b/docs/api/dispatch/sources/tidal_dispatch.md new file mode 100644 index 000000000..33be4d778 --- /dev/null +++ b/docs/api/dispatch/sources/tidal_dispatch.md @@ -0,0 +1,7 @@ +(dispatch:tidal)= +# Tidal Dispatch + +```{eval-rst} +.. autoclass:: hopp.simulation.technologies.dispatch.power_sources.tidal_dispatch.TidalDispatch + :members: +``` diff --git a/docs/api/resource/index.md b/docs/api/resource/index.md new file mode 100644 index 000000000..789fdc819 --- /dev/null +++ b/docs/api/resource/index.md @@ -0,0 +1,41 @@ +# Resource Data + +These are the primary methods for accessing wind and solar resource data. + +- [Solar Resource (API)](resource:solar-resource) +- [Wind Resource (API)](resource:wind-resource) +- [Solar Resource (NSRDB Dataset on NREL HPC)](resource:nsrdb-data) +- [Wind Resource (Wind Toolkit Dataset on NREL HPC)](resource:wtk-data) +- [Wave Resource (Data)](resource:wave-resource) +- [Tidal Resource (Data)](resource:tidal-resource) + +## NREL API Keys + +An NREL API key is required to use the functionality for [Solar Resource (API)](resource:solar-resource) and [Wind Resource (API)](resource:wind-resource). + +An NREL API key can be obtained from [here](https://developer.nrel.gov/signup/). + +Once an API key is obtained, create a file ".env" in the HOPP root directory (/path/to/HOPP/.env) that contains the lines: + +```bash +NREL_API_KEY=key +NREL_API_EMAIL=your.name@email.com +``` + +where `key` is your API key and `your.name@email.com` is the email that was used to get the API key. + +## NREL HPC Datasets + +To load resource data from datasets hosted on NREL's HPC, HOPP must be installed and run from the NREL HPC. Currently, loading resource data from HPC is only enabled for [wind](resource:wtk-data) and [solar](resource:nsrdb-data) resource. + + +(resource:resource-base)= +## Resource Base Class + +Base class for resource data + +```{eval-rst} +.. autoclass:: hopp.simulation.technologies.resource.Resource + :members: + :exclude-members: copy, plot, _abc_impl +``` diff --git a/docs/api/resource/solar_api.md b/docs/api/resource/solar_api.md new file mode 100644 index 000000000..84f64867f --- /dev/null +++ b/docs/api/resource/solar_api.md @@ -0,0 +1,10 @@ +(resource:solar-resource)= +# Solar Resource (API) + +By default, solar resource data is downloaded from the NREL Developer Network hosted National Solar Radiation Database (NSRDB) dataset [Physical Solar Model (PSM) v3.2.2](https://developer.nrel.gov/docs/solar/nsrdb/psm3-2-2-download/). Using this functionality requires an NREL API key. + +```{eval-rst} +.. autoclass:: hopp.simulation.technologies.resource.solar_resource.SolarResource + :members: + :exclude-members: _abc_impl, check_download_dir +``` diff --git a/docs/api/resource/solar_hpc.md b/docs/api/resource/solar_hpc.md new file mode 100644 index 000000000..35ba6e5e0 --- /dev/null +++ b/docs/api/resource/solar_hpc.md @@ -0,0 +1,11 @@ +(resource:nsrdb-data)= +# Solar Resource (NSRDB Dataset on NREL HPC) + +If enabled, solar resource data can be loaded from the NREL HPC (Kestrel) hosted National Solar Radiation Database (NSRDB) dataset. This functionality leverages the [NREL REsource eXtraction (rex) tool](https://github.com/NREL/rex). Information on NREL HPC file systems and datasets can be found [here](https://nrel.github.io/HPC/Documentation/Systems/Kestrel/Filesystems/#projectfs). + +```{eval-rst} +.. autoclass:: hopp.simulation.technologies.resource.nsrdb_data.HPCSolarData + :members: + :undoc-members: + :exclude-members: _abc_impl, check_download_dir, call_api +``` \ No newline at end of file diff --git a/docs/api/resource/tidal_data.md b/docs/api/resource/tidal_data.md new file mode 100644 index 000000000..6be03c39d --- /dev/null +++ b/docs/api/resource/tidal_data.md @@ -0,0 +1,11 @@ +(resource:tidal-resource)= +# Tidal Resource + +**NOTE: Downloading tidal resource data is not yet enabled** but can still be loaded from existing data files. + +```{eval-rst} +.. autoclass:: hopp.simulation.technologies.resource.tidal_resource.TidalResource + :members: + :undoc-members: + :exclude-members: _abc_impl, check_download_dir, call_api +``` diff --git a/docs/api/resource/wave_data.md b/docs/api/resource/wave_data.md new file mode 100644 index 000000000..47eb7c5c0 --- /dev/null +++ b/docs/api/resource/wave_data.md @@ -0,0 +1,11 @@ +(resource:wave-resource)= +# Wave Resource + +**NOTE: Downloading wave resource data is not yet enabled** but can still be loaded from existing data files. + +```{eval-rst} +.. autoclass:: hopp.simulation.technologies.resource.wave_resource.WaveResource + :members: + :undoc-members: + :exclude-members: _abc_impl, check_download_dir, call_api +``` diff --git a/docs/api/resource/wind_api.md b/docs/api/resource/wind_api.md new file mode 100644 index 000000000..ee8f2ab98 --- /dev/null +++ b/docs/api/resource/wind_api.md @@ -0,0 +1,10 @@ +(resource:wind-resource)= +# Wind Resource (API) + +By default, wind resource data is downloaded from the NREL Developer Network hosted Wind Integration National Dataset (WIND) Toolkit dataset [Wind Toolkit Data - SAM format (srw)](https://developer.nrel.gov/docs/wind/wind-toolkit/wtk-srw-download/). Using this functionality requires an NREL API key. + +```{eval-rst} +.. autoclass:: hopp.simulation.technologies.resource.wind_resource.WindResource + :members: + :exclude-members: _abc_impl, check_download_dir +``` \ No newline at end of file diff --git a/docs/api/resource/wind_hpc.md b/docs/api/resource/wind_hpc.md new file mode 100644 index 000000000..9196ad730 --- /dev/null +++ b/docs/api/resource/wind_hpc.md @@ -0,0 +1,11 @@ +(resource:wtk-data)= +# Wind Resource (Wind Toolkit Dataset on NREL HPC) + +If enabled, wind resource data can be loaded from the NREL HPC (Kestrel) hosted Wind Integration National Dataset (WIND) Toolkit dataset. This functionality leverages the [NREL REsource eXtraction (rex) tool](https://github.com/NREL/rex). Information on NREL HPC file systems and datasets can be found [here](https://nrel.github.io/HPC/Documentation/Systems/Kestrel/Filesystems/#projectfs). + +```{eval-rst} +.. autoclass:: hopp.simulation.technologies.resource.wind_toolkit_data.HPCWindData + :members: + :undoc-members: + :exclude-members: _abc_impl, check_download_dir, call_api +``` \ No newline at end of file diff --git a/docs/api/site_info.rst b/docs/api/site_info.md similarity index 62% rename from docs/api/site_info.rst rename to docs/api/site_info.md index 2465c51d9..0b429ea8a 100644 --- a/docs/api/site_info.rst +++ b/docs/api/site_info.md @@ -1,11 +1,9 @@ -.. _SiteInfo: - - -Hybrid Plant Site Information -============================== +# Hybrid Plant Site Information The purpose of this class is to house all site specific data, e.g., weather data. +```{eval-rst} .. autoclass:: hopp.simulation.technologies.sites.SiteInfo :members: - :undoc-members: \ No newline at end of file + :undoc-members: +``` diff --git a/docs/api/technology/index.md b/docs/api/technology/index.md index eb34adde0..53027cac3 100644 --- a/docs/api/technology/index.md +++ b/docs/api/technology/index.md @@ -13,6 +13,7 @@ These are the primary technologies that may be configured for a standard HOPP si - [Stateless Battery](tech:battery-stateless) - [Grid](tech:grid) - [Wave Plant](tech:wave) +- [Tidal Plant](tech:tidal) (tech:power-source)= ## Power Source Base Class diff --git a/docs/api/technology/mhk_tidal_plant.md b/docs/api/technology/mhk_tidal_plant.md new file mode 100644 index 000000000..643f07fc8 --- /dev/null +++ b/docs/api/technology/mhk_tidal_plant.md @@ -0,0 +1,24 @@ +(tech:tidal)= +# MHK Tidal Plant + +MHK Tidal Generator class + +## Tidal Plant Model + +```{eval-rst} +.. autoclass:: hopp.simulation.technologies.tidal.mhk_tidal_plant.MHKTidalPlant + :members: + :undoc-members: +``` + +## Tidal Plant Configuration + +```{eval-rst} +.. autoclass:: hopp.simulation.technologies.tidal.mhk_tidal_plant.MHKTidalConfig + :members: + :undoc-members: +``` + +## Tidal Plant Cost Model + +For details on the cost model used in MHK Tidal Plants, refer to the [MHK Cost Model](tools:mhk_costs). diff --git a/docs/api/technology/mhk_wave_plant.md b/docs/api/technology/mhk_wave_plant.md index 9320ae9bb..09990a44f 100644 --- a/docs/api/technology/mhk_wave_plant.md +++ b/docs/api/technology/mhk_wave_plant.md @@ -21,16 +21,5 @@ MHK Wave Generator class ## Wave Plant Cost Model -```{eval-rst} -.. autoclass:: hopp.simulation.technologies.financial.mhk_cost_model.MHKCosts - :members: - :undoc-members: -``` - -## Wave Plant Cost Model Inputs +For details on the cost model used in MHK Wave Plants, refer to the [MHK Cost Model](tools:mhk_costs). -```{eval-rst} -.. autoclass:: hopp.simulation.technologies.financial.mhk_cost_model.MHKCostModelInputs - :members: - :undoc-members: -``` diff --git a/docs/api/tools/mhk_cost.md b/docs/api/tools/mhk_cost.md new file mode 100644 index 000000000..bb2640706 --- /dev/null +++ b/docs/api/tools/mhk_cost.md @@ -0,0 +1,19 @@ +(tools:mhk_costs)= +# MHK Cost Model + +This section documents the cost model for MHK technologies. + +## MHK Plant Cost Model +```{eval-rst} +.. autoclass:: hopp.simulation.technologies.financial.mhk_cost_model.MHKCosts + :members: + :undoc-members: +``` + +## MHK Plant Cost Model Inputs + +```{eval-rst} +.. autoclass:: hopp.simulation.technologies.financial.mhk_cost_model.MHKCostModelInputs + :members: + :undoc-members: +``` \ No newline at end of file diff --git a/docs/api/tools/site_shape_tools.md b/docs/api/tools/site_shape_tools.md new file mode 100644 index 000000000..60087f322 --- /dev/null +++ b/docs/api/tools/site_shape_tools.md @@ -0,0 +1,50 @@ +(tools:site_shape)= +# Site Shape Tools + +If the site is defined as user-provided vertices, the vertices are [checked for validity](tools:check_verts). + +The site shape can be defined as a variety of default shapes: +- [Square](tools:square_site) +- [Circle](tools:circle_site) +- [Rectangle](tools:rectangle_site) +- [Hexagon](tools:hexagon_site) + + +(tools:square_site)= +## Square Site Boundary + +```{eval-rst} +.. autofunction:: hopp.simulation.technologies.sites.site_shape_tools.make_square +``` + +(tools:circle_site)= +## Circle Site Boundary + +```{eval-rst} +.. autofunction:: hopp.simulation.technologies.sites.site_shape_tools.make_circle +``` + +(tools:rectangle_site)= +## Rectangle Site Boundary + +```{eval-rst} +.. autofunction:: hopp.simulation.technologies.sites.site_shape_tools.make_rectangle +``` + +(tools:hexagon_site)= +## Hexagon Site Boundary + +```{eval-rst} +.. autofunction:: hopp.simulation.technologies.sites.site_shape_tools.make_hexagon +``` + + +(tools:check_verts)= +## Check Site Vertices + +```{eval-rst} +.. autofunction:: hopp.simulation.technologies.sites.site_shape_tools.check_site_verts +``` diff --git a/examples/08-distributed-residential-example.ipynb b/examples/08-distributed-residential-example.ipynb new file mode 100644 index 000000000..ff0b528ba --- /dev/null +++ b/examples/08-distributed-residential-example.ipynb @@ -0,0 +1,450 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Distributed Hybrid Plant - Residential Example\n", + "\n", + "This example focuses on distributed-scale energy: energy that is connected at the distribution level of the electrical grid or off-grid. Distributed energy can supply on-site electricity demand and improve energy reliability and resilience for residential, commercial, and agricultural end-users. This particular example considers a small mountain town in south-central Colorado.\n", + "\n", + "## Available Resources for Distributed Energy\n", + "\n", + "This example highlights various resources for distributed energy modeling:\n", + "\n", + "- **Wind Turbine Models**: Users can find available turbines for distributed applications in the [turbine-models repository](https://github.com/NREL/turbine-models).\n", + "- **Load Profile Data**: The [ResStock Dataset](https://www2.nrel.gov/buildings/end-use-load-profiles) provides estimated end-use load profiles for residential buildings.\n", + "- **Annual Technology Baseline (ATB)**: This resource offers transparent, normalized technology cost and performance assumptions for various technology classes. Relevant sections include:\n", + " - [Distributed Wind](https://atb.nrel.gov/electricity/2024/distributed_wind)\n", + " - [Residential PV](https://atb.nrel.gov/electricity/2024/residential_pv)\n", + " - [Residential Battery Storage](https://atb.nrel.gov/electricity/2024/residential_battery_storage)\n", + "- **ATB Data Workbooks**: The ATB Excel Workbooks contain detailed data and calculations for each technology. These workbooks can be accessed [here](https://atb.nrel.gov/electricity/2024/data).\n", + "\n", + "This notebook will guide you through setting up a simulation for a distributed residential hybrid energy system using HOPP. The example includes simulates a system that includes residential rooftop solar PV, distributed wind turbines, and a lithium-ion battery storage system." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Import required modules\n", + "\n", + "Start by importing the necessary modules and packaged and setting up our working environment." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/Users/egrant/Documents/projects/HOPP/examples/log/hybrid_systems_2025-03-20T11.05.12.098897.log\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "import os\n", + "import matplotlib.pyplot as plt\n", + "from floris import TimeSeries\n", + "from floris.layout_visualization import plot_turbine_points\n", + "from turbine_models.parser import Turbines\n", + "from hopp import ROOT_DIR\n", + "from hopp.utilities.keys import set_nrel_key_dot_env\n", + "from hopp.simulation import HoppInterface\n", + "from hopp.tools.design.wind.turbine_library_tools import print_turbine_name_list\n", + "from hopp.utilities.utilities import load_yaml\n", + "from hopp.tools.dispatch.plot_tools import (\n", + " plot_battery_output, plot_battery_dispatch_error, plot_generation_profile\n", + ")\n", + "\n", + "set_nrel_key_dot_env()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Display Turbine Model Options\n", + "\n", + "The turbine-models repository hosts power curves and key data for commonly used turbine models in industry and the R&D community. \n", + "\n", + "There are several classes of turbine options, including:\n", + "- [Distributed](https://github.com/NREL/turbine-models/tree/master/turbine_models/data/Distributed)\n", + "- [Onshore (utility scale)](https://github.com/NREL/turbine-models/tree/master/turbine_models/data/Onshore)\n", + "- [Offshore](https://github.com/NREL/turbine-models/tree/master/turbine_models/data/Onshore)\n", + "\n", + "In HOPP, you can view all the turbine models available in the turbine-models repository using the `print_turbine_name_list()` function. The below code will only print the distributed turbine models available.\n", + "\n", + "**NOTE**: Most of the turbine model names are formatted as \"TurbineName_RatingkW_RotorDiameter\"\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "------------------------\n", + "Distributed Turbine Names:\n", + "------------------------\n", + "\n", + " CF11_11kW_9.36\n", + " Skystream3.7_2.1kW_3.7\n", + " EntegrityEW50_50kW_15\n", + " EWT_DW61_1MW_60.9\n", + " EWT_DW54X_1MW_54.1\n", + " NPS100B-24C_95kW_24.4\n", + " NPS100C-21_100kW_20.7\n", + " Bestwind30_27.2kW_13.1\n", + " FortisMontana_3.31kW_5.04\n", + " CF15_15kW_11.15\n", + " Jacobs31-20_12kW_9.45\n", + " NPS100C-28_90kW_28\n", + " BergeyExcel10_8.9kW_7\n", + " PikaT701_1.5kW_3\n", + " SWIFT_1kW_2.1\n", + " NPS100B-21_100kW_20.7\n", + " VestasV29_225kW_29\n", + " GhrepowerFD21-50_61.2kW_21.5\n", + " NPS100C-28_90kW_27.6\n", + " EWT_DW54_900kW_54\n", + " 2019COE_DW20_20kW_12.4\n", + " EWT_DW52_900kW_51.5\n", + " VestasV27_225kW_27\n", + " CF10A_10kW_11.15\n", + " EWT_DW58_1MW_58\n", + " NPS100C-24_95kW_24.4\n", + " CF20_20kW_13.1\n", + " NPS100B-24_95kW_23.6\n", + " BergeyExcel15_15.6kW_9.6\n", + " SD6_5.2kW_5.5\n", + " CF11A_11kW_11.15\n", + " NPS100C-27_90kW_27.4\n", + " Kestrele400nb_2.5kW_4\n", + " 2019COE_DW100_100kW_27.6\n", + " NPS60C-24_60kW_24.4\n" + ] + } + ], + "source": [ + "t_lib = Turbines()\n", + "distributed_turbines = list(t_lib.turbines(group=\"distributed\").values())\n", + "print(\"-\".join(\"\" for i in range(25)))\n", + "print(\"Distributed Turbine Names:\")\n", + "print(\"-\".join(\"\" for i in range(25)))\n", + "dw_msg = \"\\n \" + \"\\n \".join(t for t in distributed_turbines)\n", + "print(dw_msg)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Selecting a Turbine Model\n", + "\n", + "For this example, we selected the [Bergey Excel 15](https://www.bergey.com/products/grid-tied-turbines/excel-15/) from the available models, listed as \"BergeyExcel15_15.6kW_9.6.\" This 15.6 kW turbine is design for low wind speed conditions, making it well-suited for distributed applications. To use this turbine model in your HOPP simulation, you need to specify it in your configuration YAML file. \n", + "\n", + "In this example, the configuration file is `examples/inputs/08-distributed-wind-solar-residential.yaml`. To include the Bergey Excel 15 turbine, add its name under the `turbine_name` field in the YAML file.\n", + "\n", + "`turbine_name: \"BergeyExcel15_15.6kW_9.6\"`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Load Inputs\n", + "\n", + "Load the configuration YAML file as `hopp_config`." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "example_dir = ROOT_DIR.parent / \"examples\"\n", + "input_filepath = os.path.join(str(example_dir),\"inputs\",\"08-distributed-wind-solar-residential.yaml\")\n", + "hopp_config = load_yaml(input_filepath)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Key Distributed Energy Inputs in the Configuration YAML\n", + "\n", + "While many inputs can be included in the configuration YAML file, this example highlights key parameters specific to distributed energy systems.\n", + "\n", + "#### **Wind**\n", + "- `turbine_name`: Specifies the turbine model, allowing HOPP to extract essential turbine data, including the power curve.\n", + "- `resource_parse_method`: Defines how wind resource data is processed. When set to \"weighted_average\" it calculates a weighted average for multiple hub heights. This is particularly important at lower hub heights due to wind shear effects.\n", + "- `adjust_air_density_for_elevation`: When set to `True`, this parameter adjusts air density based on elevation, which can impact turbine power output. At higher elevations, lower air density reduces power generation due to atmospheric conditions.\n", + "\n", + "#### **Solar PV**\n", + "- The YAML file includes a separate configuration file for solar panel system design parameters.\n", + "- `panel_tilt_angle`: Specifies the tilt angle of the solar panels for optimal energy capture.\n", + "\n", + "### Example Configuration File Structure\n", + "\n", + "Below is an example configuration snippet showing how different distributed energy technologies are defined in the YAML file:\n", + "\n", + "```yaml\n", + "technologies:\n", + " pv:\n", + " panel_system_design: !include \"residential_pv.yaml\"\n", + " dc_degradation: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]\n", + " panel_tilt_angle: 20.0\n", + " system_capacity_kw: 1800.0 # System capacity in kWdc\n", + " wind:\n", + " num_turbines: 56\n", + " turbine_name: \"BergeyExcel15_15.6kW_9.6\"\n", + " model_name: floris\n", + " floris_config: !include floris_v4_template.yaml\n", + " resource_parse_method: \"weighted_average\"\n", + " store_turbine_performance_results: False\n", + " adjust_air_density_for_elevation: True\n", + " layout_mode: \"basicgrid\"\n", + " layout_params:\n", + " row_D_spacing: 11.5\n", + " turbine_D_spacing: 11.5\n", + " \n", + " battery:\n", + " system_capacity_kwh: 1750\n", + " system_capacity_kw: 700\n", + " minimum_SOC: 20.0\n", + " maximum_SOC: 100.0\n", + " initial_SOC: 20.0\n", + "```\n", + "\n", + "This configuration file defines the components of a distributed hybrid energy system, including wind, solar PV, and battery storage. Each section outlines some key parameters that influence system performance.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create Simulation Model\n", + "Create an instance of the `HoppInterface` class by providing it a dictionary of inputs (`hopp_config`)." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "FLORIS is the system model...\n" + ] + } + ], + "source": [ + "hi = HoppInterface(hopp_config)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Simulate Hybrid Plant\n", + "\n", + "Run the hybrid plant simulation. By setting `project_life` to 1, you simulate a single year of operation." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating wind farm output in FLORIS...\n" + ] + } + ], + "source": [ + "\n", + "hi.simulate(project_life = 1)\n", + "hybrid_plant = hi.system" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plot the Generation Profile\n", + "\n", + "Three subplots are generated, displaying results for a default period of five days with hourly time steps on the x-axis:\n", + "\n", + "1. **Generation Profile**\n", + " - The red line represents PV generation, while the blue line represents wind generation.\n", + " - The y-axis shows power in megawatts (MW).\n", + "\n", + "2. **Battery Power Flow** (Dual-Axis Plot)\n", + " - Left y-axis: Power (MW)\n", + " - Right y-axis: State-of-Charge (SOC) as a percentage\n", + " - The blue dashed line represents the desired load specified in the simulation.\n", + " - The blue and red bars indicate battery discharge and charge, respectively, at each time step.\n", + " - The black line represents the battery's SOC.\n", + " - The blue dotted line indicates the battery dispatch profile.\n", + "\n", + "3. **Net Generation Profile** (Dual-Axis Plot)\n", + " - Left y-axis: Power (MW)\n", + " - Right y-axis: Grid or energy price (if used)\n", + " - The black dashed line represents the original hybrid generation profile (including wind, PV, and battery storage).\n", + " - The green line represents the optimized generation profile after battery dispatch." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAXRCAYAAABxVdQKAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Qd4VNXaBeCVRu8dIiAIKNKxgIIFkapee732hnq99i4W9Ffs9apXRcXe+xULIkUEG1Wa9N57h5T5n3UOO5kkk2QmmZnT1vs8ccYkTHYmyZlz1v72t1NCoVAIIiIiIiIiIiIiIiJSRGrRd4mIiIiIiIiIiIiICClEFxEREREREREREREphkJ0EREREREREREREZFiKEQXERERERERERERESmGQnQRERERERERERERkWIoRBcRERERERERERERKYZCdBERERERERERERGRYihEFxEREREREREREREphkJ0EREREREREREREZFiKEQXERERESmjxYsXIyUlBRdffLHTQxERERERkQRRiC4iIiIieaZOnYqrrroKBx98MGrUqIEKFSqgUaNG6NOnD5588kmsW7cOQbP//vtbb14K9cPfMjIykJmZibPOOgt//vmn00MUEREREfGclFAoFHJ6ECIiIiLirNzcXNx2221WUJ6Wloajjz4aHTt2RNWqVbF27VpMnDgRM2fOtP7/77//tkLZoDABOgPqwrKysrBgwQLUrFkTjRs3htM4xhYtWuCAAw7A+eefb71vx44dmDRpEkaPHm0F6j/++KP18xURERERkeikR/l5IiIiIuJjd999txWgd+3aFR9++CFatWpV5HMmT56M22+/Hbt27XJkjG7EUPqggw6C2/Dnd//99xd43yOPPII777wT99xzD8aOHevY2EREREREvEbtXEREREQCbu7cuXj88cdRv359fPfddxEDdGLAPnLkyIitTaZPn45zzjnHqsZmC5jmzZvj3//+NzZs2FBsD/H58+fj1FNPRe3ata0K9+OPPx7Tpk2L+LVZDX/jjTdaY6tYsSLq1auH008/HTNmzCi2/crmzZtx7bXXomnTpkhPT8fw4cOtj7Mqm+9v3769VUFeuXJldOjQwQqZWVleeKxLliyx3sJbpJiAuqSe6Pw3l112mVW1z+dkv/32s/5/6dKlRT732GOPtR6HX5+PzfHz+2zTpg1efPFFxAO/tvn+C9u7dy+eeuop62fMn0X16tVx1FFH4auvviryuVu2bMG9995rtfypVq2a1faHP5eLLrrI+p7DsQr+vvvusyYaKlWqhDp16uCEE07AL7/8UuRx+RzyOYhU8c/nhB8bM2ZM3vt43/wsJkyYgL59+6JWrVrW+wwuun3jjTes74Ufq1KlClq3bo1BgwYV+Tls27bNGmu7du2s3wl+fr9+/TB+/Pgi41m1ahWuv/5667HM57Zt29ZqhcTnR0RERET8RZXoIiIiIgH35ptvIicnxwoWGaSXhoF0OAat7LedmpqKk08+2QqtZ82ahf/85z/4/vvv8dtvv1lBeTgGpd27d7cCy0svvdRqifLll1+iV69emD17Nho2bJj3ufwYQ+bly5dbQekpp5xiheqffvqp9fijRo1Ct27dCjz+nj17cNxxx2H79u34xz/+YY3ZPOarr76Kr7/+2mppMnDgQOzcudMKZFml/ccff1iPSwxGGao+88wz1v/fcMMNeY/P8ZQ2MdGzZ0+rh/xJJ51kfZ8M/F9//XXrazOYZUBe2Lnnnovff/8dAwYMsNrqfPTRR/jXv/5lVbxfccUViIfCPz8+V/3797eeg86dO1thO8P8b775xvp5Pv/889akgwmlGSzzZ9qjRw/r3/HnzvCcvwcXXHCBNYFCu3fvtn4G/H4YzvP5W7NmjbXSgT+3999/H2eeeWa5vx8G6A8//LD1u3PllVfmheNsUXT22Wfjk08+sSYy+Nwy8OfvHp9XPsfNmjWzPnfjxo3W7wNbFvH7Yhi+devWvN/Jjz/+2Pq9I/6+8HP4OPx95EQQJyEWLVqEt99+G7fccos1OSMiIiIiPsKe6CIiIiISXL169eIeOaFRo0bF/G/Xr18fqlGjRigzMzO0ePHiAh97//33rce99tpr8963aNEi6318e+SRRwp8/uDBg633Dx06tMD7jzzyyFBaWlrou+++K/D+v//+O1S9evVQhw4dCry/efPm1uP069cvtHPnziJjXrJkSSg7O7vA+3Jzc0OXXnqp9e/Gjx9f5PH4Fon5fi666KKIz+nLL79c4P0vvPCC9f7jjjuuwPuPOeYY6/3dunULbdmyJe/9c+bMCaWnp4cOPPDAiF+/uPHwey/s4Ycftj52wgknFHj/XXfdZb3/nnvusZ4HY+vWraFDDz00VKFChdCKFSus902fPt363FNOOaXI4+/evTu0bdu2vP8fMmSI9bn//Oc/Czzu5MmTrcesVauW9TUMPof8fH4Phd13333Wx0aPHp33Pt43v0uvv/56kX/z/PPPWx/r3bt3kd8D/v+GDRvy/v+8886zPvfVV18t8Hlr1qwJNW3aNFS/fv3Qrl27rPd99dVX1ufecMMNRb4mv38+DyIiIiLiL2rnIiIiIhJwq1evtm6bNGlS5GOsTma7jPC38JYab731llWxO3To0LwKZIPtXViB/MEHHxR5XG5+eeutt0ZsN8JqcGPKlClWpTFbhbACOhwruVmd/ddff0Vs6/LYY49ZrTYKY/Uxq7zDsQUIK76JG2+WByuhuYkn250Urh5nhTNbm/z0009YtmxZkX/L55HV0saBBx5oVT1zM1e2G4kWW+WYnxefZ1aE33XXXVY1Plv3GKzWfumll6yNSIcMGVKgFQpburBtC6usP/vsswKPH+l5ZfsZtncJX+HACnq2yQl/3C5dulg/T7bb+eKLL1Be/B275JJLiryfbXD4c+b3V3i8/H+2lqH169db1fF8ji6//PICn9egQQPr+eOKgsK/F5GeA37/fB5ERERExF/UzkVEREREisXAnOFqYaadya+//mrdsr0H264UxpYeDCn5xj7mBtuGsA1IOPYMJ4arhnl8tgEpvFEmzZkzJ++WPc4N9t9mn/NIGAqz1QzDff47tnxhmxJj5cqVKI+pU6dat8ccc0yB8Jj4PbNtCL8uP4+tb8IdcsghRR4v/HlhsB0N/iwK/9waNWqEn3/+uUDPe4bzmzZtsiZQIv2cGR6HP8/s+92xY0erFQvb67DFCX8XCv88ObGycOFC6/PN+MOxRQrb6vA5YAuY8jjssMOKvI8/U7YF4vfKvuUl4aQN2xmxrU2k37F58+blPQcnnnii9fNj739ODrCHP9/HnzW/18I/bxERERHxB4XoIiIiIgHH6mQGjgyPWSUdzlQzE0Nn9pUOx17S9MILL5T4NbjBZHiIHl5tXbhXNwPNwo/P/tx8K+nxC1cQFxdonnHGGVZfclays2c2P5cV0wypn332WStMLQ8GyBTe1z0cA9jwzwsX7fNSGlbtc5NYE4SzKvz222+3+sOzR7mpGDfPL3uB862055djYRU9fyfYO/7mm2+23s9e+uybfvfdd1vV3+V5DmIV6WuYzT3ZC7005jngZqeRNjwt/Byw3zknd1ilz9+jESNGWO/nhMgdd9yBa665pszfi4iIiIi4k9q5iIiIiATckUcead2yBUmsTOjLliqs5i7urXCrl1gfn5tblvT4bA8SrrgAnVXHDD4ZMnPzU1ZDP/TQQ1YozPYz8WDGzOr5ktrnRArME4EBNze7ZDsXTpYMHjy4yFhPP/30Ep/fN954I+/f1K1b1/p5rFixIm8DWbZG4SasbKFT1ufAVLJnZ2cXG4pHEulnbTb25BhLY8bACYGSngN+f+EtgYYPH25NULDl0KOPPmq1xmFLIFbpi4iIiIi/KEQXERERCTgG0AwwX3nlFavtSiy6detm3U6cODEhY4v345uWMyeccEKRvuhsdRIJPy+WKnC2NqFx48YVaBND/H++P/zzkoUhOtu2sFf44sWLrfexBQlD5D///BNZWVkxPR7Da/57BscjR4603vfVV19Zt3zMli1bWr3ZIwXZpq9++HNQu3Zt6zbS5zOojgUr7dmTftGiRXntWEpqB8PvpSy/Y/y74fdw22235YXn5jkQEREREf9QiC4iIiIScGxrwhBw7dq1GDBggBV8RhLeq9zgho7s0802HpHagezcuTOvr3lZHH744VaQzoCSmz8WxurfsWPHRv14piJ+/PjxBd7PsXNTz0hYZc3JBfZ3jwarlNnzm4/5+uuvF/gYJypYDc5NLAv3Q080boTJli4Myx988MG89ixXX301lixZYlWrRwrSuWkrfzeI4bsJ4MOZinP2og+fnOHj3XnnnQUmE6ZPn25VcbNanD3VC/c258fCffLJJzH9jA2G+5z8YHuVXbt2FfgYf5amjQt7xZ911lnWBrbcdLXwxIfp+c/fZeLPNVKFfaTnQERERET8QT3RRURERMRqacINN5966imrLzo3T+zUqROqVKliBagMPk0v7fDqYbYKYcB95plnWp/fv39/69+zrzjDVoafbBdj+nOXBR+foTTbrTzzzDPo2rWrFQgvXbrUqh5mS41oA26G8nz76KOPsGrVKnTv3t16HFYPszqdgW1hDLxZqc0JhqOOOgoVKlSwnh++Feell15Cz549ccUVV1jtY1gVzfCVX4fPGT/uhCuvvNJqPfLWW29ZlekHHHCAtaHo5MmT8dxzz1l95/l9sU88K8LZpoebZ/J55vu4Eehpp51mPYf8nhhA8/O++OILqyr7xhtvzPtanJjh47399tvWxEHv3r2t3yVOhrBlC1vphG+UevLJJ1vjYYi+bNkydOnSxfp37ME+cODAvN7j0eLkAH//+LPm5qLsB88Kef68v//+e7z22mt5IT6r87nJKsfM8R5xxBGoVauWNQ7+7FnNzt8X/j2w6v7WW29Fjx49rAkotrfhJqr82TJAZ3gvIiIiIj4TEhERERHZZ/LkyaErr7wydNBBB4WqVasWysjICDVs2DB03HHHhR5//PHQmjVrIv67OXPmhC677LJQ8+bNQxUqVAjVrl071KFDh9B1110X+v333/M+b9GiRSzzDV100UURH4cfO+aYY4q8f+PGjaHBgweH2rdvH6pcubI1ttatW4fOO++80GeffVbgczkGvhVn7dq1oUsvvTTUpEmTUKVKlaxxvvDCC6GFCxdGHNu2bdtCV1xxRahx48ahtLQ063Puu+++Ur+fxYsXhy655BLr36Wnp1u3/H++vzB+z8WdmvOx+TF+rdKY8fTr16/Yz3n++eetz7ngggvy3pednR16+eWXQz169AjVqFEjVLFixVCzZs1C/fv3D7300kuh7du3W5+3bNmy0B133BHq3r17qEGDBtbPmp932mmnhSZOnFjka/Hf3XPPPaE2bdpYn1urVq3QgAEDQj///HOx4z/llFNC1atXD1WtWjXUu3fv0B9//GE93xzz6NGj8z6X98N/FpHk5uaGhg0bZo2Xj1elShXr9+aqq64KLV26tMDn7ty5M/TYY4+FDjnkEOtz+XvWokULazxvvfVWKCsry/q8WbNmha6//vpQly5dQnXr1rWeq5YtW1o/p5kzZ5b48xERERERb0rhf5wO8kVERERERERERERE3Eg90UVEREREREREREREiqEQXURERERERERERESkGArRRURERERERERERESKoRBdRERERERERERERKQYCtFFRERERERERERERIqRXtwHJP5yc3OxcuVKVK9eHSkpKU4PR0RERERERERERHwuFAph27ZtaNKkCVJTVVNdFgrRk4gBetOmTZ0ehoiIiIiIiIiIiATMsmXLsN9++zk9DE9SiJ5ErECnRYsWoU6dOk4PR0RcIisrCz/88AP69u2LjIwMp4cjIi6i44OIRKJjg4hEomODiBRn69atVmGvySYldgrRk8i0cOEvbI0aNZwejoi46GS3SpUq1nFBJ7siEk7HBxGJRMcGEYlExwYRKY3aS5edmuCIiIiIiIiIiIiIiBRDIbqIiIiIiIiIiIiISDEUoouIiIiIiIiIiIiIFEMhuoiIiIiIiIiIiIhIMRSii4iIiIiIiIiIiIgUI724D4izcnJyrJ21RcS7MjIykJaW5vQwRERERERERESkHBSiu0woFMLq1auxefNmp4ciInFQq1YtNGrUCCkpKU4PRUREREREREREykAhusuYAL1BgwaoUqWKgjcRD0+I7dy5E2vXrrX+v3Hjxk4PSUREREREREREykAhustauJgAvW7duk4PR0TKqXLlytYtg3T+Xau1i4iIiIiIiIiI92hjURcxPdBZgS4i/mD+nrXHgYiIiIiIiIiINylEdyG1cBHxD/09i4iIiIiIiIh4m0J0EREREREREREREZFiKEQXERERERERERERESmGQnQRHxszZozVToS3IiIiIiIiIiIiEjuF6JIUw4cPt8Jc81apUiW0adMG1157LdasWWN9znXXXWd9bP78+cU+zt133219zvTp00v9mj///DPOOussZGZmokKFCqhZsya6deuGBx54IO9r+sWLL75oPcciIiIiIiIiIiISX+lxfjyREjHAbtGiBXbv3o3x48fjpZdewogRIzBjxgz885//xPPPP4/33nsP9957b8R///7776NDhw7o2LFjiV+H//7BBx9Ey5YtcfHFF1u3/JqTJk3Ck08+iTfffBMLFiyI7ze3cyewbh2QkQFUqABUrGi/8f8TvLkkQ/R69epZ32u4o48+Grt27bImEURERERERETEw/73P+CTT4BQKLrPb9cOuPXWhGcSIkGgEF2SasCAATj00EOt+5dffjnq1q2Lp556Cl9++SXOPfdctGrVygrKI4XoEydOxKJFi/DII4+U+DU+/PBDK0BnFfrbb79dJEB++umnrbe44gvYokXArl1FP8YXK4bp4cE671eubL8VeaiQFfhXjvCxWKWmplpV/yIiIiIiIiLiYZ99BpxxRvQButGvH9CpU6JGJRIYaucijjruuOOsW4bjxGr0OXPmYPLkyUU+lxXqbOXCsL0kDOBZlf3aa69FrMBmW5f777+/yPu//fZbHHXUUahatSqqV6+OE044ATNnzizwOaz0rlatGlasWIFTTjnFul+/fn3ccu21yNm+HUhLA+rVA6pXR25GBp557z20O/NMVDrkEDQ84ggMuvFGbJo1C1i4EOBjb9yI/fffHyeeeCK+//57a4KB4fnLL79sfb033njDeo4aNGiAihUr4uCDD7aq98Px33OcY8eOzWuXc+yxx5bYE/3jjz/GIYccYn0tPlfnn3++9T1F9b3ecgtycnJK/BmIiIiIiIiISJz89hsDEztAZ5D++OOlv7Vubf9bZhAiUm6qRBdHmZYqrEg3IfqQIUOswLxr1655n8fQ9qOPPrJC7mbNmhX7eHPnzrXeWOXO0DdarFi/6KKL0K9fPzz66KPYuXOnFVb37NkTU6ZMsYLq8LHw89hf/YknnsCPI0fiyRdfxAHVq+Pq668HGje2Pm/QFVdYfcovufBCXNehAxYtXIj/vPYapixYgF/efBMZ2dnAypXW5/7999/W5MCgQYNwxRVX4MADD7TezzG0a9cO//jHP5Ceno6vv/4a11xzDXJzc/Gvf/3L+pxnnnkG//73v63vlz3jqWHDhsV+r9aYLrkEhx12GIYOHWr1h3/22Wfxyy+/WN9rrVq1iv9ef/zRaodzwAEH4Oqrr476+RURERERERGRMmAR3kknAbt3AyecwD63QHoUcd7ffwPz5gFz5iRjlCK+pxDdCzjTyH7bblGlSpn7aW3ZsgXr16+32pUwtGWPdFZDsxKbWrdubYW7bMny2GOPWe1IiOHt2rVrrTYtJWEVO7Vv375Ii5QNGzYUeB/DYgbT27dvtzY1ZfD+yiuv5H2coTrD7IcffrjA+zn2s88+G/fcc4/1/1eddhq6zpyJ177+Glc/9JD1PvZ7HzZsGN59912cd955ef+21wknoH///vj4r79wHsfIF8HcXGsz1e+++84KrMOxujy8rQs3YuW/ZwscE6KzSnzw4MF5FeUlycrKwu233249P+PGjctr9cLJAv4M2OaGkxjFfq9XXWVNbrDKXyG6iIiIiIiISAJt3AgMHGjvv9alC/DBB9EF6LSvOM8K00Wk3NTOxQsYoLOq2i1v5Qj0jz/+eKslSNOmTXHOOedY1dOff/45MjMz8z6HQfDy5cutkNdgZTpbs5x55pklPv7WrVut28JV6Azv+XXD36ZOnWp9bOTIkdi8ebNVCc6A37ylpaVZFdijR48u8nUYJlvY1mTVKhzVuTMWsqqc7Vz2tUth25g+ffoUeEy2UOHYRvN7a9Ag7zG42WrhAJ3CA3QzAXHMMcdg4cKF1v/H6s8//7QmI1jNHt4rna1rDjroIHzzzTfFf6/7cDUAv76IiIiIiIiIJMiePcCpp9oheNOm9qaiMay4x0EH2beqRBeJC1WiS1K98MILaNOmjVUBzpYjrPQ21eYGw/WbbrrJCs7Z25vV0AzauSlp7dq1S3x89jInVpeHY3DNsJx++OEHPM7+YPvM4/KmsP7shdWoUaPA/zN8ZghvWbuW5d3WuDZt3lzgMRlys5d5JAyyrRB9zRprpUELviBGwGr9++67z9pUlS1mwvHxGdTHYsmSJdataRcTjiE6K+iL/V73sb7XTZti+roigffll/bmw1zFY9547Av/f/M+vvF41KKF06MWERERERGnOhJceinAAjxmEix4a9IktscwIfrcudYKeOs6Q0TKTCG6F7B9SqFQ2PHxlNHhhx9ubZ5ZEgbPrOD+9NNPrdCdfcC3bdtm9UsvDYNgmjFjRoH3M7RnFTyxyj0c+4ubvuiNGjUq8pj8t+FYoW5hT/PVq+37+8L78Mfk98F2LpFYwXRGBu9Y/185Qnsc9ovv3bu39T2xfQur91mNP2LECKvtihl3IuV9ryJSdt9/z75Lsf0b7v3AipOwFSMiIiIiIhIQbKn63nt265ZPPwU6dIj9Mbi3G3OHXbuAZcuA5s0TMVKRwFCI7gUMWKtWRZAwMGeP8G+//daqSGc1+EncSKMUrLBmX/UvvvjC2nCzahTPGzfJJIbeJmiPCgN0tnNhy5WwtivmMdnHvUePHgVashRhNgDl42zbViCM5+TBnj178NVXXxXYTDVSe5mUKHvUN9/3osmNTAtX3vN95uMiEscKkvvvt+8fdhgPDvb7zBsnw8L/n2+//AIsXQo8/zxw661OfwciIiIiIpJMr70G7NtvDS+/zL64ZXscBvCtWwOzZtktXXS9L1IuWsshrsTNMqtUqYIXX3zRCtJPO+20Aj28S3L//fdbvcOvuOIKayPNwrjJaDj2ImdIzw1EI33+Om7gUdjevXYrFtpvvyIbrZ511lnIycmJuBFqdna21YPdUqFC/pKqVasiVoGHj5ctXN54440ij8nJgrzHLAFXAXCy4L///a8V0Bt8jmfPnm31RheROBo1Cvj1V7uinC1d3n/f3gzoww+Bjz4CPvnEriz57DPg88+BL74AnnjC/rcPP2xvJCQiIiIiIsHwww/AoEH2/cGD7ZYu5WFaumhzUZFyUyW6uBJ7mDNIZxU6RdPKxTjvvPOsdi5Dhw7F77//bvVY58adO3bssN7//vvvW73TTX91BugvvfQSLrjgAnTt2tX6fLZbWbp0qbXRJqvJ//Of/xT8Igy8GW5zU49CPdOJm38OGjTIGgM3MO3bty8yMjKsXuncdPTZZ5/FGWecYX+yaZnCTVF37MhbdcB/w/YtrMDnY7HP+6uvvmqF4KsKBe7csJTfw//93/+hVatW1udE6vHOMTz66KO45JJLrDFyM9U1a9ZY49l///1x4403Rv08i0gpeIwYMsS+f+WVQOPG0f27888HnnwS+OsvYOhQIGwPBxEREfEwrj5Vu0QRKQ7P/5kT8Fhx3nnAAw+U/zHNfmjaXFSk3BSii2sxOGeI3rhx42I3/SwOq8pZYc7w+/XXX7cq09lWhZua3nzzzbjqqqsK9D9n8N6kSRM88sgj1qajrNLOzMzEUUcdZQXORZjq9AhV6AarvRluv/zyy7jrrrus3uoMqs8//3wrmM/Df88+ZcRwvFWrvNY0n3zyCQYPHoxbbrnFGu/VV19tBfyXFpqNvvfee61NQx977DGrfzwD8uKes4svvtiq8uf3evvtt1tV7KeeeqoVrteqVSum51lESjBmDMDNeitWBG6/Pfp/x4vrRx8FBg4EnnsOuPZaLb0UERHxugULuCwU6NyZFwr5wZaICK1caZ//s83r0UcDr79ebNZQpkp0hegi5ZYSKtzbQhJm69atqFmzphXo1q1bt8jHd+/ejUWLFllV09G2LhGHToA3bQJq1rT7i8UDN/qYOdO+365dkR7r4l3R/F2zjRA3jB04cKC1WkB8olcvO0j/17+AwqtZSsOX5t69uQkCcMEFwFtvJWqU4nI6PohIJDo2eNCbb7Kaxb7PCfZ777X3PtHPT+JIxwaPMsH51Kn2BNuECUCdOvF57N9+A7p3B5o0AVasiM9jiqczSbYJZkcGiZ16oovEYudOO0CnzMz4PS5Dc1MFXqhVi4h40LhxdoDOi5dYqtANVp089ph9/513gGnT4j5EERERSaLly+3bKlUA7k109912Zfoffzg9MhFxGnugM0Bv0IAblsUvQCez6oWV7mwhKyJlphBdpCwnv3xR4wlwPJl+ydxIMGzTTxHxINO/kK2XmjYt22Pwwvrss+2q9LIE8SIiIuK+64ibbrInyLkyefp0u0L05pvtvZFEJHj4t//JJ/b9Tz8FWrSI7+OzWM+0stXmoiLlohBdJJYlVpy5ZYVoPKvQDW4oapbUrF4d/8cXkeT45Rdg1CggPR24887yPdZDD9nV7N9/D/z4Y7xGKCIiIk6F6Jxc/+c/gdmz7dvcXOCpp4D27YEffnB6lCKSbNxDKSvL3gMpfO+0eDLV6ArRRcpFIbpINFgJak5869Wz+xgmgqlGX78e2Ls3MV9DRBLrwQftW/Y9Le+GoAccAFx9tX3/ttvsC20RERHxHnMtsd9+9m39+nZF+ogRQLNmwOLFQL9+9vnDhg2ODlVEkojFN8T9kOKxkWgk2lxUJC4UootEY8sWe5lVamp+0J0I1asD1arZof2aNYn7OiKSGNy4h1XjaWnlr0I3Bg+2jw1TpgAffBCfxxQRERFnQ3RjwABg5kzguuvsAI0bkB58MPDhh/Y1gYgEI0Q/7rjEfQ1VoovEhS9D9HfeeQeDBg3CoYceiooVKyIlJQXDhw8v12Pu3bsXnTt3th7rIDOLJ8HAk1ezizU3+qhQIbFfz4T069bZy7pExHu90C+8EGjZMj6PyUo10xOdm5BpzwQRERFv2b3bXmkaKUQnFtE8+ywwYQLQrh2wdi1wzjn55xUi4k/cD42FMokO0VWJLhIXvgzRBw8ejFdeeQVLlixB4zhVDQ8ZMgTz58+Py2OJB1/Ydu2yK0vNhhyJxL7o3LSUbRt4Ai0i3vDnn/aSbK5Yueuu+D72DTfYE2xc6v3SS/F9bBEREUksU5BTuTJQu3bxn8dNRidPBm691f7/119PzvhExBmjR9tFe1x9ksgV7yZEnzcPyMlJ3NcR8TlfhujDhg3D4sWLsW7dOlx11VXlfrzff/8djz76qPUmAcMg25z08kWNGwUmGpdxmhdQhujZ2Yn/miJSfqZajJuEtWoV/42Hhwyx7//f/9ktpkRERMR7rVxK63nMVa/33GN/3tKlwKpVSRmiiDjcDz2RuO8C93XjitYlSxL7tUR8zJch+vHHH4/m5d3MbZ/du3fjoosuQs+ePXHNNdfE5THFQ8wGnxkZdkuFZKlVC6hUyZ4lZlsXEXE3LsP8+mu7Cp0tVxLhkkuAtm3tzcY0qSsiIuL9fujF4V4o7dvn77ciIv6UrBCdq+rbtLHvq6WLSJn5MkSPp7vuugtLly7Fa6+9ZvVDl4DZtMm+ZRsXvvAkC3/XTOsYbjCqJVci7vbgg/Yt+5eajXvijSthHnnEvv/00/kX5CIiIuKvEN20dqFff03MmETE+ePC3Ll2Ec4xxyT+66kvuki5JaE3hXeNGzcOzz77LJ566ikccMABMf/7PXv2WG/G1q1brdusrCzrrTC+LxQKITc313oTh4VCSNm+HZw6yWU1SLJ/JrVrI2XlSqTs3YvQ+vUIJbMSXuKGf8v8u+bfd1oxEzHmeBDpuCAeMH06Mj7/HKGUFGRzA9BE/hz790dajx5I/eUX5N5zD3JeeSVxX0tcQccHEYlExwZvSV26FDwLzGncGLlR/sxSDj0U6a++ityJE5Gjn7NESccG70j54QcrkMvt2hU5bN2Y4J9ZaqtW9nFo9uyoj0PiLzoulJ9C9GLs2LEDl1xyCY444gj8+9//LtNjDB061NqQtLDRo0ejCjeOLCQ9PR2NGjXC9u3bsZctRMRRabt2oTonNdLSsJWTIQ78TCrUrIkq69YhtGoVtrKlDGepxVP4t7xr1y5rUi67lP72I0eOTNq4JH4OfewxZHLPsB49MGnRIoBvCVT7pJNw9C+/IOWtt/Bz167Yxh6H4ns6PohIJDo2eMPhkyaBOx7N2LwZi7kJeRSq79mD4xiw/f47vv36a4SSuSpWPE/HBvfr8s474Fn8/ObNMTvK40J57Ld7Nw7hYvuJE/FLEr6euM/OnTudHoLnKUQvxi233IKVK1fi22+/RWoZg8s777wTN910U4FK9KZNm6JXr16oW7duxP7ry5YtQ7Vq1VCJ/bAlz5gxY9C7d2+MGjUKxx57bFIeM2XfASalRg3UqFkTjqheHaHNm5GalYWaoRBCNWo4Mw4fOO44XoYAP/30U1K/Lv+uK1eujKOPPrrYv2vOCPNEt0+fPsjgZIl4x4wZyJgwwbrb8LnnMND0L02kgQOR++uvSP3iCxz73XfI+eKLxH9NcYyODyISiY4N3pK2r+1bu379cPDAgdH9I65mHDwY6Vu3YgAnzDt1SuwgxRd0bPCIUAjp//qXdbfl5ZejRaJ7ojPXaNjQaglZd/16DIz2OCS+YrpjSNkpRC8mXP3vf/+Lxx9/HG3M5gtlULFiReutML6YRXpBy8nJsfquM7Qva3DvRh999BHOPvtsfPbZZzj11FMLfKxTp06YPn26FWxyciFcs2bNsN9++2HChAl5z0c8n5tSH3P7duvmzW++wSXXXx/xMW6//XY8YnoUJ0qdOlZf9JRt25ASYfIlmgPl888/j88//xzz5s2zQl2ueOjevTsuvPBCnHDCCfCLWbNmWb9vF198Mfbff/+In5Psvy1+Pf5dF/d3Hy6azxGXMRt8nn46Mrp0Sd7X5XHn66+ROmIEUhniJ6OPojhKxwcRiUTHBo9YscK6Sef5aSw/r8MPB378ERmTJgGHHpq48Ynv6Njgcn//bR8XKlZEOs/jk/GzatfOuklZswYZzDpq10781xRX0TGh/PyT1MbR1KlTrdtbb73VCr/C3+jvv/+27teqVcvhkXpDz549rdvx48cXCXdnzJhhtbH55ZdfCnyMFfl8M/+WVbxsicHbpGD/830hOl/Y6IEHHsDbb79d4O0cbiKYaKb6fNu2mP/p/Pnz0aVLF9x3331o0aIFHnzwQbz00ku49NJLsXjxYpx44onW9+GnEJ0tlPi9FfbDDz9YbyJxM3s2Zwnt+/fck9yvzc1Lr7zSvh+hbZiIiIi4BFtCrlkT+8ai1K2bfavNRUX8ZdQo+/bII4HKlZPzNbnPW2ZmfogvIjFTJXoE7du3x2WXXRbxY6+99hpq1qyJM844I2JfcymqSZMmVoBbOESfOHGiteHimWeeWeRj5v9NiM5q3qS2uGErFwbp6elAhQrWuwYMGIBD41wBwt77VbmJSEmqVbNv2ZedbxFWN0TC/tus/F+zZg3Gjh2LHj16FPg4g3WGylwB4VZRPT9RqrDv5ygSNw89ZC3FxCmnOLPE+pZbgJdeAn7+2Z70M8cKERERcY9Vq+zzBZ6L1qsX27/t3t2+/e23hAxNRBxiWowmoY1LkUIcVsAzRDfHFxGJWuAr0devX485c+ZYt8bxxx+PYcOGRXwjtsLg/eeee87BkXsLw/ApU6ZY1eQGq8/btWtnhdO//vorchlah32M1f4m+GWLHf4/bw32MeeEB6uP2QqGkxqZmZl47LHHinz95cuX45RTTrEC2QYNGuDGG2/EHgbSxTFV6Ayl9q1AKM6SJUtwzTXX4MADD7R6X7PfPScGCldDDx8+3PoeGGjz8zkOtqsJ/17Y2uaYY46xvpdWrVrhk08+AdLSMHbWLHS7+GJUrlXL+jo//vhjqc/5xx9/bFX633PPPUUCdKNv377W8x9u8+bNuOGGG6z+/WxHxHE8+uijBX4+/N74vTzxxBN45ZVXcMABB1ife9hhh+GPP/4o8nX4N8aJpzp16liTIZyM+Oqrr6J+fqJ5jvnv+T7i74NZPWJ+Z/gcF+59v3btWmvCrGHDhta42F7ozTffLPA5sX6vEhDLlgHvv+9MFbrRsiXQvDlnzIB9fdlFRETEZZYvt29ZARprW0FTic7Vb5s3x39sIpJ8vK4ePdqZEP2gg+zbOXOS+3VFfMKXlegMuE0l819//ZX3PhOmMdC9/PLLrfv/+c9/rPYPrMq9//774UYsXHDTJroswC8lVy6Czznbhvz22295QSaD8iOPPNJ627JlixX4duzYMe9jBx10UMQNWMNt2rQJ/fv3x2mnnYazzjrLCp3Zp7xDhw554TCDe24gunTpUlx33XVWZTzHUuIGk6Z1Cpc87cMxhk+2UL169awglX3b2dqFoS9DV7ZM4ffJgL/wigWGwfXr18e9995rVVqHfy9sr8LHYRjMx+D9d999FzfceiuuOuUUnHf66Xj8tdesQJrtbqqHja+wr7/+2ro9//zzEctuzQzxV6xYgUGDBll96fm9cZPcVatW4Zlnninw+e+99x62bdtmfS6DZk5g8GexcOHCvH5bM2fOtEJ8TnDccccd1kQG+5ZzUuPTTz8t0ic/0vMTzXPMVj/8+XJy66677kLbtm2tf2tuC+PvBf89W95ce+211moJTjywnzonEq4v1Ac/mu9VAoStgXgCfMQRQNeuzo2Dx1NO/PD1rW9f58YhIiIiJYfosbZyofr17UnzhQuB33/Xa72IH7B98MaNdtaQ7L0OFKKLlIsvQ3QG6IWrSRnKhvfdNiG6FzBAd9MqfRZpx9phI7wvOoNLthphoH7RRRdZlb2sBObHGKIzqOTkB/t2l2blypV46623cMEFF1j/z6ri5s2bW213TIjO6uG5c+dawa2pVL7iiiusquNiZy3CK9HDVigU/dSQtTEnQ+1wJ510Eo444ggrJDZjM1iNPWrUKKSlpRX5XhjUnnvuudb/c0d1TiScd955mPDDD+hWs6bVyqVtjx7o16+f9dgMfIvD6m/27Wd4HY7BdPiKALY5qbGv7/pTTz2FBQsWWKsGWrdubb2PoTEnHrjR7s0332xVqBucmOBmpbX3bUrCSvGTTz4Z33//vTUhQAyjGcYzCDcb7TIo5+8EJzwKh+iRnp9onuOWLVviqKOOskJ0PneFq84L4+/F7Nmz8c477+Cf//yn9b6rrrrKmkQYPHiw9fsXPkkRzfcqAeJU9UhJIbqIiIj4K0QntlxgiM6WLgrRRfzTD50birJ9bLLbuZB6oouUiS/bubCtA8PN4t74cYPV53xftFXo/FyGkxIbVgOzqtysEJg2bZoV5rIKnXhrJjnYK519uk3wXpJq1aoVqLRmIHz44Ydb1cHGiBEj0Lhx4wIhLCuXrzSb8kWatWCfcIa4YVXkL7zwAkaOHFngjdhexMjKysKGDRusFigMsCdPnlzk4RngFw7QzfcSvlEpQ1o+Bp+7biYQ3rMH3Tp3tu6Gf4+RcONWPmZhd999t1Xpbd4Y0husxGYQzaCYVffmjRMI/JmMGzeuwGOdffbZeaEy8d+Gj23jxo1WxT9XCXByxDwenyNOBDCUZtV7ac9PrM9xNPh7wdZMZtKCWFHOavbt27dbbWVi+V4lQDjRZlayHHecs2Mxxwa2FjKTfyLiTzNmAP/9r70KRkSCFaKTNhcV8VeI7kQxjqlEnz/fbgkpIjHxZSW63zDHdVM2Upb9VNn+gkE5Q1j21mZgzp7XDEKJH2NrHTJhejQhOlt78LHDMehkb3GD/bT5dQp/HkPqWPqhM5yPtLEoq7qHDh2KN954wwqEOdES3gKmMLYNifZ74Sa2VuU3Q2WW/+/YgZr7eimy/UtJWEXNsLkwVoGbyunCrV4YavO5Y7geCXuIh2OFeTgTMpuxsVUKnw/2ZedbcY8ZXi0f6fmJ9TmOBn8vWG3PTWvDmfYv/Hgs36sEyNy59iZhXFnBdi5O2n9/uy86f1/ZF10VaiL+NWiQ/XfO1g76WxcJTohu+qKzEp3nwLH21RQR99i7F/j5Z+dCdB6HWKDGlemLFgH7Vp+LSHQUonsAz5NibZ/iRgzF2aebrVpMP3SD92+99VYrIGW1OtuHsD1HaSJVdFN4yBqzCP3QS/Lvf//bCne5GSfbizD4ZhjOqvLwzTgjVVVH873kvZ/jYY/wfeMr7XtkK5ipU6daz2l4SN2mTRvrjbiZZjiOl61QbrvttoiPaf5daWM2YzPf/y233GJVnkdiJlJKen5ifY4TISG/a+JNpgqdAXqhvyFH9OrFJVjqiy7id9xYkFgooL91keCE6FyFyol7FscsWMCT57gOT0SSiJNhXPneoAHQvn3yvz4LyFhMyL7s7LCgEF0kJgrRJWnC+6IzRGcgahxyyCFWv2xu/spe6QMHDozb12WPdG5ayrAzvNL770h9wIrph14SbmbK3u5PPvlk3vt2795tbU4ZVwzRV6/OD/lLwWrzDz74wNqYtLhQvDD2p2crk0j938vCTISwTUp5HjPa57hwJX9pvxesumcIH16Nbto18eMiJfZDd7qVS3hLFxOii4g/8fXOrHwyYbqIBCNEr1DB3sR84kS7pYtCdBHvt3LhdYRTq0rY0sWE6Ced5MwYRDzKlz3RxZ3YCoWVzwx1WR0dXonOAL1r165W33H2So+mlUu0GMhz004GscbOnTutjSWL4LIm9gZjqBpl3xpWKBeuRn7++eetHuJxZdrLcAlYFNiH/OCDD8aDDz6IX4vpoVh43Pw37EnPzTILY2DNDWFjwZY93ODz5Zdfxiq2vyhk3bp1cX2Oq+5bshHNBAZ/L1avXo0PP/ww7338/vi47CXPDUZFiuDKBxNWswLcDczvqvqii7jDkCEA26KxYjReuOTa0N48It7Bc2dzDlzWEJ3UF13EfyG6U7S5qEiZqRJdkoabfh522GH4+eefrdCc1efhGKqbSuN4hujcqJL91i+88EJMmjTJ2mT07bfftjYXLSK8Cr1Qr+ySKr75eGwxwtCaIfSPP/5obaQaV2ajU7Z0iQKrvz///HOrjQqfz9NOO83aDJNBMycxvvrqKyxduhQnnHBC3r9hSx2+n9/TxRdfbP2MOKnBFjychFi8eDHq1asX07A5McKv36FDB+tnwer0NWvWWM/T8uXLrU1m4/Ucd+7c2QrcH330UatXOn/PjjvuOCvML4wbyzLc5/fJ34v999/f+h65SuKZZ56xesqLFDFzJmd/7L/Fww+HK7AvOt8WL1ZfdBGnccL3hReA9euB774D/vWv+IforERXX2QRb1izBmDRR3o60LBh2R8nvC+6iHgTswYzEeZEP/TCm4tqUl4kZgrRJakYpjJEN+1bwvXo0cMK0RledurUKW5fk2H5qFGjrL7arDLm///zn//EgAED0L9//3L1Q6dnn33WCm5ZYc8WI/w+GPAW1wO8XExf9Cixhzn7oj/33HNWoP7tt99i7969aNiwIbp164b77rsvb5NR4nMzduxYPPzww/j444/x1ltvoUaNGtbjDBkyxAqxY8XQ+88//7T+/fDhw63NThlqd+nSBffee29cn+NGjRrhv//9r7UJ6WWXXWZVqo8ePTpiiM7e62wfdMcdd+DNN9/E1q1brc1m2XudwbpIia1cONHH5dVuEd7SRSG6iPMTbRTPSvSFC/Pvs60LQ/piNgEXERdZtsy+bdLELogpbyU6WzBw5WwxeyyJiItxQ1GuTmHxSxT7vyW8El0hukjMUkLaFS9pGNIxhFy/fn3EKmWGg4sWLUKLFi2KbPgoScA/BVZF84WNLyxurETeuhWYO9cO7zp0UBWaB0Tzd52VlYURI0ZYLWa4gkBc7JRTgC+/BIYOBe64A67x5psAJ394kc2eqeIbOj54zHPPAddfb98/+WTgiy/i87isaH/xxfz/HzcOOOqo+Dy2eJKODR7BdpJnnsklt8Avv5TvOoVBPPdHGj+e1UfxHKX4iI4NLnbLLQBX3l92GTBsmHPjYFGe2f+NE/8xrjQX72eSXLXPYkmJnXqiixi7d9sBOoPpfb21XYfjMn3Ro+yNLiJxwuXYY8e6a1NRQ33RRdy1WoUS1ROdVD0mEoxNRQ2e/5uWLuqLLuJNP/3kfCsXkyk0a2bfV190kZgoRBcpRz/0pOMyUBPwm9YzIpIcXKnCTWu5SqVrV7iK6YvOoL88lW4iUnb8+zMbD5sWLPFa8GnauXTsaN8qRBcJVoge3tJFfdFFvGfDBrsdk1uKcbS5qEiZuDQpFHGACaXN0ia3Mm1mFKKLOFM9cvTR9gZhbsO+6BQe4olI8vDimBNtXB7LyfidO+3WC+WVm2tvHEwDB9q3CtFFghuiqxJdxJsr1Tix3r59+TYZjhdtLipSJgrRRYgvaGXYVNTxEF1bGogkv02DG6pHIlGILuIsM9HGv0WzTDoeLV1WrQL27LFXo/XpY79PF70iwQvRDz3UnqDjZqUrV5b/8UQkeUaNctd1hEJ0kTJRiC5C7C+eleXufuiR+qLzolpEEo/HB27kR716wZXUF13EHSE6jxEHHFCwDUs8+qEzmGcFm3kf93IRkeCE6Fwta44Bauki4s0Q3el+6IbauYiUiUJ0Fwqpujj5TBU6A2pWermZ+qJ7iv6efWLSJDuYrl0b6NQJrqS+6CLO4cT2zz/nV5m1bBm/SnQTordoAdSvbx+H+Noyb175H1tEEoetmFasiF+ITmrpIuI9XD3C12yuJDFFL26pROd5Cs9hRCQqCtFdJCMjw7rdyR6aklxe6YduqC+6Z5i/Z/P3LR5v5cI2DW7deJjU0kXEGVwBsmMHUK+eXSlqKtHjEaKbanYG81yJpiXYIt6wdi2QnW2fNzRqFJ/HVIgu4t2VaocdBtSsCVdo0sTOPlh8E49zFZGAcOHOaMGVlpaGWrVqYS1PuABUqVIFKbxYksTbutW+rVjRG8ujOU4z7l277ItqcV0FOgN0/j3z75p/3+KTNg1uxhB9+HCF6CJOHiMYmMUzRA+vRCeG6BMnArNnl/+xRSTxrVwYoMermKJbN/v2zz/tgN6NG52LiLtbuRDzA7Z04WpbtnRp29bpEYl4gl51XabRvioFE6RLEvAElJt2UeXKwPr18MTyUDNOXqyrytm1GKCbv2vxKO49YNqjuGUzoGj7ontldY2IX0J0c4xIVCU6qRJdJHj90A3+/deoYRfSzJgBdO4cv8cWkfhj+zU3hujmeMIQXecTIlFTiO4yrDxv3LgxGjRogCxuZCeJ99VXwG23AR06AB9/DM+47z67CuWBB4CzznJ6NBIBW7ioAt0Hfv/dXvHRoAFw8MFwNdMXffFiO/jv18/pEYn4H48PEyYUDNFN4L1und16zbRhi1clOumiVyR4ITqLZ1iNPnKk3dJFIbqIu7HKe+VKeyX5EUfAVbS5qEjMFKK7FIM3hW9JwpPQJUuAM88EKlWCZ7RrB3z6KfD998CFFzo9GpFgtGnwQuuk8JYuCtFFEo+tVbgpV2Ym0Lq1/T72PK1bF9iwwa4kL+uGxFwJYzYmLByi86KXK9PcvE+DSJAlIkQ3fdFNiH7VVfF9bBGJL1OF3qOHverdTTQpLxIznXWLjBtn37plp+yybCDIZWIikthNRd3eD93Q5qIizrVyCZ9oi0dLF07y8zW+alWgfv38MJ1t3LhxtQnpRCQ4Ibrpi/7bb/F9XBGJP7e2cikcoitPEImKQnQJNvZCnzvXvujt2ROewuVgXBbG5WHz5jk9GhH/tmlglamXQvTCfdFFxJmNh+MRooe3cjEBPQP0Vq3s+6oeEwluiM6//02b4vvYIhI/OTn5RS1uDNF5LsFzi82b7fZzIlIqhegSbKYKncusa9WCp7D1DJdzkipORRKDfY4Lt2lwO9MXnSfuZkNUEUkM9jvnvgmRNh6OR4heeFNRo21b+1YhukjwQvR69fIn0szxR0TcZ+pUe6KLmwEfcghch+1leM1AOp8QiYpCdAk2r7ZyMdS2QSR5rVy80A/d0LFBJDl+/tmesGLI3bx5YivRw6mPqYi7sTVCokJ0UksXEe+0cuF5ebpLtyM0m4vqfEIkKgrRJdjGjrVvjz4anmSWjjPoUx8zkeS1afBKiG4mAUQk8f3QCzMhuqkmLwuF6CLexE2FuTEwNWkS/8c3q1G5uaiIuJOb+6Eb4ZuVi0ipFKJLcK1fD8yc6e0QnVUo7Iu+erXd211E4of9xNlXvLiAzAsh+p9/2u0mRCT5IbppwcLNQbOy4tvORSG6iLuZKvQGDexz9USF6KxEVyGNiDtNmmTfunnvNZ1PiMREIboEl2nl0q6d3VvQi9gXnRuMkipOReJr/HggOzu/x7iXsK0EK1fVF10ksZWm7Hda3GqVxo3t12n+HS5dGt9KdLP8mhukb9lStscWkcRJZCsX6tjRPr5s3AjMn5+YryEi5SvY43lC+Gu2G5mxqRJdJCoK0SW4TIju1Sp0w1y4q/exSPIqTL1AfdFFEt8SjhWgBx8MNGpU9OOpqfkV5GXpi755s70hGRWeyOMmZaZFhC58RYIXoleoAHTtat9XSxcR9zGvzc2aAVWrwvWV6Jy0373b6dGIuJ5CdAku0w/dq5uKRgrKtJxTJDGbinqRQnQR5yfayrO5qKlCZzuIatWKv/CdPTv2xxYRb4fopL7oIu4P0d1chU4NG9oT87m5WtUiEgWF6BJMrOyaNs0fITr7onM555o16mUmEi+sAJ082dshujm2qS+6iHMTbfEI0Qu3cjHUx1TEvZIZorMvuoi4i3ltNq/VbpWSos1FRWKgEF2CiT2CWbXdpk3kJdhews2KjjzSvq+KU5H4tXtiRQaPEZmZ8CT1RRdJHG7oPWuWffFZ0mS8CdHNBqHx2FTUUIguEuwQnYU0xMKgnTsT93VExL8hOul8QiRqCtEl2K1cvN4P3VDbBpH48norF0PHBpHEHiM6dwbq1i3+88rTE12V6CLelYwQvWlTewNjboJuVs/F05Qp9vHt+efj/9gifueVdi7hY9T5hEipFKJLMPmlH3qkzUXVF10kfr2OFaKLSHk2Hg5v5xLr67OpRC8tRGcP06ys2B5bRBKHf+vJCNG5EiaRfdFfew3YuBH4+OP4P7aIn+3dmz957qVKdLVzESmVQnQJHvYGNtUafgnRDzsMqFwZWLtWG4yJlNf69cD06QVDaK9SX3QRZ0P0/fe3g64dO+zX6LJUohfXzoXhXNWqdhVqWdrFiEhibNli/81TolvCmZYuieiLPnKkfbt4cfwfW8TP+JrMdorcFLxJE7he+Mo2FeSJlEghugTPhAn2ixovbLkM0g/UF10k/itV2rWzd6z3MvVFF4k/Bkq8QE5LA446qvTXZ3OuEUtLF+7JYIKr4irRwzcD0xJsEfcwVeh16gBVqiT2ayWqEn3JEmDu3Pzvh5W1IhId85rMNil8rXY7rppLTbULbrjni4gUSyG6BHPDQD9VoRum7YTp0yoiia0w9Qq1dBGJL/M6e/jhQPXqpX9+WTYXXbUK2LPHDupLmvBXiC7iPslo5WIceqgdfvFrrlgR/yp0YmXqsmXxe2wRv/PSpqJmwt+setP5hEiJFKJL8EydWnD5o1+EB2VahiVSdn7ZVNRQiC7i7ERbeF/0WFu5NGsGpKcX/3kK0UWCHaKzpVPHjvFv6RIeoocfk0TEX5uKGtpcVCQqCtEleGbNym/V4Cfsi84lo+znbL5HEYkNqz+5rwCXXvpltYr6oovEDyepY9142FR3xRKil7apqKEQXSTYIXp4YVC8WrqwBdyPP9r369Wzb9UXXcS/leikzUVFoqIQXYJl+/b8k0C/hegVKgBHHJHf911EYmeqtTt3tnuZ+oH6oovEz7x5wMqV9muu2YskkZXoxW0qamgzMBH3SXaIbs7/49XSccoUYONGu13Vqafa71Mlukh0+FrsxUp0TcqLBDdEf+eddzBo0CAceuihqFixIlJSUjB8+PCYHmP8+PG4+eabccghh6Bu3bqoVKkSDjroINx+++3YvHlzwsYuCWZeFBo0AOrWhe906mTfzpjh9EhEvMlvrVwMtXQRiQ9Thc4AvXLlxIfopVWit2pl90PmuenatdE/voj4J0Tv399eQccVZ0uXxq+VC8+FWre276sSXSQ669YBmzbZf5Pm78cL1M5FJLgh+uDBg/HKK69gyZIlaNy4cZke44wzzsCzzz6L6tWr48ILL8Q111yDKlWq4LHHHrOC9TVr1sR93JIEps3JwQfDl9q3t29nznR6JCLe5LdNRQuH6GZjZRFJ3jHChOg8d+SKuFjauZRWiV6pUn7QzlZUIhK8EL1hQ6BnT/v+F1/EL0Tv2zf/+KJKdJHomBB6//2jn2x3UyU6J+J27nR6NCKu5csQfdiwYVi8eDHWrVuHq666qkyPceONN2Lp0qUYM2YMnn76aTz11FOYNGkSrr76aixcuBAPPPBA3MctSWDCZb+1cjHM96UQXaRsF72sFE1LA446Cr5y6KH27V9/Abm5To9GxJv4t2NWq8QSoteqld8eKtogKtpKdNISbJFgh+h0+un27aeflu9xduzIb/3Wp48dBJIq0UWi48VWLmb/A56vsB2NmcgXkWCE6McffzyaswdsObBtS5MmTQq8j21h7rnnHuv+2LFjy/X44hC/V6Kb72v1amDDBqdHI+ItU6fat23bAjVqwFe4nDQjw66CjcdSb5EgYqs0bt5dtaq9mXcsYtlcdM8eYMUK+75CdBFv4QbeW7YkP0Q3vct//tle9VJWXLG2dy/QrJl97mCOQdx4fdeu+IxVxM+8uKkosf1M06b2fXMOIiJFpBd9l5QkgyEEn7j00p+6PXv2WG/G1q1brdusrCzrTZIvfdYspADIbtMGIT/+DCpWRPr++yNl8WJkT5uGkN+qaX3KHA90XHBW6rRpSGOxabt2yPHhzyK9TRukzJxpHxsyM50ejkRJxwf3SB050j5G9OyJHF5sxvAzSWvRAql//omcuXORW9q/mz8fGaEQQlWrIptVYaV8fkrr1tYJfe7s2b48dklkOja41OLF4NViqEYNZLPdUrJ+Po0bI+3QQ63jTPZnnyF0+eVlepjU77+3j3O9eyMnO9vaXDS9WjWkbN+OLE4Ceq26NoB0bHBW2pw5VqVqTqtWpb/eu0xaZiZS//oL2UuW+DMrER0X4kAheoxef/1167Yve8SVYujQoRgyZEiR948ePdrqry7JlbZnD07Ytzx65MqV2DtiBPyoW716aLR4MWZ+9BEWsxpGPGOk6UEpjuj6ww9g/cWcjAzM8+Hx4ZDatcGauL8/+wzznR6MxEzHB+cd/uGH4E47sxs1wvwYjxFtQyG0YavR0aMxvZQQqv6UKTiSBa1162L0t9+W+th1Nm0Cp8x3T5mCkT48dknJdGxwl/rTptl/vzVrYnSS/x5bt22Lg//8ExtefRW/FlpRHa1en38OrsWbVLcuVu4b/7F166Lm9u348+OPsbZr1ziPWhJFxwZn9J48GdUATNy0CRs89prcKScHbOA0f/Ro/M29FsR3dqrffbkpRI/B1KlTrVC8QYMGuO2220r9/DvvvBM33XRTgUr0pk2bolevXqhbt26CRytFTJmCFFZ21auH4889F36VymWcf/6J9ikpOHjgQKeHI1HOCPNEt0+fPnmrXST50ve162pz2mlo7cO/ndQpU4Dx49E2JwdtfPj9+ZWODy6RnY30Cy+07h541VVoc8ghMf3zlLVrgU8+QfOcHOxXyt9f6rJl1m21jh0xMJq/1W7deNKJKuvWYSA3EVahRiDo2OBOKWz5xL/fgw6K7u83nlq1At5+Gw3++gsDjzzS7m8ci1WrkLF0KUIpKeh8003ozB7JLER69VVgyRIc3qABcnX+4Ho6Njhozx6k8/WeL80XXQQ0agQvSZ082dpYuE3VqjhAf+u+ZLpjSNkpRI8SNxM94YQTkJOTgw8++AD19p1UlKRixYrWW2F8MdMLmgPmzrVuUg4+2N/Pf6dO1k3a7NlI8/P36UM6NjiIS9v29TBM79LF7h/u02ND6uzZSPXj9+dzOj44jJNQvPCoWRPp7IfODYhj0YZ16EDqokWl//3t27cg9YADovtb5UU6z0vXr0cGV9x17hzb2MTTdGxwGfYO599v06bJf61t1w5o3x4pM2Yg47vvgAsuiO3f79vzK6VrV2Q05rqbfQ44wLpJW7pU1xYeomODQ3kDNyGvUQMZ3BOBrd+8hHsh8Pi1cqWuFXxKx4Ty8+XGovG2aNEiq3p8/fr1+OSTT6z74kEzZ+afYPqZ+f64ARp31xaR6E56GaRXqwaUc2Nq1x8bZs8GcnKcHo2It/z0k33LSu9YA/SwEIr9klnVXqKFC6PfVNTQ5qIi7rB8uX1rNuhLttNOs28/+yz2f/vDD/Ztnz4F37///vnHLxGJblNRrwXo4Zshm+OYiBShED2KCvRjjz0Wq1atwkcffYQTTzzR6SFJWc2aZd8efDB8rW1b+0V7wwZg33IyESkFJ52ofXtvnvRGG+JxddSuXZwddno0It4ybpx9W9ZCCvYn5t8fA/R97VqKZf4+W7aM/vEVoou4gwmfTBiVbKefbt+yEn379uj/HQtvfvwxcohuJvR07iBSsr//tm+9ugGvQnSRUilELyVAZ9U5A/QPP/wQJ598stNDkvIISoheuXJ+xZupvheRkv31l33boQN8i9WznGQjHRtEYjNtmn17+OFl+/epqflB1IIFJX+uCapUiS7iPU6H6DyP4XXA7t12kB5LMcHq1fZ1RI8eBT+mSnSR2CvRvcgctzZtAnbscHo0Iq4U+BCdLVrmzJlj3UZq4bJy5UqrB/qpp57q2BglDlh5aS5a/d7OpXBLFxGJrRI9CMcGhegi0ePKrpUry3+MMBPcJYXomzfbF6/hwVU0FKKLuIPTITpX05WlpcvIkfbtMcfYq2bCmWPRunWxVbeLBI3XQ/QaNezWlrRihdOjEXElX24sOmzYMIwfP966/9e+6kK+b8yYMdb9nj174vLLL7fu/+c//8GQIUNw33334f777897DAboS5cuRffu3TF9+nTrrbDwzxcPLK3iMsU6dYAGDeB7vMj/8ksFZSLRCkIlengAqAk2kdiPDwySqldPbIhuqtB5rmIuZKNhLth5vsM9D8rSt11Eyl+0w0k3J0N009Ll8ceB//0P2LOnaCgeSz90qlXLfuMk35IlwShIEokVswavt3PhJByPXZwMYIi+b1N0EfF5iM4A/c033yzwvl9++cV6M0yIXpwlPEEA8Ouvv1pvkShE92grF7/2Ow6nalOR6HG5otnIT5XoIlKYKaTo2LF8j2NCdHO8idemoibgr1DBbuGwdGns/15Eys9UblatCtSs6dw4DjsMyMy0x8M+5yecUPLn87hh9n2IFKITjylTptgTfQrRRYpiO6StW+32ba1awbN47GCIrr7oIsFp5zJ8+HCEQqFi3/jx8CCc7ysciJf0782beIgJjIJy0hfezkW/qyLRHR8aNgTq10cgjg08OeYGhyKSvJUqsVSix7KpKLHy3FSMqaWLiPOtXJws2mGIZ1q6fPpp6Z8/YYJdRd+oUfHFBOqLLlIyU4XOCadoVn+4lTYXFQleiC4S2E1FDS4h4wX1li35fVxFJNj90M1FcJUqwN69wPz5To9GJFiV6CYYZ4he3AR3WTYVNczGwQrRRYLZDz2cCdHZ3rG0SXPTD51V6MWF/+aYZI5RIuKvfuiGQnSREilEl2AIWojO2e/Wre37atsgUrKg9EM31WnmOKhjg0jpcnPz/1bKe4xgCMWAats27mwf33YupM1FRZzlphC9Z0+gXj1g40Zg7Niy90M3VIkuUjLz2uvVfuiGQnSREilEF/9jnz9TcRmUdi6FW7qISPHM30gQQnRSX3SR6LHqkvsmhE9Ol1WlSnav0ZJaupS1nQspRBdxlptC9PR04JRT7PuffVb853FCj73O6fjji/88VaKLRNfORZXoIr6mEF38b+5cu5KMu8qz119QmNYUCspEoqtED0I7l/DvUxNsItG3cuEKDoZS5VXS5qI8VylPOxeF6CLOclOIHt7S5fPP7eNLJKNG2e2leG7QuHHxj6VKdJFgtXMxGyWLSAEK0SVYrVyc3OQn2VRtKlK6deuANWuCtVJFxwaR2CfZytsPPZrNRVetsvcr4J4mTZvG/thmY9G1a+0WDiIS7BC9d2+gRg372PLrryX3Q+/bt+THMiH6pk32nksiko8b8y5Z4o92LmbFHK+PeE4iIgUoRBf/M0FRUAKySEFZcRuYiQSdqcZm64SqVRGoYwNX6ejkWCS6SvR4tXsqKUQ3VejNmpWt6r1atfzw3SwrF5HghugVKgAnnVR8SxdeH4RvKlra8aV+ffu+qtFFCpo3z/57ql07/+/Eq7iXAo8dtHKl06MRcR2F6OJ/QdtU1GDv1owMYPt2YOlSp0cj4k5B2lTUYMhWvTqQnW0H6SKSvGOE6XUeKUQvz6aihlq6iDiDk9JmZZtbQnQ6/XT79tNPixbV8ByA1wgMzI4+uvTHMtXo6osuUvymol5f+c7xqy+6SLEUoov/BTVEZ4BulpOpbYNIyZXoQemHbk6O1dJFpHQ7d9rVZclq51KeTUUNhegizjAVm9yEuG5duEa/fkDlynb1+NSpBT9mqtB79ACqVCn9scwEnyrRRfy5qaihEF2kWArRxd/27Mm/AA5aO5fw71kbCIpEFsRKdFKILhLdJDwrN7m0uWHD+Ibo7FHMkD6cKtFF/NHKxU2VqAzHBwyI3NIl2n7ohirRRfy9qaihEF2kWArRxd8YoOfk2JvqNGmCwDHVtQrKRIpiOGYmmIIWoptjgybYRKLbVDReoVidOkCtWpGDqHhWos+eXfbHEBHv90MvrqWLkZUFjB4dXT90Q5XoIiVXont9U1HDHMdWrHB6JCKuoxBdgtPKxU1VIcmiSnSR4i1ZYu8ZwNZH3EMgSFSJLpL8TUVLa+liQvR4VKKzqp2r8UQkOdwcop9wgn2uw8k1M8H222/Atm1265kuXaJ7HFWii0QuyvFbJXpmpn2rSnSRIhSiSzBC9CC2cgn/vnnCnJvr9GhE3MVMLrVta19cBvHYMH8+sHu306MRcX8lejxF2lyUgbep+CpPiN64sb36jqvwIvVdF5Hgheg1a+ZXm5uWLqaVS+/eQGpq7JXohTcpFQkqvnbv2AGkpZVvJZmbqJ2LSLEUoou/mSrLoG0qGl7txg2Odu1S1YhIcQFZkDYVDQ/aate2J9fUO1nE+Up0roxhKFW1KlC/ftkfm6vu1BddJPncHKLTaadFDtGjbeVCzZvbt6xg37gx3iMU8XYrF762V6gAX1CILlIshegSnHYuQcQZcVbZklq6iBQU1E1FTdCmli4ixVuzBli3ruDfSiJD9PBNRcvbfk4hukjyuT1E/8c/7IrzyZOBadOA33+PPUSvVMmehCf1RRex+a2VS/hxjJugZ2c7PRoRV1GILv7FDXPmzg12OxdSUCYSmZlYCmIlOunYIFJ6FXqrVkCVKokJ0U1wHq9+6IZCdJHkc3uIzhUuxxxj37/uOrvlU5s2+dXl0VJfdBF/bypKDRvaxXg8TrCoQETyKEQX/5o3z545rVbNvSe0yWACQgVlIgUn2UzAFMRK9PBjg1apiCR3pYoJ0RlC8QLV3Kd49FNViC6SXLzeYMUmufmaw7R0GTcu9ir0SH3RRcSflegM0Js0se+b/VpExKIQXYLRyqW8S6P9UG2qoEwkH1epMEivXh1o1gyBpEp0kdIr0eO9qShlZtp9U3kMMtWr4e1c4hmia/M/kcRbvdreYyQ9HWjQAK516qkF/78sIboq0UUih+h+qkQ35yqkvugiBShEF/+H6EFu5RL+/fMFXj3NRIpuKhrUSTZTic4L4R07nB6NSHAq0VnhZYIo0xc9npXorHTn1+DmfytXlv/xRKRkJmRi6MS+427F8XXvbt/nMaJXr9gfQ5XoIvl4/rxsmf8q0Umbi4pE5OJXeZFyMtWVQd1U1OCFOvu57t1bcBMzkSAzKzOC2srF9EflGytVZ892ejQi7sEJZzMRn4hK9Eibi8azEp1V7ux1TMcdB3z5pSrSRYLcDz3c6afbt0ccAdSoEfu/VyW6SD6z/1q9ekDduvAVhegiESlEl2C0cwkyVsSY50AtXUSKVqIHmVq6iBQ1fz6we7c9AR2PyvDSNhfdvNl+Cw+oyuvZZ+1JMl7gn3IKcOyxwB9/xOexRcS7Ifq11wL33w+8+GLZ/n14Jbom5yTo/LipqKEQXSQiheji3yoy86IW9HYupKBMpCBVotu08bBIyZNsiWrNEF6Jbio62UuZm6HHA3sdczLg7ruBSpXsjQQPPxw47zy1YRAJcojO48F995X9/KdpU7sN3q5dwNq18R6diLf4cVNRQyG6SEQK0cWfeOHIDbuqVrVP9oJOQZlIvu3b81snqBLdvtUqFZGim4omcpItPESPZyuXcGzV8H//B8ybB1x0kR18vf++fbF/++351e8iUj6mJ7IXQvR4tIsy36cm5CTo/LqpaPjGoitWOD0SEVdRiC7+buXStq27N/hJFgVlIkWPD40a2T0Mg0yrVESKr0RPVD/04irRE9U6hoHX8OHApEl2j/Q9e4DHHgNatQKee87eM0VEglGJHg/qiy5iMyvf/V6JrtZNInmULoq/QzK1cin4PLA3qi6WJejUD73osWHpUmDrVqdHIxKcSnRTdb5lC/DnnwXflyhdugA//gh88429V8qGDcD119vHga+/TuzXFvGzoIXo4X3RRYIqN9ffIXqTJvYts4P1650ejYhrKEQXfzJVlUHfVNRgS5vq1e1e8VzWLRJkJkQPej90qlMHaNy44OSjSJBt25ZfXZnIY0TlyvkXqKNGJSdEJ7Z0GTgQmDYNePlloGFDuwXeqafmL0sXkejl5AArVwYrRFcluog9eca9ATIykvP67UTrJp4jkPqii+RRiC7+ZMIghej5F81q6SJS8G9Aleg2tXQRKXp84ORSots9mZYupsIrUe1cIklPB6680p5Y79rVDgL/+CN5X1/EL7i5JotU2D6SbeKCQJXoIvkTz2yNxtdUP9LmoiJFKEQX/+GJrFlapXYu+bS5qIhNlegF6dgg4szxwYTohhOVbFylduih9n2tVBOJnQmXOPHm1yCtMFWii/h7U9HCIbo2FxXJoxBd/GfhQnvTLC6Vbt7c6dG4hyrRReyKMb5xdYZWqth0bBBJ7qaikUL0tDS79ZoTWEVHbOsiIrF54QX/9kQujpnwW7LE7gstEkR+7oduZGbat6pEF8mjEF3828qlbVt7aaXY1LJBJD8oZtuEqlWdHo076NggktxNRY3w9i3NmjlXxdq6tX2rEF0kNt9/D7z5pj0x/+CDCAwGa5z444aDq1Y5PRoRZyvR/Ryiq52LSBFKGMW/IbpauURu2cCL5N27nR6NiLMhulq55DPHSm6MtmmT06MRcU4o5FwlupObkqkSXaRsmxBzXwG67jrgiCMQGJzw48QfqaWLBL0SPQjtXBSii+RRiC7+Y6op1aqhIG52VLu2vezSzJyLBI0JyLSpaL4aNfLbSKgaXYKMPT85kcQKS65mS2aInsxNRQszX5vf+8aNzo1DxEvuugtYutTuD/7QQwgc0xddm4tKUCfRTJ9whegigaIQXfxbia4QvSAuNVXbBgk6VaJHpmODSP4kGy+IK1ZM/NerW9eexHK6Er1Klfy+p6pGFynd+PH5vdBffTWY7eHMMUuV6BLkKvQGDewitSCE6FytJyIK0cVncnLyq6zVzqUoU32roEyCiKswTIiuSvSCdGwQSW4/dDO5bfqRh1elO0EtXUSiw5aIl19uB0qXXgocfzwCSZXoEmRB2FSUzAT7jh3A1q1Oj0bEFRSii7+wGoInt5Uq5Z/cST4zsWCCRJEg4bLr7duBChXygyux6dggktx+6AY3I2QQd+KJcJRCdJHoPPCAHaA1bgw8+SQCS5XoEmRB2FTUrFQzlfZq6SJiUYgu/mzlwhc09jSVgtSyQYLMBGTsdZyR4fRo3EXHBpHkV6LTgAHAa6853w7ChOjz5jk7DhE3mzIFeOwx+/6LLwK1aiGwVIkuQRaETUUN9UUXKUAhuvgzRFcrl5JbNrBqhMuyRIJEm4oWz+whsXYtsG6d06MRSb6srPzKsiDumaBKdJHSjxFcNcLWkWeeCZxyCgLNVKJzlV92ttOjEUmuoFSik0J0Ef+H6O+88w4GDRqEQw89FBUrVkRKSgqGDx8e8+Pk5ubi+eefR4cOHVC5cmXUr18f5557LhYuXJiQcUscmCpKbSoaWf369hv7OM6e7fRoRJJLm4oWj1Ww5oJY1egS1KoyhmTVqwPNmyNwFKKLlOyJJ4CpU4E6dYDnn3d6NM5jOxu2x+OkwooVTo9GJHn4Oz93rn1flegigePLEH3w4MF45ZVXsGTJEjTmC3wZMYi/7rrrEAqFrNv+/fvjs88+w2GHHYZ5Wu7q7kp0hejFU9sGCSpVopdMxwYJsvBWLtzwM6gh+vr1wObNTo9GxH1Vp0OG2PefeQZo2NDpETkvNTV/wlF90SVIuPpizx57EikIe7ApRBfxf4g+bNgwLF68GOvWrcNVV11VpscYPXq09ThHH300Jk+ejEcffRRvv/02vvjiC2zcuBHXXntt3Mct5ZSbm19drXYuxTMBooIyCZK9e4PdqiEaOjZIkDmxqaibVKsGNGpk31+wwOnRiLjr+uLyy+3QrH9/4PzznR6Re6gvugSRuZ5o0yYYe7CZEF0rTkT8G6Iff/zxaF7Opbivvvqqdfvggw+iAmcZ9xkwYACOPfZY/PDDD1jKWUhxD57A7doFVKyY35ZAijITDKa1hUgQcNkle3bWqAE0ber0aNxJxwYJMic2FXUbtXQRKYobiP7yiz3R9N//BnOlSnHM9ZYq0SVIgrSpKGVm2reqRBexpNs3UtiYMWNQtWpV9OjRo8jH+vXrZ3187NixuOCCC4p9jD179lhvxtatW63brKws603iK2X6dOsXOtSmDbLZ81vPcUQpBx5oP08zZyJbz5ErmOOBjguJkzJ1qvV7n9uuHXK0AVZkBx6IDHNsYOW+ggJX0PEhOdL/+gv8jc8++GCEAvpcp7VsidTx45Hz99/IDehz4CU6NiTBkiVIv+MO69iQ89BDyG3SRNcXYVKbNgXrcHMXLkSOnhfX0LEhsVJnzbJ+73Natw7Ga2XDhvb1wfLlyg58QMeF8lOIHsGOHTuwatUqtG/fHmkRlui0bt3aui2tL/rQoUMxxPTPK9QqpkqVKnEcsVCrzz8H6yhX1KqFSSNGOD0c18rYtg0DGSouXYofPvkE2fpddI2RI0c6PQTfavvll2jDNobVq2Oajg8Rpe7dixNTU5GycSNGvfce9tSu7fSQJIyOD4mTsX07Bi5bZt3/fsUKZAf0GNEmJwdteR41diymdOrk9HAkSjo2JEgohO4PPICGO3ZgQ9u2GM9VbAE9NhQnc/NmHApg4+TJ+EXPjevo2JAYPSZMQD0AU3ftwvIA/N6n79iBE5gdbNqE7z/7DDmVKjk9JCmHnTt3Oj0Ez1OIHsGWLVus25o1a0b8eA22Awj7vOLceeeduOmmmwpUojdt2hS9evVC3bp14zpmAdI++cS6bdy7NwYOZEwsxQnddhtSVq1Cv6ZNEerWzenhBB5nhHmi26dPH2RkcK5f4i1t2DDrtunAgcjU8aF4LVtarRyOb9QIod69nR6N6PiQFCnjx1u3oWbN0PessxBUKdu3A+++i/327EFjHSddT8eGxEp56y2kT5mCUMWKqPHRRxgYlNYNMUjh9eyTT6IuC3R0zHANHRsSK/3GG63bTqeeio5HHgnfC4UQGjTIOkfox/2T2AtePMt0x5CyU4ieQBUrVrTeCuOLmV7QErfJR1qHDkjT81t67+NVq5DOnm49ezo9GtlHx4YE2rdZZlrnzjo+lIT9oOfPt48N3EBNXEPHhwSaNcu6SenQIdjP8UEHWTep8+cjNcjPg8fo2JAAGzcCt95q3U25/35kmI23paB9q7NTli9HBltphu0jJs7TsSFB1qyxbtLZKzwozy83F50zBxn83s0eSuJJOiaUny83Fi0vU4FeXKW5mb0prlJdHJCbC8yebd8/+GCnR+N+5mJAGwhKEGzblr/plS6ES2ZOjPdNOogEwl9/2bcdOyLQDjjAvuVFMo+bIkH188/Apk3238Qttzg9Gvdq0ACoXNmqVMW+llgivrZjB/th2PcbNkRgMESnFSucHomI4xSiR8ANRRs3boxFixYhJyenyMdNL3TTG11cYOlS+0WNM2utWjk9GvdTUCYBrDJF48aAWmlFd2zQBJsEMUTnSowgq1ULqMdOrwAWLHB6NCLOXlcQ9wZI18LtYnED8v33t++bYgWRAFShW5NH1aohMFh1T8uXOz0SEccpRC/GMcccY20w+ssvvxT52Pfff2/dHn300Q6MTEoMydivUCe7pVOILkEMyFSFXjrzHPHYwMoyEb/j77lC9HymQGT+fKdHIuKcJUvs2+bNnR6J+5kQffFip0cikrwQnaswOIkUtEp0hegiCtHXr1+POXPmWLfhrrzySuv2nnvuwd69e/Pe/+2332LMmDHo27cvmuvEyn0hulq5xBair1xpL1cV8TNTVa2ArHTcLIgTkWxbpiWbEpSwjK1LuJJNGwfmr+ZTiC5BZirRmzVzeiTu16KFfatKdAlSiB6kVi6kEF3E3yH6sGHDcPHFF1tvH3/8cZH38b7xn//8B23btrVuw/Xq1QuXX345xo0bh65du+L222/HhRdeiFNOOQV16tTB888/n/TvS0rATfCobVunR+INNWoATZva91WNLn6nSvTocVMwU4mqli4SBNOn558/aLMlhegipBA9eqpElyBZu9a+VYguEli+7Hsxfvx4vPnmmwXex7Ys4a1ZGJCX5uWXX0aHDh3wyiuv4Nlnn0W1atVw6qmn4qGHHsIBZvMlcdeyS3MiJ6VjYMBNgDgB0bOn06MRSRxVoseGkw3cqJkTbP37Oz0akcTSpqIFKUQXUTuXWKgSXYJElehOj0TEcb4M0YcPH269ReP++++33iJJTU3FddddZ72Jy+lkN3YtW9q3qhwRP1u3zq4aYd9CtXuKvt0TV3FplYoEqRJdk2w2hegSdHv2AKtX2/dViV46VaJLUHuiBzFE5zUVWx1z5apIQPmynYsEcFMws+xSIXr0dNIrQWCCILYvqlLF6dF4a88Es9eEiJ+pEj1yiM49EXbudHo0IslnKi0rVQLq1XN6NN6pRF+1Cti1y+nRiCRWUCvR69YFKlbM31NNJMAcq0TfuXMnJkyYYLVYWb58ubWxZ5UqVVC/fn2rhcoxxxyDVuZEXqS0StPdu+1KUzNLKtGH6Fp+KX5mJonMRZ6UzjxXZnJSxK947jB3rn1flei2OnWA2rXtTccXLNDzIsFd3coqdF5bSOnHjGrVgO3b7fMGbdAsfhbUnug8FmZmAgsX2hONaqErAZb0EH3ixIn473//i08++QS7d+9GiFXEEaSkpFgbfl511VXWhp41uBGiSEknu40ba2lRWYIyVaKLn2m/hNiZTYe5nF1LNsXP2Ps/J8cOgZo0cXo07sEilj/+sFfyKESXoNHq1tjDNV5TcFUPC3MUooufBbUSnVisaEJ0kQBLWjuXmTNnYuDAgejZsyfef/999OjRA4MHD8aXX36JX3/9FXPnzsW0adMwevRoK2S/6KKLsH37dqsfOTfxfO6555CdnZ2s4YqXqB962ZhQkUuy2P9RxI/MJJFC9OjVr28v2eQkN1s6iPi9lQuDYlWc5lNfdAkyE6KrH3r01CJSgiLoITopRJeAS1oleqdOndC8eXM8++yzOOecc1CvhB5zbOVy5ZVXWvfHjh2LV199FTfffDO2bduGu+++O1lDFq9QiF72oIw9otnzlBcMrVs7PSKR+DMXdDo+RI9hIsODefPsY4Na4YhfaVPRyMz5gEJ0CSKF6LEz5wlqESl+xqKzzZuDubEoKUQXSW4l+ssvv4y///4b1157bYkBeqRA/Z133sGsWbNw5JFHJnSM4lFadln2oEyVI+J3qkQvX0uXZcucHolI4pjNc9u3d3ok7qJKdAkyFefETtcTEpR92Cg93d47JKghulapSsAlrRL9sssuK9e/b926tfUmUuIGQBL7SS9DBJ30ih+xHYl6opeNOZ5qc1HxM3N8aNnS6ZG4i0J0CTJVosdOlegSpFYurEJPTVotqntwY1FSJboEXFL/+veo77IkgipGyk4nveL3k93du+0TXVM9IdFRJboEaZJN5w+RQ3T+/fMYKhKk44JC9NipEl2CIMj90EntXESSH6LXqlULxx13HB544AH8/PPPyMrKSuaXF7/SRXDZ6aRX/Mz8XvOkLyPD6dF4iyrRxe82bQJ27Cg4aSQ2tl2sUcMOFBcudHo0Islt18CJI7Y81OR77NcTfP62b3d6NCKJr0QPInNMXLUKyM52ejQiwQjRK1eujDFjxuD+++/Hsccea4Xqffr0wcMPP4yJEyciJycnmcMRP9i2zb4QJlWMlP2kV5Xo4kfqh152qkSXoEzA82K4cmWnR+MuDBDV0kWCyEwcN2oEVKzo9Gi8o1Yt+y382CriN0GvROf3nZYGMLMzz4VIACWtJzpt2LAB06ZNs4L00aNHW9Xoo0aNst5SUlJQtWpV9OzZE7169bLeDjnkEOv9IqWe7PLEjVVTUrZ2LqpEFz9SiF52qkQXv1PLhpIxRJ88WSG6BIuOC+W7ppgyxS7MadfO6dGIxN/atcEO0RmgN2liF9iwpYvpkS4SMEkN0RmId+7c2Xq74YYbEAqFMHXq1AKh+nfffWe98XNr1KiBo48+Gl9++WUyhyleolYu5WPCxdWrgV27VI0n/qIQvfyV6Fu2AFu3apJS/EfnDyVTJboEkY4LZcdzLYboKswRvwp6JToxOGeIvmKF0yMRcYyj2wozKO/SpQtuvPFGfPXVV9i4cSP+/PNPPPHEE2jXrh22bNmC//3vf04OUdxOJ7vlU6cOUK2afV/LL8VvFKKXHY8LtWvb99XSRfxccarzh8gUoksQqRK9/Ktb1SJS/CroPdFJm4uKJLcSvSTLly+3qtHN25J9gV41E/CJRKKL4PJhuySe9P71lx04HnSQ0yMSiR+F6OXDEIF7TvA4q6XZ4jdm4lhhWWStW9u3CtElSBSil50511IluviVKtEVoos4GaKvXr26QGi+cOFCq70LW7iwL/o111yDY445xuqLLlIsXQTH56TXhOgifhEK5R8fFKKXvaXLtGmqRBd/0iR8dJXoPI7u3QtUqOD0iEQSTytcy848Z9pLRfwq6D3RSSG6SHJD9I8++iiv//ncuXOt0LxWrVo46qijcPXVV1uhOdu7pKY62mVGvEQnu+VnAkYtvxS/VYvs3g3w9cSc8ElstLmo+Jkm4UvGkKBqVWDHDnuSvU0bp0ckkniqRC8785ypPaT4UU4OsH69fV8hukJ0CbSkhujnnHOOFZD3798/LzTv2LGj1RtdpEwUosevh6Eq0cVPzO8zT/YyMpwejbc3F1UluvgNJ9jMsmydP0TGc3NWo3M1yrx5CtHF/3btAtats+8rRI+dOZbyOeRzWbmy0yMSiR8G6Lm59mtjvXoILIXoIslv55Kbm2tVo+/evRvbtm3D9u3bcfjhhyNDIYfEKisLWLnSvq+L4LJTD0PxI/VDLz9VootfmYmhKlXsDbYlMhOiqy+6BIF5rQvfWFuiV6uW/dxt324fYzXxJn5iJt7r1gXSXbOtYPJlZtq3K1bYrTNVDCsBlNQjwIYNGzB27FirnQuD9Hvvvdd6f+XKldG9e3erMv3YY4+17itUl1JxBpQH74oVgfr1nR6N9yvR1c5F/EQhevwq0RWii59XsekCsPS+6ArRJWitXHRciB2fMx5TZ860j7EK0cVP1A/d1qSJfcu9UlidrwxGAiipIXrt2rVxyimnWG8mVDc90nl73333Wa1dKlWqZAXpDNT5xp7pIiX2M1Uf/bIzISOXX7L3KXuginidQvT4VaJzwpJLWHWcFb9Q3+PoKESXINFxofz43DFE1+S7+LUSPeghOjcZ53PA54PXBwrRJYAcXYtSt25dnH766dYbrVu3zgrT+fbDDz/g/vvvt0L17OxsJ4cpbqV+6PFbflmzJrBlix08tmvn9IhE4nd8UIhevmoTBuesNmEFTqNGTo9IJD50/hAdhegSJCb41XGh7NQGTvweojdo4PRI3NEX3YToXbo4PRqRpHNNWRmD8nnz5mHu3LnW28qVKxEKhaw3kYh0shs/2lxU/EaV6OXHtmqNG9v3tbmo+IkqTmML0Xk85T40IkFZ4SplY67JzHMp4heqRM+nzUUl4ByrRM/JycEff/yR185lwoQJ2LlzZ15ozir1AQMGoFevXk4NUdxOJ7vxw6Bx6lSF6OIPfB1RiB4fPL5y8yCGjocd5vRoROJDlejRr0apVAnYvds+BhxwgNMjEkkcTa6VnyrRxa/UEz2fQnQJuKSG6L///nteaP7LL79gx44deaF5rVq1cNJJJ1mhOd86duyYzKGJF+kiOH5M0KjNRcUvJ7oMfdiKxJzoSdk3F504UZXo4i9ayRYdHkNZjT5jht3SRSG6+JmOC+WnSnTxK1Wi58vMtG9ZZCMSQEkN0blZKHucMzivUaMGBg4cmBead+7c2fqYSNQUoseP2rmIn5jfY57ksSWJlJ2qysRvuEmumRRSxWnpTIg+bx7Qr5/ToxFJDB0X4sM8d3wutSG5+IlC9HyqRJeAS2qI3rdvXxx33HFWaH7IIYcgVS+sUlY8MVPFSPwr0RWiix+olUt8K9FJIbr4xerV9ma5PAc11VRSPG0uKkEJyMxxgW2MpGz43KWl2Xso8Dk1+6qIeJ02Fs2nEF0CLqkh+nfffZfMLyd+tm4dsGcPwNULugiOXyW62rmIHyhET0xVmYgfmAkhnjukO7Y1kHcoRJegHRe0gq3seEzlc8jnkyuGFaKLH7D9sHqiRw7R+dyom4QEjErBxdutXFjxUKGC06PxPlPNv3EjsHWr06MRKR+F6PGjdi7iN2oFFxuF6BKk44JauZSfzhvEbzZvtldXkCrR8wsYd+wAtmxxejQiSZfUEpxLL7005n/DPumvvfZaQsYjHqaL4PiqUQOoU8cO0fncdujg9IhEyk4hevzbubAFBlf/VKzo9IhEyscEOwrLYgvRFy4EcnLsVg0ifqPjQvwoRBe/tnKpWROoVMnp0TivSpX83IDV6LVqOT0iEf+G6MOHD8/bWDRaCtElIoXoiWnpwhdDtnRRiC5ephA9furVsy8Ydu8GVqwAWrZ0ekQi5aPzh9iXbXPFH/tFs62TjqviR9pnKX7Mc2iOtSJep37okavRmRvw2qB9e6dHI5JUSW8GmZ6ejoEDB+Kiiy5CY/VJk7JSxUj88cJ40iRtLirexklahejxwz6HrEafN88O0BSii9fp/CE2rDzn3/2cOXZLFx1XxY/UziV+VIkufqN+6JEn2P/6S5uLSiAlNUR/4YUX8Prrr+PLL7/EN998g/79++Oyyy7DiSeeiDQtD5VYqJIs/syFsTYXFa+f6LJqOjU1f+MbKf8FMUN0XRCLH+j8oWwtXUyIfvzxTo9GJP40uRY/qkQXv1aiK0SPvLmoSMAkdWPRq6++Gn/88QemTZuGa665Br/++itOO+00ZGZm4tZbb8WsWbOSORzxMl0EJ6adC6kSXbzM/P5ymaE2HY5vX3SF6OIHatsQu9at7VttLip+pRA9flSJLn6jEL0ohegSYEkN0Y0OHTrgmWeewYoVK/DBBx+gS5cuePrpp633H3HEERg2bBh27tzpxNDEKxSiJ64SXSG6eJlauSTugpjtXES8bOtWYPNm+77Cstg3F+WKFBG/2b7d7u1Luq4oP3Ns3bQJ2LbN6dGIlJ96ohelEF0CzJEQ3cjIyMCZZ56Jb7/9FkuXLsWDDz5o3Q4aNAg//vijk0MTN9NFcGKonYv4gUL0+FNVmfhtAr5OHaBaNadH470QXZXo4kfmta1mTaBGDadH433VqwO1a9v3dd4gfqCe6EUpRJcAczREN/bu3Yuff/4ZY8eOxZo1axAKhVCpUiWnhyVuZU7IeILGEzWJDxM6btmSP0kh4jUK0RPXzkWV6OJ1atlQvhB9wQIgN9fp0YjEl44L8afJd/ETtXMpim0zacUKp0ciEqwQfcqUKfj3v/+NJk2a4Nxzz8X06dNx8803Y/bs2ejbt2+5Hpu91wcOHIhatWqhatWq6N69Oz766KOYHmPlypW4/vrrcfDBB1uP0bBhQ/Ts2RNvv/02cnJyyjU+KQe1ckmMqlWB+vXt+2rpIl6lED3+dDEsfqHzh7IfA9LTgT17dMEs/qN9EuJPm4uKnyhEL74SnW2bduxwejQiSZWe3C/HlnMb8c477+CNN96wQvO0tDQr7L700ktxwgknWP9fXqNHj0a/fv2savZzzjkH1atXx6effoqzzz4by5Yts4L60ixcuBDdunXDhg0brMc66aSTsHXrVnzxxRe48MIL8dNPP1nfgzhAF8GJ3Vx03Tq7pUvnzk6PRiR2CtETV4nOVlpcqcIl7yJepIrTsmGAzvMD9kRnSxdzTBDx03WFjgvxo8l38RP1RC+Kra94PcDrAp4XdOrk9IhE/FmJftZZZyEzMxM33ngj9uzZg0ceecQKtRlM/+Mf/4hLgJ6dnY0rrrgCqampGDduHF555RU8+eSTmDZtGtq0aYO77roLS6KYFX/iiSewfv16a8NT9mx/9NFH8dJLL1lV8s2aNcPw4cOjehxJAF0EJ442FxUvC4XyL4YVosd3lQp7SJNauoiXaRK+7NQXXfxK1xXxpxBd/IJV1jt32vdViZ4vJSW/4G7KFKdHI+LfSvRPPvnE2kyUVd1HHnmk1fv8zTffLPXf3XbbbVF/DVaIL1iwAJdccgk6h1XS1qxZ0wrQL774Yutr3nvvvaVWohOr5MOxPQxburz33ntWyN5cF2LJp4vgxNHmouJlXEWxaxeQmpq/zFDig5WnGzfaF8Tt2zs9GpGyUVhWdgrRxa/UziX+1M5F/FaFXrmyNiQvrGtXYOxYYPJk4OKLnR6NiH/buWRlZeGrr77C119/bYXopUlJSYkpRB8zZox1G6mnOtuyEDcwLU379u3x/fffY8SIEVZfdGPz5s345Zdf0KhRI6tXujhAIXricLk2qRJdvMj83nKzmwoVnB6NvzB0nDZNlejibTp/KDuF6OJXaucSf6pEFz/2Q2f1tRQM0WnSJKdHIuLfED0ZPcTnsV8jgNatWxf5GIPvatWq5X1OSW699VYr6Gfrme+++w4dO3bM64lepUoVfP7556jMGckSsGUN3wz+ezORwDcpm/QlS8CXsOzMTIT0PMZVyn77WQeF0KJFyNZzmzTmeKDjQvmkzJ9v/f7mNmuGHD2XcZWamQk2XMtZtAi5em6TSseHOMnKQvrKldb5Q1aTJtb/S/RSWrSwzw/mztX5gUvo2BAHOTlIX77cPi40bqzjQrw0bowMHi9WrEA2VwhyXwVJGh0b4idlxQr72qJ+fV1bFNaxo/13PnUqsnfvBuLQmlkST8eF8kvqK9pFF12U8K+xhZsb7GvfEkmNGjXyPqckDRs2xMSJE3H++edbPdEZpBOD86uuugqdotg8YejQoRgyZEjEjU8ZxEvsUrKycNKqVdb9H+fOxZ61a50ekq9UW74cvXlNMX8+RnzzjWbck2zkyJFOD8HTWn3/PdoBWJGejskjRjg9HF9ptXOn9dyu/O03PbcO0fGhfKqsWYM+oRByMjIw4o8/7LZPErWqK1fieJ4fzJ2r8wOX0bGh7CqtX49+OTnITUvDCPb1nT7d6SH5Q24uTkpPR2p2Nka/+y521a/v9IgCSceG8mv+009gg2DWo/+u89+CcnJwQsWKSN+5E+OGDcN2bTruCTtNj38pM00LF2P+/PlW73ZWrv/8889Wf3W2cnnnnXcwePBgq9UL31/SZqh33nknbrrppgKV6E2bNkWvXr1Qt27dJH0nPrNwIVJCIYQqVULvc8/VRVy8sVrk2muRvns3BnbvDuj3NGkzwjzR7dOnj7VvhJRN6rffWrdNjjwSjQrtZyHlk8KVVG+9hczcXD23SabjQ3yk7Gvll9q8OQaeeKLTw/GevXsR+ve/kb53LwZ26QKwml8cpWND+aVMmGDfNm2KgSed5PRwfCWFLV0WLsRxrVoh1KOH08MJFB0b4id136aZDTt0KLJXngCpbOkycSKOqV4dIT0/nmC6Y4gHQvQdO3agatWqCX8MU4FeXLU5f2lq165d6tfiBqRLliyxNhhlGxhioH7HHXdgzZo1eOaZZ/DBBx/gn//8Z7GPUbFiReutML6Y6QWtjFauzDsxy1DP4/jj7yV/31evRsaKFfZ9SRodG8ppX+/NtAMOQJqex4Tsl5C6fDlS9dw6QseHOJ0/NG+u57Es+Jyxl/zChchgD2n1lXcNHRvidF2h5zC+9h0v0nk9oefWETo2xMH69dZNauPGOv+N5NBDrRA9nfsmJaHrhJSfjgnll7S1rC1atMDjjz9uBeGxYluV/v3746mnnir1c00v9Eh9z1evXo3t27dH7Jcebtu2bdbmoW3bts0L0MOxkpym7JuZlCTSpmCJt//+9u2iRU6PRKRsG4ua32GJ/yZh3Fg0N9fp0YjETucP5afNRcVvzMaXOi7EnzYXFb9tLCrFby46ebLTIxHxX4h+3nnnWW1QGEqzNzo37Vy3bl3Ez83OzsakSZPwyCOPoEOHDujZsydWrFiBAQMGlPp1jjnmGOv2hx9+KPIxtmAJ/5zi7N2717pdv2/msTAz7khV5pJg5kTMnJhJwipO8wJJES8IhRSiJxJbN7CHNDej0V4U4kU6fyg/heji18k1HRfiTyG6+ClEb9DA6ZG4O0RncamKbCQgkhais/3JjBkzcOqpp+Kjjz7CKaecYgXqzZo1w2GHHWb17DrqqKPQrl07a/PPww8/HHfddRdCoRBeffVVTJs2DYdyuUgpevfujZYtW+K9997D1KlT897P9i4PP/wwKlSogAsvvDDv/atWrcKcOXMKtH9hv/IDDzwQS5cuxbBhwwo8PvuiP/HEEwUq0iWJVEmWeCaAVIguXsLJTfb05z4J2tgm/tLT83sg64JYvEjnD+WnEF38RpNriWOOtebYK+JFpnBEleiRtW3LylL2TAYWLHB6NCL+CtGJbVTeeustq6r82WefxT/+8Q/s2bPHqjofNWqU1UKFG3qyjcr111+PsWPHWsH7pZdeilRWwEUhPT3dCr5zc3Nx9NFH48orr8TNN9+MTp06Ye7cuVaQvn9YlSI3/+TX+/zzzws8ztNPP2091hVXXIHjjz8et956Ky6//HK0adPGCt1PP/106/2SZLoITl4lutq5iJeYSZ/MTED7JSSGmZxQiC5epLCs/BSii9+onUviqBJd/EDtXErG/tqdOtn31dJFAiJpG4uGq1OnDq699lrrzewgvWHDBlSuXDlvY9DyYIX4+PHjcd999+HDDz+0Hp9tYR599FGcffbZUT0GW8dMmDDB6uPOx2KgX6lSJStwv/fee3H11VeXe5xSBgrRE0+V6OJFauWSnAviiRPtvugiXmv3pLAsfiE69x3ic8qVPyJepnYuyalE1/FCvGjPHrYhsO8rRC+5pcvvv9shepRZm4iXORKiR9ohNtIGnuXBdjDffvttqZ83fPhw6y0Stplh6xlxCfbZMuGNTnaTE6LrpFe8QiF64qmqTLyKe9yw3RPtt5/To/Guli3tc4Lt2+0l7goVxMvYypMtCEjXFYlbvcbjBYPI2rWdHpFI2Vq5sKVhrVoIArY2nzYt+s8/6CCguzYXlYBxRYguEvULGWeE2dpHF8GJwwsJXiTv3Gn3mdZGKuIFCtGTd0GsSnTxarVp48Z2704pGz53PEfg88lqdIXo4mVmQrhuXaBqVadH4z+VKwP169vXEnyuFaKLV0N0XgtH2VrYq3WK330HPP44MGZMbP+WT8tvw3vC2rlw0iQV4EkgKEQX710Ec3M79t+SxF0k8zlescIOJhWiixcoRE88VaKLV6mVS/y0aWOfj/39N9Czp9OjESk7tXJJPB5zGaLzuTZ9k0W8wuf90Fmb+N57wBNPALNm5RfdH310dPUGvPSaPRv49wsH4pf0CkjdtMn+W9e1mPicQnTxDvVDTx6++DFE5+aihx/u9GhESqcQPfFUiS5epbAsfrh2e+RIO0QX8TJtNpx4fG7//FOT7+JNPg3R2V3p5ZeBZ58FVq2y31e9OnDllcD11+ef7peGUcGBBwK//paKd5rdhguX/p/d0kXXYuJz/l2XIv6jk93kadHCvtXmouIFXDqoED3xzLF39Wq7fEXEKzQJH98QnebMcXokIuWjFSqJpxVs4ocQ3SersvlneNNNdkh+xx12gM7F5489ZtfHsCI92gCdMjOBe+6x79+27hZsRXW7pYuIzylEF+/QRbAzm4uKeGXTQPbgi+XsT2LDvrGVKtn3ly93ejQi0dMkfPyw7IwUoovX6biQeOaazVzDiXixJ7rHK9HnzgXOP9/eG/zpp+29ftu3B4YPtxed33orULNm2R77hhuA1q2BNbtq4kHco81FJRAUoot3KERPfiU6X1lF3M5M9rAkokIFp0fjX5ykMGGDWrqIl+j8If6V6AsXAnv3Oj0akbJTm6fEUyW6eJlP2rmceCLw7rtATg5w3HHAt98C06cDF11U/ssm9k5/5hn7/jO4AXN+22KvEBbxMcdC9JYtW+Jf//qXU19evEgXwcmjSnTxErVySR5dEIsXqeI0frj2u1o1+2p8wQKnRyNSdmrnkniqRBcv80mIbg513M5k1Cigf3+7LiZeBg4EThyQg2xk4PpN9yG0YmW5Ho/jZNAv4laOhejr169HjRo1nPry4kU62U0eE0bypFezyeJ2CtGTR5uLitfs2GG3fCKdP5Qfr7xNSxdtLipelZUFrNwX9GhyLXHMc8vmy9pLRbzGBz3R+Wdn/vQOOSRxX+fp59JQIWUvfkA/fPXSijI/Divm+/a1g/nff4/rEEW8H6J37NgRc9mgSSQaW7faW0mTTnaTE5SlpgK7d9ubCIq4mUL05FEluniNmfCpXr3sTT+lIPVFF69bsQLIzbV7GXg4IHO9evWAypXzn3MRL/FBT3RGKEYi61dbtQJubv+9df/GF1tbW1XF6uuv7RYz4f3WVcsnbuRYiH777bfj66+/xujRo50agniJWQZYp469jFgSKyMD2G8/+75auojbmd9RVZkmnirRxcut4OK5fjnITF90VaKLV5mJYFM0IonfS0UtXcRL2LLMrGLzcIi+ZYt9W7UqkJaW2K911wXLkYnlWLS5Np58MrZ/O3YscNZZ9tN+6qn2eCdOBD78MFGjFSm7dDhk06ZN6Nu3r/V2yimn4LDDDkPDhg2REuEC58ILL3RkjOIi6oeefKzq5UUGNxc94ginRyNSPFWiJ48q0cVr1Aou/lSJLl6n40Jyzxs44abzBvESBuhcrcJsiisqPB6iJ2MhXrUjOuAJ3IJz8QEefpgZXnQNBP78EzjpJHsBPG8ZnD/6KHDPPcBttwEnn5y/oEUk0CH6xRdfbAXmoVAIn376qfVG4SE6P8b/V4guOtl1QIsWwLhxqkQXd+M6P4Xoya9E18WweG0SXq3gElOJzmOwKvzFa3RcSB5z7abzBvFiP/S6dYF0xyIzT4Xo6NwZZ+MjvISrMW7XMbjlFuCjj0r+J7Nn2xudbtsGHHus/flcEH/zzcCrr9qHjSeesAN1Ebdw7IjwxhtvOPWlxYt0spt8JpBUiC5urxTZudMOcUzAK4ljnmOe7fLMXD2mxe20ki3+Wre2j7mbNgHr1qmntHiPCXR1XZF4auciXuSDfujhPdGTcrperRpSDjoQz825Dl1Tp+Ljj1PAzs29ekX+dB4S+vQBNmwADj0U+OoroFIl+2OsPH/sMeCcc4BHHgEuvRTIzEzC9yDi5hD9ovBdA0RKo4tg50J0tnMRcSszydOkCVCxotOj8T82KWRVDs94GUJ06OD0iERKprAs/nh1y/MxHn9Zja4QXbxGK1yTR23gxMuV6B4P0U0leiI3FS2ga1d0mvMerj5sEl747VBcdx0wZUrRYn4+vccfb+833LYt8O239v7v4dgj/bnngAkTgLvuAt58M0nfg0gptJOKeINCdGfauZAq0cXN1Mol+bS5qHiJzh8SQ33Rxcu0wjV5zLFXlejiJT4L0ZO2cLRrV+vmgXrPWTU3M2YAL71U8FM2bwb69QPmz7cPDz/8ELntPBe8PfOMff+tt4Dff0/GNyDigRD9888/x1lnnYWOHTuiVatWee+fM2cOHnvsMazg9JSIKkaSz4SSPOnlxioibqQQPflUVSZekZMDLF9u31dYlri+6CJewj7+WqHizDkDn3sRL4XoHl9plfQQ/ZBDrJs6M8bhoYfsd917r935jXbsAE44AZg2zZ6f+PFHYL/9in+4ww6zNyilG27QIUTcwbEQPTc3F2effTbOOOMMa1PRhQsXYlFY24jatWvj7rvvxlucdpJg27sXWLXKvq+T3eRh4zGuvcrKAlaudHo0IpEpRE8+VaKLV/C1i0E6X8saN3Z6NP4M0VWJLl7DXv5Mckh7qSQeEzKWlO7ebe9jI+IFPumJnvQQvXNn+3bJElx+6gZ06WJXnrMdCyOd00+327PUqmVXoIfV0BZr6FCgShVg4kTgww8T/h2IuDdEf/rpp/Hxxx9j0KBB2LRpE27h9r1hGjZsiKOOOgrffPONU0MUt2BQw2lH9uCsX9/p0QQHQwdzcaGWLuJWCtGTT5Xo4hXmd5QhTlqa06PxZzsXVaKL15i2Iqww5bWFJFaFCvmTmGrpIl7hk3YuSd1YlJiOH3CAdTdt+hQ8/7z97tdes1u4fP+9HYiPGAF07BjdQ3LbqzvvtO/fdhuwa1eiBi/i8hB9+PDhOOyww/Diiy+iRo0aSOEMdSFs7xJenS4BFd63MMLviSSQNhcVt1OInnxmck0hurid+qEnvhJ94UJgzx6nRyMSPbVyST5NvovX+CRET/rGomEtXTBpEnr0AM4/366HHDMGyMhgO2fgiCNie8ibb7YvP1hb+cQTCRm1iPtD9Pnz51uV5iWpW7cuNmzYkLQxiUvpItg52lxU3IxnZArRnbsYVjsXcTvtp5I4jRoB1avbe6YsWOD0aESip+NC8pnnWiG6eIXPQvSkVaKHbS6KyZOtm8ces79+airw3ntA376xPyQXDfFx6JFHAG2bKIEM0StXrowt5q+6GEuWLEEtLgmRYFPFiHNMMKkQXdyIvTV37rRXqKivafKY55obNmrTYfHKSjaJLx531RddvEjXFclnnmu1cxGvFOmYnujaWLTcITq7OU2fDsyaBZxxRtkf9uyzgSOPtC/92GNdJHAhepcuXfD9999jNzcZiWDjxo347rvv0L1796SPTVxGlejOUTsXcTMzucNmeRUrOj2a4ODzzXISbjpsKnXEc386DzwQgB+fzh8SS33RxYs0uZZ8auciXsKdMHmO64MQPek90cND9Pnz81J8HgLMKUN55u6feca+/9ZbwB9/lHegIh4L0a+77josX74cp59+unUbbsGCBTj11FOtSnV+ngScLoKdo3Yu4oVjg1q5JH/T4cxM+74uiD35Z3P00cB99yFvwyffUsVpYqkSXbxI7VySzzzXqkQXLzAVBkyeK1WClznSE71u3fy/+SlT4vrQhx0GXHihff+GG+xFAyKBCdFPPvlk3H777fj222/RvHlzPPnkk9b7GzRogDZt2uDnn3/G4MGDcdxxxzk1RHELhejOMeEkex9nZzs9GpGC1A/d+ZYu6ovuKStXAr175//Y5s2Df/HKSucPiaVKdPEiTa4lnyrRxUt80g/dsXYuEVq6xNPDDwNVqgATJgAffhj3hxdxb4hOQ4cOtVq6nHjiiahSpQrS0tKQm5uL/v37W+H6kCFDnByeuAH77ZqrfZ3sOtO2gdtoM0DXDh7iNgrRnaMLYs9Ztw44/nh7D0jT/cjXi4y4HHv7dvu+9kxIfCW6ysHEC/bsAVatsu/ruiJ5zEQmX4h27XJ6NCLRhegeb+WSk5N/GuSnEJ2LYe+4w75/2206pEjAQnTq06cPvvzyS6xevRp79+7F+vXr8c0336Bfv35OD03c8iK2d6/df9e0D5Dk4fNuTnx9nbaIJylEd44JJRWie8KmTUDfvsDs2cB++wEffBCAw7qpQq9f3y5Zkvhr1cpuUspSN9832BdfMC1EK1cG6tVzejTBwQSvenX7vs4bxO3MpqIer0Tfti3/vmMh+qRJCXn4W26xL0VYa/nEEwn5EiLuDdFForoIZoDOimhJPhNQ+jptEU9SiO4cU8Gndi6euIgaOBCYOtUuqvrxR+DYY/OvE3fuhD+pZUPisVes2TtFLV3Ea8cFTgBJcvC51go28QqftHMxrVwqVMhfgZg0hxySf25gyuHjiPOgjz1m33/0UVWjS3I5FqIfcMABuOKKK/Duu+9ihdpESHHUz9R55gJ50SKnRyKSj60DTIiu40PyqRLdE3hR8Y9/AL/+CtSubQfobGNdq1Z+VZJvf4Q6f0huX3RtLipeOi5oci35tLmoeIXPQvSkV6Gb545tYXm9Nm1aQr7E2WfbxSE7dgDTpyfkS4i4K0TPycnBa6+9hgsvvBDNmjWzNhMdNGgQPvjgA6u1i4hFlWTOUyW6uNGGDfZZE+n4kHyqRPdE69/TTgPGjLFX0X//PdChQ/7Hfd+pS+cPye2Lrkp08dJxQZNryadKdPEKn/REdzRET0JLFy5wSWDrdRH3heiLFy/GwoULMWzYMJx33nnYtWsXXn31Vet+ZmYm2rZti2uuuQYfffSRU0MUN1AlmXtCdFWii5uY5I9VDklfoyh5F8O80GBaK67CvaDPOw/47jt7yeuIEcBhhwVsflTnD8mhSnTxEk2uOcccixWii9v5pCf61q0Oh+impUsCE26F6BK4nuj7778/LrnkErz99ttYtmwZ5s6di1deeQXnnHOOtcHoyy+/bIXqEmC6CHZPOxffJi3iSeqH7qw6dex0NnyjNnGF3Fzg4ouBzz6z+2B++SXQs2fRz1OILnGhSnTxErVzcY55ztXORdzOZ+1catRwaABJSLgVokugNxbdsWMH5s+fj3nz5uHvv//Gpk2bEAqFUKVKFaeHJk7SRbDzTNLCoCwry+nRiNgUojtLm4S5EltPXn018O67QHo68PHHQJ8+kT/X9yG6Kk6TG6Jztdru3U6PRqRkaufiHJ0ziFf4LER3vJ3LrFkJ2/nTfIm//gL27k3IlxBxT4i+e/dujBo1CoMHD8aRRx6JOnXqYODAgfjPf/6D2rVr44EHHsAvv/yCjRs3OjVEcQNdBDuPJxBsl8HyRvU/FrdQiO6ezUV1XHBNgH7TTcArr9hzHO+8Y28qWhxfh+gMc83+OgrLEos9Y3mFzl/A+fOdHo1I8fg7qusK55hjMc8ZeE0h4kbbtwM7d9r31RO9fDIzgfr1uRliwnb+5LlsrVp2nd+MGQn5EiJFpMMhDMr37t2LChUqoFu3brjrrrvQq1cvdO/e3XqfiHXkN0d/XQQ7JzXVfoXiUm1WmrVs6fSIRBSiu4Gqylzl5ZeBZ56x77/2GnD22SV/vvnT8eXKetNiiC2H6tZ1ejT+xhkbVqP/9pvdF719e6dHJBLZunX2BBt/Z/fbz+nRBE/jxkBamp12cZKTe9qIuLUfOs8fqlWDlzneE53HWvZF5wY97LfSrVtCvgSr0X/6yf4SpjJdxJeV6Hv27LHatTBAZwX6CSecgKOOOkoBuuQzV/a8AK5a1enRBJsJy1RxKm6hEN09legK0R3HVbJDhtj3H3kEuOSS0v+NmZtmlpGgVbbuaAXHKyxJzuai6osubmZeqxo1sjeMkORijzFWppLOG8QLrVw8fv7geCU6qS+6+JBjIfrnn3+O6667zup9fuedd1phOlu6nHzyyXj22WfxFxsbSbCpH7p7mIqdFSucHomIvSRbIbrzNLnmGq++aofh/JHceGN0/6Z2baB6dZ/mGWrZ4ExfdFaii7h9hYqZAJbkM9d0vlwCJb7gk37orthYNDzhnjQp4V9CIbr4vp0Lw3K+0YYNGzB69GjrbezYsfj666+RkpKCunXrWi1ePvzwQ6eGKU7SRbB7mMoRhejiBhs2cDdq+76OD85ROxdXYHeCRx+17991V/QFliyw4hwUaxY4J2WKiX1Bk/DJpUp08YKVK+1btRFxjs4bxCshusf7obumEp3tXIgNy/fssfdZS1CIPm0akJ1tL3oR8WUlejiG5WeccQZeeOEF/PDDD3j88cdRr149rF+/Hp988kmZHvOPP/6w2sTUqlULVatWtXqtf/TRRzE/ztq1a3HjjTeidevWqFSpkjXWI444Ai+99FKZxiUx0EWw+0J0U8Uj4iTze2g2vRXn27lwdYA4YtgwOxvijyOaNi6B2FxUk/DOVaLrWCBuZQpBzDmtJJ+5plOILm7vie6DSnTHe6Kbv3kufeReCDNnJuRLtG5tt69nUYkWxEkyOD5Ps27durwqdL7NmzfPej/7pTdu3NiqRI8VH6dfv35W6H3OOeegevXq+PTTT3H22Wdj2bJluPnmm6N6nKlTp6Jv375Wyxn2bGfQv337dsyePduqlr/66qtjHpuU4WRXm/84T+1cxE10IeyuEH37drvcpVYtp0cUOCzqYQ90uvPO2Nv8+jZE1yR8ch1wgL0J+bZtdl8hbiAo4jY6d3CemdhUOxdxKx+2c3E0RDc7f44albCdP3n60bkzMH68/SW0v7n4NkRnP3SG3bNmzcoLzRs0aIAzzzzTCs751qZNm5gfNzs7G1dccQVSU1Mxbtw4dOZfFIB7770Xhx9+OO666y4rDG9eyoXV1q1b89rNTJo0CR07dizydSTBdLLrHmrnIm6iY4M7VKlib/zM9jrsi64QPelee83+c+A856WXxv7vfdueViF6cnFFUMuWwPz5dhmYQnRxczsXnTs4R+1cxO18GKI72hOdTIjOvuiXX56wL2FC9AsvTMiXEHG+nct//vMfrF69Gqeeeiqee+45zJgxw/r/Dz74AIMGDSpTgE4//fQTFixYgPPOOy8vQKeaNWtaAfrevXvx5ptvlvo4L774IpYuXYpHHnmkSIBO6Wq2lHgKytzD/Ax4YrF3r9OjkaDTscE9dEHsaBX60KH2/TvuKFtnI19Woufm5m92q3YuyaO+6OKVcwf1RHeO2rmI2/kwRHe0Ej28L3oCd/7U5qKSTI4lwWyVEimcLq8xY8ZYt2zDUhhbvBA3Ly0NNzPl5qann346/v77b6tX+65du3DQQQehf//+qBDFmuk9e/ZYb+HV7ZSVlWW9SQlCIaSvWIEUPl/c2EPPl7Nq1kR6hQpI2bsXWTzxVXVfXJnjgY4L0UlbtsyaAc5p1Ai5es4clZaZidQpU5CzaJF+Fkk+Pgwblorly9PQpEkIF16YXaaXSbtTVwYWLw4hK8snK+xWrULG3r0IpaYiW+cPSZPapg3SvvkGObNm6ViQJDp3iI2uK1ygcWNk8HbTJmRt3AhUr+70iHxJx4ayS1+zxjpOZNepg5CHnz9uT7J1K6O+FFSpwuzJwcF06GD93YemTUP25s1A1aqJ+BLW+eyUKSHs2ZNttXiRyHRc8HCInogAnUxPdW4EWlijRo1QrVq1vM8pDqvV//rrL9SvXx/PP/887rvvPuSysmmfli1b4osvvkAH+6+1WEOHDsWQIUOKvJ9tbKpwGbwUK2P7dgzctcu6/9306chVZZPjjucmvWvXYuKnn2KT2URM4mrkyJFOD8ETuk+bBtaHTN+wAUtHjHB6OIHWITcXLQEsGDMGs02PdEn48SErKwVDhhzPnjoYOPAv/PTTojI95tatvKwZiFWrUvDFF9+hQoX8cx2vqj13Lo4GsLt2bfygY2rSNN+zB1z/uf6XX/CrjstJpXOH0qXt3o0T95Vl/jBzJrIXle2YKeU3oHp1VNi2DT+/+y62abVQQunYELsBK1aApZJj58zB9h074FW7d6chJ+dE6/6vv36PypVznBtMbi761q2Lyhs2YEOfPvj9zjsRSkuL65fIyUlBhQonYPv2NLz22lhkZnr3Z5doO3fudHoInpcSYjNyBy1evBjvvvuuVZnOSu0aNWqgS5cuVjuW/c064xiwAp0vGAzKW7VqVeTjmZmZ1uagW8z6lgjYVoabmqalpVm91RmGX3DBBdaszcsvv4z/+7//Q7NmzTBnzhxr89JYKtGbNm2KVatWoS77yErxZsxARteuCNWpg2xuUiWOSzv2WKROmIDsd99F6MwznR6Or/DYwuNWnz59kJFh1ehICdK7dkXKjBnI/uYbhPr0cXo4gZb6xBNIu+su5J57LnKiaJUm8Tk+DBuWgmuuSUfjxiH8/Xc2SjgVKRHPAOvWTcf27SmYMSMLZeyk5yopH3+M9H/+E7lHHomcfasTJfFSxo9H+nHHIbT//sieO9fp4QSCzh1iMG8eMtq1Q6hqVWSzApqb3Ykj0g87DCmsSP3yS4QGDHB6OL6kY0MZ7dmDjH2rI7KYP9SpAy9vAbH//hlITQ1h165sxw95KRMnIq1fP6Ts3o2cK69E7vPPx/043KNHGv74IxVvv52Ns892NOJ0NWaS9erVs/JQZq8SO0cbez/77LO47bbbrE06w7P8Tz/91Krgfuyxx3D99dcnfVym6jwnJwfXXnstbr755ryPPfDAA1Z7l48++giffPIJzj///GIfp2LFitZbYXwx0wtaKdautW5SmjTRc+UW+6pMucwN+pkkhI4NsW0Ols62Qnq+nNWihXWTunw5UvWzSMrxgdtSPPqo/b7bb09B9erle975ZzRzJtsFZ6BdO/jm+JDavLl+J5OpfXvrJmXJEmRkZwOVKzs9osDQuUMM1xWZmciIoiWnJBBfdKZNQzqP1fq9TSgdG2JkCvfS05HBtk9OJ8/lYIqNa9RghbYLfgeOPhp47z3g9NOR9sorSOP1Azf0iXPr9T/+AKZPT0cJEV3g6ZhQfo51C/rf//6HG2+80drwk5XdEyZMwKJFizBx4kQ8/PDD1vtvuukmfPPNNzE9Lv8dFVdpzpkX8zmlPQb94x//KPJx874///wzprFJ7BfB2jjQRczPwmzMJOIEtnliFRnp+OA8u6m2jgtJ9NZbwJIlbFEHXHll+R/PLPrjY/qC+Ua0d0dy1asH1K5tL28opW2iSNLpusI9tLmouHyyDR4P0F21qWi4U09lFa19/847gXffjevDa3NR8X2I/tRTT6FOnTqYPHky7rzzTnTv3h3NmzdHt27dcMcdd2DSpEmoXbu29XmxML3QI/U9Z5sWtnKJ1C89XNWqVa22L1SrVq0iHzfv40ajkiAmkNHJrnuYn8Xy5U6PRILMXAhzXwlXnRkGVPjkmrPd4QKBewE99JB9/7bb4lPsa0L0xYvhDyaYUa/d5GLgYPZLmTPH6dGIRL6uaNLE6ZGIOTb7ZuZWfIOrrakhd17ytq1b7VvXXSr9+9+A6fJwySXATz/FtRLdhOi6JBFfhugMz88++2zsZ6rYCmHv8LPOOssK02NxzDHHWLc//PBDkY99//33BT6nJMcdd5x1O2vWrCIfM+8rS892iZJCdPdRxam47djg8SoRXzCBBPf/2LDB6dH43ttv22E3r+8GDYrPYypEl7g58ED7VpvBi9vousI9zLFZlejiNj4K0U0luitbXj/2GHDWWXZlCKvT//orLg/LloTsVLJpk+boxKch+t69e62K75JUq1bN+rxY9O7dGy1btsR7771nbVZqsL0L28RUqFABF154Yd77ucknNwgt3P7lqquusm4feeQRbN68uUA1O3u5c8PR008/PaaxSQx0sus+aucibqBjg7tw34/69e37OjYkrQr91lvtxRjx4LsQfdmyAvt4SBKpEl3cSu1c3NfORSmXuI0PQ3TXVaJTairw5pt2n3SWzA8cGJeV7rwk2bc9i1q6SEI5FqK3adMGX3/9tbWpaCR8P/um8/NikZ6ejmHDhlmbgx599NG48sorrY1BO3XqhLlz51pBengFOVvJtG3bFp9//nmBxznyyCOtnuwzZ85Ex44d8a9//ct6LD7OihUrrD7usY5NYqCgzH3UtkHcQMcG99EqlaR4//0ULFxoz1nsm+ePC1+F6NxJy6yIUCV68qkSXdxK7Vzcwxyb+TMpJgcQcbwnuse5OkSnSpUA5m9t29oBOoP0YvY0jIX6oouvQ3RWg//999/o169fkZYt3LBzwIAB1scvuuiimB+7V69eGD9+PHr06IEPP/wQL730Eho2bIgPPvjACtSj9eSTT+KNN96w/u3w4cOt6nYG55999pkVvksCKShzH3PhwdUh69c7PRoJKh0b3Ef7JSRcTk4Khg5Ny6tCL2UhX5mKAlmoya48vqhCr1bNxVeOAahEZ4iuyXZxE507uAerfCtUAHJz81cIiLiBjyrRXdsTPVydOsC33wKNGtktXdjlIcYuFIUpRJdkSIdDrr/+eowbNw5fffUVDj/8cFSpUgUNGjTA2rVrsXPnToRCIZx88snW55UFH/Nb/lGWguE434pz8cUXW2+S5DXrZiZYJ7vuwRNezszzZ8OLEdPCQSSZdCHsPmr1lHDjxu2HBQtSUK8ecM018X1sPiZbw7CImxl0q1bwfojOSkftmZB8LVsCaWnA9u12OKbjtLgBJ3TUzsVdrRzYbmvBAruli1YNiVv4KER3fSV6eCXHiBF2a5dRo4DLLgPeeqvM53AmRGeNLg/9OhUUX1Wip6Wl4YsvvrAC7GOPPdbqVb506VLrlpXkb775ptVihb3HJWBWrbKPetwZglf34r62Dao4FaeY3z1dCLuHjgsJxdXuH39st4+75Zb4VqETLzB809LFbFSnfujOTbYfcIB9X33RxS24epIFOsSKR3GeNhcVN/JhiO7KjUUL69IF+OQTexL+nXeAwYPL/FAdO9rzdKz5Y6QkkgiOJ9Rs6zJq1Chs2LABWVlZ1u2PP/6ICy64wOmhiVNMtUjjxvZRUNxDFafiNFWiu4+OCwn14YcpWLmyGurWDeFf/0rM1/BNiB5eiS7OUF90cRvz2sTVlJzoEeeZPmIK0cWNIbp6oidfv37AK6/Y9x9+GHj55TI9DFdWss06qaWLJErSE8qJEyfiuOOOQ/Xq1VGjRg306dMHv//+e7KHIW6mkMy9FJaJk8L7Z+r44B6qRE+YnBzk9UK/4YZcq9V3IvgmRFclunv6oqsSXdxC5w3uYyY62c5FxC0nXGbPLx9UonuiJ3phl14K3HeffZ8tnc03ESP1RRdfheh//fUXevfujTFjxmDHjh3Yvn27VYXO9i0zZ85M5lDEzRSiu5fCMnHSunV2bwv2n9CSbPfQ5FrCvPgiMHduCqpX34trrslNeFGg50N0VaI7T5Xo4jbmtalJE6dHIoY5RptjtojTGKCbJto+aCfruUp0gyE6VwJwp/v588v0EArRxVch+iOPPILdu3fj7rvvxurVq623e+65B7t27cKjjz6azKGImylEdy+FZeIk83vHChHumSDumlzbvBnYscPp0fjG66/bhTh0+ulzUb164r6WKtElblSJLm6j6wr3McdohejitlYuDNDT0+F1nuqJHo6TGGZvFW4+XAYK0cVXIfrPP/+Mnj174sEHH0SDBg2styFDhuCoo47C2LFjkzkUcTOd7LqXQnRxko4N7sQzdNNnRMeGuAXol19uF0Vdc00OTj65bBcSsYbonl5ZzydLlejuqUTnhMbOnU6PRkTnDm6efFeILm7ho37onq5Ep5Yt7duFC8v0zzt3zj+8cBGziKdD9DVr1qB79+5F3t+tWzfrYyIWney6l9q5iJN0bHAvTbAlJEC/9lrg6adzrcKcZITo/PHt3Qtv2rgxP7Q1r1WSfKziq1vXvj93rtOjEcnvia52Lu6rROcKtu3bnR6NCLB2rW/6oXu2J7pRzkp01va0bm3fnzIljuMScSJEz8rKQrUIu2JVrVrV+piIRUGZe5mfCae31bZBkk3HBvfSBFtCAvTnnrNXtiZa/fpA5coFi7k9xwycVWSVKjk9mmAzLV3UF13cQOcO7sP+ZCbd8+yLjviKKej0QYjOYojdu4NbiU5q6SKJlNQQXaRUvILXya57qW2DOEnHBvdSJbpnA3Ti1/F8X3T1Q3dfSxf1RRc30LmDO6kvuriJj0J008qFErmfTsIr0RWii0slfdeEd955B7/++muB983ft/PuwIEDi3x+SkoKvvnmm6SNT1yw9sgsx9ayS/dWnPLCmBWnbdo4PRoJEl0Iu5cq0T0boBvNmwOzZ3s4RFc/dPdQJbq4xZ49wPr19n1dV7gvRJ8xQyG6uIOPeqKbEL1qVY/ukWoq0VkcwW4VGRkxP4RCdEmkpP9ZMTA3oXlh3333XcQQXQIYktWqBVSp4vRoJBIGmAzRVXEqyaYQ3b1Uie7pAJ1UiS5xo0p0cYtVq+zbihXze/WLO6gSXdzERz3RPb2pKDVubLflY08antuZyvQYdOmS31adWy8wWhLxZIi+aNGiZH458SKFZO5nfjaqOJVk0/HB/ZXoCtE9GaCHh+hLlsCbTBCjEN1dlei5uUCqukeKQ8xrEqvQVZjlLgrRxY0Tbj4I0T29qSjxWM1q9Fmz7BS8DCE650y5wpLntFOnAscem5CRSkAlNURvzt9kkZIoJHM/hWXiBLZ5YikB6fjgPppc83SA7otKdLVzcY8WLew15Dxu81xBExvilJUr7Vu1cnEfhejiFjwRM/23+frlk0p0bmXmWSZEL2dfdIbobOmiEF3iSaUh4i4K0d1PbRvECeb3jQ3+PH1W6PPJtdWr7f6F4qkA3Rchutq5uAf7l7ZqZd9XX3Rxkq4r3EshurgF900w5ds+CtE9W4lOpvqclehlpL7okigK0cVddLLrfqo4FaePDU6njVJU/fp2cMZUmEG6FOvHH90XoJNZLMg/tb174S05OfnHCFWiu4P6oosb6LrCGyE6XxBFnGKCWhaEVK4Mr/NFiG42Fy1nJTopRJd4U4gu7qKTXfdTOxdxgo4N7saex9wIiHRsKNEnn9h5wTnnuCdAN21AuY8TW1h7bo6UvUwZpLOFSKNGTo9GCvdFF3GK2rm4/3pix478dn0iToboZei97Uae74ke/rOIQ4jOuXweZkTiRSG6uIuCMvczPxu1bZBk0rHBOxfEnktgk4sbHNGpp7onQCeOxVSje66li2kHwONDWprToxFSJbq4gc4d3IsVv/Xq2ffV0kWc5LMQ3VeV6PzZlHGlCmsqWN/Dfz5tWnyHJ8GmEF3cRRUj7teggV3tp7YNkky6EHY/7ZdQKhZLT59u3+/cGa5j+qJzIyZPUT9091aiK0QXJ+ncwd3UF13cwKchuqe3kDInpNu2ARs2lPlh1NJFEkEhurhHdjawZo19Xye77m7bYCY5FJZJsuhC2P3U6qlUc+cCu3bZ++OafRfdxLObi5oARv3Q3VeJzpUp27c7PRoJIhZ7qDjH3RSiixv4NET3dCU6V6qYaz5tLiouoxBd3INVzWzGyipnVjuLe6niVJJNIbr7adPhUk2ZYt926mTPR7qNZ9u5qBLdferUsTccpnnznB6NBBGTpJ077fs6d3AnhejiBj4L0X3RE520uai4lAsv4QRBD8nYvMqN6YLkU1gmyaYQ3f1UiR51iN6lC1xJlegSVy1aFJzkEEkm81pUu7Zd1SjuPW8oIUTnhoCvvAKsW5e8YUmA8BfMtCf1SYjui0r0OG8uOnMmsHt3nMYlgaekUtxDIZl3KCyTZOIKlVWr7Ps6PriXJtei3lTUjf3QPR2iqxLdncykhuea7IsvmFYuOm9wL3PMLuG84YorgEGDgCuvTN6wJEBMQMvJNr75gC96ohfeXLQch5i6de2uwTNmxG9oEmwK0cU9FKJ7h9q5SDKtXWuf/XCFCrdaF/cfF9iLVgrgU+KVSnTmGVlZ8A5VoruT+XmoEl2cYM5R1Q/ds+1cPv0UeP99+/6XX6ozlCTA/Pm+qkInVaLnS0kBDjnEvq+WLhIvCtHFPRSie4cqTsWJY0PDhvaeCeJOJqjYswfYsMHp0bjy15hPS1oa0K4dXIl/YhUr2os/PDNHyp1azTp/VaK7i0J0cZKuK5LaEWPECGDIEHsD7TJVoheafOdh/eqr7fvcjJsffvbZOA5aJLzK2Y27vZeR73qil6MSndQXXeJNIbq4h5ZdeofauUgy6ULYG5i+mo0EdWwowlShH3wwUKkSXImLPTy3uaiZzGXK4pOl2L6hEF2cpOuKiDhJ+r//Ad99ZxeAl2XhWE4O8McfwMMPA8ceax96TzgBuP9+oHdvYM2aKB+IPxuWirJZ8fr1BT70r3/ZQXr79sDHH9vve+MNYNOm2McrEpRNRfm3uW2bz0J0XlOUo6G5QnSJN5X0iXsoKPNu2waeAIskio4N3ppg41Uvf2adOjk9Glf2Q3drKxeDITorCT0Tops2AKxo1GuRu5gZGYXo4gS1c4mIAfrJJ+f/f/Xq9uQuV0iF3xY+pPI1YeRI+23UKGDjxqLtwNh5j/Oap50G/PSTPbdeogoV7CVQ3NiRx/J9E/EffWQH51y59eab9usmTymmTbM3Gb399ng+IxJoPgvRTYDui57oPB5UqwZs327vrXLggeUK0adPt1sVZmTEd5gSPKpEF/fQya53mJ8RZ4ULn0WLxJtCdO9Qq6dSK9HduqmoZzcX1aai7q9E58bQbPMkkkw6d4ho9uz8xTvskMfQ7bffgNdfB265BRgwwJ7/YgDXrRtwzjlAmzZAixb25p4Mt3nqz4+fcgrw4ot2r3K2Lf7xR7v6dcIE4JproqxyL9QXnVXs/Ld09912AMYw/8Yb7fc99xywd29CnhoJIp+F6KYfOuen3LrqMWr8w49DSxc+BI9LPA2ZNSt+w5PgUogu7qGTXe/gq3K9evZ9tW2QRNOxwTvU6snzleieC9G1qah71a0LVK5s39fEmiSb2rlExDkt0y6FvcxnzLArv++7DzjzTLsKneE6iz9//x348EM7JGdVeI8edsuWX36x9/j4/HO7bznbSTPvYqHoBx/YrcEYyj//fGwhOkN3Ph4fm5XnDNENhvncW54/VtPeRaRcWJbMCmcfhei+6Yce581Fzbm3WrpIPChEF/cc8Xm2RjrZ9V5LF5FEUojuHapEj2jzZmDRIvu+27vceC5EVyW6e/HKVX3RxQnsK8IWIaQVrgWYp6VxY7tale1bGJ4zHGeYPnMmsHOnfcuw+pFHgC++sIPt8ePtsP3II4vf571/f+Cxx+z7N91kV6dHG6IzgGcwz8dmGxeOz2BrmGuvte8/9VTZermLFMDXJTYRZ3EY/yB8VInumxBdm4uKCylEF3eFZDzic32huJ/CMkkWhejeocm1iNjH1QTUbt/70oTopjjL9VSJ7m7qiy5OYE8Q7qDJ8ukGDZwejSsr0VnVXRz2DGZF+hln2P3H2UM9llCO4fkFF9j55FlnAfPnlx6ir5q7zaqOp3vuiTzhPGiQvbiFQdi4cdGPRyQiE8wyqOXyCR+F6J7vh144RC9HJTopRJd48sfRQrxPIZn3qG2DJIuOD947LmhyzZP90MMzT2bTLOZ0PVWiu5uZ3PDMrIz4qpULq0sZpEvESvRELkLhBqCHHw5s2mSH8KbNRBFNm4JF5YPGnWd9Ltsu3Hln5E9lJ8mLLsqvRhcpF5/1Q/dlJXoc2rmEh+hsrcjJPZHyUIgu7qCQzHtUcSrJwIad5oxQxwf303HB0/3QTbDCKkReZLj+x8j1/KpEdze1cxEnmIOXWrmUqRI9Htghg61Z+JrCzfzOP99eHFBE06Z4B+fj6409rdcetnHhbXFuuMG+/fpru1e7SJmZJRI+CtF91xM9vBK9HD2cuDky20OxVZVOR6S8FKKLO2jzH+9ROxdJ5oVwtWo+WpsYgEp0NgHnBIh4rhKdK5pNNbrr+6Lz98zsp2J+98RdFKKLE1ScExFflrdts+8nowU05zDYT539zBl6s01LYSvSm+M6PGfdv//eXHToUPJjcvPSE0+087Rnn03QwCVYlejcGdcnfFeJzhNSnpgy/WabrjLigiTzY/777/gNT4JJIbq4g052vUftXCQZdGzwFk50cMKDdGyw7NljV+F5pRLdU5uLmip0rvGvUsXp0Ugk6okuTlBxTkQmg2Jf8erVk/M12dJl2DD7/sMPAx9+mP8xBuFX3tcYm1Ebh+IP3Hbhvl4zpbjxRvv2jTeAjRsTMWoJBLVzcT+Wj5t2feXcXJQTcDR3bhzGJYGmEF3cQcsuvUdtGyQZFKJ7jybYCpg50+4tXqeOd4qlyxqiMxAxVY5JoX7o3qpEL8dSbJGY6LqixFYurEJn3/JkYSuXW2+1719ySf7mfsOHAyO+TUEF7MGbuAjpq/ZNjJaiVy9741EWp7L3ukjM+Hpk+mz7MET31eLdOG0uakJ0VaJLeSlEF3dQUOY9Jg1iCciuXU6PRvxKxwbvUauniK1cWIWezNAiHiF6rHtBPv64Xf3E6sCkUD90bxwP+IvP84T1650ejQSFzh1K3FQ00f3QIxk6FBgwwD4UcKPRP//M72/+YLNhOBiz84/ppeAh5aab7PvPPw/s3ZvAgYt//xg4CxPew84HfFeJHj7JUc5KdPZFJ4XoUl6+DdH/+OMPDBw4ELVq1ULVqlXRvXt3fPTRR2V+vE2bNiEzMxMpKSno379/XMcqOtn1JL46m+XzqjiVRNGxwXu0SiXipqJe6IdulKUnOtuTP/SQXdx13XVJagWjSnT3YzNkk9ippYski84dHN1UtLiexO+/b1eDco69e3d7E8Ru3YCbD//Z/qQoQ3Q65xy7op6de8pxiS9BZQJZTsKzZYhP+G5jUVIluriML0P00aNHo0ePHhg/fjzOOussXHXVVVi9ejXOPvtsPPnkk2V6zGuvvRZbzNSexBfXuZvSCJ3segfLQBSWSaLpQti7q1RUiV6kEt0rytLO5YUX8i/euNfn5ZcnoXuHKtG9QZuLilM90dXOpQBzuZWMTUUjYbD31Vf2bU6OPcfGli5pzfeLOURn7nnttfb9p55StyiJkQ/7ofu+Ej1OITovT7jJskhZ+S5Ez87OxhVXXIHU1FSMGzcOr7zyihWcT5s2DW3atMFdd92FJTGuT/7000/x3nvv4dFHH03YuBH0XW5yc+0ShQYNnB6NxEJhmSSaQnTv0eRaHr60TZvmvUp0E6Izz+A8d2l4MfL00/b9IUPsTetGjQJefTWx48wLXFSJ7o2lDbH2BxIpCx6QTJKkcwfXVKKHt1T49FOgY0f7NeKgg8KO4TGE6DRokP16w8nqceMSM17xKZ+H6L7siV7Odi5169pvpM1FpTx8F6L/9NNPWLBgAc477zx0DrtirVmzphWg7927F2+++WbUj7du3TpcffXVuOCCC3DCCSckaNQBZ4IWlkUwSBfvUFgmiaYQ3Xs0uZaH5/usyq5UKb8Cxgv4cpyRYQfopqCzJC+/DGzYYF+L3nWX3daFbrklwcXH5sFVie5uqkQXJ84bqlXzWZLk/Up0o3dve4L5ggv2vcOE6DGeNzAQu/ji/Gp0kaj5PET3ZSW66WNfDuZcXCG6lEc6fGbMmDHWbd++fYt8rF+/ftbt2LFjo348toJJS0vDs88+G3M7lz179lhvxtZ965yzsrKsN7GlLF1q/SLmNmmCHD0vnpLaqBE47ZGzbBly9bMrM3M80HGhkJwcpK9aBe7FmMVVKnp+vKFhQ2QACK1YgeyA/8z+/JO/veno0CEXoVBOmX6FnTo+NGuWjgULUjB/fjYaNy5+nfzu3cATT/BVPAW33pqNUCiEq68GPv44DRMnpuLyy3Pxv//lxH9TVR4fVqywjw8sqwz475qbpWZmWucKuYsX6zwvjnTuUPJ1Rahx48C/BhW2cqV9rK5XLxtZWe7pf5LSuLH9M1u2LOaf2b/+Bbz0Uga+/jqEmTOz8zYPDDIdG0qXNn++VU2a3bw5Qj56nrZutf/Gq1Rh3gR/qFYN6bVqIWXzZmSxoXn79mV+qNat0zBhQipmzeI5eS6CSMeF8vNdiD5v3jzrtnXr1kU+1qhRI1SrVi3vc0rzzjvv4LPPPsMXX3yB2rVrxxyiDx06FEO4rjlCz/YqZkNGQYuRI9GRk4upqfhjxAinhyMxaLFli/WzW/Pnn/rZxcHIkSOdHoKrVNy4Ef1zchBKTcW3kycjZPpiiKtV3LwZ1vbbq1fj26++Qijdd6caUfv007ZcvI7atZdixIhpnjo+VKlyJID6+Oqradi2rfjqwO++2x+rVnVC3bq7ULfuSIwYYQcz559fDZMmHYuRI9Nw883TcPzx8a1CrrRxI/plZdnHh6lTEfrrr7g+vsRPo7Vr0Y0VcjNmYJzOFeJO5w4F7Td2LA4BsL5SJUzQ71sBS5awoKwSFiwYjxEj3LPXV8VNm+zzhlWr8O3XXyMU48rkQw/thj//bIRbb12OQYOmJ2qYnqNjQ/H6z56NigB+XrUKW31ynOC+AJs3n2SF6JMm/YTFi3fDL46pUwe1Nm/G5E8+wepyrGrLzWVGeDDGjFmJrl0nI4h2lrOaX3wYopugm+1bIqlRo0ZUYfjKlStx3XXX4dxzz8XJJ59cprHceeeduOmmmwpUojdt2hS9evVCXdOQSZA6YYJ127BrVwwcONDp4UgMUvbutRoaNsrN1c+unDPCPNHt06cPMthDQSwpkybZdxo1woCTeFIonpCbi9AVVyAlKwsDuJtmgPtV//e/dhDwj380xcCBmZ46PnzxRRqYS9eq1RkDB3YsZmzADTfYp5J3310BJ588oMDHt20D7rgDeOutzrjppvZ5nX7iIeX33+07mZk6PrgdN3ccOhS1tmzRuUIc6dwhstRZs6zbuh066PctDDfy3LLFPl6ffnoPd+25yvOGK6+0zxs6dYq5RVeVKingIvQxY/bHG2/shzp1EGg6NpRiyxZk8AQFQM8LLwSqV4dftoPIzbW7NZ9yynF++bYsaW+/bW0semidOsgtx3F9794U8KG2b8/EwIEObg7hINMdQ8rOdyF6vFx++eXWi85zzz1X5seoWLGi9VYYH1cvaEUb9KU1bYo0PS+e3CwsdeVKpOpnV246NkTYdJhhWWamnhevYcPVpUuRsXZt/oZAATR1qn17yCFpyMhI89TxwfzYli0rfuzvvw8sXgzUr88N3op+Hnuif/458NtvKbj22gz873+IX1uXfc3aU5o21fHBI/1MU9auRQYb7XMnQIkbnTtEPndI3W8/nZuG2bjR3uyax+DMzAy4bpEYZ1kXLUIGrwtj7FN9/PH25t1Tp6bg9dczcOedCRulp+jYUAxTydygATJ8NONiCoxTU4HatTPi30bPSa1aWTdpixeXKy9q186+nTs3Fenpqf56jqKkY0L5+W5jUVOBXly1OWdeiqtSN7jx6LfffosXXngB9erVS8g4JYw2DvQuU1a4apVd4iISTzo2eJc2F7Xmh/nGi5mOkQu5XW3//e1bhuSRMIwZOtS+f/PNrAQs+jlckf/GGywqALha+q234jjAZcvsW20q6n61awNVqyLoxwRJEp07RMRTdeKkp+sCdDKr1syxPQYMwszi7+efZ7VpnMcm/uLTTUVNgTH3U/ZdOGx+VgsXlvtheF6+fXv+RssiCHqIbnqhR+p7vnr1amzfvj1iv/RwU6ZMsW7PPPNMpKSk5L21aNHCev/3339v/X9nTnlL+elk17saNrRTEgbo+yp/ROJGxwbvMj8z8zMMcBU6Nznz4jYopYXon30GzJnDdi+wNhItTtu2wP332/dvuCGvgDx+lWQBbhfkGbyaN5Md5ehlKhIVnTtEZAIjLhRzpXKE6HT22fb3xsmCDz+M79DEZ3waopsa0lLqRb3JLI80P7syYlHHvkgP3KNUpCx8F6Ifc8wx1u0PP/xQ5GMMv8M/pzhHHHEELrvssiJvZ/PV2Sqw28/6/9NOOy0h30Pg6GTXuxigN9rXTyzAYZkkiI4N3qVKdOybjwfbwnu4W5eVeRZeaMTNqx5+2L5/3XV21VNJ2Nbl0EO54RVw1VX2vy83VaJ78xdqyRKnRyJ+Z2bqXNX02z2V6Oa03W8heoUKwDXX2PffeSeO4xL/8XmIXto5madD9EWL7KWQ5XDggfatQnQpKzcu5iqX3r17o2XLlnjvvfesjUFNtTjbuzz88MOoUKECLuQGEvusWrXK+ljjxo3z2rwwLDeBebjFixfjww8/RLt27TBs2LAkflc+xk099m3soaDMw2EZw06GZYcd5vRoxE8UonuXKtHzKtG9umiN+ROX/LOFNcOX8E1Bv/3WniRghw6G6KXh47CtyyGHAF9/Dbz3HvDPf5ZzgKpE9xZVoksyMFwxIbrOHQJViU5nnQXccw/w00/2pC1XSokELUT3ZSU6jw88mWSvJh7jy7FTPVeIssWgQnQpK99Voqenp1sBd25uLo4++mhceeWVuPnmm9GpUyfMnTvXCtL3N2uUAdx5551o27YtPufOV5J85kSXU6bVqjk9GikLhWWSKArRvcuc3Ab4uOD1SnReq5hMI7ylC6vIH3rIvs82LnXrRvd47dsD995r3//3v+PQi1KV6N6iEF2SYf16ICvL5WmxM/xeiW7CsYMPtid/OdkrEsSe6L4M0XlSala0lbOliyrRpbx8F6JTr169MH78ePTo0cOqHH/ppZfQsGFDfPDBB1agLi6ikMz7FKJLouj44F3mZxbQdi5cYDV/vrcr0Yvriz52LDBhgt1X0mzkFq3bbgO6dgU2bbID+DK3ddmzJ38fDlWie4NCdElmcU6DBkBGhtOjcZUgVKLTKafYt6qPk2LPH8zvmM9CdF9Xosdxc1GF6FJevmvnYhx++OH4Noop6OHDh1tv0WAFeygujTylSEimvoXepd7HkgjcNt2UVChE93YlOl83ubFggEyfbn/b/NWtXx++CtFNFfpll8UexjDTYlsX9kf/4gt787dzzinDwMzrTeXK0ZfCiztCdPVEl0TS5Lt3K9HNecPatXbQyZnaMobo3LODMcDu3UClSvEdpngce2rzBI0r4DnZ5iO+D9HjtLmoCdH5q8DuMNxPQQRBr0QXD9HJrvepEl0Swfw+Va9uv4m3mIlRXghv2ICg8Xo/9OJC9N9/B3780V5Vy6rysujYERg82L5/7bX5BeUxMVVkrFwM2ASNZ5ll2PzZlXNTMJFi6brCu5XonBA1iXc5CnO49wZ//KzFYG90kWJbufjs/MHXG4vGsRKdx0DOofBUpJx5vASUQnRxlk52vU8huiSCjg3exrIOU4IdwGOD1/uhF849TYhuqtDPPz//Y2Vx551Ap072/Mp995XhAUxLEPVD9w4eyxlYcGJt3TqnRyN+b+eiFa7eq0Tn8SEOLV1SU4GTT7bvc8WTSBD6ofu+J3p4JXo5Q3QeatTSRcpDIbo4S0GZv9q5qN2RxIuODd4X4FZPfqtEZweOv/4CvvrKvvi4447yPS7bujz/vH3/tdfKcD0UXoku3sAfugk21RddEkXnDhGxKnvHDpdXoiegL/qXXwI5OXEYl/iHj0N0tXOJbRNiUoguZaEQXZylk13vMz+7nTvzX71FykvHBu8L6CqVrCw7cPZDJXp4iP5//2ffP/PM/Aqe8jjqKKBvXyA7G3jggRj/sSrRvUmbi0qi6dyhxCr0qlXtNgZ+D9GPPdYOEtle/ddf4zM08QmF6N4P0devzy+7LyNVokt5KEQXdyy71Mmud3Fjt9q1AxmWSQLpQthfm4sGyJw59kZF7EnZogU8jX9+af/P3nmAOVF9UfzuLrBU6V2QIihNsIBIFVApgiKKKKKIiAVsiCgqCthQUUT5KyoodlCxIEpRBEVAEKT33nuVzpb5f+cNbzebTXaTTZtyft8XEpLZyWSSeeW8e89NMBcGvvnGfO6ZZ8K3fy3Mf/65yOrVQfwhI9HtifYAYnFREik4r7CnH3qYRXQkvrRvbz6mpQtxm4juWE90fLASJcJi6RIuER2ZLnfdJdKvX2j7IfaCIjqJHWh1dGiEywa7SIlv0sSsCu0IXGzbQCIERXT7o787l7UL2g8dVi52r1mFAqKeOjVECXiZh4v69U3vWhR3Gjw4iD/UkcwU0e0FI9FJtMYO9ET3KaJb1g89zCK6p6XLDz/QbZKcA4MNPfl2oIjueE/0MBYX1SL6unWhHc6//5qBIMOHs0ipm6CITmIHcuwgpCPMrXRpcROvvSYyZ47I6NHiDFxq20AiCEV0++PSSHTth253KxeNZwHRZ58N//5ffNFcbECk+9KlAf6RFlho52IvKKK7FkRINmgg0rJlkFknwYCitUjzBxw7ZEDHLLklEh20bi2SmGgKW6tWhX5oxAFgPIp2wjtCwCE43s4ljL7o2hMdXcahQznfD/QcDbNe3ANFdBI7tLCCsAgI6S4BafGLFpmPZ88WZ0ARnYQbiuj2h5HojkBb0rRqJdKwYfj3X6eOSJcu5uPnngtwlqjDrRw4CXY0FNFdy1dfiSxYIDJzprnAOGxYBAo+aqUYymmxYmHeub2xXSR6GMYNhQqJXHON+ZjiFskgvKLgC4R0h+EqET3ESHTUh9CxPqFYunhqOch6Ie6AIjqJHS5NuVy2TOT0afPxP/+YC+K2h3YuJJxgZq1nfBTR7YsLF9eQMu60SPSHHzYtV0aOjNx7DBkiEh8vMmmSyPz52WysIxQhkmEWROwDPdFdy6efpmukGPc++aRZXDisRd085xV299JyeyQ6QkNPngyrpQshsmGDeX/hheI0UItH6wuO9UQPo52LZzR6TvshjPk9RfS5c0X27g35sIgNoIhOYodLI009BQJMJBYuFPvjQrGMRBCMQFxq9eQo9OLakSMiJ06IG4A2iI+LomY1aogjuOwyM4ovkp8HE5nu3c3HAwdmszH90O0fiY786TAIZMQeQKDA2BddOqLRP/rIFHn+/tvM2IGXbFii0l06r3BUJDpCaBFCHiZLlxtuMNdT4Fscht0Ru+OCoqKOF9HDZOcSjuKiOAS4E+fJI3LJJaaojrp3xPlQRCexw6WDXe8ou7/+EvvjUtsGEiFcavXkODCKL1jQVQts2sqldm1zUE0C5/nnzcWH6dNF/vgjiw3ph25fwiyQEXtFobdta66L33OPyIoVItddZ0ZO9usn0ry5yPr1Ib7Rrl2unFcEE4lueRE9zL7opUqJNG5sPp44MeTdEbvjYBFdu9whQc+BTjXp6O8OUSvJyTEV0XUUev366baEtI5yBxTRSexwuYiOyYNjfNFdWkCQRAiXtg2OxGVtg7ZycYofejSBRWmvXunR6Ijo8Qkj0e0LQkLpi+4qEGH++efmY51toi/fqVNFPvzQXFdBcba6dUXeflskNTWHb+ZSm8hgItEtb+cSZhHd09KF4hZxsojuCj903b6j7gUE9BDbCC2ir1sXWlHRJk3S2xkEgugFDeJcKKKTqLJ/v8irr54LFnFhxMjhw+mrnY8/nt4A53jCYBX0d4gUbW3IRkhOoYjuHFyWpaIj0Z3ihx5tnn1WJG9es1+cNs3PRoxEtzf0RXcVM2aYzX/RoiIdOmReU8HC2fLlZuHiU6dEHntM5Oqr062Lg4JjB59Aa4LlgBsj0QFqegBkOGEeRlwKVuZdIKI72soFoICOrngfoi+6FtHR3+TEUkwHQiLbBZaHsCaEN/2UKSEdFrEBFNFJVBkxQuTpp80o7GPbDrtusItCorqeCSYMSLmCf+7KlWJvUOANq8LisThCSE7hRNg5MBKdBBlg1KdPNtHoWlhhJLo9YSS6K61cbrstfZjoa13lt99ERo0yx8WwOURUOooa47nffzeFeL/ZKZosgnMQ3wGhBPv29A52SwATzh20p5IlxXUiOuZcsFiDSPbzz2HZJbEjKFarL37tq+0gXBOJ7vn9hSiiYziCfgk16oJd10fc4Jo15uNGjcxFYWa9uAeK6CSqrFpl3kM0vnPjYEmVOFcJZdrK5corTb+yhg0dYumCnsNlYhmJIBTRnYOLItEPHkyf80MAIjnjqadMK30UgvM5EdHiKyPR7QlFdNeAlPbvv89s5eJvGPnAA2ZUeosWZt3Z//1PpHdvkWuuMXVVtAvI8oH3LGoofPGFGZyCYBQIxf9uLCI/SEd5e+4VKtvzlltEGjQwo6/z5ROpVk2kWTORTp3ElX7o8Ae3RZkZPZ8IY90EilskLQodq/VoEByGthBxlYgeYnFRtIdYZMuJL/rcueY9ItCLFzcf33STef/LL6YwT5yLk8sOEAvimZ45Mfl6GSyD5QWXiuigaVMzwgaRMQ8+KPYG3yM6M4roJFQoojsH/R26oF3QUejIEnZ8Om0EQaQkLB1eeknkuedEbrjBQ/iB95lekGEkuj2hiO4aJkwwLVouvtgUswMBWfrwlIX4Pm+e6VULcQMBhxDW0c7qtjYz5xTSkb5f1RGH2C8isyHcuwFb+aFHIBJdi+joU+DDj9+kAzVUkh0OtnJxXSS6/g5DjETXli4I7kQ/g+LXgaIDIOGHrkE/h3YWC5czZ4q0aRPy4RGLwkh0EjUw99X913O9D6r7F+V5+XZqIXEDGLB7i+i64bV9JLrLIk5JhKGI7hx0RJkL2gX6oYePfv1EihQxJzZff+3xAox9YTgJXwIWD7S3iE5PdNdYuSAKPRjBGpc3osjfeEPkp59McQMCOu4nTTKfv+8+kebNMwrDZWWXXCnzpHOnZHniCZF33jEjjxctMlPvEamJBTnsSwvLbopEt4UfeoRE9MsuM3eL7x6LNMSFUER3DmGKRA+luKgvER19l67B8MMPIR8asTAU0UlUB3FY/ccA9rmOy+VxeVM9f/fdWUWVOAcsliLdP0+e9FR/2LngfGCcaPv5JO1cSLigiO4cXBiJTj/00IGA3r+/+XjQILMwXgZRBcpZ7twxOz4ShsKi+C5tX1Wd+GPzZpFZs0zxvFu30PeHyx1F29q3NxfZPvjALBQJG/Rjx0ROL1olu6S8zCvaTr75LpcMG2Z6qkPQwMIm0u0x/tY/vxwVLrUpto1ExxcbJgN7+hUTt4jorsiEDHMkerB2LtCzFi5MLyrqibZ0mTiRQxwnQxGdRA09YK1USST33h3ymjwl1xVboKICMLCBn6GT0VHoGMzr4koooIToCEdEo7tILCMRBJMm3ABFdPujF9cwi09KEifDSPTw8sgjprULxg46opV+6A4AGQQI10J7sHdvrI+GRIjPPjPv4Weuu4FIAa/0xP07Aho3aO3FTSK67SLRMTkqWjRivujIbkhbmCXuQV/02gTbYbjKEx2+XwAFMQ4fjrqIDgEdQxi0qd41aq++2vwOMLyBdRhxJhTRSWwWgHfulFySIuOv+UgV+kEUNlI3kaXtVLytXDTwRXeEiO4i2wYSQfQiDEIpMDMm9gYqKEII4Wfl4Px5LAavWWM+pogeHnD5P/20+fiFF84VadKCCv3Q7Quqqmuhk77ojgTRd55WLlbKYNP6mZtEdNtFokfI0gXzLWjzsPbRRQGJi3BJJLorRPT8+dNXBUO0dEGGk+5Cjh8P7G/mzEmPQve2KkPG0/XXm4+Z9eJcKKKT2CwAI/9SRIpWKarSXQoVMtM+H31UXCeiay8tFBe1NYxEJ+GAVi7OwtO72sFtw4oVpnBUqpSNov1swAMPmD8faK1jxjAS3THQF93RICgEdi4Y2+vU9ohzbl6RXa0EN4rototEj5CIjvV82AEBilsuA5EO+kKgiO4MwmTpUqyYSIkSwfmi+/JD95X1Al90xBAR50ERncRGRPcQymrUEPnqK3Ml7/33zZvTQASdTvX3FtG1lxYKqB06JPZFi56YyNAEjOQUiujOwwVFhz2tXIIpoEeyJl8+kYEDzccvvSRycvM5+w9GotsbbUzNSHTLgNR0ZNNg0v/qqyJTp+Z8XzoKvXNnM2AwKjAS3S+MRE/H0xed4paL0EIrCq5ANXUgrvJEj1Bx0UAsXSBx6Eh0fyJ6mzamdS/6mVWrQj48YkEoopOYi+gAkQEvv2w+hUJAf/4pjmLpUtOqBiud3t5ZiFzUjbdulG0JQlwQdQqjwX37Yn00xK5QRHceLshS0ZlGl18e6yNxHj17mrVUIASNWXSuiAhFdGdEolNEjzooiIYx6bhxIs8/bwrdtWqZNtQIaunUybRRwrgchTtzEvD57bfm47vvluiRAxHdDSIqPiMj0dNp3Vokb14zU2L58rDumlgZh1u5uM4TPULFRQOJRF+92rRixwJx3bq+t0EWFuqBACxME+dBEZ1EbRCXlYgOBgwQue02U4OFP7qTsnx1YYkGDXxHKeqVTFv7oiNPsnRpx4tlJMJQRHceLqiX8Pff5v1VV8X6SJwH/CWfesp8PHLnTZIqcbRzsTsU0aMKNAYI2tAcIJbXqyfStavIiy+KTJhgRsohEh2vXXGFeUtJEenSJfjhHAQD1AZHwIi/KL1Y2rnguDAOh+AEb2yng+8CCyeAIrr5G7/uOvMxxS0X4QIR3XV2LjoqMYwieiCR6FqradjQlD78oa3M2M44E4roJCpgoIqBHAaulS9ITQ+L8Bjs4rWPPhK57DJz+xtvFDlxQhwVpYgG1xeOKS7qgohTEmEoojsPh7cLsOHSRUX9tfEkNO68ExNDQzakVJGp0oaR6HaHnuhR4fBhkX79RC6+2LRYgdaAoBYUV4SVYK9eIsOHi0yZYn4VEJYXLDCzQRFhh6RCRKojkzJYK5e77oqytVWAYwdEIet1XTdYuujpFiIjISC7XUT3tnQhLoEiuvPQ32WU7Vy0VqPteP3RoYOZoL9oEeMFnAhFdBIV9EAVA9e8/+0zw83RsniFRSA1BoMaWJwg3bRHD2ekW/orKqrR0TqYvOiIEVvigohTEmEoojsP3S44VETX7Xu1aunFiUh4gfhzb2czV/mduMdESpaM9SGRUKAnekSB6D1ihKkxQCRHlPm114r8+qtpi3TwoCkEfPihSN++pn8r1jUwLNdj8e++M+2DkWUDIT4QMPSbPj1dRI8amFPs3Rvw2MFNvui29EP3FtHDPBGEVRF+60uWiGzZEtZdE6vicBEdmUMIVnSlJzraiGBWerOxc8muucnOD10DLUsL7Vywcx4U0UlU8GnlAuuPXLl8jpsweEeKDHwVsZK3fr3YFkTV674bdi7++gGsJ2CiAyHdtjg84pREAYrozsPhhUXnzjXvGzWK9ZE4m96t1kqcpMo04zpZu47VWx0RiY40juPHY300jgGTf4yfa9Y0xXFEosPvHJHmENAhpGPoHUiEOLSmL74wH//vf+mPswLb4BiaNROpXFmiBwR0VHtLSAhogU2L6GEIYLSNiG4rKxfPxffTp812IozgJ6IFsIkTw7prYlUcLqJ7dqOuiURHZ4YVX7T9IWa1QYdB94HzqJ3BfIHXUE8Bi3CBZJ4y68W5UEQnUSE7P3RvMLhBhAw09l9+MScBTzxhFnKwG//8k77KiageX2BCoy1d/vpL7AtF9IgzY0Z60S7HgWgyPeOjiO7MSHQnpBZ5QT/06FAleZ10kElpoh6xMQiV0zP9CNg1uBHU3sHYGTWFoBdBNB092oy2RaR5Trj+epHnnjMf33efyLJl/rdF066tXLp3l+iix5wIt4YSkg1uikTXdi62i0RPTDRDOQEtXUiocwudcqAvfodauaCGDCyrXAHEkzD5ouO86YXfrCxddBT6JZcEFvGv25lZs8wMMOIcKKKT6IvoeokvG5EMRZBQOb1dOzNC+803RapXF/ngAzNtySlWLo4qLko7l4iCGgFIQ731VpHx48V5eEaT6ckTsT+69sWZM44bRaIv0m08RfQIs327PCwj1cNPPjH9m4mNoS96WNi7N7/ccUeCan+QFYPAvEGDzAzOe+/1mfAZFNhX69am1eDNN/sPZkHACGpD5MtnCvlWzmBzk4hu20j0KPmiU9xyAbANg5COhZlsCg/bFdf5oUewuCgsXfyhNZpAi2bj8CC4Y67w888hHyKxEBTRSfSzqIIY7KIYEiLRkYqKx/v3izzwgFl8dOZMcZSIriPRMQmy0yJBBhiJHlHwm9ee+fffb6aUOYogo8mITUCIh06xd1jbsHKlmf6Jom3ImCIRZNs2aSW/S40S+9Q5h5BOHCCi0xc9x7z2Wrz06dNSvv02XgXl3XOPKQAMHixSsGB43gNd8Zdfmjb2EJ3hdY61bm90FDqE9qh78urgnAAFMu3o4AYR3baR6J6BOREQ0RF1iuK5+C1PMhOciNNFCCiauvCDQ0V01/ihx6i4aKBFRT256Sbz/ocfQjk6YjWc2ZIQ29u5eINUVKSRvv22aYmCxy1binTqFJbFx4iB9FZt55KdiI6VSggxiK5DBL4toYgeUbCYBDBZxu+ka1czS8Mx0A/duTg0S0VbuaDeBdd9Isz27QIr54evW5dm6eJLzCM2gcVFQwKR5s89lyDJyQlyzTWpsnixyEcfRab7LF7c9FpHICcEx1dfzfg6kox0dlzUrVxyMHbQugsikOEb72QYie6fG28073/6KSK7J1bB4X7ogJHomyIuoqNwK+zRgolE98x6QV2SkydDPUpiFSiik4iDAapOlQs2Et0TFBp95BFTkO/TxxQssKpXo4bIgAHpVamtNsnB54c/GUTyrMDn0YXpbGvpor9TfBnMtQ/7gowW0bGYhIESPFCHDBHnQBHduTh0gY1+6FHknNh6Z+fTqv1D/zptWqwPiuQYRqKHxNSp5n3t2vvll19SVFRtJLn8cpH33jMfDxxoCgIaCOsY62KttEULsfzYAVH6WlR2enFRW0eiR1hE79DBvP/tN3MhiDgUF4joesrtWhE9CpHocBZA4AbW/3VcUCCgb65Uycwk55jVOVBEJxFHt2sYsKr0Uj3YzaEvGSJiEIG2dKnItdeKnD2LlFaRatXSVwitZuUC+xksAmSHXtm0bXFRfMG6B3eYWBZrsHgE+xb8jnr0MAuGgVdeEfnjD3EGFNHdUVzUQcB+C1BEjwLnhJSC1ctJz57mU++8E9tDIiFAET0k9GT8ssv2qey0aAC7GPisY1EfmXDazl5budx5Z4wycoK0c3GTLzoj0f2DuRnOC+zB4I1OHIoLRHTXRqLr7xSR6OiYQgB19wBq0PpaVMuJlQtA/8xCxs6DIjqJWt+VVhA7TEIZ/GcxiUAaHvaNmoTPPSe29EP3VVw0xL4gdujvNUKD3uzAeevWzVycPnBAHIOOQod3PtYqOncWJSTpz+uIwkgU0Z2L/k4dZOeC9gXR0KBhw1gfjcNBdpOuaFihgspGw8QE0bhZFYEiFoaFRXMMJvi6LlC9evui+t4jR5pR6RhzoIAo1kD0+CQmVi45HDu4QUSH3R9qSQFGomcG9tjXX28+ZtE/B0MR3bkgxBsrt1gJCzFIBwtqsNVFtLmvfmHOnOCtXLx90ZG15SgbVhdDEZ1EHN0Qqb4LZlB6IhwGoQyTaKTj6cHP5MnWCmqC3UYwIjp8dRFpjKAa2xaNhL8OgHF9DPjsM7MIFs6fkwbFOnW7bdv052DrgvQzjBu0oG5rKKI7FwdGouv2HUWvixWL9dE4HC2ioChKoUJqkbR9e/MpZKYRG3uiY2HNttXUYwMm8xhOly5tSKVK0bXOgz0h/NHR5i1caC7s4+vDOFenw0cdiug+2XdufSVXLjOL17YiOtqICBXA0P0IxC3bj6FJZvClukhEd11hURTqqFnTfPzvvyFrSroP8w7OSE5Ot2/MiYiO6PUSJUzbM2a9OAOK6CS6RUV1ymWBAmFt6dHoXX21OcYaM0YsAbyvYDkTjIieP78Z4WNrX/QrrjDvMbuKMshG6Ns3/f9O6ajwW9JRZyiyq8FlNG6cSJ48IhMnirz/vtgbiujOxYGR6PRDjyJ6dVxHL6PA6MPm/SefsASHLUFoLCLIMDvVnhMkILQf+TXXGCqaNhbrHxh7QHTQl2bMotARgagbANq5+PRDL13ajLq2Hfg+8SND6KZeEQgz11xjjqEReLNmTUTegsQS/G5OnDB/R4hadiiu9UQHWjgJUUTPyhcdcYH4GeH8wgkhWDDUueEG8zEtXZyBHbvUgFiwYIG0a9dOihQpIgUKFJCGDRvKN998E9DfGoYhU6ZMkQcffFAuueQSKVy4sOTPn1/q1q0rr7zyipw+fTrix+9YEd1TJAuzieMDD5j3H31kzslizeLF5nGUKpUecBUIiOqxtS+67sxiIKJDVMEqL4IVwZ9/iiPAYgCaHQTzenfel15q1gQAjz8usmKF2BeK6M7FgZHoFNFjEImuIxPPiR9IfILTi/ZkJjYCs0rdLlgphdBGfujXXhuZ6NxAuO46kRdfNB9DhOzSJUYHooNz4HMXRHCOG0R0W/uhA6Tmah+aCFm64Geji+E6KXuVnENHoWMBHlHLDsW1di5REtF1YGOjRjlfkNSWLhDRmfVifxwpos+cOVMaN24ss2fPlltvvVUeeOAB2bNnj3Tp0kXefPPNbP/+zJkzSoAfO3aslCtXTu677z7p2bOnnDp1Sp599llp1qyZnEQeJQlNRA8zaJxKljTH01YYCHn6oQezXuDpi27rzgwDFyjaUQKR2N9+a87L0UGhk0OdEScEvmq/UUSh+/otPfqoafMCof2228zIdVuOABFRBiiiOw/9ncLOC+EcNgcLpP/8Yz6miB4FtMjqIaKjLXzooXSf5ghl+5NIQl/0HGXcLVmSHokeS55+WmT4cJGvv46hpZVWO4KJVvFwdsD5xEKckyPRbSuiR8EX3dPSxQpzRxJJT1nn4moRXWfAQ0QPUZ3OTkQPtqioJwj8QAY5dIkw6P0kxjhORE9OTpZevXpJfHy8zJo1Sz788EMlnC9dulSqV68uzzzzjGzNZrCekJAgL730kuzevVumTp0qw4YNk5EjR8rKlSulQ4cOKsr93XffjdpnsjPQSnQkhOq/IiiiIxKmRw/zsRVsLbSIHmzBOd1AI61QFwSyFZhJwbAWLFoUtcFD797m4yeeEGneXOSyy5xj6eLLD90TiEmwNEDK7sqV5jmwHdr7CG0DRhnEWSBCECFfDolGX77c7N/wsbQdI4kgetzmIaKDu+4yvwMUeNUWF8RGaOGTkegBo3/nGOMg0zGWIFgBFnodO8bwIPRqZv36Qf0ZMhbhUQsQcOFE9PzLlkVFoyii6+KiqDUQxdgfEg1c4Ifuak90ULeuGUGHFVGdmZRDqlfPLKJDlw+lqKhnPRE9j//hh1COklgBx4noM2bMkI0bN0rXrl2lXr16ac/DkgUC+tmzZ+XTbPJ+c+fOrSLOixYtmun5pxF2oWwiHOITEaW+C7qqOp05jBgJlF690icZsS7M6RmJHgwo/qNFGd1o244o+6I/+aTZb1arJjJokPkchHRg90sVv2NcNigM1aqV/+0wmUZRVfDee2Zkvq3I6QVD7IODLF20lQsWSW3pNWs39IJs7doZnsa6DIoqg3feicFxkfBEolNED9rKpXXrWB+J/ccOTrd0YSR6YFSubM67UCBXX1/EIbhERHe1J3q+fGErLgodARw6JHLggPl4yxZTY4C7VJBrtZnQC87InLeC9TDJOY6b+v3xxx/q/jqY9XnR+tyIMxQBHEI6yAVFiwRn5eKpPDRoEJH3w/tce625ajh6tMS0jgkaXUQI56TBtb2lSxRFdFzyH35oPkZRWfSlThLRdRQ6fNiyGxyh2dNR6PfcYzMrGx1NRhHduTiouCj90KMcYrVqld/Urj59zL4WtleISCc2giJ6UMCySEeiU0Q/d0IWLMjxvMLpIjoj0QOHli4ORQfvOVxEd7WdSxh90ZEIrZucdesyajHI/sqfP/R2Bt8RxqqwQiP2xXFK8PpzM6hqeinJgzJlykjBggXTtskJH3/8sV+R3pe3Om6a/84tEyYlJambG1i7Fus0CVKlSqok7T8ouc9NhJPQ2EXoHPTsGSe//ZZLPv7YkGefTVY2L9FmzhwYV+eSiy82JF++5KA/6lVXxcmHH+aSWbNSJSkpRexGXL16qnExFi6U5Aj+1uH93asX3ilOevVKkauuwvny9KLPJWvXxsn27UmWjsTR7YGvduGXXxLUeue116ZIUlL2pr+DByMjJ0EWLYqXbt1SZerUFJXlZnVyzZ8vuGqSL7tMDJe0j24joVw5tXKfsm2bpNr8O/77b7PdqV8f7bsRs/bBDcT9/bfkMgwxqlSRZKS0eZ0H6LBt2ybI5Mnx8s47KTJ8OM3R7UJcuXLmWGHLloiOFZwCCtbv359bChY05Ior0Pa4u22AypH7yBEx8uaV5IsvDnpeUamSOUdZt86eY+3s2LXLHD+WKBH5fipSxJUtq9qI1G3bJCWCv/M2beLk9ddzyZQphpw6layyP+2M69sGcOqU5FqyRM0tkmD54eBzcfSoOSbNnx8ak7iO+Hr1BK1d6oIFIbcT1asnyPbt8bJqVbLUr2/IX3+Z/USjRoHNw7MCIvybb8bJvffmkuefN6RNm2SpUUOijqvbhTBh8y4iM0fPLcXBvsUX5513Xto2wTJlyhT54IMPpEaNGqrQaHYMHTpUhgwZ4rPwaf5Ql7JswsyZdTFMFcNYJwveHS+N4JNeurRMj2CEcq5ccVK06HWyd29eGTJkiTRuHJo/Vk4YN+5ilKeQcuW2yeTJ5ypABcHZswinvk5lsH///TTJm9deg/tcJ04ILAbjtmyR38aPl6QImbR9+mlN2bChmhQvfkquvnqGTJ6cMTfqgguuli1bCsvIkbH5HQTLb7/9luH/SUnx8vvvMFCLlwIF/pLJkwNru+69t4A8/vjV8uefueTee9dK587nltMtSuKhQ9Jm+3Yx4uNl6oEDkjJ5cqwPiUSAGqdOCewGt86dK8tt/B0fOZJHNm40jQ2PHJmWqd2JVvvgFqp/841gjrHj/PNlkZ/fTf36JWXy5Eby0Uep0rjxr2rxmlifQtu2SUv0dZs2yRQbtwnRYsIEBAjVlJo198j06eeyt1zcNpw/c6Yg/vBQpUoyOwfn4PhxWIxdLv/8c1AmT54rTmPz5msQWymbN8+VyZPtafZddPt2aYbAtPXr5dcIthEpKXFSsGAbOXQoj4wYMU9q1jwkTsCtbQMotnKlNE1OltNFi8o0FIzSGW0OA9n3R450UCL6woUzZMuW0+I2ip4+rdqJs3//LdN++cVMT8whiYl1RKSKTJmyWUqWXCXTprWAgiiJif/K5MnnPLJCALa9l13WUBYtKi2dOx+ToUP/inqw28mTJ6P7hg7EcSJ6pEAx0S5duihx/ttvv5XExMRs/wb+6Y8//niGSPQKFSpIixYtpDiuIBfw9ttmq9C69YVy5WZz9S5fy5bSrl27iL7vwoXx8uqryOq5XF5+Od0bP1qMHGl+7k6dzpd27crlqEN88UVDduyIl6JF20iLFvaLIDEGDZK4DRvkuuLFxYDHTpjBAsPEiWYTNnp0bmnfPnN2yPTp8fK//2GidJm0axf930EwK8IY6F577bVpllFgxow4OX06l5QpY0ifPo2DGhMgA+Pee0W+/vpiGTr0QktH4sf99JP5oGZNaX3zzbE+HBIh4pGOPWGCVEpIkAoR7gMiyaRJ5oVYo4Yht96afVZapNoHt5Bwzq+rXMeOUsbP7wbFmsaPN2Tt2tyyd28b6d2b0ei24NgxkUcekTwnTkg7+Ni5sipa4Awfbo4tu3UrpcbRbm8b4s952xS57roczSuKF4+TESMgQJWI+Lwk2mAeYUanitx001XK99uWoL7Zk09K3sOHpR2ywCMYIt6+fYKMHw8/5EbSrp29+xC3tw0gHsI55kNXXy3tdPVYBwI9NDXVdGi+6aaWUqiQuI+rrxbjmWck75Ej0g5thraPzAGbN8cL1uuSk6tKw4aVZNs28/p56KFLpVSpS8NyuEiMqFfPkHXrisn69e3l8cej295odwyScxwnousIdH/R5vjReBcMzY6FCxcq+5b4+HiZNm2a1KpVK6C/g9DuS2xHZ+aWDk3X87joolyS8LUZNRPfuLHER/jzP/CAyGuvQYSMl61b49M92aNs0dioUYLkzp2z5UXMJzGYmzcvl/K6th0wg9+wQaXSSZgnJ8hCuv9+81zfdhsGDb6bsquvFiWi//VXzr+HaOLdNkyfbt63bh0nefIEd83AE/2DD/BbjJNffsmtrgnLcs7DLu7KK13TNrqSczmL8UuXRrwPiIZ9f6NGcVH9vbpp7JBBCTp3whMaN5aELD7/ww9jkoPCygny8MMJLPhqB3TV+cOHJTcMnF0SYJLT9Ya554Kl27XLOKZxZdsAzmW1JjRsmGXb4A84wIAdO+IkOTl3Wk0dJ3DkCGxFzccVKuD3IfYtSJ4rl8QlJ0vugwfTC5RHgBtuMOddU6YkyLBh1p8zBIJr2waPosPxTZrYesyZHTqoGGOeokVzhxKEbV+g/6G46IoVknvZMnh15XhX2l5l/fp4FZQJqleHLh++3xAWNd96CxbEIoMGJciNNyak9UfRwLVtQhhx3BRDe6H78j3fs2ePHD9+3KdfelYCOlZxU1NTlYBeP9SyvC7i9On0OjAXVkmFGhy1SmwXXAB/O/OxLjoZLdasMatkw7Gndu2c76dpU/OexUUz88YbIkuXmvPvt9/2v10z5HaJ6lMFY2+7gUJ5OsoyWDCIuuUW8/F334m1YVFRd4CikIgiQxFBVF62KSwqGkU2bRI5cABRCWZEYhbcdZcZyIxiUC7OYLdvcdGtW2N9JJZm5kxExpn18RxeIy8woBAjSCOEsQPWbLT7J5oaJ7H7nOsAPp+tFwfgc1CuXFSKi6JYL94OAcybN0f0rUg0FuD1qmMjmMk6Fx03ivGPKwX0MBcXveii9ILTf/5pPm7cWMJOjx6mVoWuDIFvKfZy7nU9jhPRmzdvru5/1eXrPYAI7rlNoAJ6SkqKTJ06Va6kwBMUGICgD0NaUcmDa8xWHiO5OvCaijyIVAZjx6ZHY0Rx4Vu15aFkHSISXQs2mDjZjgiJ6Ci0rksNIA23VCn/25YsaS5Mg7/+EluBuQIG8ogsyKkbjnZGweTbsosInqkbbGOdDcre63Zh1iyxI8iCSc80ivXRuAC9+H7ZZaZHVRZgrIGJCHjnnSgcGwmviI7FNeKXc1MYJfQRMSMpzp4VKVHCDOvLARCcdKYqBBMngcQOULas2J8KFaIioiMwR4tlsFUmNk+F1wvwl4bHgsMOIrqr0fOLEEV0DEny5jXH++PGZdRkwgn6HwR64nuD1gNNg9gHx4norVq1kipVqshXX30lS3SEwjl7l1deeUXy5MkjdyFc6Ry7d++WNWvWZLJ/+ffff5WAnpycrAqKXsWQs6DRA1IMUOPmn5sII5I/SikksD+DJRb60O+/l6iL6KHqgXANQgTJ8ePmXMEuIAp/9WoxBy3oITDo3bs3bHorfL6xKILV227dsv8bHY2uV5PtwtSp6b8jDOxzAqLV4LuG1W1tO245PFM39IoHcS76grSpiI4s0VOnRIoUSY9WIVEQ0ZHFEAB9+pjdDvwsfSQkEiuC1EFAET0gEd2W9n6RzGBr0CCk8Euni+hWrodjNREdaOtsiug2R0ehQ1gNoI6dndH21jqrxrWEKRIdwWvatGLHjshFouumbfhw8/HAgWagILEHjhPRc+XKJWPGjFH2K82aNZP77rtP+vXrJ3Xr1pV169YpIb2Sh08Sin/WqFFDfvjhh7TnDh06pAT0I0eOSJMmTVRhjsGDB2e4jeByUcB+6CrtNAb574gCh+AK4A1tNxEdKYW60bZTFDWEbSwATPqjULrKFGKHpsH3CHsbBLS+/35g8yadeGJXEV3bEuUUHY1uWUsXPRHGQDeCBaOIRQjwgoQdGLpZqw0odVcGTZee29brUCGIafurzz6L4HGR8MFI9IDG07ihi2zRItZHY7G2ASJ6CDhVRNd2Lo6KRI9CG9G+vXk/Y4YZxERsLqK7IAhSx4G6XkRH1BgG5lhB3LUrpF15Bskg2Qme6JECGZRYHMe8h7Yu9sGRU8AWLVrI7NmzpXHjxvL111/LqFGjpHTp0jJ+/HglqGcHio8ePnxYPYaNy5AhQzLdKKIHF4keKxNZiOhoT6HXIOA1GsU9li8PnzOFTh+yiy86IjQRLQUbn8ceEzlzacOwWbogAOXJJ83HQ4emB68FqtkhMcVPvWHLgRQyXVQ0J37onnTqZN7DI9iSxbjDtepE7AFWBtEoo4PIYpA7YIBI375mkWgrQT/0KHcoixcHFYkObr/d4guHJCP0RA84Ch0WUq5P2fcViR4CThXRHRWJrgtMaWE0gqCoINyB4BT0++8RfzsSKVzihw4oop/DM6M5RN3BU0SHFhNJr3nse/Ro05IQP1vaEdoDR4rooEGDBsqGBTYtJ0+elPnz50uXLl0ybffJJ5+IYRhy9913pz2HSHU8l9Vti42LokVdRC93UmTVqqAnwuEARdx1VEE0otERcI0VRER+hKOAvGdxUQjTdsi8x8BTF2kacaxnWCLR8dkffNCMCsF4qHfvwP8W3wXSsrAPuyxGQKiD4I3Vb52dllMwnsBgAN/Lzz+LY6PJiE3AKF8XiPRj6bJokcjIkeZjXLNWWvxxUXBT7IGAjoIgUIG00BoAHTqYrnGwFdNDD2JhGImeLfRD9wKBTqggHEYRXWfPOgVHRaLrwkAQxvbti+hbQdDS80ZLjplJYKryihWuGaxRRA+/pYtn5HmkrFy8h0Fvvmk+fuYZ2hHaAceK6MRCIvrZVaaCiaX90qWjfhy6wOinn5qBbdEKqg3HqiUcLlBLDZbidoiS0Q4NOvLlpd+vkt1SJuQV4a++Mv0JcS7GjDGtboLBbr7o2soFE+ZQLSPwO7SspQsuSJhMA0aiu4csfNGxCInoc9Q/ANBQkVZtlcg+rJ/jmuLPNcp+6EF0qJhIas3Fcm0eyYxOK9u506ZV1CMLFsB1G0gR/Ry6ujP8IosXD4uIjkQIHQTiBBwViY6VAL34jrTKCKNFdMw79FiE2AhMxqE7VKnikAsga3SgCbOUwieie0eiR8s94ZprTFuXHj1o62J1KKKTiNlR6GD9C3f/FdPVYEw6sMKHwJUJE6Ijoocr4B7VoXWQzR9/iOXRxzh4sHncx08lyLPyimnbkEN/MiwgPPKI+XjQIDPVMli0pYtdahlOmRIeP3SNFtGx3xMnxDog5BijBAxyw5G6QWwvoqNSPfQRTAb071ZHYVrFygWZ5ZysRFFEz8GKhWUXDklm0P4jdQB9gQ6fJRnaHWThlSxp1msn4bNyAYjtQZ0diKVOSjJ2VCS654BYR5lEEMwZ8JvAOdSOYsRGuMjKBTASPfwiOrK4ixY1hyeXXSZRAbEiCBSErcucOekZucSaUEQnEQFZuZgPQQQuu+K3mIroiFru1Ss6li6RsHfWEXWTJ4ulwcqp1jyuvlrk7bfNx2OlhyyQK3LcoT30EIr9mkEo/fvn7Ni0iI6AeKsXCsKgHf7tAIVGwgEm3qinrD3rLUO4UzeIPdA+VStXihw4kCFy7umnzcevvCLSvbv5WNdZiDX0Q48yIaxK33ij2fcvXWqPLC5Xg3QrvYhKX/RM6D4bY0EWMw7/YBtDDwS0Aye1FY6KRPcU0XFBRDg8PDExffxNSxcbQhHdvUAsCENxUQjZ0AzQ1SALPpqJeW+8YT6mrYu14XCMRAQ9EK1a1ZD4+bFXHnr2NCfUWNnTNmmRED9R/BJtN2xYwp1WiAzGM2fEsqCjwfFhwA4vMeged95pvvaYjBBjQfCWLogiRPZArlwiY8eawWo5AZkI6JiwsBOFukRhmTDjN1SqVHj2aVlLFx1NRm8MdwGz/1q1zMd/nctUEhHU/cZkAL99WLq0aGFe85s3W0PcoIgeRTD5wWp8DjtUODzg92O5No/4hr7ofqEfuhdYUQ1jJLoTi4vClubgQYdFokMQhbK1f39UwsM9LV2IjcBETy+yUUR3Z3FRnbIeYjQ63ICCKMcTNhD4CVsXBL7dcw8tpawKRXQSWT/00sdFjhwRyZdP5JJLYnY8GEQiMi2S0ei6z4Y2VLBg+PaLKGIcP2w4rOzprY8NUd86qHjoUJH8eZJkrjSW8ZMKBLU/RJ/36WM+HjAg3Q4xp9jF0kVnqobLykWjRXRE1VhmMYZFRd2LviDPNRzTp5u1D6CZvv++ueiJdlQX9AlXBsWaNWZqJmpkBCtK6NIOFNGj2DbUqZPjDtWSC4cka190iugZgF4I17NwZqbZHvxGUFwS0RVh8rdxmogOG0SARehixcQZ4MNAWfL0PIwg7dqZ97CX01H9xAagmjhMwjFugPeei0R02gyeQwdehCiixwpoKKNHmz/h2bNp62JVKKKTyIroubemN2g5DSMOc4HRzz8XOXnSUvat2Tam119v/bRC7YcOKxdN+fIiz/QwjRmfXHaHnDgeuCdD377mRAC+ZAMHhl2zsySoqfbrr+bjtm3Du2/8LsuVM8eWECxjDibBukpj/fqxPhoSQ190WEH17m3+Fwtn2tLQM/oyXCL6iBFmEBsiPYIZX8NiCccJQQKZNiSKRUVzSMeOZvMCEYTarMVhJLpPdA3FunUdZMsRrgU2nBR4RoYBp4no2g8dvxlHOeVF0Rcd504PTa1up0k80OnGmPQgGsMF6MKijEQPry96LIEF67Bh5uPnnzej0om1oIhOIiuiH19imdA9BDAgNQcrtl9/Hf79a2EyEtljOq0QIroVvIG9QWSztjrQYrXm8VdKSiXZLDtSy8vrzx0LaH8YsH72mRmV+vHHpj9huDQ7ZAFbtTNauDBOFcAtUiT8wdk4l506WSgyU6djI+2O4RPuQ1+QS5bIa0NOKd8/ZNy8+GLGzbSIPnOmGQ0e6iKV/u2j+HWXLumTj+zQ7Rs0XUeJElYlDKvSEEGaNDEff/99mI6LRFZEpyd6Bmjl4oMwW7k4UUR3nB+6Rl8I6JAxWI4wdghgIu72Qwe0c/Ejouv0UZty333m0AjzFNpKWQ+K6CQibNxo3lfdOcsyIjpERDRIAHYB4WTHDnPBE+KKTgEMJ61amYUt4A0MOwIrzmkQpQkP74svzvhavmL5ZNgF76rHr79XINtAM3QWOmvgscfCF9mPwlGIxIYQp/UZqzF1alxa2jYylcONtjeYONEUEWMKrVzcDRTzatVkvVFVhr6ZJy1K3HsSgGBDtCuws0JNi1BAFgrqmCKaHANT9FMPPhjYwiT90KMIVjv05CeESHRwyy3mPWprEAvDSPRMoF3SmWkU0SNbS0WL6Bhjo/lxSiS6Y/zQPW2fEHgBk+Dff4/42+kAJlyHgdog4rp97z0zAfunnyJ6eMQXFNFJmIqLxhp8hK5dzcdffhnroyHeUEQnEanpoUX0C7dMD8tEOFz06GG6ymAMjvT8cDFpUrrAUrq0hB34YukiaVaMiPDlh+7JzS0PS3P5Q06fTZAnn8x6X3gdixIQvb2jUkMBx2V1X/Rff42LiB+6pmlTkZIlTb/5mNvasKio6zGaNpM+8q6cSUpQC0edO/seRGov4FAtXb791rxHRsa4cWamL3zYA/FH1yK6i+ZlsQPVv+G5hhnhRReFtCudfYN5tRaWiAWhiJ6JZctMDQB10nRtCNcDhVun6IdxAR7Wg8h4xO6d8BN0bCR6lC1dgq1JhRJgWLiFLR1+pnis54ckSjaROp3EIrpDNKAneuSKi8aaO+4w7xGJjrk7sQ4U0UnY2bnTjPbNnStVKsg209jJIiM5RDTedJP5+JNPwrdfHW1www3iykrxvvzQPYmrf4WMkMckTlKVlc5ff/neDpYNuvDrRx+Z/WAkHCRiLiD74OjRPPLvv5EV0SEa6gK7MbV0QRQRRXTX83Xe7vKbXCeJcWfk3Xf926SEwxfd08rl1ltNMfyFF8z/Y8KbVYYPAlkgrEDQZ+JElK1ccNJD4Pzzzd0gOvCHH8JzeCSCIjpS0bQi4HJ0e4cAinBY2jmClSvNBTaoRSEusHmCZgaBG06xdHFsJLq3iB5hf0v8LgK1dEFyJUR3WIchWAtBVcj4hJAeBb2feEY71Kpl+mK6AOgtyAQHjER3li86QG3cSy4x2xJmVFoLiugk7OgBaOXChyWXpFgu/71bt/SoRGh5oXLsmMiMGZEX0fVADpWao2AFGFQHrrPnvP3Q07jiCqknS6VX4ufqv48+amYseIJIj3vvNR/DYsHvvkJA7xPjrEBTM6PFkiWlxDDilH1FJCc+2tIFgpL3dxA1YICNkB0UBcMIgbgOfP19vzX7hmfjXpELyxz3u62OREf2EIoNh2LlUrx4elbPU0+ZVlnQZG67LX0i4m9eVqeOmRVErF9U1FebZ4laEMQ3BQqYaVIAlX8J/dB9oRffUfExxAU2f5YuOpPWzjg6Eh3RMPnymRFbWFSJMNnVpMJzb75p1t/YskWkcmXTeg4Zr+h7MEdCkWtdJJhEEBdauXjW9WEkuvNEdM9odFq6WAuK6CRyRUXjz41ELSaiQ5DBai2iC3V/G+pEB4OkatUy+4GHEwzMatY0hc9QbQ3CyYIFZqHOEiXM4/MJllFz55aXzjwhhQulqjmydybAwIEimzaZAWmvvRaZY8X3g3k6xDKr1RtZtKiUum/bNrLv07Kl+fuHGBmO339IE2EMchCyQ1wHrvc9+3NJ9Vwb5cnUV9OVaj8ZRIjwAtojOFi++ca8RyaSrjeAzIzPPzfbhKVLRfr39/23+jqxWFfmXMJQVNSXiI6Mqf37w7JLEgk6dDDvA/FXChAsliPwIJz2fdEAQQU4bkARPTq1VJxUXNTRkegIvtBpr1EI8cZCOzJBfNWkOnjQDJ564gkz2w1R55jfYI0H4wzYxiH7E+0QtkO2bShi6QMPmLWdpp9zSiVeuFBE14lbWIeORC0t2+IgEf32281MXSzMOcFuzClQRCeRKyr632JL+pJhMISoAE9hJRRQpBFggOTPjiASERF28UNPO+l16khJOSDPd1qhnnrmmfTOH/rZ22+bjz/8UKRQocgcK47PipYuyIhYvLhURK1cNChQqzMmYhaZqSfCtHJxJVh4Q+EtMOrqbyRRzmZbqCAUSxdMbpFira1cPIHI8Nln5uP//U/kxx8z/z2LikYRpFmtXRvW9qFKFXMRBu2s7q+JBenZM31ghhS/HICUZ1yvr7wicu21IkWLmrVAMJ/WorQdwIIPgjPghogADeK1AB8BEd1Jdi6OjkSPsi+6v5pUaE9QvxDPYYozapTZdHlaaiBGBBaWyCRG8A7mcDmpyYQodmTCwe4SCyQPP+yMArhhBQ2mjo5yoYjOKHQ/xUVxwdi8IE6FCunaBRbmiDWgiE4iF4l+ZqUZMQB/CouhhRRYuoRiaYFBjPYo117T0RDRp0yJoRVHkH7oaaBUvYg8VOobqV7drP/y0kvmwPKee8yUyLvvjnzUlbZ0sZKIvmhRnPz3X6IUKmREZeynIzMhLEbYUjLq0WTE2qDdQjQVfndIUWzZ5ZyFQ4AiOiLRg7Xh8mXl4j0fRyQZQFu0fXv6a4gg04EsFNGjKJJBOcQXFiZo6WIDcIHB5xr+SlCeAmxPsCj3+utmFlexYqZ+8uyzZrQmsuQgcKHN6N5d5Lh/1yhLoRcLkTkZ6eAM24AvT9t3RGAB3imR6OhbXSOio8BSFC5qzwAmtCVDh5pznh07RM1nMKTFuMbXtYr2B17GGMOgaWvXLvAsUESf33+/2Q4gAhULwmjjEBGPLDriAdKNMKHEuMFFK4/azoV+6F4gNN8hxUUBLV2sB0V0EjkRXTaYwilCXy3GNdeYNUcw0AwlOgm+dwicQ58dDYEF74HIKlRo1hnvsQRRXzgHIFsP83OpVXkWz5e33jKfQvQ5fNAxIMRgf/jwCB+wx3HiuHH8VmDaNHPk3bKlERV3EwzIMb6AWAgBIqpgkAvvDMBIdNeBCPRFi8wBP3xE0y5IzEL9mZKfCyxCRBjsOIK1ZtAZR506+U93ffllMwUb7XnXrulRXkjNRoAT7Kq0yELs44fuLaL//rvpx08sCBQorGKBjz/OUjhH9ggyqjD2wlos6hsgKBV6GkQmXOsjR4qsWGGO82ATB7s4vVhmdeiH7gMIIVAwUS04Aj4lnp7o4aiXFCvQh6HPcrSIDpEUijI+aCgeKUHWpMK8ARkuyKRFOwRhC8HP2cWKIZ4MdYgw94RVE9YA9HpxdtHnyM4FDz0ksmyZyNNPm/8fPNh6tZ1iiqfvnotWHnUkOkX0LCxdrObfmgNgFQU5bfly80ZiD0V0EvYICG3nokR0i4buoSGCN26oli46NRxRCtHwIsN76AAMK1i6oF9CZAUmsiiGHkgkOv6oXVtDfQ6I2HpVFamQWCCINKhjiffBQNYq9cumTjUHfK1bR2fmhppMelKgbS6iBhRQfPEwor7ggii/OYlEmw/7hPHjTd0LwhVqGgwaZHqM9+5tZpgg+wftpJ4AvvqqSOnS55QLzPQxG8xiVok2W0eRB2Pp4mnl0rmzZLl/fAakxGJh9YUXMlu5uGhe5jgRHfUwULMDTc+kSWHdNQknd91lFivAhbd6daa2Bt8dBCtEleMxBASIBxDUsTiP7gULbcg4gOiEcQkCJnQNFtghIJPPyqA44bp15mmAHzM5h+4fIrT4joUWjLHRFaFmpV3RzgUY5yIK2pGgM46ipQtslTB3gHA+Y4Y5hsZ4B9HggdpP4m8wZ0QEO9yqEMziK0DWO/oc9bCwToCxFYJf+vQxfdHxmhbYiTv90AFFdHf4oqM9RxYLYDS6NaCITsIKihVCnIyXFKkkWyznh+5Jly7mPdLscuIthwndTz+Zj7XHdDTQaYXaRiaWaEsUeHXBeixLMAKFUoUwwE2bVNS5XnjAd6F96iMNjhMeqVaxdMGgev78eImPx8JC9LxVPO0Nomrp4umHTlXS1mBCCaEKcxYUvoGl8SOPiAwYYIrQb7xhLo6hTiCss9BmoX9At3Dffed2gt9AgB5LOfFFh91UVlYuniCwTU9KYTWFiSv90KMIwj8jWC8BkTy6zycWBQtqeoXXIxod1yGaCYy14OiBCSXaGCzko7gf+tHHHjMFdl9jEVz7eB0g2B1/Y1V0+4Z2ksJIdPzQAcajECztbumirVwcWVTUEy2iY1UsCoNYPWbGwhzanR49gh/C5s9vLv41aWKKn4hq98ysgwWVZ/Q5BHNEn3vaZUKMf/759HGKXSyqIgq+f50WTRGdOFBE97R0+eore2dLOQWK6CSs6IFnRdkmeSTJ0spDy5Zm2i+8uXNS6GXVKjPqHpEeiBiI5rgRk0Sk82zdKvbwQwcQ0HXO48KFyqoMdi6YFCPCIppYxRcdE3lEnICOHTeoLOVogRVtpJjimo1qaliEo8lIdIDXMERJ2LPogr3QvhBxjshzRKAjEh0R6YhMxzUOTQyZPxDTMwhdumJOgL7omCsFWncQ4n12Vi6eYEEPiwHas123ERbuypzD+vWmFwEapksuiZgIApEyh3UrSTTQli6ffSZrVySp7w26COyP8dOAdQvGXs89Z86REbEdCCg2inEHRMYHH4xRPZAAoJVL7GqpOMEX3fF+6J4rY/A/3Lw5Kl8YsuhQkwUWiMhqyimwpZs82VwkQ3cHixcEUWMuAFFdR58j4h3FzrG9ryYSi/6Yv77zTkgfyxnAm3LXLrMzgC+fi9Ce6Cws6uziojqIEt8zfu52KpTuVCiik8j5ocOqwcKhEBh7QVjJqaWLjkJHuq2vQU6k0IWzYh2NHpQfurely7lVYQhtiCCDs0c00ZodOqFYFmhF1C6yN2rUMOS229ZE9b3xm9WT9KgW22NRUduDmgyY+P34o7k2hhqAEJthMYXHY8eKvPuuWewPvp1PPmlGrCNyC5YqaMN8XpCYSWZRqAACByaOyBwKxAY1UCsXb7C4B7ENY25MUl04L4sNum1APxGB4hCI8MNvCHYNEDGIRWnXTnaXqCP373tBatVNUNcw5sEQjmBzAiuonFi/IYIT9gtYTMPiGuybrAbKQsC3H1BE9wCNMZQD/BD0ODICOEFE11qRhadf4RvE6rTSKFi6IGAKIjfakVCBBQwOGeMKBNM0bpw5+jyrzDl0j9pyDuMsjMlcjbZyufRSM9zfRTASPQvgfwQvP4dEoyOIQGdUfvFFrI+GUEQnkRPRbRC6py1dICIGa+kSCysXK1m6oDgg0ggxmYU4ERAevuixXpzGIBaDDwxWYwGKDCElC3PCMWNSJE+e6OdmeVq6RAXMFnTRBIrotgTZL5jwYc4Cr2FEZgUjUPsEYV3wW0GBhWwGusFYugRj5eI97sZigPaTRVA0niP29EPXIGMi6m0eCQr0yQOH5JYLjy6UD+V+SUmNV2Ms9NMffSRSoUJo+0fkOiLY9SK+1byv4d2OyEJkpelMdOKRwYa+IoJRK04Q0V0TiQ6i6IsebiB6Yhxz2WXpvutZRZ97Aws9zL3QZg4bJu7GpX7ogCK6Oy1dEAjAwsKxJQqlEImbsJuIDhuSEiVMoQWRjYgyCHSQqoPmOnSQmIjo8B1GxBI8hmMh8ATlh+6rM4OhV8B/GF4QiQZPQlgp4nMgeCGa4Pf2wAPmY6Sm169vxCQyEr9dnAt4zK5dK3LRRVGaCOONoMASWwHvTtgAIdINIg/mrdkWFA6mUAFC22HpkoWIChEdPuuBiOjBWrl4gskpounh3a6FVxIlET2CVk/4LmEvhAVorNm4LGgtLOASxaUKOxRtieLvXj9Gd6+393zs+X/cox80/crzyFUyV16Lf0aavj8urGG1sGVA1gxsGRDdjnbMCuU5EMiB3yaAFVagNjWuIMJ+6E4S0V0Tia5FdKS6YQKHNA6EatoIBCFhsR9zOWT3BbM+hGETPNFvvNHMnnv0UZcsnPhCF6+hiE586Q5IQXOIiI7MfxQWhnsRNIxo1ZMjmaGITsLKxo2YOcWZInrDc2HeFgbCCibVH3xgWroEKqJjAoZJH1Lx0JhFGwTjwC0HUaGIXIiFkB+UH7rngWOQi1ArzFKqV5dYAfEfHRAEAV1wLFo8/LBpEwEBEp7RsQI6NuyIIEgiMvOZZyL8hrRysS2Y5N10k+kljRrBuHbC6uGPkSGUOaxqYVLsB0SUo91GQgNuVauG18rFE3ijI3WSXpNRAKvBOmFt53AAAQAASURBVC0oggXJkQxVsaLpO4t2D79pEjgQuDHe0D6skQBrrEOHinR8/QmJm/e3OQHOok0IFlghfPaZuXiOTBosyiEqPdbAXmbLFjOw4957Y300FiNKtVS0iI6+BWN8KyyuBIurItExGNGKEoomBDqJsxDIis2pEIa2GN0l1p8hqCOK3ZVjh8WLzcc2CN4LN/REd1ckOhbXkYXy5psiX35JET2WUEQnYQMDzvVrYUmRIFXz7DA9M2wACuFBRIfggiJ5gVixwsc7VlYuAAN7RKMjUhKCfrRFdAhUuqhFwH7oACcXvwuM+GDpEkMRXR83RPRoBsVDrMZkGR0hUrdhGZGFDXTEwSJS1ER0FhW1JbAdQrFQ/E611h32RALvQgV+wjAxUUCwEa5b/G79iV85tXLxhtE9UQITHHzv5cuHeXXGt6XLW2+ZbR5F9OCAuI1JO7punaGhhUZPwdH7OfSveIyb52Pv/2OBA/tVmSOHeopAREdFYoRmh1HRhE0qvIRRl+SJJ0ztrVo1iRkYg+Dcgr59mSGR6eREKRIdlhr4PUKXQ70aOwrRropER5uAaHS0EVjZt6GIHurHR8Hkli1NT/V+/cyipK4Cc0k9dgjV78uGMBI9wOKiWGhD4+iAhhGWLhDRJ00yv39+97GBIjoJGyhscvSYKXxUuayIWXHOBkAUKlXKjAxGVHd2xZwwuJ4+3XyMNLpYoUV0pKVHO2IGi/6ISIWQBr/goEMBtYjetavEcnEaE1VE1q1aZQa0RJr9+0UefNB8DDueCNbHChisYsNaBh73mzdHcACOHylFdFuBrwwDNehXOqIbEZwRyZiuW9dUyKHQLV2abhTqA7TR2YnooVi5kBigs1QiGIWu0SI6JiDwlNTe9yRrEL2vIx1HjBBp2zYKEQ5QueE1Bs9bFGMIIyjgh4AIZNncdZcZyBqrtgI1djAOQRNohah4S4FqsugXUNExwgM1TFuwkIOMACRL2lFEd1UkOtAiOnyZhg8Xt4EgAVjBYF46ZIgZnONaP3Q7po6ECEX0bIBHElbN0cEiWEMXlbP5ukCNGiKrV5sBoD16xPqI3AkLi1oQRNBBXPv0U7EV2kOwvOyQ/E38CyBWAwGPutoxisllBwYqsN5DxEo0hFd/wEYFIjAKY0FzioUfOmyMg/bt1MpxjFOrMFnSmX/680Sahx4yhXT8bnRxs1hTsmR6ELC2v4gIyI/GigUUq6BXXkgsgv8efzxdQIflETIoImY5ioYEhQoAFPIAaolh0fPs2aytXKDDERsQ4aKinqDdRzASdDm9IE6yZ/Bgc9EBgQf6Goy4z4G+gCGShRkEp40da4oP+PkhMj1Wi5WIJtVjBJYL8UIvviPyIQqrHHb2Rcfc5PBh87EDAi4DA9HnGD9AUYLHpQvR7Qecr6AVugoXFxUFFNHdZ+mCtSJdYBSWLiQ2UES34FgRi2S4zu+/3wzAsWVR0ShMhMOJnqf98INvUcaXlQui0GO56A0xC9EHAJYulvdD9xbREfqMFLwY4mnpEmkQGQvffU8bF6ug0/JhbxDxiTCMaG2SpeJWYNsCzz1Em4I33jAjdyNueaRXc7K5IBGFgcWf48fT60n5snKBt3CO2igSfRVRf5FRyFLB7xgZChFv8xwEhBkd2PHqq1Ec+6AwgY5wwAUfZpD9P3Kk+Rj1SbS1bjRBJDyKnCLQGsUBSWxrqdhZRIcFDcD40jWLMfiges4ZSMVxB4L6XLAmQ/CDVQJ0ojZ2cLmITk9094noQCfyI5gITjUk+lBEtxArVpjpsbALwQAIET+YP6BTtAMbV51JF9FtVtwDAZBIfTxyJOvINGi+WrCOlR+6JzorCZYu0QLnAGnPQfuha5BWhRB6TIiRphtD9PEjEh1jsUgBqyCdog3fcd2fWwUMviGKQMfChD4isKiobUAEOhZ8UMIAfujw2YxJoYIsRNDrrvM/Z8ax6981rVxswI4dplclVhij1DjqhUMsiseyJoVdePZZ85LENRXVGAlYuMCsHANjfWGHmW7dzN8DMljuvNOM5o1FFGmvXqa1IPEiyjZwdhbRtR865jOucrbQqTGwdHEpKCyK7xxZeFiUcwWYQ8JLFlFlNqnDFk7QJ8NaFTAS3V0iOqxXsW4E7QJZwiT6UES3CHA6gCiAvgDjRATpwsZpzhyRUaPEFmxYcEjdVy180KyWbiMwd4ffL8hqnoaUX9hxIPABViaxpl27dH0SQm00WLLEXPnGqneOxiw42YhGBvBFjyHQc7FghegdHV0fbtDBQUBHZCxcTAYOFMuBejz33Wc+7t7ddF2JmIhOP3RLA89z7Xs8YYIZkR6TQgVIzc4CXbvCW0SHEIaMIkArF5tZucAXP0oVFdF/I1MBY65o2XnZFSyuopgwFq9efjnKbw5V6J57Imbpot8C4+zSpUVWroxuJCfO7cyZ5mIfCpwSL7Ciof0KGYmeLa7zQ/cW0REF5dJV0Zo1zUVAvejpCnQUOkLxXZjhCgFdB4BRRM8CiBXo6BGyrRtJB0BLl9hCEd0C4JqGpRsiCOrUEZk82ewMkTKrCxDaweZtwxrTmuPCWvbsyLTggskisgD8FX/S4jWiNK0gfkKPRieKwvSW90P3tnSJsYiO4AXdCeE+En0rFmVgGYBJMmxcrDrOQwHJ6tVNj31YSYU1Mh8eSTpPniK6ZcHiLb577X8c9WwbNKo6JTcbZVNHouOYPRcQaeViQ6JYVFSD9hhFlfViEfEN+gGMQQGKV6GYVdTByi4GG4gqiZDHIeyhRo9Ot6/Stn2RZuhQ8x6FTWEtQ3xEbUAUxRd0wQVRF9EjmaEYyUh01/iha1CIHJ0+VEVfHm8uAeM2DKN++w1jIRekIrjcykX7oWNeGbF6RU4qLuqwaHToVhjLYh6UTdwRiQAU0WMMAu4goG/eLFK1qsivv4oUK2a+9uCDps0IXC/CLmpFgA17C6r7C6+yZz4q+mCI0uiU8D34Qk+srGDlEitLl5D80C0mooN33hGpVcucfHTpYkayhgtEuPfpkx4ZogPwrUiBAqZ1BzpkiP4ouBY2EEkGIb14cZEqVcK4YxIuIDzDJxqBf2hTYuarGaAvOqJGdSYMJowanUmEz0IrF5sQxaKinuiC4shciHF5DsuCxXlcipigQ6CJCVAE4XUIwtoxZaRDB5GHH063eIHFYiRZtkxk0iQzQO6ppyL7Xo6wcomSP4keomAuEJGsvAji2kh0pMno9DQXW7rA4kFnlT73XLzldYOQ0QsmNrOQDbeITj90d1q6YN1QN3uMRo8+FNFjCBbMMS9AwSaIt8hC8xz4YEwwZoxpN4GUdVTdtir/HTVk/1mzik3VdheJHcH5zsrSBQFQuGGVX2cOWklEx28ku6KoMfdD9xbREWUUTtU6h+IxRONChUyxAJ7l4QCDVyyEYRIGl4Jw7TfSYwz4KoJHHhFZvz7ME2GkY7vKqNMe4BKEbQsynhCFh74m4kVEAxHRs5kBelu64HPADxTotpxYHHRaelIT5SyVFi1MazZkMkDMJJn9Vp9+2nwMcfn882N4MNrSBdVNIzhmQEZWy5Zm8AqCJSIpoupsU7RVyAIj2YwdogQKvOrfut0sXVwbiQ7oi54WsIPf8Pz58bJgQWlxLChiBv8tF4vouqgorVyCENEtELwXTnQ2PYLgHL9oZjEooseIU6fMATqKfyA4E5F0lSpl3u6ii9Kjfx57LL3yutXY+Md2dV9K9sp5TS4Ru6ItXRBx7l1cSk+yEYFtpQ4LejSKUaEznT078pFTGLdAcA4pqhozRqRXnTwpsmaNxBpcZzrAbdiwdCEuFFDoAxGOiIbFvN+qNi7ewJcVv3HUcUPnHBZ7SfqhW37ShUVcLCjhNwthMWbgN4KLBWpANgqGFtGROQTBD97CEL1o5WIj0Kmgsy1a1CwgGUXwM0PEMejaVWTGjKi+veXBpAxfD8Y72tIlZlx/vWnpgVDbCHrXIUgCQRSIRkaGKATuSFgso2n7+mvzsV6oINYpSG5XX3TXRqJ7erzBOtBBvsfBggWURx81H3/5ZQ3nZlnpDDZcrC6tyKwj0a2kSVgWHbznoEh0AC0RczeMV1zsZBUTKKLHAAzIYRsBWwyIkYiiy8pnsl8/U7A8fFjkoYfEkmz4bbO6r1pon33UQj/6DXwpkSXgHcygrVxuvFEsBSJGdYHRSFu6aJti2AyFZJWAg4aHoYVWhW++2bzWwN13m0XfcwpE+J49zcewxUAkul2A9SyKS0JIxSLfkCH2nQiT7Pn2W5HXX0+v21e7dowPCL4RerElG0uXxo3NwSMWlyH24bMAWrnY1MolBlkqWDRF/4nABui0WEwiZl0YbekEqxFtMxgzMK6EcXgEC4xqENiC+jdY58fCXN++4X8PtLlY+MNvL0cF2t0Aqv5qFRuFA6OIXUV0V0eiQ0jV0abeFcddRv/+EFYN2bq1sJQqlUsNvVF0FIWhkXkLqyrvQDHb4XI/dEARPQgcWlwUcyDMeQAtXaILRfQY8PDDCSqqGVoB7nWfn1VkDOYMELdQACscUbLhZsOCw+r+wgp+KnLa3NJl//70/hq+mVZDW7r8/LMN/NAt6IvuWeQLBVOxiAJRHdHYwYBUqtdeM/8WogwmyHaMMsNC0ocfmo9feSXdwidHYPVPr0hQRLcUyIRFsUA96dKZODFHe0VlU1wUuhosOfQCIq1cbEgMiop6gnEYfjcQ0CEqoH/39Nh3Kx98ILJlS8aoxpijGysMdCKclok6KYjEx5z73XfN8xEuduwwi4wDO9i8xQys4gNkqER5FceuIrqrI9GBrp3gcksXXC5vvZUiuXOnyLFjcepS+uILkYEDzVogdeqY4ht+5+j7EECEbFzUxrENFNEpogeDQ4uLelq6QLeKROYc8Q1F9BgwYUK8ipKDIB6orzQW0HThIRQqhC5lJTZsMI2YLqydT+wOsgQAIpEghGqBBlFD+B4qVhTLgeK0WGyBVhlKBHVW4PPrwNCQ/NAtLKLjHCLFGhMQRGo88EDgHmOw9r333vS0d2SNIHsB+7QjECIRkY/PD8sD2PiENBHGaB0hfsQS4Pu86SZzoahVK3OxxDIEWFzU09IFXsa0crEhMSoq6gnqziA6D4vRENKRHuuvuLgbwCKyro0xaJBI/vxiDaBsI0sFnuhRKBKEBRVEbur+PIDmKCDQVmGii2YO2TTEehlsWkTfuFFsA8boWkR3ZSS6py86GnDH+pgERrduhnz11S+ydGmSWijGGA/JPGhCIbri94Lf9+TJIsOHm2UnypUzx4U//hj5GlshgT5Atw9hENEhRmOe/+STZn0gBD+hJh0ykbZvN89VoKBth0spziGCqrD2i0PEuDSbuJAce6KzsKh7i4sCzOGQiINFMDePXaMNE55jgqHsErD6GwxIrUVHiMYZq8YRzmgNnOPHZcMhM0rkwqb2H7kha/SCC8wie7DeRJoMBHUrWrlo0IFiQvb77+ZAIBJFqpYvNxdvsJirnVhCwrO4KEYdFlGbMfmAkI7iYojcwOAHBUKzyzpGdAcGXMhmGDHCLMRmd955xxQONm0yF+9ylCpGKxfLgQkBUntROBaLguPGWcz+BEWikHqFRhg3NMjZiOh6YZlWLjYCI34d6hnj9gFCOgIbkI2B/h5COhZB9e/LTUDkRfYdAoB1PU/LAJ809CkYAGMgHGELICyKwyoKNU6QYYY1YV/1iwIF51VneaEWBQmgqGgMaqlUrWq/SHSMQ3XNXZdaRKcrxDgZCNBxeR2e3LkNZRd7iVepMgTHIJkHesLateY9xvqLFpniL24ISICg3L27OeeLgduafxDlhOrPmPzWrBn0n2O8iAxbiNrIsMY0NCuhHOODypXNxTW0Dfoe82EErulziHssTPhbv4GQjuAk2Mjh/IYKI9FzIKJjYu8wER1znttuM+fsmKcHqy+SnMFI9BjwxhupqmPKSdoxVkbRkSHtyjIpxwsWyEYxR5wXNoi1cWbo4PxqWwOIqYhM0/Z6mFhbFW3pEilfdL2CjsipsOjdGIGg54f5KqpZ7twpVgELEoggAEhl13M5X0CIhOYHAR0DKlg0OUFAB6jZgA4ZeiZS23MkosdwIkx8gyhTOCJgYoCFWdTrsxS4kPQiWzbhn5jMYHKjoZWLjdALbEixjWk1WxNcD/DVx2I5uiXcu80VYN8+U0QHiMK2yNp2xlTBfPlEVq9O//1EeDz40Ufm3BtrPvhNQLvJKZjkop469ocMQuIHqHx67BCDBTYtouM7z3EWXoz80CHO2bg0Vehqkr6wHnnEnLwFmk7qItCuIeMWou7998P6xdQVoU3D2g/BRPjtjxxpDsVg/wLhV//GLGPlggw2TFCyAVmKP/wg8thjZo05JMWiLUcEPhYOIKBjLIk1WtSrQOYRkhqwkIyfFMYDEMkxbn77bXOOB7tOzBWRgYxzg7kfBHUI6LDKQRuPguUvvGBqCQjGwnmHlReGPLgP9adJET2HkeiowIkv3oGWLlgAQzYhiQKGQ/nnn3+Mtm3bGoULFzby589vXHnllcbXX38d1D5Onz5tDBkyxLjwwguNxMREo2zZskavXr2MvXv35uiYjh49iubSOHDggBEKDz+MZtcwKlUyjGPHjNixeLFhPPSQcaJIOXU8uIX40SzDggXm58mf3zC++cZ8fP75hpGaaliW9evN48yVyzB27w7//m+6ydz/0KFh3Gn37uZOccud2/z/smWGFcB33amTeWgVKhjG/v2Zt/nzT8MoVszcpmLFnB/62bNnjR9//FHdW5EhQ8zPeN55hrFpU4B/hM8ybVr6CZo3LyzHsny5YTz5pNn+lS5tGC1aGEafPobxv/8ZxowZhrFnj7Wv01jz88+GERdnfiVjxxrWpX9/8yBr1DCMDz80jEOH/G76wAPmpiVKGEZSkuE4rN4+BA2+pF9/NYyrrza/uLvvNqzEmTOG0bGjeWh58hjGL78YrkGPL6+4wsLt6F13mQd5771Re8vt283+Bm+LsVBKSvD7OHrUMAoXNvfx3XfhOS7HtQ2nTxvGt98aRrt26eNCPBcD9Pe9cKFhedBmvf22eby1axvuZuZMcyKk5xaXXGIYn39ujkldRChtA7roKVMM47bbDCNv3vRTGR9vGG3aGMZXX5ntWdSB6PHFF4ZRs6Z5QIMG+d0U82BcE1ddlX78nreLLjKM++4zP8uOHVmfC8x7MGQZNcownnjCHB/UqWPOQ667zuw3333XMKZPN/flr++cO9f8O30MzZsbxurVOT8d3bqZ+xk2LOf7cBX4/UDY0V9AkyamyOOAtgG/OfwOJ04M7ONoTRL3JGc4UkSfMWOGkTt3bqNQoUJK9H788ceNCy64QP1Y3njjjYD2kZKSYrRu3Vr9TcOGDY2nnnrK6NSpkxEXF2dUqVLF2LdvX8xEdLQBF1xgXv+PPmpEl8OHDeO99wzj8svTGqHlUks9LFIwybqTriDB56hSJV1AxX3v3oblwaBA9w04/ptvNoyXXjJFgF27cr5fTBiLFzf3i0FA2MCO0eI3bZpxdNO6tWH89lvMZ/HoW6pXNw/p2msNIzk5/bVPPjHnd3itQYPQFi6sPhHGILJRI/OzNm6chVCJF/C99eqV/oPBrWBBwzh1Ksfvj0EpBol16/oeDHvfihY1jxMay/DhhjF1qmHs3GmEDH6OWKzCYBmD6CJFDKN8eXOigWYRAn9OxJVosW5duojz4IOGtfn77/QLTKuZaNB++MFUDDyYP9/c9MUXDUdi9fYh4IsH3ylG+aVKZbxgx40zrAZOtV5ExU8Pi0+xBE0rxDyIAs88Y14GORiGZgmEAn3JQQywLFi9xkHmy2eqIAiQ8bXKHWYw9sFvIRvtxi+vvmr+7cUXh6+fcEzb8M8/5iAbnbdn23D//TE7LIwhcAjjxxuWBEOqn34y15QwFtGnrEOHWB+ZBdiyxTAee8wwChRIPzGYzGFA+N9/hhsIV9uAaT/iGPT14Bn3dM01Zp8UcHBNTsDxYxLbtWtGARSKPgZ/Hhw8aBijRxtGy5bmy57HC90d415cz5EINAvm47z+utl96fP4/PM5myLdcIO5jw8+iMSROhQEgN5+e8aFNkRJvvJKVMYRVoEieug4TkRPSkoyqlatqiLHF+NCOceRI0eM6tWrG3ny5DG2oHPNho8//lj9uG6//XYj1UPIGzVqlHr+PgzcYySiAwR44rpHROGcOUZkwef/4w9zydNzSRotf+fOxg/PL0qLXHISAwZk7IAhxFkdDA70AouvGyJroE/js2HeiRXw48ez3y8irHVkfsTmaohU7tw548gHqmmMI0ggjOpx23PPmZPfZ59NP0Qc8smTzp8IY5BcqJD5mV94wUvdgeKCNhGhwJ4/uJIlzUnwv/8G/X7o1xEp3apVeuS0bnYQCYhIPoyfsZiByHRMHKtWzbit961MGTPADd8jRKht27Jfp0EA9IQJ5serXDl7AR+B9zfeaBhYr4UuEMvIaFzb6AZxrUNg1gtCWBDx0qGtCcI/X3vNDK3zPskIP589O+0LxJ1TFnHt2D74ZcUKs8H0vniwyIYZLb5Di4LTjXUbLaRPmhS994bOg8g3TK7RBnpqQZ63atUMo0cPwxgzxuzPQ7kGdFQbFowtDT5kvXqZT8all5phghisnTgRkbdGf6PfDgHTgYIxgl47+vTT8B2PrdsGRHZATdJRpZ6CBlaK1qyJ6eHpREkEogQLxokQ9NauNedoiBX56COzO8N4pWdPw3jqKfO6nTXLFPUCuXbxs8Z4BBqQHo95ju/RpG7cmKOP60wwgHv55YwLt1hxePrp2CqpUSASbQMCMQYOTB9Let5q1TLnlujSPQOOcgQuBlw4WFjznldgoI+OEQdzLrDwyy8No337jHEXuDVsaBgjRoQniCbcbN6cnnCj+/JgF68RyW7lhT5Lgx8FJoOYp+ovITHRMO65xzCWLDGcDkX00InDP+Igfv31V2ndurX06NFDPvaqvPnpp5/K3XffLUOGDJHnn38+y/00atRI/v77b9myZYtc4FHUDKfrwgsvlL1798r+/fslH7wZA+S///6TwoULy4GdO6U4DLlCpEevXPLJ5wly8UWp8s/spLB74KXsPSD7R/8oe8bNlD07kmSPlDFvRWvKnvKXy57EC2TPwdzKIw1+YShqgAJ1TmHx4vQCmvCGRkEoeKbaAdTUQaEUfAZ9g5+bv8IpqM1SvrxZmR03z8e4TZ8ugksGVoMRr/yMKpaozAkjUpiHgvPPN83JUeYcfslR5stx8dKth2kO26xJqsyabZaTeObJZHlxcIoqJhoKSUlJMnXqVGnTpo3ktpwJbTpffBUvd96TWxISDPnzrcVyxfKxptHggf3pGxUvIdKxo1mFDYaBQVR5hJcgvOVR9wVF/U6dSn+taVORbt3MAq7Fsii9gL+BL+GqVaZtLu5XrjSf8/X7hx84rnNY5eEeN9jz43eOGwrJef4dvh4Um73uOpFrrhE5ccK07UaRItjs6Z+sBt6I2B7HX6WKWdvC3w3diX4cgM2jAse2fbv5+bxvvsoMwAcT3pe4rm3F0qXmDwPm/Lt2pT8PQ3T8MGAIGErFPwtjl/YhDQwKYAKK7wpVGT0vBrQNMApFZ2KDz4Ka1/hpwSsdh4t7eKVGwot8zhzzNnu2edq82yv4nqItgV8t7MDRrnkDP2Rs06SJWb+kbt3AmmDsC963mBGgfQhL8fBIgoYenQUGJ7ih8rknGBCjWAka6VatROrVM6t+h4F+TyXI8LdzSf78hvz5W5LUqZ39NOqDMQnyaL9cckFFQ9avPBu2n77t2gZcUFOmmIbAKDigf+To9FAVGlX3UNU90A4wwrVDnnvOtOEfMsQsRoixNe69H+v/w3sZXtK4z6pQoS8wz4Avc/XqphezvlWoYLYJKHyMU+c5xsBYHUMtjItw3VvgtFkTFLf6/HMUJTMHR7qNuOsukccfNwdnDiPSbcO69XEy6Zd4dZs9N05SUtIrj5YoYUi71qnS4fpUadUiVfLnD2yfqRs2Scr4byXlm+8keesOSZEESZZckly8jKS0v1GS23eUlFqXSHJKnKpHhYLP8CL3nCugiCr0CNw86+VYEfS3331n2vdrv3kMZ+HLntU8R4NSUxgao12IxLjEFUDAwngVZveePunNm5tfTNu2YRs7RI0AxCqtSR49elTOgwhEgsZxIvozzzwjQ4cOlXHjxsltaEE92LNnj5QtW1Zatmwpv//+u999nD59WgoUKCDVqlWTNVAevXjggQfkgw8+kFmzZklTKCN+OHPmjLp5/mArVKggqAMRjp/rISkqNWWV7JUyEmty5TJk7NgU6dLFOT8nXBm1auWSDRvi5OabU2XcOD/ltm0CBt4rVsTJkiW4QWSPkzVr4uT48cBLrr/wQooMGBDkzCCnHDok8R9+KPHvvitxKCMfYx6SkfKuPKQe55azMlp6SXf5TNwEru475EsZJ12j8n7Vqxtyxx2pctttqSEPhvH7X7YsThYvjpNFi8wbBHbPgb8/Lr7YkGuuSZVrrjGkWTPD7zoO9AHs/6+/4mT27DiZMydOjhwJ/PqKBJjMVKuGGybohnTtmioVK4p9SUmRuD//lPgvv5S4H36QuFCq/JGIY+TOLUbr1pJ6221ioPp1oLNpC4Hrunv3BJkwIboTqUqVDGnUyLxddVWq1KqVcS4H0W7evDiZOzdO/v47ThYsiJPTp0Nrbzp3TpUvv7ThWGfvXombOVPiZ8yQONy2bYvYWyVLgrSXn2WaBK9avCu9pbeMishx2ZHURo0k9a67xIASbLHqeF9/HSd33hl4EIAvzjvPUAtbxYvre7NPxkfFwhnmF7ht2aJyiwNuF266KVU6dTKkfn3DdvpOTElNlbhJkyT+zTclft68WB+NYzgsRWSqtJFJ0kGmSFs5IkWj+v4Y2956a6q61awptgMFQgcNipdRo+IDbgc8mTUrWRo2dI7+EhMMQ+LmzZP4//1P4r7/XuIQ1WVDjJIlJdlXBJUX0CRLlChBET0EHCeid+7cWSZMmCALFy6Uy3UVXg8KFSokRYsWlW1ZDLBXrlwptWvXlvbt28skLHF68eabb8oTTzwhH330kdxzzz1+9zN48GAV9e5NuER0MEnaSyf5XpIlMhEoiXFnpFjB43JeaUMKF0uSokVPS5EiZ9StaFHcn067T0yMkrgaRX77raJ89FEdGThwntSufVCcyKlTueTQobxy8GBede99O3gwnxw+nFfy5EmRYcP+lPLlT0T1+OKTkuT8P/+UqhMnynkIuY0RZyW33CA/yUqpJV9IN2kus8SNHJHCcpX8LWukRkT2j7akadOd0rz5dqla9aiqZh8pzp6Nly1bzpNNm4rIxo2FZePGIrJt23mSL1+S1Ku3X+rWxW2flCx5Okf7RyTatm2FZNWqErJ6dTH57788kpQUL0lJCXLmTIJ6fPZsxvuUlOBnxImJyVKu3HEpV+7Eufvj6jotW/a4FCqUJE4l4cwZKfPPP6p9KLVokcQHG/pHIoIRFycHateWHc2aye6GDSUJIZY2B4tt771XV37/PT0zMZzEx2Oh8D+pUeOg1KhxSN2KFQuu3UlKilNtGdqa1auLy5o1xeTo0cDT5woVOiuvv/6nlC3rlU5jNwxDCuzZIyWXLpUSy5ZJyeXLJc+xY2HvB9vKFJknVwX8NzVlpSyUKySf5Kw/cQonS5SQ7S1aqNsJC6dEHTqUKH37tlDXUP78SVKw4FkpWBD3/h6fVdfQeeeZ97jlzh3YFBt9/549+WX37oKya1cB2bWroOzebd5jDI4+/aqrdqlbpMdFbqHY6tVy4Q8/SJkFCyCGxPpwHEOS5JI50lgJ6ritl+oh7S8hIVXi4w2VAet5X6BAktSvv0eaNt3hmGti3boi8sEHddVcJFCKFz8lI0fOkPz5kyN6bG4i74EDUmnaNHVL/O8/sRNnCheWqZ9+mu12J0+elK5du1JEDwHHiejXXXed/Pbbb7J+/Xplu+JN+fLl5fjx4+pH44+5c+dK48aN5Y477pAvkD7uxejRo+W+++6T4cOHS9++fYOORN+9bp0UDyRPJ4gstbNJ4e894nIlSMFS+R3RMZHQQCsBfSqmqaI4CESdxrDJ0sZp4Y78QdrlzJkzpUWLFrZIycZv4bhRICI/CER5xzKyKjnZfP9YHQPeH216MHowNErXt9OqIzwrTsRu7YPyqgjC6s5OwL4pEgFKyL4Nt10c+qpgtGN8ZXb4eeWswwp/xoo6v0Fk8hUsEP6oYdu1DTbrsPS1HsuxLzJhYMlkk1NmP+AFgpPsMKzSNqDpTQ0wujouMY8k5E9Uv3fc3JhlEexUF8l9QbhmkmA7AAz67AQ6igACVxiJHjq87CJIYmKiunmTu1gxyR0GT/S0/YVtT4RYnDAuPlmKpCRJzp9ftQt2mQjbpDxA0MT69DtYf3T2FxdJbNg+OJUigQeIWYIwDjXtTYQK2qAESExh2xBRrHBKrXAMjsapJ9gibUNR9kFB49Spru3AdYN6HQ6E44XQcdwaH0zygb9Ic22kH+o+PLcjhBBCCCGEEEIIIYQQ4kwcJ6KjGCiAnYs3KCwKKxe9jT+qVKki8fHxPvfhue/s9kMIIYQQQgghhBBCCCHE3jhORG/evLm6//XXXzO9Nm3atAzb+CNfvnzSoEEDWbt2rWzdujXDa7CQh+d6gQIF5IorrgjrsRNCCCGEEEIIIYQQQgixFo4T0Vu1aqUiyb/66itZsmRJ2vOwZnnllVckT548ctddd6U9v3v3blmzZk0m6xYUDgVPP/20Es41H3zwgWzatEkVHYXYTgghhBBCCCGEEEIIIcS5OE5Ez5Url4wZM0ZSU1OlWbNmSgzv16+f1K1bV9atW6eE9EqVKqVtD5G8Ro0a8sMPP2TYT/fu3aV169Yybtw4adSokQwYMEBuueUW6d27t1SuXFleeumlGHw6QgghhBBCCCGEEEIIIdHEcSI6aNGihcyePVsaN24sX3/9tYwaNUpKly4t48ePV4J6IMATfeLEiTJ48GDZv3+/vPXWWzJnzhzp2bOn/P3331KyZMmIfw5CCCGEEEIIIYQQQgghsSWXOBR4mk+ZMiXb7T755BN180ViYqIMGjRI3QghhBBCCCGEEEIIIYS4D0dGohNCCCGEEEIIIYQQQggh4YAiOiGEEEIIIYQQQgghhBDiB4rohBBCCCGEEEIIIYQQQogfKKITQgghhBBCCCGEEEIIIX6giE4IIYQQQgghhBBCCCGE+IEiOiGEEEIIIYQQQgghhBDiB4rohBBCCCGEEEIIIYQQQogfKKITQgghhBBCCCGEEEIIIX7I5e8FEn4Mw1D3x44dk9y5c8f6cAghFiEpKUlOnjwp//33H9sGQkgG2D4QQnzBtoEQ4gu2DYQQf6Bd8NQmSfBQRI8iBw8eVPeVK1eO9aEQQgghhBBCCCGEEEJcBAJ7CxcuHOvDsCUU0aNIsWLF1P22bdv4gyWEZFgRrlChgmzfvl3OO++8WB8OIcRCsH0ghPiCbQMhxBdsGwgh/kAEOgT0cuXKxfpQbAtF9CgSH29a0ENAZ4dGCPEG7QLbBkKIL9g+EEJ8wbaBEOILtg2EEF8woDc0WFiUEEIIIYQQQgghhBBCCPEDRXRCCCGEEEIIIYQQQgghxA8U0aNIYmKiDBo0SN0TQoiGbQMhxB9sHwghvmDbQAjxBdsGQgiJHHEGnOUJIYQQQgghhBBCCCGEEJIJRqITQgghhBBCCCGEEEIIIX6giE4IIYQQQgghhBBCCCGE+IEiOiGEEEIIIYQQQgghhBDiB4rohBBCCCGEEEIIIYQQQogfKKITQgghhBBCCCGEEEIIIX6giO7Fzp07ZcSIEXLddddJxYoVJU+ePFKmTBm5+eabZf78+Zm2j4uLy/a2ffv2TH939uxZGT58uFxxxRVSqFAhdatdu7b06dPH53GtW7dObr31VilRooTky5dP6tatK6NGjRLDMCJyHgghsWkfTp06pdqGyy67TIoWLSpFihRR1/vLL78sR48ezfYYv/7667R9jx8/PqyfnxASnrYBrF+/Xnr06CHVqlVT/Xr58uXl2muvlZ9++snv+3z55ZfSoEEDKVCggGof2rdvL4sWLfK5LcYH33//vbRo0ULKli0r+fPnl4suukjuv/9+2bRpU9g+OyEktu3D2rVrpVevXnLppZdKyZIlJTExUSpVqqTah99//z3T9gcPHpQPP/xQbrjhBqlSpYraHvOLtm3byrRp0yJyDggh0W8btmzZkuUcZPDgwX6PbenSpdK1a1e1f7QR5cqVU23EzJkzw3oOCCHEbsQZVGEzMGDAAHnttdekatWqcvXVV6vBKDqrH3/8UU1Iv/rqK+nSpUva9v46nw0bNqjJbs2aNWXlypUZXjt8+LC0adNG/vnnH2nUqJFcddVV6vnNmzfLn3/+KQcOHMiw/apVq9R2ENcgpKMT++WXX9R+H3roIRk5cmREzgUhJLrtQ1JSkjRt2lQNnOvVq6feA2DAisFsrVq1VLsBMcwXe/bsUYtxp0+flhMnTsi4cePktttuC/t5IISE1jbgGoe4jWseQhYmw/v27VOiNxbL0HYMGjQow3tgIW3gwIFywQUXqAn2sWPH1EIZFuUhlDVu3DjD9v369VMLchDQb7zxRjnvvPNUO/Lrr79KwYIFZe7cuaq9IITYu32YMGGCWhzDfALtA651iHMTJ06U//77T1566SV59tln07Z///335cEHH1TziVatWimRbMeOHfLdd9+pucbrr78u/fv3j/p5IsRtRLptgIheuXJlFYzTsWPHTO+P99RzDU8+++wzueeee6Rw4cJqMQ5tBPSJhQsXqvGHZ3tCCCGuAyI6See7774z/vjjj0zPz5o1y8idO7dRtGhR4/Tp09nu56GHHsLihPHmm29meq1jx45GXFyc8eWXX2Z6LSkpKdNzzZo1U/uaPHly2nNnzpwxmjZtqp6fO3dugJ+OEGLl9uHrr79Wz990002Z/ubGG29Ur3366ad+99uhQwejUqVKRr9+/dS248aNC/izEUKi1za0bdtWXaM//vhjhu23bNliFCpUyMiXL1+G7detW2fkypXLqF69unHkyJG05xcvXmwkJiYaNWrUMFJSUtKe3717txEfH29ccMEFGbYHw4cPV+/do0ePsH1+Qkjs2gc8Tk1NzbT/nTt3GqVKlVLvcfjw4bTnf//9d+Onn37K0GaANWvWGIULF1bb428JIfZuGzZv3qy27969e8DHtHDhQjXeaNiwoXHo0KGAtApCCHETtHPxolOnTtK8efNMzyM6FCu/iCJfvnx5lvtAFCiiTJGSdeedd2Z4bd68eWp1uVu3bipFyptcuXJlsnGZNWuWem+kUGmw7xdffFE9Hj16dNCfkxBivfZBWyx4Xuua66+/Xt3v37/f534/+eQTmTRpkowZM0ZFmRJCrNs24FpHKrX3tY4o0jp16qho0OPHj6c9P3bsWElOTlbRX4gM0yBj5fbbb5fVq1fL7NmzM0Sfpaamquh0z+0BosqyaksIIfZqH2C1gO29QaQ52gBErW7dujXt+ZYtW0qHDh0kPj7jNBB2T4h6xfbIVCGE2LttyAkYZ6SkpMjnn3+ubOOy0yoIIcRtUEQPgty5cwfUeSClCp0e0qyQluXtVww6d+6s0qI+/vhjGTp0qHzxxRfKo9CbP/74Q93DK82bJk2aKF9UWMAQQuzfPmhrhSlTpmT6O1g4YeCMQbU38FV/7LHH5L777lOp2YQQa7cNuNaRqu19rW/btk1NmJF6Xbx48YDGAq1bt1b3nmMBpHhjoW7OnDnKzsGTn3/+Wd2zrSDEGe2DPzCvgP0DLODgfZ7T4yGE2Ltt2LVrl7z77rvyyiuvyEcffSQbN270+Z5HjhxRlm+or3DhhReqccWwYcPkrbfe4sIaIYScgyOkAEHnNH36dOUtipXerEDnBO69995Mr/3777/qHn5niEb3nNwiehRRpJ7eZ9hOT4i9SUhIUD5n8ExHhBoHvITYu31AtDk8C3/44Qc1gPX0REfNBBQCQ8FRTzCY7tmzp/JAfeONN8L6uQghkWkb4FEMgfuWW25RC2rVq1dP8zWFN6pecPccC2CMgIJj3ujxgR4vAEyiX331VeWLfvHFF2fwRJ8xY4b07t1b1VQhhNi/ffDMXoWHMqJIIZqh0CBEMXigFypUKNvjwZwE/up58+ZVkbCEEGe0Db/99pu6aRCUc8cdd6i2AQF5GhQqx7yiQoUKKltFL7prUMD022+/zZThRgghriLWfjJ24OzZs2m+5J999lmW227atEn5nVesWDGT1yC46KKL1H4SEhKMu+66y9i4caPyKfziiy+M8847T/mfLV26NG37Xr16qe1/++03n+/XqFEj9bovzzJCiL3aB4Dnn3rqKbUd9qlv8DOE56E37733nnp96tSpac8NGjSInuiEWLxtwPVcv379DNd58eLFjbfffttITk7OsC3GBuXLl/f5PvBLx9/ecMMNmV5DnQX4pHq+R5MmTYzZs2eH8ZMSQmLZPmgmTZqUYfuCBQsan3/+ecDHdPvtt6u/e+GFF0L6bIQQa7QNe/fuNZ577jnj33//VfVRoBdMnz7duPLKK9XfderUKcP2mDdonaJ06dLKe/3o0aPG6tWr1RgDr916660RPweEEGJlKKJnAwStrl27qk4DgnZ2DBw4UG0LEcsX1apVU6/Xq1cvUxEgLYb17Nkz7TmK6IS4p304ceKEGqRi4Dp+/HjjwIED6obHeA4FwlAkSINFuAIFChj33HNPhv1QRCfE2m3D/PnzjbJlyxrXXXedmtzi2sf13LdvX/U3nTt3DllEHzJkiPq7oUOHGtu3bzeOHTtm/PXXX8YVV1yhioZNnDgxzJ+aEBKL9sGbM2fOGGvXrjWeeOIJtSD/8MMPZ3tMAwYMUPtu06aNX5GeEGLvtkGDv9OBfdiP5ssvv0wT5n/44YcMf4OCpQgCQpuybdu2MHxaQgixJxTRs+nIEP2JjqRbt25+I0c9tz///PON+Ph4Y+vWrT63weQV+8OqsDc7duxQr9WtWzftOQyA8dyECRN87q927dqqM2OlbELs3z48++yzan++xC1Eg+C1e++9N+25q6++WglriC7xhCI6IdZtGxBlVrlyZXXtYiLrTceOHdXfekaLlyhRQkWV+mLhwoVq+zvvvDPtOSy84zlMrL3ZvXu3kS9fPuPCCy8M8ZMSQqzQPmRF79691faTJ0/OdoG/ZcuWxsmTJ3PwqQghdmsbXnrpJbX9O++8k/bczz//nBaJjvfzBnMQXwI7IYS4CRYW9UNqaqr06NFDPv30U7n99tvlk08+yVTF3pupU6fKjh07lF9YxYoVfW6DyvegSJEimV7Tz6GydlZepxp4HsInGb7o9EMnxP7tgy4U5Kt4qH5u8eLFac/h8c6dO1XbAX9DfRsyZIh6HceG/48YMSKkz0sICV/bsGbNGtV3X3nllargXyDXOsYCx48flz179mTa3lftlKzaEviqwyd9w4YNap+EEHu3D1mhixHr4sTePPfcc8pnGTVYJk2aJPny5cvBJyOE2K1tKFGihLo/ceJEJp0C+9eFTbPTKgghxG1Qec2iI/vss89Ukc/PP/9cFfHMjqwKBmpatmwpX375pSoG6o1+rlKlSmnPNW/eXN2jUvaAAQMybD979mzV8eltCCH2bh/Onj2r7vfv35+pCBieA4mJiWnP3XXXXXLy5MlM+0FhIAyiMaCuUqWK1K5dO4hPSAiJZNvgeZ37wte1jn7+77//VmMBXPeeTJs2LW2bYN4DE3Rfk2RCiL3ah6xAgVHg61rXAjrajl9++cWnMEcIcWbbMH/+/Ey6A4qTItAHhU0R+HP++ednq1UQQojriHUovJVTqeArFqhNyr59+5T3aMmSJZUXoT9QnANp2Xnz5jWWLVuW9jz+pm3btup9x4wZk+FvdHERz1RMbN+0aVP1/Jw5c3L0WQkh1mof7r//frVvFB32TOOEP+kdd9yhXoPlS3bQzoUQ67YN8BVFIXFYO02bNi3Da/AZRTsBmzZ4GmvwGD7m1atXz2DftHjxYiMxMdGoUaNGhjZDFwerVatWJrunUaNGqdcaN24cpk9PCIll+wBLJ+86S7oAYYUKFXxaPMBWEs9jLnH8+PGwfE5CiLXahkWLFvlsG7777ju1n6JFi2YaI7zyyitpFnGe44o//vhD7b9SpUq0kSWEuBpGonvxwgsvqFSqggULSvXq1VWEhjcdO3aUevXqZXgOq8dJSUly5513Sp48efzu/7zzzpPRo0fLLbfcIg0bNlT3RYsWlenTp8vKlSulXbt2cvfdd2f4m/fee08aN26s3hcr1GXLllURI9j+oYcekkaNGoXxDBBCYtU+PPPMMzJx4kS1/b///qsyV8Dvv/+uoj9g19CvX78IfDJCSLTaBkSJDRs2TO6//35p27attG/fXtmrwKrl+++/VxYruM6xHw0eDx48WAYOHCh169aVm2++WY4dOybjx49Xr2Nc4Zn63blzZxk1apTMmjVL/e0NN9yg0rCRpTJjxgxl2TB8+PAonR1C3E2k2wf8H/ZMsHlAFCnago0bNypbJ0SvPvHEE2oeoYFVxIsvvqisIBs0aKDezxvYu+BGCLFv29C3b1/VFlx11VUqqhxWsBgHIJsd+0NbULhw4Qzv9/jjj8vPP/+sIuIx92jWrJns3r1bvvvuO/U3H3/8MW1kCSHuJtYqvtXQq8FZ3caOHZvp7xAFhtdWrVoV0PsgIqRNmzZGkSJFjDx58qhosddee83vyu6aNWuMW265xShWrJiKOqtTp47x7rvv+lxdJoTYt33YuXOn8dBDD6mif2gbcL1fdNFFRv/+/Y1Dhw4FdJyMRCfE+m3Dr7/+alx//fUqOw1FvAoXLqwyz7744gu/74PXUKAchUGxfbt27Yx///3Xb9Ta0KFDjUsvvdTInz+/imRHQTIULAt0rEIIsX778O2336oo1ipVqhgFChRQmW+41jt16mRMnTrV7xghqxu2IYTYu20YPXq00huQkYJxA+YUaCdQIHT16tV+jwuFS5Gtouci0B9uuukmY8mSJRE5D4QQYifi8E+shXxCCCGEEEIIIYQQQgghxIpkLPtMCCGEEEIIIYQQQgghhJA0KKITQgghhBBCCCGEEEIIIX6giE4IIYQQQgghhBBCCCGE+IEiOiGEEEIIIYQQQgghhBDiB4rohBBCCCGEEEIIIYQQQogfKKITQgghhBBCCCGEEEIIIX6giE4IIYQQQgghhBBCCCGE+IEiOiGEEEIIIYQQQgghhBDiB4rohBBCCCGEEEIIIYQQQogfKKITQgghhBBCCCGEEEIIIX6giE4IIYQQQgghhBBCCCGE+IEiOiGEEEIIIYQQQgghhBDiB4rohBBCCCGEEEIIIYQQQogfKKITQgghhBBCCCGEEEIIIX6giE4IIYQQQgghhBBCCCGE+IEiOiGEEEIIIYQQQgghhBDiB4rohBBCCCGEEEIIIYQQQogfKKITQgghhBBCCCGEEEIIIX6giE4IIYQQQgixLH/88YfExcXJ4MGDY30ohBBCCCHEpVBEJ4QQQgghQbNlyxYlbHrfChQoIJdccokMGTJEjh8/HvL7YJ9XX321z9c++eQT9Tru7QQ+j+c5i4+Pl6JFi0rTpk3VZzEMQ5wOBHFfvx9969ixY6wPkRBCCCGEkDRypT8khBBCCCEkOKpWrSrdunVTjyH+7t+/X6ZMmaJE0qlTp8rs2bMlISEh1odpSfr16ycFCxaUlJQU2bRpk3z//ffqfP37778ycuRIcQM333yz1K5dO9PzF198cUyOhxBCCCGEEF9QRCeEEEIIITnmwgsvzGSzcebMGbnqqqtk3rx58ueff0rLli1jdnxW5oknnpAyZcqk/X/58uVy5ZVXyrvvviuPP/64VK5cWZzOLbfcIrfddlusD4MQQgghhJAsoZ0LIYQQQggJK4mJidKiRQv1+MCBAxlemzlzptxzzz1y0UUXqShs3K644gr58MMPffpgAwjxnlYfsDy5++67pUePHup13Hu+7smxY8dk0KBBUqtWLcmXL58UKVJEWrdurSK+/dmsnD59WgYOHKii7HPnzq0WCRBtj9f++ecfn5/5+eefV6+PGzcux+etTp060rx5cxXRv3DhwrTn58yZI9dff70UK1ZM8ubNq6K08ZlOnjyZ4e8vvfRSKVy4sIps16Smpqq/w7GNGTPGp6UKzq8nmzdvlnvvvVcqVqyovsuyZcuq871161a/djs7d+6Uu+66Sy0KwJ4G3180WLFihdx6661SqlQpdaxYeHjsscfk4MGDGba76aab1HEhU8KTevXqqc+A79uXVdCnn34alc9BCCGEEEKsDSPRCSGEEEJIWDl79myaCA6R0pPXXntNNmzYIA0bNlTC5pEjR5Tty/333y9r166VN998U21XqVIlJRTDW/2CCy5QIq4G+4QYjr+dOHGi3HjjjZneBxw6dEiaNWsmK1eulMaNG8sDDzwg//33n/obiPzffvutT+9tWIwsXbpU2rRpo94HwmyrVq3kyy+/VEJ0gwYNMmwP0Xrs2LFSvHhx6dSpU1jOoV4MwDHefvvtSiDu0qWLEot//fVXeeGFF2TatGnqPENYB/hMS5YskUWLFkn9+vXVc/gchw8fTlvAgDiuwf/xt/guNPPnz1eLDCdOnJD27dtLtWrVlP89Pjtsev7++2+pUqVKhmOFYI3MA4j1iCrHIsR5550nkQYLIThW/N4Q0Y7fDI7v7bfflp9//lllQpQoUSLt3Pz444/qfHXu3DntuJctW5Z2LjzR/9eLQYQQQgghxOUYhBBCCCGEBMnmzZtR/dKoWrWqMWjQIHV7/vnnjd69e6vn8ubNawwbNizT323atCnTc0lJSca1115rJCQkGFu3bs3wGt6jefPmPo9h7Nix6nXc+6Jr167q9dGjR2d4fu/evUaFChWMkiVLGqdOnUp7Hu+D7evVq2ccPHgw0/5q1qxpFCpUyDh+/HiG53/++Wf1d4899pgRCPp9du/eneH5FStWGPny5TPi4uLU+T169KhRuHBhIzEx0Vi6dGnadikpKUaXLl3UPl544YW053/66Sf13GuvvZb23Jtvvqmea9WqlVG2bNm050+ePGnkyZPHaNmyZdpzZ8+eNSpVqqQ+46JFizIc219//aW+n/bt22d4HvvGrUePHkZycrIRKPi94O9uvvnmtN+P583ze5k5c6baFs97ngP8zvD81KlTM+y7f//+6vl77rkn7blly5ap5x588MG057777ru0c5M7d+4M3yt+H1WqVAn48xBCCCGEEGdDOxdCCCGEEJJjNm7cqKLFcUN09Hvvvaeeu+aaa9TNG18+37ly5VJR4ojo9o4Izimwkfn666+VH7tn9DVANHf//v2Vtcf06dMz/S0+C6KqvUG0POxhxo8fn+F5bZPSq1evoI7xjTfeUJYqzz33nLKLQfT4qVOn5OGHH1ZR1YiYP3r0qLK/ueSSS9L+DrYkr7/+ujpvsB3RIOoeRVxnzJiR9hzOJ6xz7rjjDtm9e7esWbNGPT937lwVwQ0rFg2itxF1jnMDaxhPmjRpoiL+J0+erKL5PcmTJ486npwUkP3uu+/Sfj+eN0SzZwUsbvA7a9u2rYpG97bWwff31Vdfqc8IULwUUene5wZ2Qk8++aQkJSXJX3/9pZ7Hfrdv357h3BBCCCGEEHdDOxdCCCGEEJJjIGDCjkUDiwwInI8++qiyUIFoiWKZGojQEI9hrQGxErYhnuzatSssx7VgwQIlyqPIqXfhU7B+/Xp1D1EZtiWeeNu1aOD5PWDAABk9erT07NlTPbd3714lPjdq1Ehq1qwZ1DFq6xpYt8D+BN7w2C/eByxevFjd+xJz4VcOW5V169apc1qoUCHlhw7xGzYnEIUhts+aNUsJ6NqWBMIxPNV92ZXA/gTAVsfXOduzZ4/yWMd74lg9F0a0bUqwwEM+J4VFszo32mcftjf4LPCa197tEyZMUIsJ8HnHOWjatKlafIBdDv4PCx9auRBCCCGEEG8oohNCCCGEkLABX/AbbrhB8ufPL9dee60q2Pjbb7+p13TkMzy7IfbeeeedantEVCMCGkUcIXqHA/ihAwj6uPnDW8QHpUuX9rkt/NFRxBLHiYKWiG5GJHhycnLQUegAYi4KcfpDR3z7Ox4IwRC0sR1EdC38oigpFhFQFBWvIRofke24QSB+8MEH1T2+I88FA33O4H+eFd7nzN/xRZJAzo3ndvrcQETHZ8dvE1758NqHLzw83bV4ThGdEEIIIYR4QzsXQgghhBASdnT0OcRcDexJIKAj2hr3o0aNkpdeeklFPSMCOJzowpb9+vVDDSC/NxQv9VfU0xewnQGIRgcfffSRei+I6+FGfwZEu/sCkeGe2wHPiHNd3FVHa+M1PHf8+HH1vSBTAFYs3u83adKkLM9Z8+bNAz5fkSIc58bzOdzjNwn7HLyGgqrly5eP+OcghBBCCCH2gCI6IYQQQggJO4cPH1b3sP/QwL4FwFvbG+1H7Q0sSWDL4gvtwe3rdfiLQ9z9+++/JZw0bNhQ+ZN/8cUXyi4EtjCwS0FUd7jRvuRa8PUEnt04n7B00VHoAPYkiOyHjQ7EYliZaKsVRKTDB/6DDz5Qdi/eVih64SPc5ywSZHVuECmPaPx8+fIpP3hNjRo1VOS/PjdFixZN2w/ODX5H8LeHpRD90AkhhBBCiCcU0QkhhBBCSNgZPny4uofftOaCCy5Q9/Ds9uTPP/9Mi+z2BgUid+zY4fc1LSh7A7EU0eEooDls2DAVQe3N/Pnz5eTJkxIsKDAK65MePXqo/+fEyiUQsNgAn/OxY8cq6xENPstTTz2lbGRgR+LLDxyfGwsTEIc1Our6tddey/B/z/eD1zq+O3ipewPh3fu7ixWIoq9atapMmTIlU3FYZDfAm//222/PEGkPII5v2rRJ2bogoh6LNAC2NlgI8XduCCGEEEKIu6EnOiGEEEIIyTEbNmzIUIQS4jI8yGGNgUhfLUqCDh06KF/u119/Pc1THIUfUZjzpptuUsKmNxCBv/nmG+nYsaOKGkb0OTzXEQ0OH2tEG48YMUJFvpcsWVL9DXzYwXvvvaf2/+STT8rnn3+utoevOUR3RCojihy+5MFGkXfr1k3tExHLl19+eVo0c7iBFQkWFyAGI0q8S5cu6jNCNP7333+V8Nu/f/9MfwcBWBcJ9RSDYU8CmxJ8bojtiNb3BMU18R20bdtWCcw497oo59atW5UoDw97FGONNRC/4UePwrbt2rWTzp07q0UaRNEjOh0C+6uvvprp73A+xo8fryLyPc8NxHYI89q/n5HohBBCCCHEE4rohBBCCCEkx8BSZMiQIRmE2PPPP18VrxwwYICKbNZAuIWVBoRfRDpD7KxVq5YqZIkCkb5E9Lffflvd4+/g1Q17GOwfIjoi0fE3EPEhNp86dSqDiI7XEZH9v//9T77++mv1Pvh7RKnXrVtXnnvuuTSrk2DFbYj+sHSJVBS6BuIwjnfo0KHy/fffq8h5LETg2BGNjqKY3kAcxvZYcPD2L8drENEhGMP2xRsI60uXLlXR+5MnT1YLIvhOIcBjIQOCvlVo0qSJWix44YUXlLUO/MzLlSsnjz76qPoN+PpuPYVzzyh9/RpEdFjA6MKkhBBCCCGEgDjDV24rIYQQQgghxC+I0N68ebOKRvcsXkkIIYQQQghxHvREJ4QQQgghJAjgww07GhQUpYBOCCGEEEKI82EkOiGEEEIIIQEwatQo5ac+ZswYOXbsmKxatUoqV64c68MihBBCCCGERBiK6IQQQgghhAQAvMh37NihPLNRMLV9+/axPiRCCCGEEEJIFKCITgghhBBCCCGEEEIIIYT4gZ7ohBBCCCGEEEIIIYQQQogfcvl7gYSf5ORkWbx4sZQuXVri47l+QQghhBBCCCGEEEIIiSypqamyd+9eufTSSyVXLsrBOYFnLYpAQG/QoEGsD4MQQgghhBBCCCGEEOIy/vnnH6lfv36sD8OWUESPIohAB3PnzpUKFSrE+nAIIRbKUvn999+lVatWXBEmhGSA7QMhxBdsGwghvmDbQAjxx+7du1Vgr9YmSfCwVY0i2sKlbNmycv7558f6cAghFiEpKUlKlCgh5cuXl9y5c8f6cAghFoLtAyHEF2wbCCG+YNtACMkO2kvnHJ45QgghhBBCCCGEEEIIIcQPFNEJIYQQQgghhBBCCCGEED9QRCeEEEIIIYQQQgghhBBC/EARnRBCCCGEEEIIIYQQQgjxAwuLWpSUlBRVFIQQEjgonpOQkBDrwyCEEEIIIYQQEmOoqxA3AA2EhYSjA0V0i2EYhuzZs0eOHj2qHhNCAicuLk4KFy4sZcqUUY8JIYQQQgghhLgL6irEbSQmJkqJEiXkvPPOi/WhOBqK6BYDjfyRI0ekZMmSUqBAAQqBhAQIBkcnTpyQ/fv3S758+aRIkSKxPiRCCCGEEEIIIVGGugpxkw6CbAv85nfu3Kmeo5AeOSiiW+zHv2/fPvWDxwoSISQ4IJ6fOXNGXUeISOdgiRBCCCGEEELcA3UV4kYdpFChQrJjxw45cOAARfQIwsKiFvPrwo0/eEJyDq4ffS0RQgghhBBCCHEP1FWIm61tEVTIOgCRgyK6hUhOTlb3uXIxQYCQnKKvH309EUIIIYQQQghxB9RViFvRxUUZUBg5KKJbEFpQEJJzeP0QQgghhBBCiLvhvJC4Df7mIw9FdEIIIYQQQgghhBBCCCFpfPHFF3L//ffLFVdcIYmJiUqo/+STT/xu/99//8njjz8uF1xwgdq+UqVK0r9/fzl+/LjP7VNTU2XkyJFSp04d5e2OYsC33367bNq0SawIRXRCCCGEEEIIIYQQQgghaQwcOFA+/PBD2bp1q5QtWzbLbU+cOCHNmzeXt956Sy6++GLp27evXHTRRfLGG29Iy5Yt5fTp05n+BgL9I488ogoC475Nmzby/fffS/369WX9+vViNSiiE1cwePDgqKW2/PHHH+q9cG8X7HjMhBBCiJvYffSUzN14QN3bYVtCiDWvTbttSwjJOWeTU+X46SR1b8dtIaJed911qmAm9Ioff/wxR/v1Bvt66KGHgv47NzJmzBjZsmWL7N+/Xx544IEst3399ddlyZIl8tRTT8m0adPk1VdfVff4/4IFC5S47snMmTPV/ps1ayaLFi2S1157TT7//HP1PR86dMiS3xErLZCogHSPHj16pP0faR3FihVTKRvXX3+9eq1QoULixnOCxgSpMYQQQgghvvh6wTZ5+vvlkmqIxMeJDO1UR7rUr2jZbQkh1rw27bYtISQzy5cvlyFDhigdYe/evVK8eHGpWbOm3HDDDfLwww+rbV555RWpUKWa1GtyrRgQjUWkfNF8UqxAos99HjpxRnYePpW27bE9W+TXn3+Uu+++W9lxZLVtMPsNdtvu3bvL5s2b5eWXX5YiRYqk6Sb+9rtx40Yl5P7222+ya9cuyZMnj9Kcbr31VrnvvvuUXQgJjmuuuSag7QzDUIJ4wYIF5bnnnsvwGv7/7rvvqteffvrptOdHjx6t7l988UX1XWnatm0rV199tfz666+ybds2qVjROn0ERXQSVV544QWpXLmyJCUlyZ49e1Tk82OPPSbDhw+Xn376SS655JKIpaAMGDBArMKRIyJ79sT6KAghhBBidRCpqQUngPunJiyVj1/uL7mSjqtJC8D92Vz5ZWPNu0Xi4jNsO+r5RyTh7LEM2yblLiA7Lr0/07YjBjwgCWf+S9sOJOcuKHuvfCjDts98v0KaVS8pZQtzQkpITq/jz15/WvIkn1TP6axZXMcrKnfJdG2OHfqU5D53zesbtt1Qo7vPa163D/qWnKegbK93X6Zt3376QZ/X/J4GfTJt++YT92ZqS1ISC8mBqx7NtO3rj/eQhDPp24KUxPPkUOPH2JYQkkPmzp0rLVq0UKJir169pEyZMrJ9+3aZN2+evP322xlE9FZtb5C6Ta5V/8dVuOPwKTmwe4fEGRkjt424eDmdt3j6/0Xk73+XKqG+atWqcvbs2fRrPi5ezuYvmWFb7Hffzm0iqSmZ9ptUoFSmbffu2Opj2wRJLphx2w27Dsnff/+t7D5atWqV5re9as1aSS5YOsO2Ow+fllm//ypdb+uiAjbvuusuqV27tjr22bNnK0/ulStXKlsSInLs2DF1LjU4Z7iFwvr169XCRevWraVAgQIZXsP/GzdurKLS8XutUKGCeh56oH7NG+wHr//5559y5513ilWgiE6iClaUPKOusQo1Y8YMad++vVo5Xb16dURWB3PlyqVuWYGCBmhk8+bNK5Fm1y6RU+eyF/ftw3uLxNNciRBCCCFebD5wIk14SyMuXv5ctFrObF+e4enEinWkTC2vAUVcvMxbucn3tpdl3nbx+h2+t22YcdsUw5AtB05S+CIkhOv49/nLfV9vVW7PtO0fC1f63rZmENf8pZm3XbRuu+9tr8y87bLNe3xv2yjztiu37ve97TkBXcO2hJDAQUQ2rE0QhY7IbE/2QVjIhmMnT4txNqONUlyefJLbjwRy8uTJDGKr2jZ/5u1OnD7re78FfOzzTJLvbb22O3zogLqHuAuv7ay23b5ti9x5R1dVzBL6kqd3d58+fWTDhg3yyy+/SDTBMXuLyVYBmQueDBo0SFkgh8L6c/7l1apV8/k6noeIju0gouP87N69Wy12JCQk+Nzec79WgSI6iTkoMID0jmeeeUZV/sWKqmbNmjUqihwNIRpwXGDPP/+8Etw1iGrHSiv+FqtaaKhq1KihGoJrrzVXXtEgYCXVMxIC0R5oUK+66ir19+vWrZNvv/1WOnbsKDt37lTHhIb2yJEjcuGFF0q/fv3knnvuyXDsO3bsUD5NSBfC+95xxx2qEEJWnDmDzij9/8eOIYrD//aLFy9W52bOnDlK6L/yyitV59mwYcO0beAXhc+ARgnpTvHx8Wo1Dx5UdevWDfmYCSGEEBIbKpcoYA4UPGq7xIkhrz77uBTOY6RFr+L+v+QEGb7eEEMybvvWC09LkcT0SFfcHzkbJ6+uzLztu68NkiJ5vLY9I/LCkozbwoahUgkfM2lCSMDX8YtPPSLn5coYkYnr+L3tma/NV555TArnNq95fcO2b23wf82r/5/b9mhSvAxdkfNrHtt+8OZLUtRjvwBtyfMLvNoH+OiOGKq29axLdfiMIQPnZ9w2IS6ObQkhAQK7klq1amUS0EGpUmYkt77mfpowTt3ADbfcLi++9Z4YyUny3nvvyaxZs5TmgQDGxk2aSu+nX5TyFUzLjInffCXP9+ujHnt6YMOn+qrGTWXPaZHZM3+TMSOHy+oVy5T20Oiqq2TIkMGqmKR+/xRDZJeH7qG54PzysmrFMuVS8M8//yiN47LLLpf7nhgol1xWX20zavir8v5br6nH77zzjrpBeF22bJna7850TV3xyah35Pjx4/LRRx/5LH4JPefRRx/N9Dw+E/QmCLXY5s0338ygjaCYJny6f//9d2Urkj9/fqVfDRs2LIPNjbbqReT0119/LRMmTFA61eHDh9XrsDLBviEaw14Gj7XliWddujNnzihd58svv1TaFr7T22+/XdmdhBop7smqVaukfPnyaf8Px76PHj2q7rHI44vzzjsvw3bBbm8VKKLbCI/Ft0xg4cYzgDqrbRHx7BnsHcy2kQLpGRCK4XmkRXSk20AIxsUNKxYIvt98840Sub/77ju56aab0gTyoUOHyr333isNGjRQK6ULFy5UhQm0iO4PiPPYJ0TlEiVKqIYQvmIQqHWxiZIlS8qUKVOkZ8+eat+wnwGnTp1SaUVoTFFFuFy5cqoIAvaZnZUL0N8X2i698OY1tlbnoGnTpqoBefLJJyV37tzywQcfKH8opLVAUAebNm1SHUDnzp2VXQ4+A7ZDZWQ0kDi2UI6ZEEIIIbFh7+a1cnDqSCnWuo/ExScowemVLDyESy3YpuwREN2Z3bZFgtg2f9V0H2MjNUVurHCGkaOEBAiulXwrfpCTtW70uo7b+9y+YhDXZukgti0c5DUf6LZ5KnpvW9vvtrnO36bsXhCtrhYHOtVhW0KiAgLqEJhnFSDIei4yBQIirWFxsmLFChVg6AvM76GNXFL3Uul4x93quYoXVJHzi+aTGfM2KJ0EgXTnn3++Khg5atQoWXpbB5kwfZ7kzZdPrriysdz3YB/5cNS7SqNBgCKARlKqRDH5bszH8tB990qj5i2l7zODJY8kyacfjVa17hAA6CkuxyfCu/y0mEtncVK+aF7ZvWWDtGvXLpPGce+tHeSjb3+ROpdeLte07SAVypSQZ5/qr0RkbA+vbb14EJfnjLKG0cyeMU2qVKkijRo1Cvhcwubl+++/l969e6v6fBDqb775ZqWVwGceIOIfFjq33XZbhvMFPQY6C75DT7Av6EcI/NTR89geuhJ0nb59+6p9QNMqWrSo2qcGiwkIFsVxwb8d5x3+9yjGiYBPz6KqoYLPq0VqEiQGiRrbt29HvLGxefNmn6+fOnXKWLVqlbr3hSmx+r61a5dx2/z5/W/bvHnGbUuU8L/tFVeE57OPHTtWffYFCxb43aZw4cLGpZdemvb/Vq1aGXXq1DFOnz6d9lxqaqrRqFEjo1q1amnP1a1b17j++uuzfP9Bgwap9/cE/4+PjzdWrlyZ4fmePXsaZcuWNQ4cOJDh+dtuu00d48mTJ9X/R4wYofbxzTffpG1z4sQJ48ILL1TPz5w50+exrFljGDgNI0ZkPie7dxvGpk2GkZxs/r9jx45Gnjx5jI0bN6Zts2vXLqNQoUJGs2bN0p7DOUpJScnwPvidJSYmGi+88ELaczk9ZjuR3XVkRc6ePWv8+OOP6p4QQjxh++BuMO5p3ry56qNvuuMeY+6GA8auI+Y4JCuwTaS27TNkhJFQqLhxySWXqOMjsYFtg73477//1LwD185P81bH/DqO9bYffvGtkVihjlHxoksyzWFIaLBt8D8fPH78uOpPrXLD8QTLr7/+aiQkJKjbVVddZTz55JPGtGnTMn3fBQoUMG688UZjwb+LjZ37DhpnkszrTGsZnvz999/qeD4e+4lx7FSS2vbbb7/1qQ8cO3bMKFKkiHFPz3vTtgV79uxRWkmvXr0y7R/beG6blcbRtGmztG2hZ+AYhg0b5vNcbNu+01i4dIWxdPlKtR0+b6BgexzDhg0b0p5bunSpen7kyJFpz2V1vj777LNMeleTJk2MZC3m4LOfOWMUL17cqF+/vpGUlJT2/CeffKK2xxhP8/nnn6t+4q+//srwfu+//77ads6cOSFrIVqTxH1OGDp0qPp7fF5vfv75Z/XaQw895PNv8Txe//333zNcj7Vr1/a5/YQJE9Trzz33nGElHOnCDFsPFB+A9zbSErC6h/SKYEBKhWeqnPct2P2R7MHKIgocaHsSREejijKeO3DggLodPHhQFRhAug3SjwBWIxGxnROvJERqe/pBoT1FlHuHDh3UY/2+uOF9kUqClVswefJklSp0yy23pP09ViKxaugPeJ/jZm6b8bWkJBF8pIMHkV6DohkpKjIfq5RYVdXgPbt27apWKLU/GX7nSKMCKSkp6jzhfF500UVpx5vTYyaEEEJIbEDUETLPUK/lrZefl6uqFg8oYhPbRGrbFx++S/KmnlYp1RinEEKyB1myiDIsVyS/dLjy4phfx7He9s6b20ve/7bJtrXLlK0EISQwkGmPSHRELC9dulRef/11pVMge/+nn37KsG1ycrJIarKULFJI8uQytQLP+nOwG4FuABsTaCrLli6RgnlzpW3rC1jCwu622x1d5fTxI/LfkUNKK4GnNbLkZ86cmelvsD+9X2gVWWkcc+bMltSzJ7M8Bk3+fInKW/3QgX1p0dXBcM0116jCqZpLLrlERWcjy1+T1fny1Fk0cFXw9PdG24+/wfOeNfqQCYBIdE9gLYzoc1jieOpQsI8Bvs6tlaiWjYe5t2c6nCbwvcOOGL+L7La3Co60c4GnEbyLYM+BLwWPcwpEVqRqeFOvXj2JNseP+3/N24c/q5oS3gUst2wJfNtIAg8r7eOFwg8QseETpb2ivEHhDHQW8NK68cYbpXr16iqlCR5WsIdBI5gdsD7xZP/+/apTQNVmf5WbdcEO/K7QgHqnYEG4zup8Ihvq7FmRFSsyvpY7t0j16iKbN5u+6X//vV+lm1Wvnnl/aFwxEIdPFjzR8BjVuOFv5t0I6VSknB4zIYQQQqIPfDGfeOIJ9Rj3SOG2Apj0YfEd6cV68k4IyRqIXgC1mAhsLfMqG8oxY8Yo6wlf821Cwg2Cx6A5WAVvK5BAqV+/vrIhOXv2rBLSf/jhB9UnI1BuyZIlGYIEIQLDLkUDe1dY4Y4dO1YFJXrWjAvEe1oLm1rY9UZbhOB9vPdXpkwZpbdA4/ClP3hrHN5A48Dfa7AfCNtanNYBmYFSsWJFn2Mc7WOek/PlrS9pLRIajCc4Zk/bG31uV69erexgfBFI4dhYUq1aNWUXjFp+3kVV8X88j/MDb3tPvXX8+PHqtWbNmmXYH+r9Ae/nY40jRXR0xvgCMdlAYcWnn346x/tChx5qldpwEUxh30htGylQ7BKNkG5c0HjqSaO/yZneFhcVCmxMnDhRrWri+0cn8v777ysvsKzwXFn0fN9u3bpJ9+7dff5NIOJ8duTJ4/t5LJ6iz0Nbe8AsRi2HDpmiu7+/ASg+gcUGFD5F0YlixYqpyHT4t+vPRAghhBD7AG9OREMhIOSpp54SK4HxxciRI1XWIKKskP1JCPEPRfTMIOgJ8zYU4Pvf//6XaV5GSLhBIJmnsGd38uTJowR13BBQiMKWiGYeNGhQmtjr7Xv98MMPK0EY/TjaIxR1xHmB53cguoHeBotfEMW90YI2imvieDzxFKBzAsR1b5Eams/ll1+uxFv4xAeDZ8S4v+MM9nyF0o5hfyg6Onz4cJ+ve4rPViQuLk7pbwhyhSYFLVaD/2MBCx77niAoAyI6tCxkOeA3DVCTEO4g1113nWWCSBwtoiMtg9gLNMJAC+Y6tQerpoF8nxCN0UjjhosTwjoWP7IT0b3Bqh/SgLDKmd374mJGQ41G1jOye+3atT63RxuL9thPW50G+h18/AIFSkrevPll3bq1yt4FEey6aPKaNWuUSK4bUgw+W7RooapRe4KoemRk5PSYCSGEEBJ9UCAcEw6ACChYtFkJRG+h0BfGb8OGDVOTZUKIbzDunjdvnnpMET2dJk2aqLkJIjVhQ9GlS5dYHxIhtkUvZu/evTuDCOwtokM3QLDgm2++mfbc6dOnlW7gib+Cp9r+BA4CWekl0HUgivrSWxCB70t/8NY4vIFo771PZLXo94PYjQXLcLazgZ4vf2gBGE4L0Gs8rXZQYNQzQBPnFpkFrVq1CrrgbCTBYieshMHy5cvTnoPIrdtyrbuhUCyCW1977TVVZPayyy5TtjcIdsViDxYjPME5wd9if9gWxWnxG8a4EhofAjashiNF9HCClIoRI0aoNA5UzkXaCixEAk3DxU2j00uQcoKbN3gODR5WoJwWPaw/j6/PhigmTBSxqogJGV6H8IssAFRp7tOnj4rC8gRpPDrNBR5TnpYlaJTRAGGlUr+X7ki831ufbw0aq06dOsm4ceOU16d3xWvP923btq1qDL755huVjqhTirQNjPdnPXIkTlm14FArVkx/X3/fd6lSccrzbNq0iZKUtFni4i5QQjwm1l999ZVqrDCpxt9iFdX7s2AVGilHiNjXzwd7zHYEx49zgevJ3+qy1dDtga92gRDibtg+uBNYE2LciAkFop2s+P1jIgQRHRNMTHw9fUVJ5GHbYK/5JHxtUcMIcwt+Z+lg7odoxc8++0zNwUjosG1wtq4CX2zoJN4i6y+//KLuEZEOkRfiMoILEXnveQ4wP/Y+L8h8QxChp56gI6pRq85zW+gTEOaRCQ8rDk+rGE+9pHTp0urmCfaD48Y+ILQi205bmvjSODy1HDxGlLK3jQzEadSJe+CBB5TGAUF2+vTpmd4bzgU4R4888kjac976ia/nAz1f/rQdjOOgVY0ePVqJ8TpSH+MnbRujt4cdD2rYQQPzrlkHPRLbZZdJkZ0WonzygwQC+qeffprhuTlz5qibRovoOD7U8kFAK2oN4vcKLa9fv34qQ8JXpD4+LyLwoUnBohjf/0033SQvv/yyJceWFNGzARcybhr86JHSgaib7AQ6RA4NGTIk0/MonrIKocVeYN9YXUNjB38rJ4GGHKCxxIoUGh14Ov3111/qwsJqIwrC4nPrz47zB9EXq3N33XWXamDRKP/zzz+ya9eutNUw+GWhsa1bt67ysML+ccGieIMuvKkXM/T/NXgv7+eQYgJhHyuYeF/4daGBg6iO1TZ4jgMUPcXK2N13361WPPHdYcUMA2QtTnvue//+/GIYeSQ5+bT899/ptHOCRsO7CAhAcdynn35KZsyYLh07NlFWLfiNoKgtPg9SXvT+sQoMX1KkRTZo0ED9viCi45yhodTbBXvMdgTfKToZXGc56SRiia/VekIIAWwf3APGGR9//HHahGrq1KliVXSE0eOPP67GLST6sG2wProYHAKGIO6QdHTEKdo5zLlRrI+EBze3DU7WVR566CE1123fvr2yMMbngz4CX3Rkid18881KZ4G/OJ5HRDDOBSKiEa0OewzoLhAzoXMsWLBAaRyI+oXwqrUAiJfQu7DIBYEbAjay/SGQv/HGG0q0vvTSS9XiFwIgYc+LYD0UF4VWlhWwqENb2LRp0yw1Du1fD93En0aByHUAHQgibM+ePZUnPAIQcA70+YEOhUU7z/340oIgQnueh0DPl9Z24P3tvU9EZ+MzY/EDBVUR7In2Dn0CdDG9Per8YYGhd+/e6vrFucTxrFu3ThWah8aFcx6KFoIF3WDBd4NboBQuXFjZK+MWCPgOsbjhucBhZSii+wGNAxoMNE4QInExQHQcMGCA+jFgBc0zpcMX8GLHpEKDqGBc0Gh8vIsI6AsPFxRWXnRailPQnwcrlgCNMBoeRGPgfELU9a6mDDEYjRQ8leCThIhzpA2hqCtWsXRqEi62SZMmqQEqGl50EIhsh5+6XhnVIrF3OhOOw/s5/B8NLfaB/cIiBauHEOvxm9Db4/73339X74+VRUTAo6I0Cpu2a9dO/V9vi0D4zZvN1eLSpROlQIE8aedET5S9weojGk6s5EHYR0YEGlE8h4bcM00JK31oJBFBjw4Uk9qff/45zXMqJ8dsV3AdoZPDdWaX6wgdMDpKdJreq/mEEHfD9sFdIHoIfTL6ewjourCoVcGYFQv5GIMhFddfMSwSftg22AdEFgIEB2G8TTICCwbUVkDEK+YlJDTYNjhbV4EGhQwwzOkRHQzRFOL5gw8+KM8++6zSSxDhjWwxbItoXoiqCA5EFPe7776rzgn2gfPUqFEjJWijfcLvxVM3eO+995QIjyBSiL14T4jrEKpxj9dQzwAaDNwaENgIDSM7PSFQjUNb2eF4/e0Tv3dYq2D8BOEc/ugQ+bEwB50FOhCCMvEcoqW1LuRPC4Kg63keAj1f+neGSGzvfWIsh9fhdf7888+r4E+I+viOvLeH/oRzgkh1RM5Dn4HV8aOPPqoE9OzObXZaCDRJEhpxRqju/hZHFxZF5wyhNlT27NmjLkJEJuMHiEYqULA6h9V2RBj5E9HxGlaknNbYux0sLq5bZ/qd160L25jg/h6B9Cj+jOwdB9VCiQh2vI7Q+WOChYmVWwe7hBDfsH1wF8hMQyQSJnmwSPE1XrQSmEY0bNhQBR9gYugrA5NEBrYN9gEBQPC5hQiDKFGSEWTJIsAHUbIIoCKhwbbBnvPBcPbLS5YsUaL3xRdfbLmaKuEG0eoYL0EQ9/QXtzpYOEDgASL5EdwYrd++1iSxyAS7ahI8Zu4DCRikwmByg6jf+fPnx/pwiE3QdSeQoZiTGhG7d4ts2wZPsrAfGiGEEEIsAKLJ4BkJkMlodQEdIDMTacoA0WjI3CSEpIPaBroQG4uK+gbRo7BzQDQ6xDBCSM5BPwwBHVYs2flnOwEtFGMMhc9tRSBse8cuow4Esm9g8ULsBUX0HADPJ8CJAgkEtJfnakYoET0n6Kwdm9uVE0IIIcQPEKFRIAvFsJBFaRfg74ki5pgM+rOoI8StILIaEYeI/CtXrlysD8eSIBoTNlYAFgaEkNAW7gCscr2LjzoRLMDpjAvtS2415s2bp+x2YW2MenioIQNrGVgbd+7cOdaHR4KEInoO0BHodogQIrHn5Emk1cFfK10MDxZtF3/qlLkvQgghhDgHFE5HDRiASZZ3nRgrg2g37d0O/1VYCRBCTFBTCzAKPWvuvPNOdQ9PZCw6EEJyhi5Safc6ZzmJRof3uxWBboiF1HfeeUf5y8MPHR718JiHDQ2xF64X0VGdFmlj3lVq//33X5/bv/3226p4Eioh169fP0pHSewM2kUUni9TxhTScwIWV/PlMx+fW1wmhDiUKVNE5s6N9VEQQqIJCqYfPXpUFY3q3r272A1MBlEnaOvWrfLtt9/G+nAIsVQEIqCInjUdOnRQot+2bdvkr7/+ivXhEGJLYGcCj3C3iegopGnlSHSI6Kh5g/qKsJ3BPTL3gqmvSKyDI0X0MWPGqCKiuOmBvOdzeOyZOlujRg117wmKvkAov/3226V///7Su3dvlYKBCrpFihRRq+SIvCEkEAG8dGmRUDM4dT9IEZ0Q54JEp3btRBo3FmnWTOS330xLKEKIc1mxYoVK7wVvvfWWLceXmMCiMCB4/fXXM3l/EuJGcB1QRA+8DdG2BrR0ISRnQEBHu4PoZhQodwtWj0QnzsKRIvrs2bPl008/VbdFixap5+bMmZP2HF7PjgcffFClXMyaNUtVDP/kk0/URQkRHcVhGjRoEIVPQkg6OrObvuiEOJdff01/jECs667DxFtk8uRYHhUhJFJgstu3b19lX4AAjubNm4tdwdgZRcyWLl0qv2EFkBCXgxoHyHaGmIUsExKYpQuC4CiGERKalYsb/NC9RXSrRqITZ+FIER2CNyYl/m54XTN48GD1HO49eeqpp2TGjBmyc+dOdTGePHlSVq9erSKEzj///Bh8KmJHUFB0//7w+JhrEf3MGfqiE+JUNm0y7wcOFHn0UQwKzej0Tz+N9ZERQiLBL7/8ItOnT1dRY4jgtjPFihWTXr16qcd2/yyEhNMP/fLLL6fvbQA0bdpUKlasqITASZMmxfpwCLEdbvRD97RzOXPmDGsqkIjjSBGdEKuwZ4/I1q2mmB4qyO6+6CKRevVMixhCiPMYO9ZsN/r1ExkxQmTLFpH+/UWefTaj0D5+PHwPY3mkhJBQOXLkiPTp00c9RjR6lSpVxO7gc+TKlUsVy/JXX4gQt8CiosERHx8v3bp1U49p6UJIcKCot87gsFNx8nCAcYe2wmM0Ook0FNEJiRBnz4qcOGE+LlIkPPtEf5grV3j2RQixJqihoNsMPEZA5yWXpL8+dKjI7beL1Kol8tlnzEwhxI4gC/K+++5TRfSqVq0qz3qulNkYRJGinhAYNmxYrA+HkJhCET3nli5Tp06V/UjnJYQEFYWeP39+ye2yiDtY11i9uChxDhTRCYkQR46Y9wUKiDCDkxASLi68UKRoUZG1a0W6dxe5775YHxEhJFg++ugj5fuL6Klx48Y5KmqsP9Jnzvkab9IeVYS4jGPHjqk6WoAieuBcfPHFcsUVV0hycrKMR9odISQg3GrlomFxURItKKITEmERPVxR6Jrdu0VWr0YHEd79EkJiS+fOItdeK/LPP1lv99RTpk3UCy+Y/8ccE7USCCH2ADV2HnnkEfX4lVdekfr164uTqFOnjrRt21b5kg4fPjzWh0NITFiwYIG6BpCdUa5cuVgfji2j0WnpQkjg2W0U0VlclEQHiuiERIDkZESgmI8RMRoqV199tboB9I+widH7DwUU2UX608KFC0PfGSEkpDZj6lSR6dMDy1xB0CqKj5YsicGiCK2HCbEHmNzB7gSRUtdee610vbe3zN14QHYfddbK+JNPPqnuP/74Yzl06FCsD4eQqEMrl5xz2223KX9jLESsRdodISTbsQU80TGvL1iwYKbXBw8erF6zO/gMDz30kM/XtJ0LI9FJpKGITqKCFms9b6VKlZIWLVrIlClTcrxfRHD9+OOPmZ6fO3eu6ixQtCsWHD2KFWGsiJo3T+6+++4M5wEdHYqJ3XLLLfLdd99lW1FaLy6fW2wmhDiAxYtFjh83M1fq1AnsbzAWbtLEfDx7dkQPjxASJp566ilZunSplCxZUm7u/6Y0ff0P6Tp6vjR+dYZ8vWCbOIXmzZtLldqXSWrJC2XGvMWxPhxCYiaiN2zYMNaHYjswR2zTpo16zGh0QrLXVooWLaoywB599FH53//+p+ykrMjkyZOVRhPJSPQzZ86oyHxCIgVFdBuRkmL/Y3jhhRfUYOizzz5TUUooGNOuXTv5+eefwy6iDxkyJGYiurZW8GflkpiYqM4Dbm+99ZZ07dpV1q9fr4T0Vq1apaVjaX799Vd1A9o2FX0j+wdCnMGsWeY9RPFzxeUDAtuj+Gg2a2+EEAswadIkeeedd9Tjtz4YK6/N2Cap5/px3D/z/QrHRKR/s3C7pLQbLGVuHyr9Z51y1AIBIdkBAWfevHnqMSPRQ7N0+eKLL7INMCLErWhtBcL0rbfequqsPPbYY8pWbdmyZWnbDRw40BIR2hDRodFEgjx58kh8fLxqfyGkExIpckVszyTsQFi54w7TDzsW1Kgh8uWXoe0DK6QoFqPp2bOnlC5dWhXVat++vVidkydPqorX2QHrQ9gs+AMdXLdu3TI899JLL8mrr74qTz/9tPTq1Uu+/vrrDJ2CBoVK8VvAgsbJk+b/nXLeCHErf/5p3jdvHtzfPfywSN++ZlQ6IcS67Nq1S3r06KEe9+3bVypfcqWkzp+fYZsUw5AtB05K2cJmSrJdwULA098vF4kzY3UMiVMLBM2ql7T9ZyMkEDZs2CAHDx5UQTOXXnpprA/Hltxwww3K23nr1q0ye/ZsadasWawPiRDLAW3lsssukyVLlqjFpho1asj8+fOVroJrCDVYYHMC7QE3J4OIfESjQ3fAgoGOTCck3DAS3WZAQEfafyxukRDvixQpktawe/LGG29Io0aNpHjx4ur1yy+/XCZMmJCpoTxx4oR8+umnaalMsErBSmz//v3VNpUrV057bcuWLWl/i6gG7BP7LlasmPLe2759e4b9w4O8du3a8u+//6qBG0TgZ555Rrp37y4lSpRQvmPeXHfddXLRRRepx7lzm7dgGDBggNrHt99+K+vWrfPpiQ6xDFZnX389Ui67rJY6LqRwYXHiq6++yrC/nTt3qoUKFDTCQB7n48EHH5SzZ89m2A6rtY8//rhKLy9QoIDcdNNNKkvAk4kTJ8r111+ftq+qVavKiy++KCle6Qn+zhvAhAKRJRgU47vHuURaO74fpKV5smbNGhWZj+8HnSA+308//RTcCSXEBuAS+uuvnInoaGMooBNibdBPou9DHwhBbejQoVK5RAGJ97p2E+LipFIJ+y84bz5wIi3C3nuBgBA3WblgruEZCEMCB3M0zAMALV0I8Q9EYwjo0FMw727ZsqU899xzagEKmoc/T/TffvtNmjRpoubksJeFhqHn7OCPP/5Qf4PAPjxfpkwZpRNAnPfWTf766y/p3LmzKqQMnaBChQoqYMAz+h06zbvvvqsee1rRaPAZ3n77bRVFj7k/dAnYOvmq3QYnAugNeK9atWrJVBSW8vBFZ3FREkmcvRxFLMfRo0flwIEDKs1m3759MnLkSDl+/HimqGw0oGig77jjDiX4jh8/XjXMsH2BkKsHVPfee680aNBA7rvvPvUchF007hCgEd0OqxQI3gANMXj55ZdVx4KUJ/w9xGIcBwTfxYsXq45EgwkvVnghsuMYETWP/cOOZtq0aRmi5/fs2SMzZsyQ558fFNI5wkQb1i3o2KpXr+5zm59+Gi1vvPGItG59i/Tr96jqKJCyhZVnWMPoqDecG1ja4PxcfPHFSlTHYgQ6W89B/cMPP6yE+EGDBqnFhhEjRqiiHZ7R8BC50cFCbMe9+VmfV9Yzw4YNy3B8vs4bOsYOHTrIP//8o4R8HA+EeQjp3qxcuVIaN24s5cuXVwsLOOfffPONdOzYUfnGQ+QnxCksXy4C5yksjuU0YA3WTnbJTCHEbaCPRJ+JyS3GJpj0lU0UGdqpjorQhsAMAf2VTrUdEamtFwg8hXSnLBAQEggsKhoeMCdCcWIEF2GuxshSYpVsKywWo6+zQp+tbWALFSqUJkrj2oHwDU0BGe6+5trQMS655BJlCYNxCTJo5syZk2lbaCfYL2q6QL+BTnDNNdeo6HctWuMahb6AOT6CIDHfxzW7Y8cO9Rq4//77lT4BjcPXwhgC/6A3QEOARpOcnKzEeVhjeToZIDPl+++/l969e6vPDJu8m2++WbZt25bWRljBuoY4GINEje3bt2M6YWzevNnn66dOnTJWrVql7v1x6aWQSmJzw3vnlLFjx6rP7n1LTEw0Pvnkk0zbnzx5MsP/z549a9SuXdto2bJlhucLFChgdO/ePdPfDxs2zOe53rJli5GQkGC8/PLLGZ5fvny5kStXrgzPN2/eXO3j/fffz7BtSkqKcf755xtdunTJ8Pzw4cONuLg445dfNhmrVxvGmTO+zwWOF8ftj8WLF6v37du3b4ZjwU3Tvv2NRtWqtYxNm/zuxrjrrruM+Ph4Y8GCBZleS01NzfC9XHPNNWnPAbw3ztORI0f8fifg/vvvN/Lnz2+cPn062/P23XffqedHjBiR4VziO8XzOBZNq1atjDp16mTYL46vUaNGRrVq1fx/6ACvI6uB3/ePP/6o7on7wCXaurVh3HJLzv5+3DjDKF3aMLp1C/eRESvA9sHe/P3336o/RT/38ccfZ3p915GTxtwNB9S9kxj/z1aj8oCfjQue+tmo2H+i+j8JL2wbrEvdunXVNT9hwoRYH4qtwTyhYsWK6lx+8803sT4c28C2IXLzQc++Dfex6tv0HB7z/NWrV6v7ffv2ZdimcOHCxqXnBJxBgwap7TVvvfWW+v/+/fv9vsfMmTPVNuXLlzf++++/tOdxLeL5t99+O0udYOjQoUob2bo1/Rz16dMnw3FoZsyYoZ5/5JFHMr3mqVFgmzx58hgbNmxIe27p0qXq+ZEjRxqHDh1S52LlypWGW8nut681SdyTnEE7FxJVkMKD1UfckF7UokULtdKI1URP9KomOHz4sIpgb9q0qSxatCik98f7ICIaUeiIiNc3pCdVq1ZNZs6cmWF7rMpqD1MNClYgQh7WIp6Vr7/88ku58spGUqpUZcHiZ05txxDlDbKqql28eBE5cGCHHDiwwOfr+IxIc0Lkt+fKrcY7nQuR6p7P4Vwj/RxpYL6+Exwbzhu2w6ozrFeyO29Is8qdO3eG1XCcyz59+mTY7tChQypiD9+Rfh/cEN3eunVrVYAVEfWEOAVcoshCPBeoETTFi4vs3YvIjHAfGSEkFDB2QXYY+tMuXbqoVGZvEMV2VdXilohmCydd6leUH3rUlj1fPS27P7hXOtUrG+tDIiQqYOy6HClmjEQPGcwTbr/9dvX4l19+ifXhEJej631YqSA4xhfI6gewS/XWFPzpCTrzHlnh2RXuveuuu1TEtwY2S2XLllVFQn3pBLDbxdwd1rzQvZHpnx3INIcWgaz47HQLRMHDfUCDaHp89k2bNmWwczE1d0LCD0V0ElVgL4KGDzcI0RgQ1axZU1mHePp0w7alYcOGKiUHntiwYhk1apSakIYCBFg0qBDMsU/PGwpvIEXJE9iJ+PIyRGeCNKEffvhB/X/t2rXKA/yGG8xK8oULY+CXs2PUHaFnZ+UN0qnQMeJ84rNAiPZMv4JFDVK74BUWCPAv8wTWLnoBwzPtCzYqhQsXVh0Vzpm24fH+XnydNwjy6HC9C4xeeOGFGf6PVDJ8R7Dc8f6OdMfq/T0R4mYaNjSLDaPsw44dsT4aQghAP4a05s2bN0ulSpXk/fffzzQRdDp1Lqwgsm+dJP23X6V0E+IGFixYoEQpjK1RR4iEBupIJBQqLisPJMVUrCTEivU+EMymA9hw89YU/OkJWNiHdSqCGWG7CgtWWKf6EtShNXiCsQzm75715mClgkAB6DbQKDBvb36u0FMg+s3GjRtVe4m/D1a30NoFdAucAxwfPod3DThCwgU90UnMIwwQjQ4PdAjcKAwB7yv4ocOj/L333lPCKyKYx44dm6lwZrCgQUXDOmXKFEmA6uQnCtzXqqonEP5RLAjR9BDUcQ/RuFmzW9Xr5zToHLFixQqf4rInqLwN4X7SpJ9lypSpavUW5woe5UOGDAn6PX2dC6BXcOGrjo4Q4jl807D6iwUOZAZA0PfucP2dt0DQ+3riiSdU5Lkvsjo3hNgJeKEjc6VsCEGaGB/Xqyfy779mNPptt4XzCAkhOQG1U+B/jv4VYxfPeituGuNdcMEFqk4NFtJR3JwQp0M/9PCyOa6MlH9grOyPj5fGr85QtSSQ6UJItLFivQ9EfUMo945Cx8I1xGt/c2bM1WfNmqWy8BHUiIxx1EJDUVL4qPvTBvxFw1977bUqmxy6AOqeoZ4ZMschrGcX6R5O3QI6DzQKBDsiGt17YYGQcEARncQcFI3wjMCGIIzGD4U7PRs+iOje+Ivq8vc8xF80sJjI+SvaGSgQz1Fkc/fu3WqC3KbN9ZKYWFTw1l79WFCg0AaOH51RViQmFpCaNbtItWpd5P33z0rnzp1U4Y+nn35arf6iM9WCfKigOjfsVGCHg8UNDSLsAgUTaXTUWDH3jEZH5LknVapUUfdYOEHGAiFOZtw4kd690Z6IfPppzvfTpAlFdEKsAkRjbVWGhW03i2mIwsf58IxYI8TJUEQPH4g8/3DxcYk7l96r7TOaVS/pOAssYn3wm7NaQXCI6MBbRNeFO/0FpOmF7latWqnb8OHD5ZVXXpFnn31Wzdc95+AIdPQEWgrm77BRAbCvQj//6aefKn1EA/veYDQaaD8Q4gOJRs8KLaLjhgx6QsIN7VxITElKSlKrnYjiRnS1Xl1EA4tVTQ0mX/D49garnIiS9vU88H6tU6dOav+Y1Hr7ZOH/EIoDBR59OM5HH31UeXB16GBam6APC2LxNgOvvvqqOh9IsfJOnfIExwnPdfRD+Bhnz+ZR0fH4DDin6BQ7duwokyZNkoULF2b6+2A9wvSKr+ffIUUK0e+Bgk4cxzZ69Oi057AyDZ98T0qVKiVXX321fPDBB2qBwhtY1RDiFP7807z3sPbLsYgO6ItOSOzBJBQTW/RlAwYMEDeDBXRAEZ24AYyT582bpx5TRHemfQZxN8iCmD2ghYzr1VDdxzor4syZM+re07YFtcVefPFFFTQI+1xfQKz2ph7SWj326ZlZ5+mtPmHCBDVHb9u2rV+dAI/hNBCoRnPzzTerv/GVUR+sbuHpi05IJGAkus04pzPb9r1ho6KLUMLXGhHcWN3EJFOvoF5//fVqNbRNmzaqIBe2g9CKdKRly5Zl2B8sVaZPn662h48WOosrr7xSPa8nsvD4QlQzimxilfOll15S0dqY0EFoRqeDiGr4m6PAJmxEAgHR3jjGb7/9VqVpX3rp9UrQDsTKBdH3sIDRDTzSnFGoFJ8P9jYffvhhln9/3XXXqWKoNWs2lrx5S8u+favl00//p86d7kSxmgxBHjYs+FxYpECHh+OdPXt2UKnlKAwCr7Hu3bvLI488ohYPsMIdTKeGcw0P9379+qnVa6R64TPrTtxzZRrfd5MmTaROnTqqECmi0/fu3auie5CetnTp0oDflxCrgstn1izz8TnbwJBFdDSRsB5k4AUhsQMRWeDJJ58MKiXaqZHowLNQOSFOBXMaBLogk1YLUsRZ9hmEIPLcKpkQc+fOVfN7ZJ9jrgwBHRHgWMDGPBtR2b6APSvsXKAdYFvoLQiOO//889Uc3BNEhuO5Hj16qPcYMWKE0mUwRweY00NjgYYCCxdoOnAW8KytptEaDfQEBNhhjAStBvrHnXfeKe+8845qR6GxINgONr94DfXzAkV/ZkSiExIJKKLbCARmf/ll7I8hlPkgPLs9Gzg0uigYev/996c9Dy+ujz76SEVlP/bYY0oYf+2115To7S2iQzyHQDxw4EDVUELkhYhev359tQKLQl7w+EIjDKEcq58Q7GHl8tZbb6WtdlaoUEEJ0/BiDwakLKEIaufOt0rlyomCQPZARHSs8KKjALA2QfQ1OhWcHxTvRCR5VuB8ffnll/Lxx8OVDU7p0uerzgjnwbO45/z581WBTmyLQqN4DqvG3sU9s6N48eLqc0IAx3tAUEdRUaR/ZZUm5gk6SXiuIXIf6V74jPisKBaKwiaenTyi6hFBj+/nk08+URMSnCMUF/L8DRFiZ+BkhGQL1OBt0CC0fZUpI3LLLRCs0L6E6wgJITlBZ0yhWJfb0SI6I9GJG9BR6BjTI8uWhMc+46kJS0Xi4iVODHmlUx3LCJiExBpkbgO0NxC7EYAGkRuCt7+iogCaB/rljz/+WA4cOCAlSpRQgXeYe3tboDzzzDNKgxk6dKiKSMf8H4K71hMQrIjsd2gR2AZzeszxIXzXrVs3kyvAww8/LOPHj1cBhQjIg4iurXthEQMdqH///uo4rrjiChXMFwxaU0CgovZJJyScxBnB5keQHIMIWoi1EHP1pMITXOh4DaKxv1VDYi0mTpyoIqyxktu0adOov39SkogOykbACyxe7AZsetDRIjoeYnqo2PE6gs3N5MmTpV27dmogQtzBmDEiCOJA06Ej0gnxhu2DvcCwGpNZZJxt27ZNjfvczJw5c1QEG8a9wdRRIdnDtsF6PPjggyqAB0Enb7zxRqwPxzH0fuJZ+fibSXL3LdfL+8OHxvpwLA/bBnvOB4Mda0DYxneN4EBvT/Rw1URDFDiy2G9BpI5NQPDkokWL1GOI8m5b0Mzut681ye3bt6vMAxI89EQnJATg7w2rEe+0p2iBcdE52y/57z+xPN5pVfC9HzlypOr4L7vsspgdFyGxIFxWLoQQ6wCfTyNfYUmsWEdS8viPAnMLOmgEkzVdSJ4Qp8KiopGhdpXycmb7ctmzaXWsD4UQy8ypdR20ggULxvpwLAXOCSy1AH3RSSSwYdwqIbEHKUhY/YU9yUsvvS179sRJiRKmqB1tkKkFbRr1PkIsZh1xkL6FTh+TC1jafP/998rLDf7tuggIIW4rKtqsWfj2efw40snN6PZz40dCSBT5bM4GKf/AWImLj5eWI+YoK4JYFx6LJWXLllWRkJjs79q1SypWdO+5IM4GNgfLly9XjymihxcELIFNmzbF+lAIsQS60CcE9OxsYN0IdAVoDRDRIxGlT9wNRXRCcsDtt9+uOq177ukpbdr0lp07TcEqFiK29mAPxIs91sDv/s0331T+6ujUUJQEkejBFAshxAmkpooMHWpGo4drrg1zturVTZ/1OXNQEDg8+yWEBMbuo6dkxOx9SkAHKIb3zPcrpFn1kq718MXkHkXLUFAc/qsU0YlTWbBggbIRwG+8XLlysT4cx4ro9DgmBBnoZgo6BWLfsLgoiSQU0QnJAbqUAIpOb9xoRqAXKRKbY0EkehZ1QyxF165d1Y0QtwONDZdCOC8HzCkbNhT54QeR2bMpohMSbTYfOCHehYZSDEO2HDjpWhEdeIrozcKZekOIhaCVS2TbEAjnJ06cUIWbS5UqFetDIiSm4FoAWRUPDZWrr746TfOwG57FRQkJN8z9ICQE9u0z72HlwkwqQkis0fWN//or1kdCiPuoXKKAxHnJ6AlxcVKpRH5xM9oXHSI6IU6FInrkgL+xLoBHSxfidlBfRNcYcWLR1HCgbWIpoocHZFn973//UzXs8ufPrzIgEBTx008/+c2UePzxx9UCKNpvjAP79+8vx+E76gAo+xGSQ9Amn7MjUyJ6rK0hkNV16FBsj4MQEhjvvYcJNwbC4d2vrnEMOxe0C4SQ6IFo8yaJ28RITUkT0F/pVNvVUeieIvrWrVtjfSiERAREa85DQRKK6BGDvuiEmJw9e1bd58qVSxISEmJ9OJZELy6gHguLmofev916662qth3E8Z49e8ptt90ma9eulRtvvFGJ695ZEs2bN5e33npLLr74Yunbt69cdNFF8sYbbyhrXycsbFBEJySH7N9v3hcuHPsCfljUW7dOZPt20xeZEGJdUEOhTx9T8D6XjRk26tUTyZ/ftJpavTq8+yaEZE+xI2tl5/v3SAtZJrMHtHB1UVENI9GJ01m/fr0cPHhQCTf10BGTsEMRneQEu9qRZAUKZgJE+BLfYHEhT5486rETRNtY/ua/++47dWvcuLEqnj1y5Ej58MMPZeXKlSrS/Iknnsgwvnv99ddlyZIl8tRTT8m0adPk1VdfVff4P2qHQFy3OxTRCckBiPA8cMB8bAVbvoIFTT/kpCR0rLE+GkJIVqCYKMA8G4tw4QT1GeCLDuCLTgiJLvDrTTl2UOqUSnR9BLoGkyxAEZ043crl8ssvTxNuSHihiE6CITcGxCJy8uRJcaSIHp9LcuUtIGeTmXbqD7cWF0UkOGpI6GsgVCZOnKjun3nmmTSbHFCiRAkVZY7f49ixY9ME/DFjxkjBggXlueeeE0/wfzyP1+0OC4sSkgNSUkzxC/2yFYpiw48dQjrsZWDrQns0QqzLn3+a982bR84XfcYM0xf9/vsj8x6EEN/sO1cspWTJkrE+FMtFom/fvl1SUlKYfk4cK6I31KvYJOxQRCfBgH6mSJEiaX0yfJwhLDqBIyfPSu5i5QTLA2t2HJBS5+WVIvm5eOeNFpHhwx3JAqxWAOI1bGtgt4IbfvvhGmvt2bNH3VeuXDnTa5XPPTdjxgwZMmSIysratWuXtG7dWgoUKJBhW/wf0eyISsd4sEKFCmJXKKITkgPQJmMsh2wZq/TH6BsgouNmheh4QkhsRPROnSDgibRsGZn9E0KyjkQHFNHTKVeunPJuhTfp7t270woEEuIU6IceeSiik2ApU6aMutdCuhNISTVk91FEVqcLEPt2iZQpnFcS4n2LEshURwCg24Lsjh07JocOHVIiulssXSCcly1bVgoHkOqM8wPBXQN7IF8WQYg4B5s3b5YaNWpkeA3PgXXwFT5nbQaqVavm8z3xPER0bEcRnRCXYhUBHSAiftcuU0S3krhPCEln716RNWvM6xMR45HgkkvMGyEkdiJ6Ka5mZ5jUYbKEyRYsXSiiEycBIQI+sYAieuRF9B07dij7APpBk+xA5DkERfTHWMR1Aou3HZbBM7dlev6NznXl0opFMz2P2kvXXGPWSnr7bZHWrcU1/Pvvv/LAAw+ohXxESjsdXWg20IyLmjVrZvj/oEGDZPDgwZm2a9u2rYwfP155m6MwaN5zqzGoAzJixAj1+MiRI+r+6NGj6t6fiH/eOQsHvZ1doYhOSJAcPGgW7vOwhLIEOCbYuqAANay/8H9CiLWAxQqoU0ekWLFYHw0hJNzptIxE92/pokX0JqiqTIhDWLRokaSmpkrFihWVWEMiA9pU2AHA73fr1q1SvXr1WB8SsQkQFp1iI1ax5Hmy42iSxGHSf46EuDipVLpImrjpybvviixZYj7u0UNk2TIRt6xjX3zxxaqtwA1WJ/DjJumsWrVKypcvn/Z/fwuTXbt2lU8++URmzpwpderUkTZt2qhFqR9//FFKly6tton3+D26AXd9WkJCBAL11q0iK1eaK7uR5o8//lCriRMmTMh2W7Rd2u4L0eiEEOuK6M2aRfZ9du4U+fBDkc8+i+z7EELSQSQOJmqAIrpvX3RMZglxEvB2BRR1IwvmQ7R0IW7HOHFYDk0bKUZqSpqA/kqn2j4LmcPB5M03zcdFipj6wJw54hqKFy+elhW4BmnAJAPwiUdkuL75E9ER4T5lyhQVpQ6x/MMPP5Tvv/9ebrzxxjSNSp9nHYHuL9Jc28cEYjdjZSii2wmYWdn0GLB6hcGP5w0XW4v/s3ce4FEWXxe/Sei9ioiACIgCUpQmXZQiKl0QULFRREUEC6JiwQYWFLGiFJWiFAVERQFBUEGkg0pXiv75DAGklyTfc2YyySakbH/b+T3PupvNkn3dMu/MmXPPvfpq9aUMlhdeeEHtgmXkp59+Ul90U1oSLhISRJKStAs9VKc3BPIuXbqovLY8efKo1+PGG29Ug1KwwACDyhxWkRNiT15+WWT5cpGBAyP7POhxhqair70W2echhKRhXOhYmGTmCPMyRkSHE50QN2Garpn8ZRI5KKITr4PP/tEN30ncV8/ItL6NZPmwq6VH/QqZPnbyZJF//tHOc6w9sDbo0UM8hcnw/v33360+FEcDgR1xL1u2bFFxWugz8N5778k+uLZEpF69eumy0E02ekZyykx3CoxzcRIoQ+rdG6OANc+PQWjKlJD+xLPPPqu6+KLkef/+/Upcb9++vcybN09uuOGGoET0bt26SadOnc4R0dEh+Pbbb1fdicMBcsZNXxIYzELJHMcghNcCA0j//v2lYsWKKlfqq6++kq5du8qUKVNU6UygZGiCTAixGXnyiDRpEvnnMWkJKNvEXmKYhkFCSDaY5mV0oZ8L5jmAIjpxo4geV7ikxJ5/qWr4l5kjlIQHiujE65jPfuWyJeSqyiWzfayJcXnoIZEaNcSTIPd76dKlKrqEhJ8pKdrgzTffrK6hbSHW7Mcff1TRW4jgMuBn3A8t0MlNRQFFdKcBAX3tWnEqaExgdqrAXXfdpbKUpk2bFpSIHk2OHoUYdVwKFCgQUpYxyl4goEP8nzp1quTOnTv1dw8//LDqWBzt5icZBzlCiLOBIa5KFZHt27Xz5LrrrD4iQtwP89CzhnEuxK2s+6+AlBswUZbGxkqTlxbLi10uz9IZSkID4gugiE68CnqL+G4oZcc77+iq1IxJU+vXw9CnvZFuX/7TiR4eEMNimoL6aloTJkyQ+vXrq3QFgLSJu+++W2ldI0eOVM1IDfj56NGjMnz4cHE6jHMhlgKXeP78+VXWki+vvPKKNG7cWGVZ4fdXXnnlObng+JJC/J08eXJqRAyc54hxgRhtJlvmd77up08++UT9TfztEiVKqN0zk2loaNmypdSsWVN1dm7evLmcd14Beeut4fL8833k/PNLZSp0t2nTRqpVq5bt//OTTz6pnhODjq+Abmjbtu05GwpoWPT888/LhRdeqErEr7nmGtkOdcyHZcuWyU033STly1dQJTflypWXBx98UE6gy6gPeI3QWGPHjh2qCgBl571R4SBoSHpCBg0aJKVKlVL3d+jQQZXp4PXL2K0Z9995551qEwTPV6NGDfX/RAjJHESrIMbl11+j83zGjY4STkJI9ER0kw1JMhfRMachxA3Aeb69eP3UJn9JySLDZ29S95PwQyc68Trms282lHKiTp30EbRo2wK9c84ckQcfFE840QGd6KHRsGFDpXM98MAD8uijj6pIZuhOmNvNmDEjXePeRx55RGrXri2jRo1SutZjjz2mrvEzBPfBgweL06ETnUQVNBmIj49XcS4oe37zzTfVjtQtt9yS7nFvvPGGEnAh7p4+fVqmT5+uvqhffvmlXH/99eoxH3/8sdrpatCggfTr10/dV7lyZeWo3rp1q3K3jxkzRgnCvs4wiNEQsrt3767+PRa9OA4I5WvXrk0X/4KIFbjnu3e/WZo1u0VKlCgj1aoVlNmzP1KOcV+xG+WcixcvVlEtWYEcKDS2gPgMkdpfsIuHRg4PPfSQeg1Hjx6tXpuVK1emPgYD2PHjx6VPn3skKamkbN36i/r/2rt3r/qdL2h8hsGsadOmasMC7nojsH/22Wdy6623SqNGjVT5k3m9fUEUD34Pcf2+++5Try2y7VFZgJ1KNwyOhIQbOD7WrBFp1gzZcdER0SdNoohOSLSgEz1rypUrpxZZmNNhvoRyX0Kczq74YyIx6T1picnJ8mf8cca6RFhEx1oS6xBCvCiiZ+dE37hRVNV8uXLn/g6+xfHjRa69Vl+jUrVzZ3G9Ex3mQWR5Z9U8k2RPjx49VN++FStWKCMpNnGeeOIJZVzN6FCHFgcNCQbMWbNmyffffy9ly5aVoUOHKp0MJlanQxGdRJVrMWL7gIEM7uXWrVunux8iuO8XDELtFVdcIa+99lqqqAvhfcCAAeokklGEx2MhoiMr3bifjAMKX97nnnsuXSkJSlDq1q0rb7/9drr7sdB79913pVev/rJjB45XpFq1JOUIh5vdV0TH88FdlfFYfDGlRJdffnlAr9vJkydl3bp1qgEpKF68uNoJ3LRpk3LLA+zu4TU7dUqfPGNi+skVV1SRJ54YLrt375YKFdJKS3ESwabEiy++mHrfmjVrlIAOARybD2DgwIFyxx13yHrUffnw+OOPS2JiomzcuFFVCwC8Fz179lQDJnLe3TBAEhIu0KTcZBM2bx6d54RYD7DXhnGB80ZCIgsz0bMGFYeYO2EehspAiujEDVQqVVCSk5JSneggLiZGLirlY/0kYcOs6Y4cOSIJCQmpaxBCvEJOcS7o4da3r07/nTZNu84z0qqVzkl/+WWRu+8WadAgc8HdDUC8LVq0qDIhQl8KVIMhGug7GVMJsgOvOfQkoym5Dca5kKjy1ltvyXfffacuEKFRCgI3OHa2fPEVYA8ePKgGvmbNmimhNxTwPBC64UKHI95czj//fNUIATtlGUV+iMgwjdeqhROWKEc4XOBz585VkzjfxgqIoMmuvAoubRCICx3gGIyADvBaZCxnNK8ZhLLExGNy8GC81KnTWDk14LDPyD333JPu52+++SZVOPfl/vvvT/cz/h52FW+88UZ12/d1hLsd71Wo7xMhbuPHHxHLhGqZ6E1U0fgcWt7p0yKbN0fnOQnxMnSiZw9z0YnbKJk/ThIWvCnJSYmpAvoLXWrShR4hsNYxG3CMdCFeAxXn//zzT7Yi+pIl2jyDfb0mTbL+W889B9OhSEKCSJ8+eo3iRlCtwlx0Em7oRCdRBdErvo1F4VyGAxxOc7i6jVCM2Ba4xeG+hmvaEGrZHuJUIPxCMM+MjBnlKD82x4STkXFy3nbbbcr5/fnnn6vbW7ZsUdnpcK1nhyl38RXf/cHXRW6c6GaDwQC3+YgRI5S473s/gLCdmSPMFyxqsUGQcROgCroTZhAJDh06JO+//766ZOfGI4Roli7V1y1aRO85MVx+/bUW7n1SqgghEYKZ6DmL6Cjx9e1RQ4iTwXz36Ibv5MyejbL4lw1SqXQhCugRBuLh33//rUR05OsS4hXMuRN6gtECMvLCC/oaDvMyZbL+W5A3EDMJIX3RIhEYhocOFVcCER0xJMxFJ+GCIjqxFIi2cKMjAx0CN5pTokEm8tCRUY54FZThQNyeOHGiTJ06NaTngwsdQjzyu30bIBjQcDOj4+HYMd2Qw1e/R5MKNCaFmx4iOq4htsPhnh2XXnqpukYMSiBkdqwAGwIA0SqIxEFpI5o9lCt3qRw+XFAOH94njz9++zlNvOCwx2sfDOZvIbamD7auM6EWbPuEkFR++CG6US6GK6+M7vMR4mUY55I9FStWVNcU0YlbQOwjKF0wlzSuwu99tET05cuX04lOPJ2Hnpmx8JdfRBYu1LnniGvJCcgSEM8HDND/bsiQ9HqH25qL0olOwgVFdGI5aHIJ0GAUICokX758qnGnb/MHiOgZycqZntX9aDwK4Rlu60suuSTHY4NGjfEWh4Hx11fLhng+ZMgQVVYFcR9Z7VntChvwnNWqVZM5c+aojYOMon2wQJRHztfkyZPVcZ05I4IY85UrvwtocQuBHFlrvk797du3p3scxAHE0UC4z5hxTwg5F2zE/fpr9J3ohJDowjgX/+JcKKITt4noZbKzfJKINRclxEvklIduWp317o11vX9/s18/EbQWQHNRNwrogHEuJNwwE51YCrr7fvvtt8rFbQY4uK4hgkOkNWDB9cUXX5zz79H9F9Eimd0PMv4ODUTx95955plUF7cBPx84cCDdfSn6vip5ymgGRxQNjhMNPjGRy66hqC94bjwPsuDNBoIveD0QZxOMU938PyGVJl++ZPnsszf8/hvIMwdw//vy5ptvnvNcXbt2VZsdaGyalYhACNHs26cjVTCh9elzHDWQewgHPKsYCYkcOP8yziV7mIlO3Cqio7cSiQ4U0YlXMZ/5zPqvofcRpBII4Y8+6v/fxOO7dTtX53CjEx3xu5lpL4QECp3oTiNFaHbqcyNG5Y8//kgte4aDGzEuw4YNS80Lh6P7tddek3bt2kmvXr3U49CQFNncGzZsSPf3EKmycOFC9Xg0msFJpWHDhup+8Pjjj8vNN9+s4mDQCBNOdGStP/bYY0qY79Spk3JVY2cX+eb9+vWTh1Lqn5BaYsbZzAwmcJrhGGfMmCHFihVTx+0PPXr0UM7x559/XjX8hBgPFziEdTT3XLRoUcCxNYiJwf8bjn3fvn3qtYTIffhw+mz07MBrBnH89ddfV8fSqFEjlV0Kh3tGd/9LL72kmrDite7bt686OSFKBg1F8X7gNiFEg6IXmB9S1tpRB/2Sly3Tl5R5JCEkzGDT3izO6ETPWUTHpkOofW4IsRqK6NGHIjrxKr5xLhmBRIL42euuC16yOX5cx8C0ayfSoYO4BugsiOg9ceLEORX3hAQDRXQnAWc2OkBYfQwhbFWi8aUBkS0Qf9955x3p379/6v2tWrWSDz/8UAm1gwcPVsI4mnhC9M4ookM8h/D9xBNPqIERGd0QdtFoZuTIkarRJ4RpE1MChzoEe8SqjBkzRrnCQfny5aVNmzYqix3A0H3ypH4OJLRk1ZQP0SlwjSML3Td6Jicg5OP/c+zYser/H6IzomAgXCPqxRyHv2CTYN68eTJo0CB58cUX1WvbuXNn1bC1du3afv+djz76SC0Epk2bpjYVENfy6aefqgga/E0DylZ/+eUXefbZZ2X27NnKvV6yZEmVaY/3ihCSHmhFZcta89zNmoksXqxFdJ+hlhASRowLHTFtvudLkgYamqMfy8mTJ2X//v0UHonjoYgefYyAuHv3blXRjDUQIV6Pc+nZU6R1ax0hGSwoPn/nHZEZM0S2bcta/3AamHdAc4J5Ec1FKaKTUKGI7iTsUGcT5DHcfvvt6uIvd955p7pk5Omnn073M8RduKUzA8I6LpmBWBdcsmL/fsSaLFH/uxUqZH2ciKEB/ka5+AIRHZfsaNmy5TmxM8bNlfF+xOF89925GeiJiclqU8AwadIkdcmMAgUKyLhx49TFsG7dutTFry8oV8/4WEJIenbvhisVTYqtO4amTfX18uXWHQMhbodRLjkDsatcuXKyZ88e5Uan8EicDkX06IPXGhuV2IyDkI5KXELcDtb92cW5gFKl9CVYBg+GTiCC0ABc42e3AJ0EIjpy0Tt27Gj14RCHw0x0QjIAB/rff+vb0I2zMziMHz9e7QY3NSqVDQW8tWtF/E1XgZs/I4h3wQ5uc4QqE0ICom9fLPhE5s617hgaNtT7n4gh3rPHuuMgxM0geg4wyiV72FyUuAmK6NEHMVCMdCFe3Kg/duyY+vwjnsTX+Pfjj+F5DhTVG+H8rbd0tK3bctHhRCckVCiiE5JJ7AL6khYunPVu7vTp02X48OEyf/581VjUrrmeEM7gQj9yxL/Hjx49WkXJIOoGDUXbt28vkydPVk1QEXlDCPEfTGwXLhT57z+RGjWsOw6MZXXq6NvhmmgTQjJ3olNEzx6z+KeITtwARXRroIhOvBrlgmou38i4V1/VFacPPBCe5+ndW6RoUZHt20W+/VZc5UQHcKITEioU0QnJZBcWjQBRHZiVNo5moBCZ77rrLhk4cKDYlZRerUpEzyQV5hwaN26s8tmRJz906FDVVBQROmjsSggJjE8/1S4OOMGtrjZGLjpgpAshkYFxLv5BJzpxExTRrYEiOvEamUW5oNIcGeagbdvwPE+hQiJ33KFvuymx1TjRIaJnFpVLSCAwE52QFDCeGtEc17my+XY4ZfCFoz42VuTMGR1Tk1Muc+vWrdWFEBI6U6fq6169rD4S7VJBviFc6YSQ8MM4l8BEdGSiE+Jkjh49quIVAEX06EIRnXgN81n3bSoKkfvoUZHatUWuuy58zwV/4Ouvi3z1lciOHdYbgcKBed0wZh88eFBKlChh9SERB0MRnZAUcG6CcI4cdDv0cA0HENCxo4w4CVysbG5IiJfApHPlSv0d7NHD6qMRufFGiHzZ93gghAQP41z8g0504jYXesGCBaUQJtskalBEJ16NczGffYjnb7yhf/fYY1lXzwdD1aoi3btjPiOSJ4+4gjx58kjRokXl8OHDyvRAEZ2EAkV0G+IUl7ObOHhQX3ACwgmjQAFxDYh0MSJ6mTLievj9IXZg2jR9fe219vjeuWUSTIhdYZxL4JnoOF/btacMITnBKBfroIhOvO5Ef/99HedSpYpIt26RiaR0G5ifGRH90ksvtfpwiINhJrqNyJ1iETx+/LjVh+Ipzp4V2b1b38Y82G4C+sSJE6Vt27ayfv36oP69iW/AjrUX9GXz/THfJ0KsjHJBgx47gTGABlBCwg/jXPwDTcohnJ84cULi4+OtPhxCgoYiunWYXOhDhw6paAZCvJSJDu1izBh9/7Bh7qmgjzTG5GDma4QEC53oNiIuLk6KFSuW+sUuUKAAHTpRYN8+nRkOp2bx4jo73C689957MnjwYHV7zZo18u2336Z2l/YXxEnAjY4oF+jLbj3RwtEGAR3fH3yP8H0ixCrmzNFu9E6dxDYcOCBy5ZUi//wjAu2K+eiEhA/GufhH3rx55YILLpB9+/YpNzpfL+JUKKJbB9bIeN3xHkBcvBKTG0JcypkzZ2TPnj2pTnSYYbC+L1VK5JZbImu8+flnkS++EBk1KryRMVZAEZ2EC4roNsNMxPjljg4QzPfv17cRuWCnPlefffaZPP300+o2crvg2GrTpo189NFHqZmigQAnOi5uBwI6FzTEapAnOGKE2ArE/6FA4/Rpke++E+nSxeojIsQ9m7iMcwks0sWI6PXr17f6cAgJiv0pCwjOOa0BYiJFdOIFdu/eLUlJSZIvXz413kDMhjF9+3ZsTEfueREF27q1NuHdcINI8+biaMz8zMzXCAkWiug2A87zsmXLqi85dh1JZAX0jh21cN6zp8hTT4ltmDRpUqqAPmjQIHnkkUekXbt2smnTJunbt68sXLgwKCHd7SDChQ50QjIHk240GEUJ6Lx5FNEJCReIFDiL+mo60f0C85effvqJzUWJo6ET3VoQa4FxhLnoxEtRLialAMvdatUi+7xFi2qnO/LXx41zvoheoFQ5yVvhcvnr3/+sPhTicCii2xQIgRQDI8umTfqCmBN0tc6XT2wjoA8cOFDdfuCBB2TMmDHqhLlo0SJp0aKF/PHHH9K+fXtZunSpyhb1F1SBLVok0qOH/n8mhISfZcu0SH3nndq1YTdwTDi++fNFkpJ0OSghJDSMq6lQoULKKUayx5gA/rJT+R8hAUIR3VrYXJR4sano77/rZqLRav11771aRJ89W0fglisnjuTTVbvl87N15fyeV8ji5CT1c4/6Faw+LOJQuHwmnqVePVEnIpwUkBluBxDVcuedd6rS8Pvuu08J6P/776T8tCNeEvMWVkJ65cqVZdeuXXLNNdfIPwg39jPTrHFjkTvuEPnxx4j/bxDiWT7+WOTzz3Umuh1p1kyPd9D8fvnF6qMhxB0wyiU4EZ1OdOJkKKJbC0V04hWw7gcXXXSxXHstGnSLbNwYneeuVUs70BMT0atNHMk/h0/IY7M3SrKkhLrHxMrw2ZvU/YQEA0V04mmw3m3QQGzBlClT5Pbbb1cC+j333CNjx46Vz37dI01eWiy9xq9U18v2nZXFixerPNFt27bJtdde61euFyq/WrXStxcujPz/CyFe5NQpkRkz9O1evcSWwLnSrp2+/eWXVh8NIe6ATUUDA3MYQBGdOBmK6PYQ0Y3ASIhbMRtFx49Xkr//1pWkkY5y8eW++/Q1RHSsdZzGrvhjkpSc/r7E5GT5M/64VYdEHA5FdOI5cAKAU9ROTJ8+XW677TYloPfr10/GjRunHOjYNTWDPq6xa5q7aGklpJcrV05+++03ad26tSQkJOT4HNdco68R6UIICT/ffINsZJELLrB3biBy0QFy0QkhoWOawVNED9yJjnkPIU4DTf7YWNQeIjpioUxPCkLcLKKvW6c/86gsz5Mnes/fqZOOccFUZ+ZMcRyVShWU2BQTuiEuJkYuKlXAqkMiDociOvEUiN8cMkQ31LOLmDxjxgy55ZZb1IT8rrvuknfeeUdiY2Oz3TXFxBFCepkyZWT9+vWq6ejhw4f9EtFXrxY5eDCC/0OEeJQpU/Q1GhXbuaXFddfpjMPRo3XUEyEkNOhED4wKFXQO6bFjx/wyARBiNw4ePChnzpxRtxnjZA0XXHCB5MmTRwnoe/futfpwCIkYptpi7VotovftG/0q1gED0NhUJJcDOyqWLZpfXuxyeaqQnpyUKCM7Vlf3ExIMFNGJpxg8GKVQ2iVq4k2sZPbs2dKzZ09JTExUUS7vv/++EtD92TW95JJLVEZ6qVKlZNWqVarZ6NGjR7N8LuwgX3qpFs2WLIns/xchXuO//9Kc3XaNcjGULCkybpxI27Y66ikj2NCbN2+e7EE3YkJIjjATPTDQfLVs2bLqNiNdiJOjXEqWLKmEXBJ9sF6qBFWPuejExRw6dMhns7mSykRHY9FoM3SoyLZtIj16iCNBE9EfHm4p+6c9JvvevVNaXcQm8CR4KKITz4D83y++0Duob7+duXgUTb744gvp0aOHEtBvvfVW+eCDD1IFdN9dUwjnANcvdKmZbte0Ro0a8t1330mxYsXkp59+khtvvFGOY5cgCxjpQkhkwNhy8qTOKKxbVxwLnHWIlurQoYPcfPPNVh8OIY6AcS6Bw1x04mSYh24P2FyUeMWFHhuL+UUh6dfPmuPIn9/eVbb+cGGJglL4xP8k8ciB1HkbIcFAEZ14ghMnRAYN0rcffBDis7XHAwd59+7dVQlir169ZOLEiRKXyZkJu6bLh10t0/o2Utf4OSN16tSRBQsWSOHChWXJkiXSuXNnOZVF1w8joi9eHP7/J0K8TJEiIvXqifTubf0GnT+gImXpUpGHH0akgr4PG3CdOnVSTY4BNub27dtn7YES4gAY5xJ8LjryjAlxGhTR7QFFdOIVET0p6WJBsVvHjtYez+nTIlOnYt4jjsRUDJp5GyHBQBGdeIIXX8RJSOTCC0VGjLD6aERee+015fjs1q2bTJ48OVMB3QDn+VWVS2ab29WgQQP56quvpECBAvLtt9/Kq6++munjEGHz6adaPCOEhLfpzqpVIsOHi2NAY6JXXhFZuFCXi7Zt21aNI/nz50/NLP4SJTyEkGxhnEtozUUJcRoU0e0BRXTidsxnu127i+X996PbUDQzIOLDMPThh+JIzDyNTnQSChTRiev55x+RUaP07TfeEClUyOojEvn999/V9aBBgyRXmDp0NG3aVN599111e9SoUXLgwIFzHlO0qEj37nDLheUpCSEZcEqpI9zyN9ygb3/22f+kRYsWsnz5cilatKjaiBuADkIiMmfOHGsPlBAHEI04FzQER1WdYccOZzcGZpwLcTIU0e0BRXTidsxn+4orKlnuQgcm6fGdd0TOnhXHYeZpFNFJKFBEJ64HvaugA0ET6tzZ6qPBIvhE6qLxUnT6DCO9e/dW8S7//fefPP/882H924SQrPPQDx8Wx3HjjfjvTvn00yayYcMGKVOmjPzwww9qQ65jykwd0VPZNSwmxOskJydLfHx8xEX0J58UQQ+9WbN0ZR3io7p2debYA+hEJ06GIro9oIhO3M7OnbvSfdatBo1FS5YU2b1bZN48cRx0opNwQBGdeIJ27fSOqR2yirdt26YW3SVKlJBSpUqF9W+jMSlc6OCtt97KdHGKBfdzz4ncdJOzXWyE2AG4QbE5d8EFIv/9J46iRImNEhPTRBITd8oFF1SSH3/8UWrVqqV+d9lll0nlypXl9OnTqucCISRzDh8+rOLZIimi//23yAcfiOzfj++tyOrV6GEg8vnnWkxfv14cnYmOOREhToIiuj2ohJ1FEVV9i7GYEDeBqcXixXqDqGRJe4jo+fKJ9O2rb48bJ46DIjoJBxTRiWs5ckRHudgNRLnEFS4plRq2lf/9dzLsf79169ZyzTXXKPFrRCYB8Llzi4wcKTJzpsjWrWF/ekI8xbRp+rpJE91c1Cmgaei11zaX5GQIAZdLjx4/KtHcgLHpqk591Fg1d+5cS4+VEDtjFmKFChVS/QQiwcsvi6BfeNOmIi1binTrJrJ8uQhaF2zfLtKokcikSeLIOBdUzqEnAyFOgiK6PShcuHDq5qVpwEiIW5gzJ0nOnNGGuBo19IaRHbjnHhj3IPCL/PabOAo2FiXhgCI6cS1PP424FJFPPhFbMXdTvJQbMFHia/WWJi8tlk9X7Q7r34+JiZGXXnpJ3f7kk09kfQaLWoECIo0b69uLFoX1qQnxFDBPTpmib6PJTvaPTVZRToh9QIXI5s2b5ZdffpHFixfLvHnzZNq0afLBBx/IG2+8ob6/v0VwVvr111/Ltddeq4SrKlUwGCyVpUvLpv4eYxLGpmW5rlBj1YJt/8lZJwYfEhIFzEIsUi50uM9T2p2oSBdTUVe/vsiaNSLXXSdy8qRuFHz33elz0+0MNhzMYpaRLsRpUES3D4x0IW7lzTf/FpHTEhubSypVulDsAjbwTT77W2+Jo6ATnYQDiujElWzYoJuIIl4BuV124Z/DJ+TH0xUkBtu3IpKULDJ89iZ1f7j+/k874qVc1RrSo0cPJdwNGzbsnMdde62+pohOSPCsWyfyxx+6tDG7fgtarK4iBQoUUEIbyo9r1qwpDRs2VFUjHTp0kF69eknfvn1l8ODB8thjj0n9+vXl119/DfsxQ6zH80HQv+6661QT0ZiY4qpqR1XvHD4hj83eqMYmgLEqb9M75MtFy8N+LIS4SUQ3C7Nw8+qrWiRv2BCVZul/h/nNl1/q6jKI6x9+KPLaa+IYmItOnAjim0wfBIro1kMRnbgRfJx/+EF/psuXryi5cuUSO3Hfffoa2ehOSmRjY1ESDiiiE9eRlKTLjBITddMtuLTswq74Y1Cl0t2XmJwsf8YfD/lvG/dor/Er1XWTWx9WJ9xvvvlGuV19ueYaff399/p1IoQEztSpaQ06s4tyQbNO38Vdvnz5VD8ExBlUr15dGjRoIFdffbXccMMNavOrbt26cvz4cbn++uvDuih8++23VfNhuMoh2s+ZM0cqVSoomzaJ7N2Lsmg9RhkB3RATGyezF1JEJyQzzEIsEk506PPG5eXrQvcFe/JPPCHy7bci7duLPPSQODIXnRCnfecxx0Z/I2ItFNGJGxk/Hv/Vn+mqVe0T5WK4+mod5YLmonboOecvdKIHB4yZs2fPVuvVsmXLKmNYtWrVpH///pmOvYjqGzJkiFrr5s2bV833Hn74YTl69Ki4AYroxHVMnoy8X5GCBUXGjBFbUbFEfkmGyu9DXEyMXFSqQEh/N6N7FNevL98vfe55QP386KOPpmvchUZkEP0OHtRuWkJIYGDzyeSh9+qV/WM3QaUWkZ49eyoBGy5wuFdNrMvKlStTY12mT58uS5YskTp16qgJXrt27ULO7cN3/9lnn5V7771X3cb1xx9/LLnRIEFEqlfXQhyoVKqgxGaYDCcnJcpPC75g8z9Cohzn8vXXuoHoFVdogTw7UGE2f75I3rxpYxQW4Xb+2ppcdDrRiROjXCDGxJqTJ7EMiujEbZw+LTJhAm7tTPcZtxMQzi+7TByHEdGPHDkiJ1HmR/zioYcekq5du8qWLVukU6dOcv/996vK6vHjx6s1q1nrgmPHjkmLFi1kzJgxcumll8qDDz6oBPdXXnlFWrVq5YrXnWd+4ioSEkQeeSQtE718ebEVZw7/KwkL3lSilBHQX+hSU8oWDa0ZWWbuUTjcu/YZoJqdIRZixowZqb9DRVirVvo2ewYSElxk1L59IkWL5lztsnHjRnVdu3ZtiYuLy/FvFylSRL766islMG3btk1uvPFG5UwPhqSkJBUR89RTT6mf0Wz4zTffzHThj/298wrllxe7XK7GJgBB/fDCd2XHxtXyB7JrCCFRi3O57Ta90Q03eqBOL8yB+vVLq5ixI4xzIU6Eeej2giI6cRtYm8MonS/fLtuK6L4cOCCSknBle4oWLZpqImJzUf/Pea+//rpal/7+++/yzjvvyKhRo1Tawauvvqo2JF7zyRIcPXq0rFu3Tpk4FyxYoHp94Ro/r1q1SonrTociOnEVw4frQbxGDZEHtAnbVkCEOrrhOym4eJRM69tIlg+7WnrUrxDy383MPQoRrE6Vcqp0BgwfPlzlOBq6dNFufex2E0ICo25dLaLPnJnm/MwK7M7HFS4peS6s6Vf/Azxm1/Hc8tHMeVK8eHHlVDcu9kDA9/3222+XsWPHqp/RtPSZZ55RzYczGzvLlhX55htRYxLGJoxRPw5rJVeV0Tt0iH8hhEQvzgXUri3SqFHg/858zZ99VsSufYEZ50KcCEV0e2EERmzGJTKjkriAZs1EXngB83K9MQTHr1156SW9fnj9dXEEWAMx0iUwMLbClNWkSRO1CeELokh9NyRQtfzBBx8oE+eTyCH0AT/jfvze6VBEJ64BJcvI9IXL+u23RVI2GW2FcXLWqHSBXFW5ZMgOdAP+jq971NfhjjwqnCx27NihSm4MN92k81ZffDEsh0CI57jggrQmvVlx+vRp2Z3rQik3YKK8sVFUvwL0L/Cnt8Hts3bL0Ldmqiy5uXPnqtI5fyNVEBmDsjvEtsD9jutBgwZl+fjDh7XrBdmGAGOHGaM6duyo7sMxEEIiH+eCpuho1hUK2D9H49GtW9Oip+wGnejEiVBEtxflypVTzlIYB/bB3UCIwylTRuSxxzCXt2+ciwGHBo8e4nSdsofF5qKBUbVqVcmTJ4/8+OOPKuvcly/R3V7129MN91BB/ffffyvBvSDcmj7gZ9yPqqE9e/aIk6GITlwD9OOXXxbZtUukeXOxJUZERz5UuPF1j/o63LHjZ6Ic4EI1DR3y5RPJHx4NnxBPEUjG8E9rf5NirQdKTEp8CmKXhs/elKkjPbPeBhM2nJS3J01Vzol3331XXvRj1+vw4cMqSx0Z62hi+vnnn8stt9yS7b9Bc1SAuVDG/z/EyYAVK1bI/v37/f1fJ8QTRCLO5c03RapU0U60YIGpwDQZHTnSnm50k4l+6NAhdSHECVBEtxcwCpixhJEuxC0gxtGMNXYW0Tt0ECleXGTvXpHFi8UR0ImuQQwLRHFzOXXqVKaPK1mypIpk2b17t9Kw7rnnHhXNgrUmrgcOHCj33XdfqohuhPfMMPebxzkViujE8aA3webNaT9feKHYFuRIRUpEz+ge9aVv375SpUoVdbJAdlVGtmyJyOEQ4koQfdK6tciiRTk/9scN21IFdN9+BX/GH/e7t8Fl9VuoKBbw+OOPy0cffZTl8+E7js7pP/zwg8pWRwadEcGzo2VLHe8EE1fGZsNwedWrV0+54I3jgBASmTiXI0dEEC0JZ1eoFdxY05QqhcWKPbPR4UoqhQNkpAtxEBTR7Qdz0YkbQMRq164in34qsn27rtBCfAaiHe0KTHk9e+rbEyeKI6CIrqlevbr6fJlLdkYtNAedPn26MmO+++67Kvcca8yGDRtKr169JBeiIFKMXCBj7IsBa1PfxzkVV4ron3zyifTv318t+lEGDwffpEmTAv47yP5BA7bLL79c8ufPrxZIyKXlCdpezf0aNNCRCmhqYXci6UTPDpQ5vpBiaUNnZOMmRdkVsp1xOL4bEYSQzIFLe/p0kYUL4Z7M+fHxf/4uyejY6QPili4qVcDv3gZ4LKJcTH+Du+66S7799ttz/j1EqKZNm8ratWvV+WrJkiXS3KcsB073n3bEZ+qCxyQYGwMgM528A6wmzEUnJB3YWIpP6aYVLhH9nXd0k/RLLhHp3j20v1WokI51sbMbnbnoxGlQRLeviL4L5ciEOJQvvhCZPVtkyBB8ltPy0DPrZWQn7rhDX3/+uX9rI7uI6F5vLPrbb78pMdtcHkOGUBY8++yzqqoZPfb27NmjXOzLli2TkydPSsuWLT0X+elKEf2JJ56Q999/X03Iy6LTQZBAiEeGLBZJuEbJwuzZs6V+/fqOL0FwOhB/Ed1Sv77Ixo3Y8MCOrdiahISE1B3PatWqRf35u3Xrpj672EF87rnn1H1xcSLly+vff/ZZ1A+JEMexdi3ye0UKFBC57rqcH79z02pJWPCmxEjyOf0KAultAFBKZxqMIu8cYrnvRAg5czg3VahQQZYvXy51sUOWSdZ6VrnsKb1hUnPRMxPRv/vuO1ViSgjRThrTsDscIvqxY9jo1rcff1yfo0Nl4EDtRodJyI4RlMxFJ06DIrr9oBOduMGk89Zb+vZdd6Evyi7bR7kYrrxSpEYNnQ7gBD2BmeiawoULK2e4ucB8nBkLFy5U0cCIbBk2bJhceOGFKi4Yxi1Eh8KsOXTo0HQO9Kyc5iZTPSunulNwpYiOjq+YjGN3acCAAUH9je+//179Hbj41qxZI6NGjVKN2b744gslhprcHxJ9sM5q1UrkkUd02RN63m3aJNKwodiaLSmZKeXLl1cDT7TBLjY+xwBlONtTdh3QYBTMmBH1QyLEccycqa8hoENIz4lNmzbJ0Q3fyastC5zTryCQ3gYgNjZWJk6cqOJasBnWvn17da5btWqVOlehodZll12mGr9cAhtrNlnrmeWyt2+vr1etgkiQ/rhq1aqlMkfhOMBkihCStgDDOR0Vi6Hy/vu64TfWzL16heEAU9zoy5bpeVKo8TCRwGQZU0QnToEiuv2giE7c4EL/4QeRPHkQw5r2WXaCiA7vj3GjZ5M4aRsY5xIYX3/9tbrG+jMj559/vkpYgK6EtWlOmec5ZaY7BVeK6Ndee23qpDxYxo8fr65HjhyputEarrvuOlWygFJ6hOuT6ILOz7Vq6ZMMFoYffqhLh8JURe3oPHR/wOCHzzCcrKjYADCY4iOOw2OkCyHZu0RmzdK3kVmYE5hMmElwsysvz7RfQSC9DQBcAmgUipgxLOTRDb1Vq1Zy4MABVWmCLHQ4BPzJWs+Yy47CLQh3jz56bnNRbMIx0oWQ9JhS4HC40E+cEBk9Wt9GRW1KvGRYwLQjHK72SMA4F+IkcF7HBVBEtw8U0YmTwfn/wQf1bUSwoUrcfJYR5+IEbrlF93NBHI3doYgeGKfhWs0m/ubff/9VRi840iGOX3DBBcrQdQzllT7gZ9yPzzRMpU4mjFN0d4EsWTQ8Qnl8Rtq2bat+v3TpUrn11luz/BvocOvb5RbZQQClv6b8lwTGt9/GyZEjsdK4cZJMmJCo3Fp2zPjMjM0pCjUcola+/8i0+uabb+TTTz+VwYMHy5VXXimtW8fJ/PmxMm1aojz1VPr8ZhJ5zOeB44K9gZNz69bckjdvsrRpc1Y1/suODWjaICJlypSRYsWKhe39LVCggBKy4T43k2xskM2cOVOV5mV8nguL5lVZ675COn4uVzTPOY/1bR+S8XCvv/561ScEpXtwpMfZVZVzGRwf7Ms///yjrtEcM9T3Z9WqGDlyJE4qVECTrpzHl2BAqfWUKTFy223Jkju32AKz6YcsY37GA4NjQ/TZu3dv6nkYm9p87e2BEWQgih08eNCSil87wbHBWbzwQqz89VeclC+fLA89pM//Zn6PiEYnvI8lSuhm5sDuh1sCB5syXjjhtQ03MFMGAvTQcePGyWuvvabiRIv6RLEg3QDnRTzGxMHcfffdSm+CGRlRpAb8jE1o5Ko7HYromYBdEiyMatasmalIkFOZggEdbp955plz7odTEPm1xD8SE2MkLk6rP+3b55L8+StI+/Y7BT06U/p0OgI0XwAYrL/66itLj6VFixZqI6hfv35qkKtSBZPPK2Xy5ONSv/5iS4/NyyBvmtiXadPQy+BSqVXrf7J8+S85Pt7EnsCtFonv/COPPKIaBVepUkVFl5kxJjO6V4qRT3fGSrLEqHz27pWSZO2PiyUtVd2/SReEAzgO3njjDUurarwIxwf7geg/gN454fiOv/NOHvnf/wrKwoUHJdygumTo0Bayc2cx2bRprbRubY9qSuNARymw1XMjp8KxIfpVpdiwNiXuxB7gPYFh7aOPPkqtcPE6HBvsz6FDeWX06Nbq9s03/ypLl/6t5hQmdhXJBzw3hpf9+/enXs+fP9/2jVvDTXx8fECPv+mmm+Sdd95RGibMoB06dFDmMEReL168WMUZQmD3XZ/C7IUYYfTvuuKKK9RjkeSBqmmYOJ0ORfRMMEH4WQXeI3jf93FZgQ63Q9BeOQXk1VavXl25B3lyzxlUjDz9dKz8/XeMzJ6dqPK2QPfu+K/zxJuHHnootcEnIoGsBJ9DbBJt3LhRDYJPPFFL3nknWfbuLSwVK7ZXzUFI9MDGCia6rVu3VqVQxJ6cOhUjBw4kyS23lFZ55DmBiYXZtPLn8cHgb98PPPvAwydld8JxqVCigJQtmi/bstIlS2LkwguT5fLL0//uxhtvVFUsmIBF6v+JpIfjg31Zv369uq5Ro4Yjvg9bt8aquKb58+vI6NE1beFGR5MpLKggfjVr1kwJYcQ/ODZEH1RhmfgQJ3znvQTEndWrV6vqFq+/NxwbnEXJksny+edJ8txzdSQmpo5ySGOsgbh72223Zdnw0Y7MmBEj774bKw8/nCTt2mXIhrSRYbZ///4qpgS6nNfmHdAkAwGmYgjgY8aMkc8++0ymTp2qXjtUWt9yyy3KWY6eXAakeSCx4+mnn5ZZs2Ypw0nZsmVV81E0KA1HD6HsOH78uPz0008qOgYueaxZYQJD9CLiULEuhwEtFCiiRxAMeL6DnulGi5OZ3U9ox4/rTKt27VCmHL3nRUUNNlsRKfDll2lRLWvWxEqjRuJYEOuDUmUA8drq9x/VFJ06dVID4cqVK5Woj56jKLKoXh2fT0sPz7M4YWzwMtjA05t4/rUTMRVHaMpph/e1QqncUqFUzhPFBx6AI1Zk4ECRt95K/zuMGxDRv/zyS3n55Zcjd7DkHDg+2A80mgdYSAT73iBqcuVKkWbNJOKg1PrVV9HEM0amTs0td98tllOyZElVWo3X8u+//1ZzJBIYHBui7+CDIMDX3F5UrlxZiehw7vK90XBscAY33KAvZn1hYqPKlSvnuGiiFSt0M/OyZWPlxhvFlsBACFEVYivin0y8i1fIFUTTHWiaw4YNUxd/gBkZojsu0eLnn39W8TKIN8UmFCo6MgObUxD9YUTDJpUxSIvXG4uGinGgZ+U0N2J4Vk51NwDt/4MPROrV0w0nIw0qlmDaL1cOIo3uUA0B/corRRYtEkcL6AAlWYmJiepLapdGRLVr11bXmxD0LCKorLn+et1klBASOua7hV1vJ4FxAKCJasaoQDQmxuTrjz/+kK1bt1pyfITYBdNkyTSpCoaPPxZp3txs0EWWAgV042Dw3HNawLcDpjrzzz//tPpQCMkWNPQGdpnLkzTYXJQ4CZx/U4aTczCfYfOZdhJ33KGvoeWk+AxsCZuLuofNmzer6qOmTZvKtGnTVD77E088oSJlVqxYodarqByFIx4ie58+fVQ2+6BBg9Tm69ixYwPOiaeIngkoQYDDAM5hCJ8ZMVnoJhvdLaAHKsr4AaJT6tZFVqVI48YiS5dGXkTHRhXWo2XKILdTZONGkV9/FWnVShwPBCeADGG75G4ZtxciXQgh2TNtmsjffwfmVjOLbcQnOYk2bTC5RFagSMbIV2wemzgqNBglxMuYxRdKRIMhKUlk9Gh9u2FDiQpIgMI8C/O7yZPFFlSsWFFdU0Qndociun2hiE6cxBtvIIJImxYzYj7DlSpVEqdRpw4qcPUmwfTpYlsooruH2rVry5YtW1S/LlQ0InoGfSkRQdqgQQMV3WJiXNAPcMKECWq+CVG9bdu2KmYG+e2BQBE9C/AiIy8JWToZWbBggbpGhpJb2LxZL+AeeUT/HBsr8vjjWkA/dEikdWuRKVNCfx7sScydK9Kli8iTT6bdj79/550QZUT27BF55RWIvOIafEV0u2DcsWiSZHbftmwRQZXO229bfHCE2AgkMfXqBaFHj4eBuNCxqItkKeY/h0/ITzvi1XW4QOXvbbfp2xMmnPv7jh07qmvs8BPiZYwTPVgRHT3fUNCBOM5+/SQqwI1uqnHt4kanE504BbeI6DAFYBPPTVBEJ076/j37rMiRI4jWcJcTHV5B40ZHPK/dRXQzjyPO5b333lMi+n333SelAsihht77ySefqPjVxhA9A8DzIjrcghA4M3apxS4FePLJJ1VwvgGd2JcsWSJt2rRJdc44GUygsBOK2BT0x8KO4YED+nf4DC5ciI68uqT/lltEnn9eJIt4oRxBPlb9+hBgRD7/XOTDD7WoDuLi9M/IA3NjdJsR0X2bLlgNPr+ousDn21RX/PKLqGz0ceOsPjpC7ANiTQAyi4sVC0xEj2S+76erdkuTlxZLr/Er1TV+DhdmAozeFBnLTbGzD7DJHGiHd0LcRKhxLm++mfZ9i2Zfq/79kVeqHWMHD4ptRPS/YI8nxMa4QUR//XUdnwkDU0qfVFdgBEdUkie5bYeAuAqYFo8e1XG1xrTii+mj5kQRHfTurTcHVq3SRk07YswPdKI7n7vuuiuonHcD0kWuvvrqgP6NK0X0Dz74QG6//XZ1mTFjxjn34bZh3LhxStjEtS94Ie+++2754Ycf5IorrpBHH31UBc+jqRqaD7xpVj4OBo150TgUWdiIcrnuOpENG9DkKe0xaJ4LYf3hh/XPTzyhs8sDYfdukZtv1pmfa9ciDkDHtcDQD/HcC8DtbTcnemxsrNSoUSOd4Nehg85Ex+Ha9aRHiFUierdu/v8bE5MUKREdzvPHZm+UpJRNTVwPn70pbI50JNBgco+Nzk8+OXcDDqVzWKTOnz8/LM9HiNNAw6JQnOiIsUMjdXDvvRJVMLfDOR7FJIh2sRo60YlT2I+cMweL6FjTPfigvr1uHfp8iWsoX768xMXFyalTp+Sff/6x+nAIydJUiOp+OLYhJ6H6301OdIApkW6Ual83OuNcSCi4UkRfvny5TJ48WV3WrFmT6pgz9+H3/pYGIFsH4Pqrr76Szp07yy+//CKXIMTKwWBvAWkeKCXGYuqtt0SghcCZlBEM7sjsxGPy5UsbFP3h009FqlXT1zhZwP0E0zPiWhzWay+khbYd41x8I12MiI4NjrZt9e8++8zKIyPEHuzdqzvNY/zq3Nk+TUV3xR9LFdANicnJ8mf88bA9ByK2QMppNNNIl7nI5yLEg6D5/JmUzrvBiOiYU6GyDwYGK6aUxYuLbWAmOnHKfN7JTvTFi9Ncr1ddpTfyQuiJbDvgRDRjCSNdiB2BMeX++/Xtu+8WqVfv3MdgXrEH2bYOzUT3XUNce61I06ZiSyiie4fJkydLqzA3WXSliD5p0iQ10cnqgt8bnn76aXUfrjMCpy66tkIMOXnypCpbnz59uuri6mRQugsxG9eIcYFAMnCgFomyA4/ZsUPkmmvS7supWu6KK/QJo0UL/Tzvvqt3J73Evn37VL4+Jnd2+uzAsVq0an2JK1wyXXNRxPeAlCIOQjzN7Nn6GlFpmW0yZgbOKZGOc6lUqqDEZhiz42Ji5KJSBcL2HKggQszX1Knn/q4DylZSeoTg/EiI1zAudPQ8yA83QgBAPIegBcyC2iqwVn/sMV2RaBVG+MI8G/MlQuzIwYMHUzfOgo1wsgqcyzt10vGcmOfDT+a7kbZ6dfBxnXaCuejEzrz3nv4u4rv3wguZP2b37t2q0jNfvnyO3KwzIPkRZs0Uz43tYCa6d/jzzz9l6dKlYf2brhTRSfZg4MYgjsahP/8Md7T///aCC9Juw1yNPE2cDAwQyl97Le3nqlX1xOz77/VjvYhxoUNAz22TwHeTpTzr4IVSbsBEWX+kYOrvGOlCSBozZwYe5QIHyX///ac2ziJVtVS2aH55scvlSjgHuH6hS011f7hARnOtWpn/DjFn5cqVU4LXYqMGEuIhjHspGBc6vraYG6HngKn+sgIYIWByeOklkYkTrTuOYsWKSVGUwjEXndgY40JHrGfevHnFSRV1qHhBE0N83z/6KH2EBIqu4YhF1bHToYhO7AymDYiyHTlS957LDN8ol5icHI4kaOhEJ6FAEd2jwIXw3HOhNfFETjoMzGi2h4y9vn31JOyhh/Ti0IA0Ay+fA+zWVDRjlnJMbKycrXuT7PxfgvqZkS6EaA4f1s12QZcu/v8740JHfFMe7EhFiB71K8jyYVfLtL6N1DV+jhSHDomc8Ilbx8TeuNHnIFiZEI8RSh46QA+k66/PPA81WuC5TT4yGsdb6UbHphxgljGxK06NcoFWhJ5pWI998YWO5vQFFcNg2DCR8ePF0bBJMbEzCD7AEgGJAFlhRHQnR7n48vffIqNGodJMbAUbi5JQoIjuEVBtD4H7mWfSCyGh8PHHelIGZ0PPnmjeqksBe/XCBDM8z+EG7NZUNLMs5ZjYOFm2Vov9ZpMFO+QR1P8IsT3YUMKaGbHfFSrYp6moL3CeX1W5ZFgd6BkZPlxH2aC3RWa56PPmzVOlp4R4UUQPNNYBY0pKIoQtgAECVYZwq0Jgs4qyKXlZFNGJXXGqiI65PNZsS5ag6uPc3w8ZoiOdwIABac3UnQjHEWJ3IAdgEz0rdu3a5eimohlBjBQ26KZNE9vGuXANQwKFIrpHmDdPu8MnTBAJVwUiJmLffCNy6636Z4j0P/4o8skncBSF5zncgN2aimaWpZyclCiH9m5P/blHD0xAdeQPIV4G4xxy/QIh0nno0QaxLtiIxfnDl5YtW0rhwoXVYnW1b/kRIR4g2DgXONAQAf7112IL4Eq9/XZ9O7P+B9GC4hexO04S0c+eFfnww7TeVag6KVEi68ejEgUbang8zFCLFokj4ThC7Aa+Uw88ILJhg3+P941zcQOmmbGVkXGZYeZuiYmJqt8FcS+dOnWSCRkXsSFCEd0jIP8O9O4d3tJhuBsmT0Zgv8jKlbr5HrG3iJ4xSzkmOVkSFoyTPVs2pHtfs9slJ8TthNJgy4jol6N22iUTYJw3li0T2bo17X5kwrZr107dZqQL8RrBxLnAYAZTA/QdO1VqQzQDEPYTdLJb1KH4ReyOU0R0zF/uu0/k7rvTNshyAkuCd94R6dpV5PRp7R5dtUocB8cRYjdQBTJ2rEjz5iJHj+b8eLfFuSCtAPHBa9em76NnNYjbRD8WwOai7qZ27drSp0+fsP5NiugeAOMCHOPAuMbDCSZecFVZmetpV9Bc8G+EgdlIRM+YpXzfRfvl6IbvUoW/jLvnv/5qySESYilwTDRsqCtrAuHs2bOpEU5ucaKjsihFK5dJk9L/7nqEOouEves5IW6Mc3nrLS1wtWkTWFP3SFOjhm4ijJgZq6IcjDBJ8YvYFaeI6Oh59d57en0GMdxf0PBwyhSRa67RYt9334ljRfT4+Hg5jd0AQixk+3aRwYPTohELFcr537gtzqVkSZGUFkrnrCGshs1F3UFyKM63IP8GZU8PgKafKOtD3IpNelt6zoWOSV1RBCzbCJOl3LhO9XQ5zgZ8ZqpWFalfX2TzZosOkhCLmDlTNxVFlU0gbN++XU6dOiUFCxZMbXDlBu68M20CjLHBUKVKFXW9b98+i46MEGfEuRw7puMVwP33i+1ApSJMWf445SIBHaTE7jhBRMcYM2KEvj1uXGBN0QEiPz//XLtnIfo5jZIlS0qulFLa/fv3W304xMOgZxxaBx06JNKoUZqYnh2HDh2ShJRyMLc40YGpiIExCfGQdoHNRd1BzZo1ZcaMGUH92z179siAAQNkFLrfBgBFdA+AiVCkXOjEWVEumVEDFjTVPfvv1BM3wBy0utbXJchxiRBHggnvwoX6drdugf1bU9GB71Wsi8pzkAuPZsPQtxYsOFf4grgQDicAIW6Nc4HDE2MLzGXXXSe2Y+BA3fT0wQeteX6K6MTu2F1Enz9f91wAEMDxnQ62D8ott6T9fOKEyIED4ggw7+JYQqwGldyIQvztN5zbdIUXolL9daFjXlHIH9u6Q0A164UXokJEV+TZBTrR3UHVqlWlR48eqnrjqaeeUsbQ7NakBw4ckOnTp8sNN9ygzGCIJK0Ht3EAuGeFTzIFGi4y7VCid/PNVh+N93CCiF6kSBGpiDweHwHQcNNN+poiOvESyCxGrAE2kQL96pqKDrdEuRgw+Tcbsb69Wcxi9cSJEyq+ihCvEEicC+byb76pb997r56T2Q2s18PVeD4YKHwRu2NnER0pcpizJyZq1yciXcLB4cNaAKtbV2TJEnEEZiwxcZqERJuRI0W++ELPnVHZccEF/v07t0W5+Brznn1WzzHs5ESniO4OvvjiC/n+++/lwgsvlJEjR0qdOnVUAkTz5s3lpptukr59+8qtt96qIkghmuN97927t6xYsUIeffRR2bZtm1x77bUBPSdbB7ocDFp33KEHrABiO4mHRHQj+P31119KRMeAY0CGGZqBYCcdkS4ppnVCXI3JBA7Uhe7GpqK+9O2rzyNw1xjy58+vJiqHDx9W4pfdYqsIiQRwuATiRF+zBmODSIECadFIdgWC/4YNaMRkjfB15MgROXbsmIrEIsQunDlzRuVs21VEX7FCu1+vvlrk/fd1Hno4gLaEtLY9e0RatRIZOlQL9FZuuOUEN+SIlWAjC3GQ4N13dX8lfzFNRd0mogOsHaBTli8vthPR2VjU+bRo0UJ++OEH2bx5s0ycOFEWL14sP/30kyThxJgh8qtjx47SuXNn6d69u+QN8mRGEd3lIK7W1zVIrBHRL7N5GD0Ev/nz55/jREc+atu2Il9+qd3oFNGJFzIMTSPmrl0D//fmO+Q2JzrAMJbZUIYFqxHR7b5hSEg4wOcdopq/IvqVV4qsXauFdJxX7Qr+l9BgFFMXOFuj+XUuXLiwFChQQI4fP64cv5UrV47ekxOSAxBZsHkWFxenFuF2A4apG24QOX5cm1/CBXojrVunY54++EDklVd0pBviqezqFaCITqwElWZz5+p4JdNQ01/cLKLjdbGTgA7oRHcfNWrUkFdwolK9iI6piiTEt8D0hfn6Bf6WheQA41wIiRBYYKM8BNhdWDKCX8bmooCRLsRLfPWVyKlTegMy0AUiIk3QWNStInpWGFceF6zEKxjXEtzSmJj7Q5066XOG7QjEN6NdT50a3eeOiYmh+EVsH+UC0cWu/U6wn5eSzhj2qKfx40XmzNHPgaUC4mNffVW73+0GxxFiBaj6NzHMEIwDFdB9RXQ3NRXNjJUrRV54weqjYGNRt1OwYEGVl96oUSOpXbt22AR0YM9ZAAkL06eLrF6dNqCT6IIT4dmzZ9UXuFy5cmJnTPQEXLQZGzGYSBc401DSSYibwVe1Sxed/x1oOfTvv/+uysZKlSolZcqUETfH3bRunVauygUr8RpmweVPHvrp0+IoevVKE9GjOX/85/AJKX5pQ4krXJJjCbEdds1DR/XI+vXReS6sByCgX3+9Htc++UTk7FmxHQVLl5O8FS6X3f+yT4uVIMoEFcwzZ4onIlw6dxa5+25txAkWk4nuZhH9zz9FGjcWefxx3bfPSuhEJ8FCEd2loJM6OrTDKYCcPGJdlEu1atVs61ox4BhRonro0CHZl0EpR+n5sGF619jmewGEhEzTplokHjEi8H/r21QUrkq3giZJCxemRYVRRCdew988dMzFUJWNHPRDh8QRQChDdvuOHdFb4H66arc0eWmx/Fuzl5QbMFG+3X40Ok9MiMNFdMxXUOXSvXt0ng/+ADRfh0AKER2NE4FdHOkYS8b9db6c3/NF2VLtFvUziT5//SUyeLDuqYWK5gcecN6GciAMH66jIKdNE0kpSA0KswYvb7fckzBy0UUivXvr2w8/bK3ZkyI6CRZ7K3skaJDF9d9/IhUqBNbQgnivqShAUwUI6SBjLjpAR21syBBCvNlU1Je77tLXWCwgf5UiOvEa/oro+I5gTfz998j8FkeA6IZOnaIX6QIH+mOzN0pSykI6JjZWFh4ure4nxC7YVUQfO1ZfR7NnETwCMGr5Puczz4j07Cly8KBYhhlLUjW5mFgZPnsTxxILeOwx7cg26QmLFumqCTeC8/zo0fr2xInBfxdNU21g5tVuxTQnXrpU912zWkRPSEhQ6QGE+AtFdJfy8cf6GvmbNjdBuxZEOzihqag/uei+YG8gPj5KB0VIlEA0SbduIn//HfzfcHNTUV9atECpqd6onT1bpECpC1Tp9N4DdI8Sb4no2cW5wF1lBK6BA3VGqtMiXRALGOl15a74Y6kCuiFZYuTP+OORfWJCHC6io1Lk55915CJEbavASzNqlB4v0Jh4yRJrjiOzsSQxOZljSZRB5TKEZWy2oGoBxj5EuhQsKK4DDcONsQRV2z16BP+30AARcWYlLm0kRxIdNGEIApg8UakAHn3UulioEiVKpKYFxFPcIAFAedWFoCIFJUUAub7EGpzkRPcV/jJzohvQWAgT5KFDo3hghEQYuGOQY4iy6KeeCv7v+Ma5uBnMN++4Q99+fe5uefmPoqp0+q/ad7N0mngCU/qbnRN9+XKdVYy+o2aR7RTatBEpWVJk//7IC2KVShWU2IzpV8lJclGpApF9YkIcLqK/+aa+hnBn5WHhueEorVpVZO9ekWuu0U0Dox3xktlYgp85lkSXJ5/U1336iFxxhciNN2ItnPZ7uLYRf+J04y/20lG1hdi2667T7upQmP7LbhVnVrjjEyrezO3zaVQrYJ4Bz6GJh4w2iLItiYNgpAsJEIroLgROADS4qF8//UmLRA8053SaiO7bXDQrIKBj0vPRR7o0jxA38PLLullWqVIiL74Y3N84ePBgapah20V0szjKVfiE/HsRS6eJ9/AnzsUIXKgILFFCHAWcra+/LrJ4scjVV0f2ucoWzS8vdrlc4lL6SCQnJUr+TZ+r+wmxC3YT0XE4WO+BQYOsPhodHQpX7u23a/EcTQPRgDSa5s7MxpIBVxblWBJlEGkCY0pmojLywiGgY66NBvUpXyvHgUozxBft3q03jxB9Fkq1GebNkzafUnFmABUVbp9PFy2atuGCPlRHLSpmZS46CQaK6C6OcqEL3Tr2798vhw8fViVCVapUESdghL/ffvtNErELk8UkGWXpYMAAvftOiJPZskVn/gOIRhDSg2Hz5s3qukKFClKkSBFxOyjFbNT6GHTzdLB0mniBnOJc4MZE1BG4/35xJBD/IaBHI4amR/0KsnzY1fL8NaVl37t3yoFVFoakEuIAEf3993UV3VVXadOUHUBcBwRUuEpRgYOqaBxfNBtKmrGk8KoP1VhSI//h6D05UZQrpyuXcZ0RLImnTNG9N1DlVLeudfE/oYB9GjTFrFhRZM4ckWLFQo8iQoyZ1+bT99wj0ry5yPPP6zHDCiiik2CgiO4yEhJ0E6tcuURuvtnqo/EuxoVeqVIlyZcvnziBiy++WPLnzy8nT56UHTt2ZPk4lGiiUQzcBDjpEeJU4Jbq1083P2rXLi0HOBi8EuXiy62dCyK8OB0snSZeIKc4F7jSsBeN/gEu7zMcNuAWbVOnkiQeOaA2Kc64tQsdcSR2EtHhgoVwZxcXekYQ94Zc7GrVRB55RCRPnuiPJRXzn1ZjCRueRw9/XeWIH/r1V8yX9b9B/A+c6dGO/wmVtm1Ftm5F77PwRBGpL7YPqKhw+3waYwOioBB5Z1XfGCOiG3MEcQ+ff/65dO/eXWrVqpXO1AqdbvTo0akV5MFAEd1loGQYpUUrVmBxZ/XReBenNRUFcM3XSGkpnl1zUZhsTZk6GgmlGHAJcRwffCDyww/aPfXuu9pZEiwmBsnEInmBvr3zy6hu6Uun76pVgKXTRLwe5wJhCxfTOMup7Nol8sADuvIsGiCbNBdcICkVfYTYgWPHjsmRI0dsI6LjlIuGoohz6dpVbAmmQoh3QayH4bffEH0XnecvW7ZsarNGEnlwSkR6aZcuIocO5fx4bLBgowXRgBDPEfGC7PTjNjdeQ1+BicwQrg0izJsvPrBCzaMB5tUvdKnpufl0FoXwEYVOdPeRlJQkPXr0kG7dusmsWbNk586dsgsT2hSKFy8ujz/+uHyEfOIgoYjuQrD+uPJKq4/C2zgtDz2Q5qKgc2eRDh10PjqcvE5zDxCCz+zbb+vbqKhASWYomO+Ml5zoWMib0umS6z9WpdOX5kmw+rAIiXjPk5ziXFCA9sYbuumYk4FuOHasyKRJ/gkj4djML1OmjLpNBymxC2ZDB9WahQsXFjsA8Q6OXvQvsCuIZzDmBIjn7dvrRpOrVkVPROc4Eh2eeUbk8GGRP//UZit/KFBAx//A0IJ4FzjSrYr08Ie//tJr3wYNRNasCf/fT9y2TM2j+1U5oebVmF97iU8+EbnkEt1oNJoYMwRFdPcwZswYmTFjhvTv31/1LHvooYfS/R7zzGbNmsn8+fODfg6K6C4CCxwrdvCIe0R0f5qLAkyKx42DgCDSsSNFdOI80Ltn+XKRV18Vue++0EU1U73hJSe6oXBcfjm26wxLp4knQL8TEzWS0Yn++ed6c9ktYDhDgRoir/D/Fg0ofhE7R7nEhFKyFqbYTieu9bAPgbgGiKxNmuiK1gzpFWGF40j0wJIX1ZwAc+qU3ph+ga8TojxQMDBkSGgVoZHk2DG9KY79c5hu4KQPN6iawDy6WbUynnOgg1mzRHbuFHn00eg+L53o7mPSpElSv359efvtt1WfsszO24h38XWnBwpFdBeBkw+avc2cafWREKeK6MZFm12ci6F8eT0ZRt5hSvU1IY4CzheMm6Hm8GGRhp3uuLg4qRaJmbXNeeopNGg1C1Y/QzEJcSjGhV6wYEHlTPV1UaGUvU0bZ4pcmYF1h+kVgWZw0YDiF7EbdspDR6PiypVFvv5aHAWWQ3DvYozEHiTirrp3F/nvv8g8H8eR6IEGmzjnwaWNZtTB4FvggQooZKbbBWz2IOd/3TodlYt+BIiBDO9zJKdGD5nPrtd46SW9Hps3T+ekRwuK6O5j+/btymmeU3zggQMHoiuiHz9+XBYuXCjPPPOM9O3bVzp37iy9e/eWwYMHy4cffqgOnEQXZIhBPMf4m0V1MYkSR48eld0IpnegiG5ctNu2bVMNRnPCt+zOTe474l5QUozS0XBWT5hNp6pVqzqmkXA40Y3D9KR/+XIuWIm7ySzKBdPee+7Rt1u2tK5BViTo2VNfL14MQSryz2cEBCNcEmI1dhHRscb77DMdK5GSeuQoihbVa9XXX9fmG9yuVw/Vr+F/Loro0WHRIpEvv9Tv5+jRof+9vXtFGjbUm9FwJduBF14QmTFDRyfBLQ3DYrj577//lL7mZREdHiRExAKkb0Sryp2NRd1H/vz5VdVodvz1119SrFix6IjoP//8s/Tp00eVr7Zt21aJ6BDN58yZI9OmTZOxY8cqUR1OPDhax40bpwYFEnnmztU7txddJNK0qdVH4222olV3Spk3drmcBBYIJUqUUA0ZTHNUf0AsRq1aznPGEG86Zvr2Td/sKlS82FTUFyzmb7xRT/pXrvxHlb0S4laMW8lEuZw+rYXmo0dFmjcXefxxcRWVKolcdZV24336aeSfj+IXsRt2EdHfe08bVrDOQ7a4U6tb0KwY6wZUtG7bpvO0w80FF1yQ+t5hTUPCD9znQ4fq2wMHhifiBKdVuNJheEH/Lavnk9BXnnhC30aMaQ7m1qAx57uiRYuqKjevgspWVAmjEgEbhtGAmejuo27durJgwYIsDaEJCQnyzTffSKNGjSIrom/evFnat28vTZs2VWJ5kyZN5IknnlDi+YoVK5RouH79evn+++/l3XffVUI73LiDBg2SypUrK3H9LG2qEeXjj/X1LbcElkVGwo9To1wAMqP8zUX35YsvdCMQOPGsnvAQkhVwUn74ob59553h+7tebCqakVtv1cLXqVP/yMsvW300hEQO41YyCy8ssLHgK15cR7q4yYVu6N1bX0+dGvnnoohO7IYdRHT0JTC504hCcTpwGyPeBTEZ2BwIN6ZBMfpXhFKyT7IGkZ54aWHmHDEiPH8zb17t9oY5eMMGbXqJZHZ+duB53347bZPAuKQjgYlyMZs/XgVfW1S3GtPT+vXRc6IfOXJETpw4EfkndGjGODSi7C7XoDOwDzBSDxkyRCpWrCh58+aViy66SB5++GGlEUcaaNB79+6Vrl27qmtfduzYoVJU4FTH44LFryTj2rVrqxfgjTfekJtvvllKlSqV5WNbtGgh/VJGmaVLl8r48eNl6NCh6oP5uNvsOTZq1rJggb59661WHw1xsohuhEB8d/3JRTfARYKyTJSYPv20UEQjtgPzIjMBxmZPOCt2zHfFyyJ6xYqm/PQfVdILp/+FF1p8UIREOM7l22/TzncTJmhnpRu56SaRUaP0uAlPTCT7oFBEJ3bDDiI6qkBglMR5FQ0O3QDkBIybvqIlxlNs2pUrF9rfzpMnj9Ir4uPj1ViSsQk0CR1k86P4GmJ3OAuv8RlHfAo0uWnTROrXF3nwQbGkagL552iCi+qJSOL1PHRf0Ktq4kQR9HxERUKkgfs/d+7casMN87sKkcjrcTh16tSRp1AmkAkzZ85UhmuklBiOHTumNOF169ZJmzZtpGfPnrJ27Vp55ZVXlMb0ww8/RDT+tGPHjvLoo4/KqFGjlIZtqjswb8emKnoQPPnkk9KqVaugn8OvafB7772n3OW5Apw148XDBS96xl0AEj6mT9clVQ0aiFxyidVHQ9wgogfqRMfYhN36668XGTNGNyKrWzeCB0lIgGCjZ8cOvTB78cXw/d3ExET57bffPB3nkl5c+D85ceKsjBiRK93imBC3YEp+S5YsLQMGpLnU3CJsZQaMWtgkh6gQaSiiE7thtYgOcXnsWH373nt1NrMbQaXgo4+KvPqqXtsG26TSdywxInotZE6SsIPeWKgqCDeIRsPnAOI1HMl16oT+eQjk+2bOdXDGI5870tCJnl5TWLFCR8Six4wBle6RSLqBixri6r59+yiiZyOi45KR06dPq/huaMTQig2jR49WAjqE7JfQMTaFYcOGKWF7zJgx8thjj0X0mF988UUlkuP4Vq5cqaJdEO3Vrl075UD3Ff2Dwa/gj7vuuitgAd0XNFu7Olojn4ejXOhCtwcmS/yyyy4TJxJMnAto316ke3e9oQPHL64JsQMoGX7lFX0bmz1obhUudu3apcr/0MTk4osvFq8Cl1esyhJLlo4d/09VpBDiZid6mTKlZd48kR490sYXNxMNAd1XqGSWMbELVovo69aJrF4tAuNeOPu52A0IZtC6sU957bW6UWUoUR7ckIsM+/bpDY9Ir/Puv19rG3geONGjdTrAc2EzJ5rrWPMZpYietnHvo8kqExT6/qEpcSQ+BybShbnogfHFF18oZ/cNN9yQGqEFl/cHH3wghQoVUm5vX/Az7sfvo0Hr1q1V/DjO4RD8sak6f/78kAV04Hd69imEsRFb8s47+kRz881WHwmBK9U0FnWqE71GjRrqes+ePXLo0KGA/u0bb2iBEvmwkyZF6AAJCQAswODcwmQYkQQdOoT375sol+rVq0ucG8OQ/QT/72YC9eST/wiNHMQLcS44XcIxCTeeF8A4+t13Itu3R+45zDiCXkrMMiZWA0HAahEdlZ1wZiJWIptEVcdTpYrIzz+L3HabFsogZHbrhmzd4P4eRfTIMHy43szp3z/yG7fIy8fzfPNNdHq+oYISa1ls4Pz0k0QNxrlkz/jxIvHxeoMDCRyIegknXm0uirhtZJebS6B67wcpYvjdPru727ZtU59n9NDM2CQXP+P+nTt3Kp3Jyfg9HBUrVkxZ4p999llZtmyZyg0i1gpDx4/r28gKQ5mfmydWTuHPP/9UO13IeXJqORC+6+VTgl2RcRUIWF+Y5jImp58QK8EkHBuNTZqklUOHEzYVzX7BeviwhQdESAT46y+9yPJixi7EjDZt9JgaKUyWMaD4Razm4MGDqWtes8FjBYjMcLML3VCggDbhYIxBbM3s2XqdG2BxbDpXL8eR8PHLLyIffaRvR1pEB9igRkPdSO9fQVf58ktJjWhDBGSzZhI1GOeSPYjhxOcAmuzSpbpiBcJ6uJrOetWJDgMYMuHNBREo/vLXX3/JokWL5MILL1QRKb4iukkiyQxzv3lcJNi9e3eOF0SNY+Mg4iI6StWXLFkiTz/9tLRs2VIJbbDIv/DCC/Lzzz8rBy6JDsilbN0aMTtWHwnJKg/9kksucbQr1QiCgTQXNaBp4/z5ugkSIXYAMW7LlkVmEk4R/VwRHa49mHVRHYXX/uRJq4+MkPBw5AjKirUTfeNG74noN96YvhdPNMYSQqzEfAaLFy8ueRGQHGXQyNeL5geImZi3ockktJZgdHAzjhiBkgQPvgbIJzfCMpq/YnMj2kydCvdr+P4eHM0QzFEFgfMb9stQ/fDEExJVGOeS85iATZv163WD86NHdXQserGF4+vtVREdPb0OHz6cegkkp3zixIkqcu/2229Pp3nh7wCI8plRpEiRdI+LBBdddJFUqlQp2wsajuK8jvPEwIEDZf/+/ZER0VFSuWbNGnnttddU7g0mEth9eOKJJ6Rp06bqINq3by8vv/yy/Prrr6r8jYQXvKTvvw+xRmTRIt0xeudOq4+KZJaH7tQol1Bz0Y1rAPno0cpPJSQzcG5euzbt50h9Hs1Gk5ebimbmRIdb5McfUZ2jmw0T4gbuvTdZEhO1iN62rfdE9Ouug5ioF62ffx6552EMA7ELZmFtRZTLiRNa3EPjYi9WdcF9j542EE5hHgsUjiOhA1EZsTpo+YNqztOndXb9a69F/1gWL9biPb4P4YpagbsZPXygpxQqpIVaVEJEIzrGAM2MTnT/qFxZZMkS3YcGe5poPhqOTRUjopu4Pq9QuHBhJWqbi78bxUlJSUpER1PWO++8U+zGbbfdJs2aNVPfLRi/YQDv0aOHuoZmjfubN28u119/vUqPePfdd6VevXoBnSv8HiLwIqEr6+DBg1VAO0T11atXy6uvvqoOADsQ33zzjerC2rBhQylRooR07Ngx2P93kgHEBiEDH4M7dt8QTYDdOA/3sbO1E92pTUUNxlUbjIjuCyb9cJIQEm3uu08vwCLZuwTZcaYHAp3o6ResKMk2VYEvvKBdTIQ4mYkT0cgdSpaOdqha1Xsiep48ugcPGDZMCyqRgOIXsQtW5qE//riuPv7qKx1j4EWQmuXb8wv9GLAe9idOl+NI6OTKpfP4saHTqJHIwoVazE7RHKPK1Vfr3kYQ9jt10hX5I0fqeJmcRHVUdEBw7dlT/z8YkL+PiLJPPtHzVBMZEk3gyD2BF5iZ6H4B0/PQoXqDDc1HMRcxBNt01KtO9GBZuHChikRB1Ddc3b4YB3pWTnMToZKVUz0cPPzww7J+/XoZMWKEyl6H8Xvq1KnqGj8/9dRT6vcvvfSS7NixQ0aOHCn79u2T5557zu/nyBXswUFUr1u3rro8+OCDStFfu3atinyZNGmSEt++RLgUCdl9jiYXQ4boxirozA5BYtAgPYgQe4roTnei+8a54LuN73ug/PabLrkC2OEvVizcR0lI5kybpifEcJJEcj9ry5YtKsoMu9x0j5y7YO3VSzuXVq1Cs1GdX0iIE0FzM0SVifyb2hypAHaKPMjDD+vXY8cOnVuMEv9wQ/GLeF1Enzw5rYoLrl+ImUSkb1/tREWzVcz1snOo+44jwa5lvBhZNm6cjsooWVJXccL1C23R6ipjPDc0ERR9w+OF24bq1dHHK+1nHD+E84su0oYuVDP4mjmuvVZfozm41T28jAsdawnEJxP/wHuOqgEDNleaNxfp3Fk3IEVPBX/xamPRYPkgk4ai/mae55SZHg4eeeQRZepGDHlG8B2DiL5ixQpl/p43b548/vjjMnfuXPkKO9Z+EpZiFQSzf/LJJzJu3Dh58803U92rhVAXQ0ICrvOnntIC+lVXiaxbpwcGCuj2xC0iOpz0sbGxkpCQEHQmabVqmMCiKZM1ZX/Em8C1pcUunWmIqp1I4RvlwsVZmshghC9sYhgR4MMP9fmLEKcB4wLyeWFq6NjxX882FTVgag/3H3j2WX2ODzcU0YmXRXQ4fyECghEjRLp0idpT2x4Ip1dcgZhZ7UjHWJSV+9SMIydPnoxo/q4bOH5ci+UwlQ4frm8bkH2O7Gk7THNx/oHr/OOP9fkHSRKtWok0bpz+cTNm6OoxaChYg+JrjE0BVFI99JDYCuahhwf0YsPYifihevV0E1x/oRPdf5BGMmfOHJU60hk7FhmAOI7P8o8//ijHjh1L9zv8jPvhXi9fvnzEjhHPgXiW7LjiiitkmU9cAkT3iMS5ZJxQTJs2Tfr166deKASz9+nTR2bPni01atSQUaNGKXUfAhwJjcKFtfjw8ss6FgPCJLEn8fHxamAxjUWdDPKhzA5hMM1FATZ6zEIbQprHYsaIBaDRHUozsVZClAvcz5GETUVzFr6widG9uxYgUVHFdinEaaRUnqpohdtv/zfdgsur3HGHdvBhmhAfH/6/TxGdeFVE37dPOykRlYTICoiAJA2IvOi3Akc65hPYZLjhBpHMJAc4DuHuBRxLsmbuXJ01jSojLGOxhM1Bf7JcG7nlFj3Hh0aCPnG+lY7YVIGbHskMMMoi8uOLL3QvD1RHXnml2ArmoYcH5OVjk61ECZENG3T8EJIbzBzOXxGdfR2z5+OPP5bTp0/LLbfckmmGOkxlcKgfPXpUxaT4gp9xf18M4BEEme3bkf2VDfi973udO3dupX/5i9/FYZ999pmKavn+++9VBqwJakdo+z333CMtWrRQ0S5wr5LQwAkBkwTsrALstONCnNFUFJtKbijzhrsWcRUQCtsgMC4IsBDAZGX1apGXXhJ59dWwHyYhqWCz8YcfdJ4h4lwiXf5sNpgooqcXviA6+JZOjxqlG2GjUAdrhXLlLD5QQgIA2f7XXKNjA8aP1y4lLzvRAcZWCBdYd0bCnZixqoUQL4joEP+6dtWuWWxSIeuZy+pzgc7x/vu6QhtNJpF1DXc6sroz9grDvOTQoUNKqHR6v6pIMH26FqRhQkH0CTZt8LOT44PwnYGg6hSMiM489NDAXAQb/NhUg2kH68A33xSZPVtvqmBTMivMnA69riDyouEmyZwPIVRK5lEuvnEqcKvDWI24b7i+16xZI99++63Ur19f9diMJE2bNpVZs2bJp59+qhqKZmTGjBnK/N3aJw8M+nYgG1l+n5pvvvlmef/996Vy5coyZswY9YIYO/+QIUPkyiuvpIAeBtau1VEEyOpaudLqoyFebCqaWS56KCe055/Xt996C9FP4To6Qs7N4DfOczhNqlSJ/HMaJzo2nEiayACHgm8lGhZmaJGCHqwU0IndQX8vCAknT6adx8w8+9+Ukiqvi+igTJnIlfdnzDImxAsiOpbRaJJXsaJ2B1PHyR4IZj//rF3UeHsuvPDcx7CqJWsgLkJsNlWcW7ag2srZAroTYZxLeMH0DHE/336rxwZU96AiPrupBPrc4AIY6ZI1v/zyi1r7NmjQINu1L17LpUuXKrEcJtNXX31V6WRDhw5VzT0jnf0P8R7P0atXLyXg33///coFj2to1tC18Xs0FgXQtL/77jvVKNVfcgVqjYcbHdliR44cUTs1eBFhfyehg9ggdI02XacbNLD6iIgX89ANZnA0QmGwwMTerJmOI0JpHTqfExJu8LUbPVrk11/1wirSoLv4XwhgpxM9FZT1ISPP9FIoiQDKDE2cwO7deKwW4QixE4iC6tBBV7RAUIBLzxcjons9zsUXlEqj2qRjx/DNW43wdfz4cbrCiKfiXLD+QwPHPHmi8nSOp04dPe9Dprd5zdBQEnE4KAqmiJ41yBGH4aRFC702oxfSGhjnEhlgfoAPENrDrbfmvOkPcwQyuyGiwzRMzgW6r7/GhqJFiyrjNS5WaFjIO7/vvvtUPvq6DE25mjRpovp41qpVS/2MdJX9+/cHlCTht4gOhR47CohzgZA+AiFkKXljjRo1UnEuLVu2VLcpqgcHGoZi0YYxFE1v7dDAgwQe5+IWEd0Ig5s3b1YbaMFWmhg3esuW2u2AsZefbRJu8PHEGBqtzxeijgAWaMWLF4/8EzoEvB4Q0bFgRY+UzEDDVzQAggPqgQdEateO+mEScg7794u0a6cb4BYpomMCMmIcSnSip4EmdKg0w8YDLuEYf+FignAOww7GEoroxArOnj2bunEWSREd3xtUbFWooH+mgB4YiD1PiT5P7V+BuCnkYFNEzxp8pNGkE1NYCujWwTiXyAHDs6mIB1gjQtPFZz6j4QrmiD///JNOdJdQu3ZtJaTv3r1b1q9fr8xvRYoUUfdXMCfbFOLi4pToHwh+D5kQCTp16iRvvPGGOhB8wJCTfvvtt6td+qeeekqJ6FDyr7nmGmWZ9+14SrJn1izdFAOLD5Sg+Bj4iMNEdLfEuWAXFg0WTpw4ITt37gzpb8GJvmtX2meckHCxZo2u4jFE6/OFiRa4OGMAp8fJacGKjTS8dHCJTZyoXWSonkPpOn5H7AcKLiCSHjworgWfyaZNtYAOk/nSpSLNm5/7OMa5nAviJ5BRvHy5Fq3CBcUvYjX4vsN1BxOJb2VVOMF+PKpf0MgxZRlBQgDnKcwt0Iupfn3MNbS7l+OIBr2pkLVvwMeaArq10IkePRAtOXSoSL9+eqMtq+aixNm0atVKnkzJeIVgfuONN0rv3r3VdUYBPViCHjYxmejatauMGzdOxT3AAj99+nQlqkPxf/rpp+Xqq68Oy0G6nT17dJdx8OijaQ1FiXNAybGJdnCLEx27ctWrVw9LpAsI05hFSCqoskbTZTSUwiZNNNmV8oQXwT5G/Ba+4uK06w45puj1gp+//15HQVSrpjeRibXAqYPSeANu33efFpXdqEPg9Nakicj27TqLGGIwNncyg3Eu54IcYixKwSOP6A2ycEARndglygXfd8yJIxEfhXMfri+5ROf3ktCAw/SXX1DOr+eIb7/NccSAWIuHHtIO3BDaXZEwgk06ZqJHDzQdRXQyIp/QxBn9tAxmXmfmecS5rFy5UhIj7MyKDVe527Zt21RXU1ywo4ZBgc2A/APdg7Fzjh3zZ5+1+mhIMOBzH1uohJSu0UTO5ikkbiEczUUzguh4C+KxiMtIStINkOLjde5ltOeecKLHFS4p+SvWln8On4juk9sYf4WvRo103jT2IrB5jIXvjh1w5ETpQMk5QETGIhvDPr5bBhRbwGkMsRlVRSlFGK4AC6nOnfXnDulDP/4oUrVq1o9nnEvm4DuM9Sc+Q++9F56/SRGduDkPHet7iDlwopcvryuSGeMSHuBtwFiODYqzZ/U4smHDP56tdoMcgxi9FGOmPPOM3mQg1nPo0CHVaxAwziXyoFp5wgRtnMDmJfpPpAzzdKK7iEsvvTTV3GorER3K/ooVK1RH07Zt26qol2bNminbPDquIpS9S5cuMnbs2PAfsUtLYSdNEpk6VYRx8s7ko+XbpdyAiVLghsek6ajv5dNVu8UNhKu5qAEnKvRwGDJENwIiJFjGjRNZsECLe1Om6EaV0WTt4fzqO/9dYnVp8tJi13znQ8WIDf4KXxAP0BwdFVlvv51WlQUgKrz4YqSOlIC9e3V5NzbxIR5jkQ1nznffpTmK8d3avFmkUiW90YHYk5Q+2o4nVy5d/YDGt6iQKFcu68fCGMI4l8xBZDmEGYDrQ4dC/5sU0YmbRXT0Evj6az2HQQwSG22Hf0yaPVtkwAA9jhw8+LfatPCigI4KIZML/fLLWlAn9opygZaGCFUSecyYi6a60FkRp4WKSzOvo4jufO6//36ZM2eO/OZbahBm/G4s+ssvv6iGomgsii6n6F5rnObIQUfGDOJbcDGdTon/u2J9+lh9FCRY4EL9fG8+iYnVYcxJySLDZ2+S5peUlrJF84uTCbcTHeuQm2/WogUmcd98E5Y/SzwE5ptPPaWdBOCVV0RSUoei+p3/58KWEhMT67rvvFXCV8GCIvfck77SAIu9lSv1xtv114f7SL0BDE5omIm3Axc0zkSjJdC/v8j776c9FmkF11yj3ZGdOqV3RcKNjjY3rVvr3F440rGJhSglp24eIIbEVEV8+23O/RTQlOjMmTPqNkX0c7n7bpE33tAbLNgYwyWaG3KEOEVEx8b/6NH6NuYyTh1H7Q6yvkePLivvvoufjkr79kdFxD3VwjmBedSDD8YqgwJ4800dzUbsA6NcrKFUKZGvvhK56iqRVatEevdGVSKd6G7h4osvVr06GzVqJP3795f69etLmTJlJCaTiX7zzBoghVNEx0HgiSGco7Np+/btU0XzOnXqZHpQJGtQQgIXAuJb2ETU2eyKPybJkv7zn5icLH/GH3eNiI64mlOnTkneMNh9n35aZNo0LcDA+Rfk2EU8CPZyIHiZvOa77hIZODD6x7Hr32MiKQK6277zdnGPYvELdzRE9Ftv1Q1kGT+fPf/9p7Op0Qca2g/egozNQGHKML2vTf4uBHEI58iHzC7qGy5tjNkQ4tG0DW1vUFGUXfyJHUUFzL3QKBX/L3Xr6vv9mcKahVXBggVVxSU519WPTc1PPw3PuEwnOnGjiI4xyIiaqET2ojs6mhQuXFiN2TD/NWmCsUSfsE6cSNtQdgvwNmKf11S1r1xZVt5+O06d37CRgGaKxF6wqah1YO4KRzp6a8FAcv75FNHdQsuWLVN161dffTVbnTrY7HS/RfQ2bdqoTqcQza+88krVqZwEz733aifChg3a3UWcS6VSBUWSk9KJanExMXJRKecvssuVK6cqTZDZtmXLlrBUmcDRCMcaJnSPP66FDO7BEX9AZjH69mIvB2JN48bWHEfhmJOSnJQkMbHu+87bSfjCe4wGYbh0767PldGO7XESRYpoRyOcjRBqDHCU422BDoQMcAM2oSDgIFInEPfO4sUiN96ox3InNcJDPM2dd+q5F1i6NE1E9wdGueQMKkbCVTVixhIjZBLiBhEd0wZUvrzzDlzCYfuzJBsgUKJ3G+YlVatWVRvMcKCil4NvBZxTgBkJEbCnTukLKs7MbQjpiMdDPFCjRv/IAw8kSt26cax4t7mIzjx0a0A8IYwn+L6sW8fGom5hxIgRETd4+y2if8PchbCBjDYs4lA6bcr5iHMpXTC3HPruHSl67QCJiY1TYtoLXWq6wpGKAQhu9OXLl6tIl3BFNSHKBX0Ali/XjnQ4G4m9wcQcE3Vf586RIzp3MlLPN2eOyOuvi3z5pUihQnrxic8Lqnes3Hg5Hr9PEha8KSXa3ue673yomIXA0aNH1aUQ3rgggWD+2Wda6ES55UMP6XJkkjVoCIq3AII6dB/cLlYs8+8LvkfBVMLhb2NKCLeb2UfC99XOm6Go/uvSRW8AwDE9fnz65qn+YBZWpvkUyRmcM4KNeaUTnbg1zgXxZTifkeiAscSI6ODDD3UWMipmUOE4ZoyzNujj40W2bcv69xDTAc7JL7+cJLlzx0Xt2Ehg0IluPaYfhZnbYa6XlJREw7CDeRo7jRGGnw4LePJJfTJDri92womz+fPPP+Xw2q8lfuI9MuWu+rJ82NXSo34FcQvhbi5qYgFQjQHgRk9pr0Bs6NxEg8EHHtCO08GD0363fbtIhQoizz2X1oAwXKxYoWN+OnfWblFf4RROWKvFOnznj274TsqteU+m9W3kuu98OEqnw+UgrVhR91AwzWQRFUHSQOk2IgEOHNA/Y5MLeeatWuleAcWLR+b7gueBGA3gboejHRujds0/R2QNBHTs6WBTLlAB3bfEl070nIETEtUj2CAP9vxuRPSEhAQVJ0eIk0V0jDvoExBk5TgJgYwbclh3oGk5zo2oCEA1FmK+IKzbEfSH+eCDtJ8xJ0dlHqr01q8X2bIF81Id4ZaQoJuAE2fATHT7cOZMqdR4jyVLMmQhEhKsE/1O1MAG4WL9ENu9JB3Hj8eoBR1O2MT5/I4ua8jWKldamlR1n0Mt3M1FDRB+ZswQuekmLcKYDD9ivcMFzVbmzdOub7jNDQsXpjlOP/pI5NAhbArqjHs0KGzSJLTnhrMG4+LMmWlC3ZAhaRsudgEiOqhyQUm5qjKbWmS2YN2+fbtaHFSpUiXkv4d4iMce04teLCQhzlm9kWIH8F1Ec9CJE/VmF9z6VhhnUFaOzQ1c4PjGAt8uQBRBuS6EdOhgGNsCiXDxhXEugX02cQ6BEx3XHToE/jeKFy+u+rBAQIeYWRE7aiQq7x3O9UeP6kbCIRQTOZ5wiej4M3fcoedXqN6z25zGKyK6cf1i/oA1CDaa4Ubft0/PL0aNEunbV8dN2uW7iONE1TrO7Q0bwtiks5xz6kXCzRpnQCe6fbjggjySK1cxOXv2kPTo8X+yZk3JgOIOibfwW0SfNGlSakC7v1BEz5wiRZLlk090nAtxj4h+menW5jIi4UQ3juIdO9LcjCRyYEEAgQ0LB1wwGTe3cXnttbSSewhOcLX4lrndcIPOQL722jTx8plndINCuNPRrBD/DoIenFaIjwgEnFYgssCpBfAcWHCi8TKqFuyGEdEvYqfLHEX0cIHPAtbB+IxRQNegWhECOr7PeH2sqjxF41e44TCOYDyAkI7NNTu8T1iXYh8YQuDXX4fWnJZxLv6DKiXkPUOYevhhkeuuC3yjHGsIiJd//fWXGksookee/fu1iIiND4CICwjpqG7BJZj4J6dy/Phx+Q/dmkMU0dGfApUvENBr19Y9gUh0ySoaCvPO9u1F5s7VzV4XLRK58ML0lV74CFjxuYcIPmBAmgMdY2nKcoy4CGai2wfMUS666DzZvv2QxMf/n1x//WUqdhYRhsR57NmzR5577jlZuHCh+p6dzqRsHvPMs77NogIgIPkqV65c0r59e+nTpw+/7CHwwguJaoFB3MEff/zhahG9Bro5KkffX2pBUSSMZxMK6NHh++91tnRW+PZmgOsXgjpEc1zq1ctcnINAhggHdDV/5BGdMfneezrH/K23dP5wdmzdKnLJJWl/y3ys8Px2XyxQRM8eIziEU0THWHH//WH7c44HC2sI5wDl6OFq5hgM+P6iCSw2z0aM0FF1aBgNV9+VV1pzTKZiBosiVDxh7lyiRGh/k3EugQEHJT6nGOux2dOvX+B/A2sNI6KTyILTWoMG2CzSzYghJqLhGja3ccHH3lQUQOBzuxFoP3YUBPOhfCHNexFHh6o+zKtQteOk7G23kF1/BcwtMF/FBcs5GHwMENdvuUXk5pu1Y71+/egcL9KrevcWmTVLz78xt+bmi/uAMZVOdHtx/vkQ0bdKsWL/qn4JWOfi/GcHUwjxn507d0rDhg3l4MGDSsdCRSOMGDif43dnzpyR2rVrS7FAXX8++C1hvfXWWzJhwgSZM2eOzJ8/X9q1ayd33XWX3HDDDRLn9plUmLFysUsi50S/9NJLxY2UKFFCndxxot+8ebNcFeYgf4gd8+frxTaEXizeSOiiOSbeLVronzEJQIQBHFF4vXHxve37mkNQD2RIhzCF9w5uVLiE4WJH0UJmIjocPdOn68fDGY8JSkpakHK2P/98aE7RaEER3dqGgDANoDkxypnvuks8ByJJ4FADeB2CESfDDRYYcJ8jgx0RTHD0YQNu7Njobn4gixviPcY3bObhuMIVR8E4l8CA7ojPJ+J9ML7jHOHbmNqqDTmSOTD64zuL6CNUy2IjG1Vmn3+uGwnDkW7AZhmEBbjT0bsEDmu3iQy+US5wqwXDhg3aZABefVXHh5DoYwTKnMaRjMs4xBohkgr9PnDBpvDIkbqyJlIgRgnfKTw35ubYeOnaNXLPR6wDAp9xx9Kcag9MpWG/fv+n5q+YbyMusU0bq4+MBMIzzzwjhw8flkWLFkmLFi1Uk9g77rhDRowYoc4D99xzj/z222/KpR4sfhf/4slWrVol69evl4EDB8qKFSukS5cuUq5cOXn44YfVgRDixV1kt8e5+P6/IaIh3Jw4oR0WcDBPmBD2P+85IGJDwMaCF2I6wEIXrkDkjaOhEoQN4xhFJISviB7snigEe0Q6jBkj8uijafcjaxLNQRHPYuI4IKDDIYprA6KznaBJ4ztPEd1aER2LSgil992nP3Ne4tdfdR8JOEH79Elzo9sFvCcYg+Deg+MSpfLRAP0UsKGCBsgQz+HOD2FunCnm88zFrv9gvIc4C7Md3he7jSVeZ+VKvbkNoBNDPEezwlq19M8oRMR8ASXtvhsgiHuBQIzxBxv0OP+jR4qbMJ+5YKNcMLft1UtXwSAS7557wnyAJOLjCCJefv5ZbwBinrx6tT6noSIDcZSRAEYTnLvQnx0GIwro7sW40GFWQ/8PYj3GJJE///+ljtmIKSXOYuHChSo9BQK6wUSS43zwKZo4CXSR4BtUxgaTj/z666/Lvn37ZPr06VK3bl0ZM2aMuh8O1Q8++EDlyBHiBeBUwU4XdrguMdkULqR8SmeNvbAohZkCBdKa7MLhgYUHCY4DB/RiDYtZOMrCXDSQI5gDIhPZzAWRJ3n11SItW2oXD04N2I+BIwviOoR1J5Z4nzx5Un3nzfeCRFf4gkCLhSwcYt266QxuL7l70acAm2Tjx9vT/VmpksjHH+t4CIjaBrjnsWnn26w4VCDkodIGDkJswpoxByKEr3M2HDC7NHBwLsB7DiZP1hUCgWBea+MKJuEB3xNUjjRuLDJoUPrKMtMfJTuwQY/3E45ZPH7ZMpFrrhFJSBDXEGrMwooVenMP4zXi7uw4VnsFM47A+Yv5m7/gPWvUSOSjj3SFxtChOv4Fm0hocB5Amzi/wWYwNq4WL9Z9iIh7YZSLfZ3oiO9DFRG+8zDuEGcRHx+fLiECkeS++jQ2rVq3bi1fmmZsQRB0G6rcuXPLTTfdJF9//bXs3r1bRo4cqa779+8fkjWeECfmoV988cWu3kW+MKXTDpo0RMqtBj0S8wk4CEngwO0ExwqKBeD8Qwm2P4vhSIICJTTTwkbJnXeK/PijyObNOu7BqYkIxoWO7wTOgyT6wheiiiDS4nOOzzs+W5FYzNoR7NXCGTdzZuCNGqONr4ETYwFyXRHrgaoTuJIz6fETEIiYQIwEnHsQZxGV99NPWnyAoBdOkKd4+EyM5K1wucQV9lB3xTAAFyccnXA9B9r8lk708INKEYjnzz2nvzeoagm0rxYaLd52m8js2dq5jvP5mjUirVrpTHU3gM8cvut5Lqwp/xwO3N2BzTy8Nhif2IvYWpB7a9ZowY4l+Iyj9wc2brFBi+hDszGC71AocxD0Hjh2TN/G34ShCP0JiLsxn0WK6PYT0RHfhzksvvMh9JWOGpj7vvGG1UdhH0qVKiXHzKCa8rMH00XbAAEAAElEQVRZv/sK64dCKKELWkQ3IMtp2bJlsnTpUuXQg1Ueoe2EeAG356FnFNEj4UQHmNsiXgSgqWQ4nYpeAJN3lJ0hNqVwYZ1VCveT1UDggoh+8KB2YmHh7nQ3FqNc7CF8wTGJHgoQkiHkuHnyiOqcP/4onvozvtth7O8cFVCBggafyLFHf07EviAfGJsh69bpRmr+jHMpvT1TRSo0aYcjcO1aPe5Fqvrmw+9/k3IDJsr5PV+UG95bK5+u2h2ZJ3IhiAjD+QmbqYFCET1rEMPy3nuxMn16NRk3LlZ9l/AdwGY1Nq0yitn4/mAzA/EriIVC/wJUNOPfhdLkHdnpS5ZooQFvk1vc6L8m5FHf+Z/zN5AmLy0O6juPORAq8Yi1INM+XGMJzmXffpt+oxbVlfgZJhF/gSEewtdrr+nzFmIY/TkPEvdAJ7q9neiZ9SuwI+gvBhMJKsFRNUNEqlatKjt8MrcaNGggCxYsUE1FzSbJzJkzpbJvuWy0RPS1a9fK/fffr774PXv2lA0bNsjQoUOVqNiG6fvEI3ghDz3ScS4G5PtCYIHo6mZBLBJgpxxRBnD5YVFsmnXaARyTm5rFUkTPGbNYRTmdaZoUCeDUwgIUPPywdmi7DTjcbr01Th5/vKlMm+bcHShsniF6ByIDqo2wEYD5LdysEPVS1pIK9GrAmhKnVZTSt22rhXLchthgXLPYfIVYiDGvTp3IHTtcqC8v+VtiUmzUSckiw2dvCsqd6nXgfIZj2V8ooqfH1zGO20OGQES/VIYMiVPfpRtvFGnaVGeZ9+iR/t/C63HvvXpTDjERWHjjexUOsCGGTXw0FK5WTRwPvttbilwR8HceGxXYIMQmBbEXkRpL8H16+WUdcYRNE1RaZhUxt2CBbrTcsKHeCG/SRMdFQK/DhQYib8GIOGeI6IjlwjwUF7tVvUITxnHBUA2jGubZROS6666T77//PtVpPnjwYDly5IjUqlVL6tevryKYUS0NLTsqInpCQoKMHTtW5aDXq1dP3nvvPWnatKl88cUXSlwbNWqUVHPD7IkQP/GKiB7pOBcARylK/Y0o7LYmVZECJ3SUl4LXX8eJw+ojcjcU0XOmZMmSqVE3qFCLJBCFIARBUEXOvpuAKAXheO7cWImJSVaRV04HHwtkoyOGByXrEN/gYC1aNO0x+MhA50BaGiJA4PqDix3RCHiP4To3oPlapNkVf0wyrpsS0WA4nv1/AgEVSVdcoTdCMlTVZokRFzCOJGJHyYNgLjRxoki7drr6wrcaZ9CgJGnd+k/p1g3XuhcKjFVwmSNyxXeegE0rjJMwKUDMK1cu/FFTvhv4GL8iOGWM+HdeYmID/s4jpgoXxNrg807sg3H7hltER8NdnJs6ddKb3mPG6I2kceN0A3Rfdzmq5saO1Y9HXwLodR076mgYfF9KlQrroRGbQye6fRuL+orohQqJ/PCDrhyxW2I1zuUY0lARhkq0YCr+3Mg999wjS5YskTiUQgoqwlqqXp4VK1aUTZs2SZkyZZSm3bdv36Cfw+8Cvu7du8u8efOUqwxC+UsvvSS33XabOghCvJ6J7pU4FzhL0ZQnUpFNcE598YXIzTenF1VI9g5PlG+huR4F9Miza9cudU0RPfvS6fPPP19tumHBGskGrPj8f/CBnkS6pbczTiuPPgrxXP9cqFCy3HvvamnatK64BSxK0DwNl4ygEWW/ftrN53vBe33TTdHPp6xUqqDESLIkS1olQFxMjFxUiquVQDDCLopT8B6j2bQ/rjA0cU5KSkrJKHVAOGkYgCMVzQuRp41Fsm9BDzaSjAD+4otJ8tVX66V9+3KSO3d60dfXMYfb2IyCuBdu8Twz0GgU8xG8XehR4LTTJb7zyUlJqU50f77zmzaJPPSQvv388/rzTuxDJKta0EwbfYjwXUWj3q1bRYzBERtfJt+8Qwfdqwib47jge+H0iEMSPMxEt68THcbhM2fOKEMQhg6YP2BUw9wFlVx2+d4iKg/zaRwTzzlpFClSRBqi5McH9PLEJVz4LaIjNwYfpBtvvFEaN26sss8nozV7DjyC1raEuJD//vtP9qVYH93uRC9evLgUKFBAdTbG/3MoGVLZYeJISM7A5YSNBrxmOJm3b2/1EXnLiV4JqyaSJb4ieqRBHwBcDHCDpZgPHAccacOHp/0/QEwePvysrF6N19E9Inp2QHizk1Zatmh+aRCzQ1YkVpKY2Dglpr3Qpaa6nwQGep5gXYMcbkQwIXYkO+AigjMMTnSMJV4Q0fH9h5sVmckGOLxhMsDFXxHcd5GPeQLc0dEC4iCOExUnzZvrqIsITRsjQol8sZKw4E0p0fY+v77zyJ/v1Uu7jjEXQ6QLsRfRiIZCrAJiklDtgbUMpom+/QaQW4wLIYBxLvajRIkSqRv3Bw4cSJ1zQM589900Nzoqv6zi+HG9RjDrHjRvJ9EnoFYy2JGZO3eucqRDRPfHjUYRnbjdhY4BFp3f3Qy+y3Cjb926VQljkRLRM4LMz1AaXrkVnEBxAq9YUbvQoxFpQJDnmyR//fWXuk0nuj2zjFESfffd2hVmp94A/gJREZNjONZQCo4iJ5R9E2spuH+97Js5UvoNeUKefLA/BfQggSOzc2f9/UQVAq79GUuMiI44SbeDyBsI6OgRg6o8COc5bTbYDRQfYSyGcL9lixbS4Uh3SuInslKPbvhOzu7dJIt/2SAXlSqY6XceGf+ohBo2TBsbYGJEfxq7uBTJuXMSI1xGCvQAwgYhLoRkBXQ0OtHtBzbuS5UqpeJccDEiOoaP/v31BhmiZ61yo2M9ADM1Nm6/+ooRUDlx9uxZ2bJli8pGzyoSsDkmKEHgtzw1EYF8hJBzRHS3u9ANRkSPZHNR34UJnFi4YNe3QoWIP6VjwGuDBmKrV+tcWcS20RQdHSDknDp1Sk2yTMQRsZeI/uqr2v0I4WnVKnvnA+K7DEcuNgvvukvfBxcjvtsQ0oh9wOc48cgBqVehCAX0EHnuOZE5c3R0GzLvM1TcZjqWrFu3TgmbbgN+JOT9YyyAYA66dhVZv15nnDpZjIUuBCH9mmt0Q+EWLbSQjj4IdscIrWUK55GrKmetUixZooUVgKaSWCoz5dSesEkxsROIC0FEMvBChZWTQPWbEdF9Qczie++J/PijbqINIT2aYJ5w++1aPEcvBqx1KKJnvUk1YsQIefPNN1VD0ewItt+O3yJ6nz59gnoCQtzeVNTteegGIxpGQ0THwhENMpCWg+Zz48dH/CkdAUqFUdwza5Z2u0CEoIAe/SgXfBdysUTCrwVrtIUvuAIhZvz2G7qxi7z/vtgSTMCRn7tunY5lQlMy5EVj7KOAbj9Ydh0+IKKi/BiJkI89pr8L2YnFbhW/8N1/4AHdsAwLYURBINMUr0WtWuIKICgjygViAxqgt2wpsmKFyMUXi63JziEKIcNEpcNp37u3SP36usk1pwX2xa3jCHH2nAKu57zo+ExslYu+efPmc0R0Xzc61hbRFNGx4Y75wtSp+jwzc6buq0AyZ+TIkfL888+rpAj08IzEup2ne0JCFNG94kQ3zQGjJaKjMVOTJtrZA+EYpc1eBSdPOPcguu3Yoe/DxkLTplYfmTdFdEa52HfBinL6Tz7RcUf4juA6jH1kwvJdRuk/ss8BBHRkIDOSyd6YzzFF9PCA5lzTpokcO4b+Mtk3Eneb+IUybETZYHzCeABHGZoQRqhfu+WULq0d6G3a6E1/J1QWZrZphvcKAgbmpnDY4/8L4HxD7I/ZEEGDYtMwkBCr4Ma8/ZuLZhTRjRsd8WrR9hbDUDhunL4NAwL7oGXPhAkTpGLFivLrr79KSTiUIkD6Vu5ZcAyz3BAJx98gxE54TUQ3TnRkokeDxo31SQJVNlhwe5kXXtA5shDQMd+aMkVHupDosmvXLnVNET1nrBS+EB8AoRr07atjj+wAxrJ77kkT0NF8DuWY2CR0q4DmBiC4QHgBzC4NDxhCf/1Vu5KzE9DdJKIjy/T117UhAC42iLKIcEEy4IgRWkx3K1jDQkg3LjqwdatIly46dsvuTnRM9+E6v+UWfRuxYcRZQEgxTkRE8xFiBxGdcwr7iuhm3ucLpiNYV6AaPFpAPH/qKX37zTd1E2uSPaiC7tSpU8QEdL9F9EqVKsnLL78clBD+888/S7t27eS1114L5vgIsSXIMduRYgn2mogeDSe6b3YqgGNt0ybxLFi4oXctHKtYePIEaq0THedEYm/hC41/UOp4+LBIz57WN+c0vQyQp4hKG7hQMRlmnqH9MYILBBiUXpPw4G/mt9VjSbhALviQIXpMQn9UxLhgbuMEZ3Y4wGaJr/CAzUQ0lkWzWVQMIfYFGwv2ilq4QEUOISIM+efY7MS8FOcX4ixiY2NTs6edPpYQ58Omos50ovuCdUWE+xQL4rxhpAMwFMJ8Q3IG6/T/UOYYQfwS0Xv16iVPPPGEOvkgG33evHmZ7s6YLqirV6+Wl156SS6//HJp2rSp7Nu3T6677rpwHzshlrF9+3bViKBw4cKeOQFGM87FgIVmt256YfXkk+IJ0GcGe44DB6bdV7EiKgB0GXGhQlYenbdhnIv/GOELAmQSFOQog0ptCFQQbiBSoZ+AlSBDt3Jl7cLEcd19t7XHQ4JoMlimjBJiSHjBOgdNxNFg180iep06OpINLnS4r5s1E08zdKguiY+LE1m4UDu9UYE4b57edLTDd37s2LLy0ktaLLn+et1r4/HHRRhh7EzMWGLeX0KsgnEu9m4smpOIjio6tMRDNVkkN38LF9Yb7s8+qyvWiH/cc8898uWXX+a4ERLxTPTXX39d7r33XhXS/tlnn8knKQFw5cqVU4sKhLafPHlSdRpGufupU6dUV9Tq1avL+PHj5fbbb+fCg7i2qWiMP1Yqh/PP4RPyT1JhiStcUg1I+I5HqxEKThyzZ4vMnYs4Dfc20sRJeP78GJW3Brc5uPNOkXr19G2K59ZDET0wJwfGRmysx8fHpzo7ogneprVr9bUdhmm4F7t3F6lZ0+ojIYFAx1jkgFgKJ/KWLbra6o47zn2Mr3sUawunzbkQ4wShGJgoJ4IqTpFJk7S77pVXRD78UAsTHTqItGihnelWvdXmO5+QcIHahB07Vh+Xwz56xKUbcsT5MM7F2U50+Ar37RPZuVOfq7AJHC6wbvnlF93EFFSp4h0jYbDs3r073c8dO3aUZcuWSePGjWXEiBFyxRVXSJEiRTL9txWCLAf0u7Fo1apV5aOPPlKC+tSpU2XRokXy008/Kde5AU06atasKS1atJDOnTtLM6/bLIhr+QMhlh6Jcvl01W55bPZGSUoWKTdgoiQseFNVl1x88cVReX68xOiE3bKlewV07Mk888xVsm6dHpJx/kb5Fpz4xB7ATf3XX3+p2xTRcwbzAURfoGoNC1YrRHTgO2Zgo+rECZECBaLz3AcPaucInIxoHAoBhgK682BT0cgBfw3yReHQhpiK6KWM/QHM647N+8OHDyvjjlP49luRBx/Uc5hrr7X6aOwJTqfIfIVIgMz4t97S871oC9YwL+AcUa1amsA1aFBZefHF6J0zSGShiE7sAjfnnS2ilysn0q+fjmXE3OXqq0M/Z6HiCesFmAdxLrriCpH69UP7m17hoosuytRgAePFHZm5M1IwZq+IiuiGEiVKyH333acupuHSgQMHJH/+/FI0p+5AhLjQie52B7oR0EFMbKyUaHufbNi2O2oiOnBzBhhc9rfckktOnDhP8uRJlgcfjFHZ51lsmBILm5SgF0JcXJyqwiL+LViNiF4bobIWAkEbYt3x4yJffqnFu0iCGO02bUQ2bBCJj9cRLsSZsOw6siC6DHEuMBK9+67I4MHpf58vXz4lnB86dEh+++0fqVSpmIo9w5LDzno6FsT4f8F0cf58iug5UaaMKMEa1Xi+4zOyyF9+WcfcQeAON0gnhWiBz17z5nivTql1LRgx4gIK6C7CCJYU0YnV0InuzMaivuBchXi2ZctCd6MjKgzxZmi4DtB0m34t/7ntttuiXqUYsIiemdvMlFoS4jUR3e1O9F3xx1IFdENMbJxs/HO/dLLomBYv1k5tNzg6kQWLnewTJ2Kkdu3/k+nTi8ull+a2+rBIJiCqzPQGQINBkjMQHTds2GCLBSvWKxCyTp7Ugh3yeCMFxEA0yoOzEcIQNsWIc6FjLLLkzy/y1FP6XPjII7pxI9zovu1XzpzBBsYhadIE74Wed0FoheiJxeZdd9nPLfz221pAR7wq/v+If/hujMCNh88EMuTh6r//fl3dE47NE1QloUIAwr3pP4bP4q5d/1O38+TJo4xjxD3QiU7sUtnKCjf7i+hHjhyREydOKKNwpNzoiHtDBRZ6baB3E85tqMZCVR7jw/xnErLhogyDygkJ4uTnlTiXSqUKSmyGQTw5KVFOJ0Svuagvs2ZpcapzZ5FDh8TxwG0+c6bIAw8kyogRK1TjQWJPmIceOGZxABe/1dSoocVz8NhjOm8wEmzbphsGQkBHzB4cKpdfHpnnItGBi93Ig2pbbIzDvQ0TMKo3fMmXz7z2/6h8cYjsyFOHSxkxIL77mocPi+XAwGaEczQEt7Nj3s5AREAbrhtu0I1nMYZXrapd4xAfggGfG/xNuNpxLoCAjui8RYt0ldKhQ2mVJ07L3yfhFdH9+YwF+zkk3gWVLkhyADSi2g9kZ8Mk7K8bPU8ePdfHfCQQsEmMhtWIs4OAft11Ips3i/TqZW8B/fPPP5fWrVtLyZIlVaVgpUqVpGfPnrJnz550j/vvv/9kyJAhUrFiRdVHD+vnhx9+WI4ePSpugCI6IQGyd+9eOX78uBpgoxlpYgVli+aXF7tcLnEpo3mMJEvCgnFy6G8tKEYbNJtCM4/t20V699aLIaeBiLUff0z7GdmfL7+cJHFxEWzvTcImomOyQJzp+kKTnq5dtVCHyapPS5ewsHGjFtDhRL/kEpHly7XgQ5wN41wiD0RwNJVEQy0sIjdtSv/71q31az9q1D9KTIWLGA29Xn1V5OGH9SLWLEohiCI9Cs4wxCnhvmjzxBNazMexoEE4CR6MpfPmiXzzje6Rgw2We+7Rry3G2Jw4dkzHaxmmTxe59VYRrPcvvFDko490Cb0pxWfliXsxY7gZ03MCG3ZYayCbOLMLfmeaBhPiL2aMKV26tKp4IfYCm6f+5KL7utEBql19K9Fw+fxzkZ9/xhpSV8Kmfx6RG28UKVRIZPx4/e/tfNpBvnj//v2lS5cuqjr75ptvlsGDB6semOiTafqGgWPHjqkemWPGjFHRxw8++KBUq1ZNXnnlFWnVqpWczPhihInnn39ehg8fnrpJlRmIZsVjXkIAfQiwJp2QIKNcqlSpkrpT6WZ61K8gzS8pLX/GH5cfvpolwzZ8J3sqWVM3XaqUzhBv0kTkq6/0IhlZlk4BIhtOmMhnhmDg8kIGV0EnuvNFdExYP/xQiydwokM0+fprkcaNQ//bcKN166bFGgh4CxboKBfifOhEjw5ovlunTua/u/BC/drv3582lmA/c8iQ9I+DsI5NLHwfIaA/84yoCi843eE6jnQvBLBunV4QA8SFUGQLD23biqxfr13oiHTBfMo38gdA78BGDN4DXHAbVUG33YZyb/2Ym27S5fOIAXrgAR3h4gs3zdyLeU/3798viYmJqsdNTmDJh88RIeGCY4z9gYi+b9++HEV0gLkFziuIlzMgli6zpQ+q0rDmMII7NoQ7ddJivN0ZO3asvP/++zJw4EB1O+P46dugc/To0bJu3Tp59NFH04nVw4YNk1GjRilx/TG8cGFk4cKFMmLECPXc2elz2LgqVaqUcsU3bNhQrkYOTxC41om+atUqad++vWpGVLBgQWnUqJF89tlnAWXrYCcqq8uSQGs2iGvwSh56Rkf6VZVLSvWLyqa68a0C7g808gAjR4rMmSOOACdMnDixUQtxjQtrZ0ER3fkiOkAzwu++045xlPEjdxBNCkMF3+epU7XQgwZDFNDdARYFZhFFZ6r9xxII5ni7IJh26CCSN6/Ijh3aGT5gQHRc6YgKwfPcfLMeZ0j4wLoYueioRkSz0R499P0wnaFKEeNuu3ZYqGvH+ZYt+r3wrTLH31i5Uj8ms6hbNvxztzCGNTxiOXOKaSAkUnCMcU9zUYC30VdABxDVET171VW6QSjmIgBRtKiOMmBj3wkCOrLhn3nmGZXA8MYbb2S6AWn6hcGx/sEHH0ihQoXkSeTt+YCfcT9+H24++ugjKV68uNx33305Pvbee+9VPU8mTpwY9PO50on+/fffS9u2bVVOD0oNChcuLLNmzZIePXqovJ6hAXQU69ixo9TJxBpDIcW7eCUPPTMuRO2rxSI6QCkuGk2hmQduw1V66aViS7CAQ44nMs9wG+7XGTNE2K/KWVBEDxyT9WgnEd30IkA0QJ8+aXmGwYBqRETCoDIGXHml/rvEPUBAh+ASGxubuqgi9h5LcG7FdxsXRG9OniwyaJB2h2PTLEjTkd9A3G3USKRBg8g+j5cpWVLPqXyFcVQyoNoI8S9YtvleMsYOZ5c3yzgX9wKRp0yZMqpPC95n5lETK+AYY3/8jXPJClSh+YL1PyLe8NbbKYoWzVORXW5AdjkuGfn222/l4MGDcscdd6gqnrlz58rWrVuVWfnaa69V6QyGbdu2qY0iaLEwMvuCn5s0aSILFixQmmx57H6HCUTK4FgyO/6M4DF47I+++bpeF9HhGurbt69a8Pzwww+pAjjs/Q0aNFAZON26dVMh9/7QqVMnuf322yN81MRJeNGJbjCDHUohT5065ddAFSmQhYpyXTTzmDJFu9LtBhyu994rYjZckZs2bpxe8BHngAmDyXqjiB6cexTOBDs1aStQQG9m+QKHiL8NALGPiDgARAr89JPO5yXuXexiQeVP6T+xV5NiZI3iHIzr48cjL6ADDHOIdiLRBbnp+JjgvQ4FRi24G7yvRkSvyxM3sQA60e0P8upDEdEzmxdgfWG3JuPVq1dP9/NTTz0lTyMrNwOrU5pIYR5cq1YtJaAboLki8xx550ZEB1WzaAqF+yGi43HhFNHxvQqkVyF6nM0JIc4gqDgXHCBs8HZk8eLFsmPHDunVq1c6B3nRokWVgI4w+cmwpRASooiORgleA52YjXDub2OeSAEhGiLYe+/ZNxcdTnkI6CjXQgYnsjwpoDsPLLbQpAQupnJOqLuzCUaEQBmgr9PBjqC8HxnLiGTJCWzcwXWOahiI8XCXEHdCx5g7oqHgSkf2qCESPa3QBwH9Tog1YL0eqoAO+J13N3aMmSPeght17neiO4XffvtNDh8+nHrJKqfcvA6vvfaa0lR/+eUX5WKHYfmSSy6RV199Vd555x31GPwdgMdlRhGUA/s8LlxAzM+uoWhG8Fj8m6CfL5h/FB8fn/oC2A2TVd6mTZtzfoeyArB06VK//97atWvVBwMh+J9++qkcOHAgjEdLnAbef5OP5UURHU5Su0S6AORfwt1tI4NrOpDdiVzWL7/UDazsepzEvyiXChUq0I0aAAUKFEidK/izYEUzQH/w93GBAPEcTvRbbtHNRzMD5ZhvvaUjmTCfRAPRX38Vadky/MdD7AGbitoD8/pj0YVNuVDANB4RTD69rkIGzUyRf4ookV27wvd3SfShS9QbY4nVRiDiXTjGuCsT3ckg8hrrNHPJKmEAsYamKecXX3wh9evXV9nmzZo1kxkzZigxGnqpleD7tGnTJr8fj8eGYowLKs4lo43fTmRXQoDsM7zh5jH+gO6zvuTPn1+VOqDbbE4g7gIXA3ZszM5HIDslxD6YLyfENAwkXnwfIaKj2gPCIhr22gVsaN55Z5z07Zsk7dpFoXtYFuLehAmx0qdPkspZhmg+c6b+XXYfFfM58uLnyQlsRxczERUDxvcoMHDehQsdm26V0fUvB+68UzeDy4pq1XR1R7gzBUePxjk7Vt57L07uvhvn60S5996kdM7V+++Pk8mTtfegR48kee+9ROVEj/RHguODdSCzESBHl6+/dWDujQsE9N27dwdUspuRWbNiZM2aXLJmDSrDEmXQoNAHk4ceipMTJ2Klfv0kKVcuMeJjgoFjQ3jBms2YpUqVKsXX1cXi2L59+/x6fzGXz6wBrfmdXT8iHBucERPH98eeoOmkia9143uE+OtAMK7yevXqnbP5U7NmTTUnw1r50KFDqY/NymluKpOzcqoHCwT9Tz75ROlTOUWv4jFIL7ntttuiK6JDQO7atatq4Hl1NAIGA8CfEgJ/ygeQk/Pmm28q9zpEw4SEBPVio8xh2LBhymF3P2ym2fDiiy+qTrYZQekDyieI8/juu+9SB9evvvpKvMzChQttVZEybVo1mTfvUlm8+Ky88soPUrasT/vrKPDvv/nltdeulN9/LymLFu2U2277LejPF7EX5n3BTrvXv/eBgs1G8PXXX8sx35b0WYCc8ZyI1FvQrh0yl2vInDlV5MEH42Tt2j+kSxe9gfLVV5Vk8uRaEhubLLfdtlk6dtwhKYVvUYPjQ/RBySrAZ5fffWvBfAMi+ueffx5STxpUsPXoUU0+/fRSJX7v2LFR2rbVPS+CYfPmkjJjRlM1NnTqtFS+/jr60VUcG8KDKVlHdNuKFSts1ceDhAezSbJu3Tq/xvQs0g1SsftpgWODvYCj1zjRoQW53ensVIzhFpv2bpz7IVUkEKrBwSTIdM881L1Yyv2Yoxkjc1am5Zwy04MFUeMTJ05UvS+/+eYbtRGe1TngpptuUhsJ9/jm/EVDREd3VsSl4ILGm7D0w6WT2WQjFIXfSlq0aKEuBtj9b731VrniiivULgxC9/HCY6KVFRDchwwZkvozdr0R4N+8eXM2p3MoJi4Iu13t27cXL4JOxohEQgmQnV6Da67BzmKSrFyZR8aNu0aWLTsblnxMf5gxI0Ytxg8fjpHChZOlQ4dK0r69/99x7HJjotu6dWvJzdB022EajzRt2tRWn3knMG3aNFXBA0e6P69ds2YiGzZk/ftatXQmeaTAIT77bKI8/3ycfPRRDSlf/lIZMSJJkAZ39GiS3HprklxzDSaTekIZDTg+WMcHKV2hvXzOtwuoZIErDPPnUN+L665DVV2ivPpqnLzzTh258sqactttyUFVn40YodcBd92VJPfd11SiCceG8ALh3Kz5rr/+eqsPh0ToO/P++++rZuehzkkiPR8JBY4N9t2oS0zJJET/Pr439gFvi0nshFP54YcfVikS1113XTqN0/dxTgWaZCAY07TpC5hxrIELvWDBgqohK9Z7cKtDL4IBBfcb8DPuh1k5nE1FATTawYMHy+uvv6701gEDBqjjNjHE+H9etGiRGv+xeQWNFv8mqiL67bffrj5MOAHNmjVLXYDvBwy/w8/RFtH9KSEoXrx40H+/Ro0aSkiBCxcfpMsvvzzLxyJXyDdbyJQvYMDkoOlMtqTkDOBz4NX30GwAYSfdTq8BDmX2bN3wb/PmGOnfP7dMmRLZRp5Hj+qs8wkT9M8NGyJbOUYuvjiooZVjg03566+/UkUcvj+BYfLmsHDw57U7fRpOhux/H+m34LnnkBMoMmwY+qLESWxsnCrbxngSZCuZsMDxIfr873//U9eYhPO1txZTQozFTzjei5df1lEMSG3s1y+X2nTv0SOwvzFxohbYYMLCxlvu3NasrDk2hNeJjs8aX093YoQbjO2hzkmiMR8JFY4N9sI4zxHlglQDYh/wNendG0IxKgYqSkxMXhXxVafOX5Ivn3ZNowhOrwWcTXYm4MzA+hfm6W+//VaZS+5G7mUKL730kopxueWWW1L/Ln7/7LPPysiRI9XvDfj56NGjMnz4cIkEyGXPly+fvPzyy/L888+riy/Qp9HbDEbn57DYC4GglB5Y5e2KbwnBlVDTfMAJE29cgwYNQnoOUx7gT2k6cRd//PGHug6llNjpmB09kxVrJ7DGnjEDO6b6Gnse77+vxe1wg4Vzt24Ya3T2+eOPw5Fm/wk1Cb6xKCuIgm/i5U9jUTuBtidVqmhneoBzTeIizOeWDcDcN5bgvP3667rfAeYJjzwi0rGjSL58/v37gwf1eR88/bRI6dJhOSxiIfy+e2scMYY/QqIFxxh7AwF97VrcQhQldMSf5PffUaEU3ugRJ/L2229L48aNpW/fvqq56KWXXipr165VcdfoGQbh2vDII4+oKu5Ro0apx8DxvWbNGiXCI8EEjvFIgPH8hRdekLvuukvp1T/99FOqGQYO+SZNmigzuD89unIiqKVhnz59xK4gggVZ5HiTbr755nS/W7BgQepjggUlOL/++qu6jQ8M8Q7IeTJiGgYOr4voaBRoR5o2FZk+Hc4yLXQPHarLLcM9T4aBALF2eDk++QTjSnj/PrEHGPORiQdQfkYCA5MWJ4rooGtXq4+AWJ1daibfRngh1o8l5j0JB5gXvPMOqlhF+vdPE9CxXDh1SjtNcYFj3dyG9tG5s25u3KGDyMqVIgMHhu2QiIWYrGJ+390/jiCCANm4WeXmEhIJOMY4iUZKRBeBiH6reB0Iz9BAR4wYoTLHobViPEUWOe4zTZsBIlwQ/Yv4aySWoI8mPvNDhw6Vp556SjWKj/Sxhuo0zwnX+auuueYa1SF26tSpMmjQIKlTp05qvAt2JtDkzDdiBgt7/A5vrG8z0tWrV5/jZIeYgqaiyP1Bxg4HQO9FucC1gKaiyHzyuoiObNLTp0+nNg60m/jVvLl2lqEtgRHQ0YwaOWbBCupIiTLDBFyq8+aJ1K6NRrPhO3Zivwkvmo+gHJZjvnec6ISg7BrzPjhb0PeHuHMsiY0VGT06/X2dOmmHemag0g0iesmSIh9+qKMeWIHmDugSdT9Ys5QsWVIJ6Hi/KaITK0R0jjFOwJSx614ZRMdh+ZtIUrRoURkzZoy6uJGQRPTPP/9cNQ1DxMXx48eVuAzw89y5c6V3796peajRAlk8yOpp27atauAJNzoaIGIXBLm2r7zySrqSfGTiTJ48WX0gYO83oHlorVq11AX/DwkJCWpHZevWrUpENM2miDejXLxc/ocNBExCIaBjMmDXiAvsc2Qc5x97TJdqjRuHaA7//g7WVGj7gHiYH38U+fZbkVat9O9S+mwQF2OqTypUqKBy1EhgUEQnTsV8ZnHOY6ast8aSevW0+xweAbz1uDaXmjXTPzbChioSRegS9QZ4f42Inl1vM0LCDTfqnOZEB+tF5Dhq0C0+HhIszzzzjMpjhynOUhEdJa49e/aUmTNnqp9hyUfUhQGNOx9//HHl4IFIHW3gEl++fLkqF/j0009VyRZOksjl6eFn1yCUG6BLOzpbQ0CHaFilShV54oknVDfXUJqTEmdiOhJ7OQ8dYAMBG0k7d+5UkS52FdEzEh+PPC+R48dFvv8eA6puCpqZNoKm1b7CeXJy2u+wf2ZEdOJ+mIceGkaMQNMZzBMiXcJHSLgXuxTUvCeiIwKOeA+6RL0B3t9NmzZxc59EHW7UOQk0Icb7hHFiDQJjrT4gEgJIkwgnscH8I9jyZ8yYIf3795eDBw/KQw89lO73KHtt1qyZzJ8/X6wCzUO//vprFdUCl/zKlSszFdAnTZqkXlRfFzqAYx1CPLIX4bhFQ9J169apXQwK6N4W0b2ch+6UXPTMQMUm2hkg5gVC+sMPi9Svr/NMfcH/UvnyWmBfvlwL6I0aoeMzBFWRqVOt+j8gVrBr1y51TRE9OIoVKyZ58+ZNjYAixClwsWsvzPuAmJ1wuokIMdAl6g1YIUesght1TiLGx43OSBcSBhEdwjM6q6JLa5EiRTKNtoBr24gPhLgBOtHTZ2KBPXv2iJPAW7dkiciECTrHfP16LZD37p32GOwPoJVC48bYMBRBT8mff9bZ6uwl7D3oRA8NzA+4YCVOhE50e4HsYkQ2wvjCDTkSbk6dOqUiPgC/8+6GcxJiFRTRnQZFdBJGER3Z53CaZ4dp2kGIG0A0EfLwAUV0ZzrRDdjzu+MOZNyLmB7Ds2eLHD2a9pifftIxLoMHa1c68S5GRK9UqZLVh+JYuGAlToSuVHsRGxub2uCVYwkJN6g8BojvLMFu8Z6YkxhBk5BogDhkM85wXuEUKKI7gblz56bqdJkB84Ut4lyQaYqYlOxAE0+UcRPiBlBVgViffPnyqQaDXsfJIrpv49HJk7Vg/s476X+XL59VR0XsBp3ooUMRnTgROtHtB8cSEo34pswqrIl74DhCrABRZDDlYXwxG8LE7lwpInHolgbVw+qDIVnQuXNnmT59eurPF198sYwdOzb15wcffDDsCSlBieh169aVBQsWyMmTJzP9PRpxfvPNN9IIOQmEuCjKpVq1ahIXh8HU25g4FyeL6IarrhJBS4RChaw+EmI3kLtrIosoogdHYqLI+eefn+OCFY8jxE4wE90+mPHBjCXGzZfV4wgJFMYseAeK6MTKMea8885T0WTECRQUkctTbtONbldy584tZ86cSWeAO3ToUOrPRYsWlYphzuQNSkQfNGiQEs+6du16joi2Y8cOtRsApzoeR4gb+APZH4xyOceJ7rRMdEICnfBCSMfJmUJacGDPcfly/dq9884/csUVcs4FPQm4N0nsBuNc7APGB4wTP/+sx5IRI84dSziOkFDg990bYKPNvMd4zzMr8edmHIkEHGOcijEFr7T4OEhWICVi+fLlqtLDEOmKsqC2wTp27CiPPvqojBo1Sqn6BQsWTN1ZQw46TkhPPvmktGrVKtzHS4glsKlo5iI63GDY+YPI6A8Y2/xZ5Pr7OEIiiSn9wnkOebwkOA4d0sJXQsI/kpBg9dEQkjOYxzLOxV5gGnbggH4v/ve/fyQLMzohQcHKE2+AtcVjj+n3+MSJE1Knzn8SF1c09fdY5k2ZYuEBEtfCMcbJIvq7dKLbmF69esmzzz6r+pmgLycYM2aMTJw4Mdt/B6EdBvBgCLqW5MUXX1Qi+bhx42TlypUq2gUNE9q1a6cc6G3btg32TxNiWxH90ksvtfpQbEHp0qVV8yXkxENo8Dcn3rjJUl7OTOEEltgF5qGHh1y5zIKBpdPEGcAQYkpDTYQIsQMcS0hkYJyLd9i2LT8K/EXksGzYgLEkTUQnJFJwjHG6E/1XSU7GvNA/4yCJHk888YTqWzh//nz1PYM47k8z0VCajYYUyNS6dWt1IcTN4AtGJ3p64MotV66ccuoi0iWQZqt4KdeujejhERJWEb1SpUpWH4qjyZ3bCF+0jhJnYFzocLTkzZvX6sMhAYjorHgjwcCoBS+OJYchbcIiZfXBEA9AEd2pVBWR4iJyUE6c2JDSbJTYCfQYGDZsmLoYnQrNREeMGBG554zYXybEJezfv19l/OMLeckll1h9OLaKdIGI7obmooRkBp3o4RbR/w/SVUqne0LsC6NcnCuis+KNBAOjFrwG3mf0u2JVC4kO3KhzKojzbCgi38ixY4h0oYhud5566ilp2bJlRJ8jKBG9cuXKKsoFB4cLHKmEuBXjQr/44ovpSMskF50iOnErFNHDQ65cpVMmoUkpQjpFCmJvKKjZFd+qFpThZt44ihVvJFAocHkNRkOR6MJ5hZPxFdHvtfpgiB8ieqQJSkRH59MPP/xQJkyYkCqqX3311eoCUZ35kcRNMA89c8qXL6+uEedCiBuhiB4eYmLgPC+TsljFhQsIYm8oqNkVjCMAuaQHRKSUxcdD3MCpU6dUHwRAgcsrmLGdIjqJDoxzcX4u+vHjK60+EBIAP/74o0yaNEnWrVsn//33nxQpUkTq1q0rt912mzRt2lSiLqJDWMDl+++/l8WLF8uSJUtk/Pjx6oIgd0ReGEG9e/fuIR0gIVbDPPTMoROduJmzZ8+mbhBRRA8HZX1EdELsDeNc7EoeJNWnCOhwo1NEJ+H7vufJk0dKlChh9eGQqEAnOokeMKAiHhZQRHciDdR/T53apjZc0S+H2Btkoo8dOza1eahpNrp69WplBn/ggQfktddeC/rvo746KCAq3HHHHfLxxx8roWHr1q3y/vvvy8033yzx8fHy3nvvSa9evYI+MELswh9/IDOPInpGKKITN4PPNSa9iHBidVU4MK8hF6zE/rDs2s5Q/CKRqzzBQpt4AY4jJHr8+++/ak2B8eW8886z+nBIwGBztZq6tXIl3eh2Z/LkyfLGG29I1apVZcqUKWpOD3MczvVTp05Vhm/8/qOPPoq+iO7LsWPHZPv27bJt2zbZsmWLHDx4UCn9BQoUCMefJ8RSGOcSnjiXRPQTJMRhUS4VK1ZUTYVJqHDBSpwD41zsDMcSEl64aeZFOI6Q6I8xZcqUkVy5ggqCIFEmrvAJyVshXl37RrqsWIFcdGJn3nnnHWX2xIZHz549lRkOG1j4/sHwjfcQPT3ffvvtoJ8jqG/xyZMnVcaMiXOBLf7MmTOSP39+ady4sTz77LMqzqV+/fpBHxghdgD5Sfv27VO36UTP3IkOsaFnzzOyZUvuLB+Ll27KlCgeHCEhwjz0cMMFK3EOjHOxMxxLSHjhppmXxxEtbhISSZiH7iwK1dotJdpulJhYkeQkkYQFl8vRDRDRJ1NEdwCbN2+Wu+++W4oWLZrp73F/165d5YMPPoiuiF68eHE5ffq0yo5r2LChDB8+XInmjRo1UvcR4hZQWQGwg1WsWDGrD8dWoBwtd+7cagNt48b/yebN2plOiBugiB6pBStyjAmxL6ikpIhuZyiik/BCJ7oXMe/1EdTUi0hBi4+HuBlu1DkHOM+NgA5wXaLtJjmxq54kHtFxLklJSaxSdjihRrfFBtvFHIsMCOjt27eX66+/Xpo1a0YBnbgONhXNGpw8UAoDTp/2L9KFEKdAET3cUPgizuDQoUOq4hJQVLMjHEtIeKFL1IsU9hHOOZaQyMKNOueQq/ixVAHdEBObLLmKVZCYmPwqpcD0yyP2pEaNGjJr1iw5evRopr8/cuSI+j0eF1UR/fPPP5dBgwap7PPHHntMienoZt6xY0cV0r5x48agD4gQO8E8dP8iXc6cYXNR4i527dqlrimihwsKX8RZjjFUnyGmkNgNjiUkvNAl6kXgQuRYQqIDN+qcw9mDBVWEiy/JSTFy9lBhKVhQR1Wzuai96d+/v+zdu1euuuoqJZbHx8er+3E9c+ZMFT+O399zzz3RjXOBWI4LOHDggMpGx2Xp0qUyb948ZY8vWbKkinj59NNPgz44Qqxm3bp16jqUnSo3QxGduBU60cON72I1OWUBS4j9YJSL3aHwRcILXaJeBe/3do4lJOJwo845JB7JrzLQEeECBzoE9IQFNdX9Bc5rJEeP/qBy0e+44w6rD5VkAd6btWvXyrhx46R79+6pCQqI4QFIVLn//vulT58+EiwhtweGWN6tWzd1wSRk2rRpMnr0aPn333+V0k+IU8EXzTSPQN4/yVpEP32aIjpxD8j5xw41oIgeLs5PuT4tIgdFpITFx0NI5lBQc8pYwv4KJDzQJepVuCFHogPnFc7i6IYKcmJXaclV7LicPVRACeigYEGtB7G5qP0ZO3as3HTTTTJp0iRlikUMT5EiRaRu3bpKPEcUeSiEJKJDKDcudFy2bduWqu5jkIATnRCnsnXrVjmSGCdFqtaT0hUvsfpwbEn58rqZ6JkzzEQn7gECOjbR8uXLp5oKk3CQF23JUwR0LFgpohN7QsdYdEhMFImLC+ZxRoQ4mnIpFKEjJF4Afb4SEhLUbQpcXsO831rgJCRScKPOeUA4N+K5oWDBhup606ZNKle7cGH0ViB2BUJ5qGJ5WEV05KFDNP/tt99SRfPzzjtPqf0QznG55BKKjsTZvPX1Wik3YKLExMZKy1d/kBe7XC496lew+rBsBZ3oxM1RLhUrVgy5ezfJuGA1Ijojsog9YZxLdIAw3rs3es9k/Rj0dJ8yJeO9hVIuENDxXlWN8JESL3zf8+TJo/p7ES9xXsq1zsslJBIkJibK/v371W2K6M4md+4LpEKFCrJ792759ddfaRj2MEGJ6MiXQYxL586dU0Xz6tWrh//oCLGIfw6fkHn/KywxsVpAS0oWGT57kzS/pLSULcpGYwZmohM3wjz0SAFREpvvLJ0m9oVl19EDAvratcH8SwgRWymik7BWnnDT3GuUTLk+YPFxEDfzf//3f6q6FZnMMJ0SZ9OwYUMloiPShSK6M5gzZ466TJgwIWx/MzaYf4RcGZN5fu+991JAJ65jV/wxkQyT6cTkZPkz/rhlx2TvOBeIDmetPhxCwsKuXbvUNUX0cMP8UWJ/GOfiBBjDQMIDN828DEV0Er0xpkyZMhLnT4YZsTWmT97KlSutPhQSgHY9efJkCSdBiei1atUK60EQYjdK5xNJTunga4iLiZGLShWw7JjsCHbUc+VCQQteKzb5Iu6ATvRIYUQKjhXEvjDOxQlwQ46EB2YVOx/0TQjuMRTRSeThGONOER1OdERah2N8CuRxxB7kClVomDJlyjkdT3v16kXxgTiaPVs2SMKCN6Vk2/tEYuOUgP5Cl5qMcskAdtQxKUBZkwgiXXS8CyFOhiJ6pKDwRewNFkR0pjoBI0bQiU5Cg5Un7u+vkHlvBWAy8Cmik8hBEd1dQOvMnTu3yrn/66+/clwrBt//hbhSRH/jjTfkkUcekbNnz6bbhZk1a5Y888wzMnr0aHnggQfCdZyERJWff/5Zjm74TlpfXl4efma0cqBTQM860kWL6HuwP2v14RASNhG9UqVKVh+Kyzg/5ZpOdGJPjhw5IseP69g2iuh2hhtyJDxw08zL/RWMEz0BW6giwkx8En5Y3eYu8ufPL3Xq1JFVq1YpN7o/hqvg+78QuxJUnMuXX34pDz74oBQtWlSee+45+emnn1SGLITHF154Qd0/ZMgQmT9/fviPmJAogEERtKhfS66qXJICuh/NRbUTnRBnc/r0adm3b5+6TSd6uCmdch1v8XEQkv1it3DhwlKoUCGrD4dkCUV0Eh7oRPcyRkRHT6cjFh8LcSt0ors70oXYn5YtW8qIESOsd6K/9tprUqJECVmzZo2PgCZSsWJF1bG2d+/eqtQBj7v++uvDebyERBxUVphB8aqrrrL6cGwPRXTiJvbu3StJSUmSL18+lflPwkmplGuK6MSe0DHmFBjnQsIDneheJn/K5URKpEsRqw+IuBCK6O4Deuebb75JEd0htGjRQl0sd6JDPO/Ro0c6AT1jvEP37t1l9erVoR4fIVFnx44dEh8fL3nz5lXlOiR78H3XIM6FEGeDqirjQo+JYWlv5JzoOTfjISTaUFBzCnSik/BAgcvrsLkoiSysdnGvE33t2rVy6tQp8QJmXZzZpWXLluc8Hq/Ls88+K1WrVlXGNHz++/XrJ//3f/8X1eryr776Shm7kZ5iOHnypDoOmOai6kTHARUsWDDbx6AMFo8jxGkglghceeWVkidPHqsPx/bQiU7cBJuKRqt0+rCIFLP4eAhJDxe7TsG8PxhHkGFfwOLjIU4Ei/yEBORh8zvv7XkJ1i8U0UlkMBGR3Jx3DxdffLGUKlVKmS7XrVunnOleAJHdgwcPPuf+jGtmiNMdO3aUBQsWqA2Hrl27yrZt2+SDDz6QRYsWKQd/6dLGWBUZ5s6dq0T7f//9V6VMQOx/4okn1O82bNig0iY+/vhj6dWrV/RE9EsuuUTmzZun8s9z5Tr3T6DZKHLT8ThCnIYpzTG7jCR7KKITN0ERPZLkwxa7iBxNcaNTRCf2gnEuTqFwinAOAR3vWWWrD4g4+PuOytPixYtbfTjEEkqkXFNEJ+EHhtL442clb4XLJU+xMlYfDgkTEGShE0HvhG7kFRG9WLFi8vTTT+f4uMmTJysBvWfPnjJlypTUyu53331X7rnnHiVmv/feexE7zh9//FG6deum5vJvvPGGeo+mTZuW+vsGDRpIlSpVZNasWUGL6EHFudx2222yZcsWadu27TmRLb/++qtcd9116vd9+vQJ6qAIsYMTnXnogYroKIlNtPhoCAmPiF6pUiWrD8WlMBed2BfGuTgFLMgY6ULC931nfJtXYZwLiRzjF22WcgMmyvk9X5QO49fJp6t2W31IJEywuWjWjB8/Xl2/+OKL6c6t/fv3Vy5+COsnTqAXRWQYOXKkEvyhU993330qUiYj9erVk/Xr1wf9HEGJ6A888IB06NBBvv/+e6XkFy5cWCpXrqyusRMDmz5+j8cR4iSOHTumSjwAnej+cf7554tIXIqA/j+rD4eQkKATPdJQRCf2hXEuToLNRUlosPKEpInoOtaHkHDxz+ET8srSvyUmVsttSckiw2dvUvcT5+NFER0RaJMmTVJpJOPGjZOVK1ee8xjkjeP+atWqScWKFdP9DoJ669atld4G43WkwPMjTgaRO9n19Pvf/4LXrYKKc4mLi5MvvvhCPvroI2XXRxbQ7t27pUiRIkpEhwP91ltvDfqgCLEKfKETExOlXLlyWTbOJeeOB7lzXyBnzuxJiXQpZ/UhERI0FNEjDUV0Yl8oqjkJOtFJaLCpKKETnUSKXfHHJDnDfYnJyfJn/HEpWzS/RUdFwkX9+vWVKIx14/79+6VMGefF9Rw5ckT++++/1J8RbYZLVkB0vuOOO855HRCVAkM12LFjh8pEz8z9Dcz9yEhv1qyZRErshy6dHYcOHZLYlA2uYAj+X6bEusB1fuDAATlz5oy6XrhwIQV04ljMbiKjXAIjTx7mohPng5OuaQBEET1SmEYy/1p8HIScC+NcnIQRPimik+Bg5QmhiE4iRaVSBSUmg4weFxMjF5ViI+xokZgY3sf5ApG2evXq6nZmjmwngONHs1BzQfxKVkA8h+6LDYNjx47J2rVrlea7atUqueaaa5QgDw4fPpzahDQzjLhtHhcJEBmD48opvvnSSy+NjoiOJ2vVqpWKbcELADv+L7/8EvSTE2LXPHRGuQRG7tzlU27BjU6IM9mzZ4/q4J0/f/6Idw33LnSiE3uCRYFZBFBUcwJmo4NxLiQ4uGlGKKKTSAG3ee0zv0lyUmKqgP5Cl5p0oUeRuDiR3r1Frrgi6wt+j8d5MdLlt99+U2K2uTz22GNZPvapp55SOvB5550nBQoUkDp16qhUEgjpf/31V2oOuh3o2rWrai46ceLETH//yiuvyKZNm6RHjx6RF9E3btyodhmWLFmiFhpHjx5VuxFXX321bN68OegDIMQuQDyjEz04cuemE504H0wCjAudTcYiBUV0Ym9XKhYHMIsQu8M4FxIajHMhFNFJJMm9e5Xse/dOuankPlk+7GrpUb+C1YfkOX7/XWTt2qwv+H2wOF1EN8Zoc8kuyiUr+vfvr64hWvs60LNympv4mKyc6uHg4Ycflssuu0zuvvtuZfqGZg0eeeQRFSHz6KOPqk0ANB2NuIj+0ksvqaD4xx9/XOXh4PLkk0+qzqqjRo0K+gAIsQsm0yp37txyBbYmPUyg5U+McyFuGQPiCpeUUtUbs/FPxKCITuzvSuUmmhNgY1ESGuyBQERKpFxTRCfhZ+/evZJ45IBcVbkUHeguxIjoSOZATz0vUiqleSdM1iZKBVnjyDzPDHN/Vpnp4aBQoUKybNkyufnmm5UBfPny5cosCwf6Tz/9JN27d1cR5MFsGgTcWBQH0rRpUxk5cmTqfc8884w6sKVLlwZ9AITYBbOLWLduXcmXL594GVP+lN3u7GWXiUyZom8zzoW4ge92HpNyAybK7thYafLSYnmxy+V0jYQdiujEnjAf2WnQiU5Cg050kuZET7D4OIhbRXRw4YXGbEbcBNzOcHMjChDJHLVq1RKvsTIlD970EkMkaoMGDZSuhgrvihUrpj4WQvZ3330nBQsWlHr16kX0uIoXLy5TpkyRsWPHqnz0hIQE5bZHI9RwNIH1W0SHQxdqfkYaNmzo2DB9QnxhHnrm5U/+QCc6cTpwnq84e7HExGoHalKyyPDZm6T5JaXpHgkrJmueIjqxF3SlOg3zPh0UkZMi4m3zAwm8kTgW1YAiupcxIjqiB84GIo0Qki1nz55NnVdQRHcncXFxSjBGXAhEY7eK6H/88YdUqFBBxR1mvP/RRx9Vt3v16pV6f79+/dTrgYx1CNmmuvO9996TnTt3qt9DbI8GJUuWlHbt2oX97/od53LmzBlljc8IdhLwO0KcDvPQw5GJDlePN8uZiLPZFX9MJEOEQ2JysvwZf9yyY3K3E/1fi4+DkPRQRHcaxXyEc7rRSXDfd5Rzw7FGvAreezP3oxudhA8YUBHxAaE1HM5XYk9gKAZuNhVPnz5dzj//fLnhhhvk3nvvVdninTp1UpsGiPiGWN68efPUx/fp00fatm0r06ZNk8aNG8uwYcOkW7duMnDgQKlUqZI899xzET1efOd801My4/nnn5dcuYLfNOV2KyEiKtt/bYrtmk70wMmd+/yUPTm4OPb7ZJUS4gwqlSooyclJEhOTtrccFxMjF5VKv+tOwiWiwz1K1xexD4x2cBoQvrDhsStFRK9k9QERB8EeCEQTl7IhdzAlF/08qw+IuCzKBXMKiHrEnTi9uag/XH311fL7778rrQwR38ePH1dZ6O3bt1fCeJs2bdI9Hpnoc+bMUT01P/74YxkzZoyUKFFC7rrrLiWgly5tqpIjA2JjcPHnccES0Or1k08+OecDsn37dnWNFzEjmJTMnz8/6IMjJFqsWbNGlV1hl803u4n4R0wMhhIID3tTLhQhiLMoVSCXHFzwlhRvM1BiYuOUgP5Cl5qMcomY6ys5xfXFBSuxB3SiO5ELfER0QvyHPRBI+kgXI6ITEl4RvVy5clYfCokgyNgGEJkRExZKs0q70qJFC3UJhLx588pTTz2lLnbk33//DSlSJiARHYK5Ec0z8s0335xzH3f2iRPz0Pm5DZYLfUT0BlYfDCEBT3aPrF8gZ/dukIUr1kul0oUooEeEXClCekJKLjpFdGIPKKI7EfNeaVcxIcE40Yl3iSt8QnIVv0LOHjwoiUcoopPwsW/fPnXNPHR3g6geZIXDnb17926pWrWq1YfkST766KN0P69bt+6c+wAilvbs2aN+V7NmzciL6Lt2welBiDthHno4MJOEPRYfByGBgw7i4MIShaRxlciWmZHSPiI6IfaAoprThK9jcvbgRZJ4BPfQiU4Cg/FNpFCt3VKi7UaJib1NkpNukYQFR60+JOJCJzpFdHcD8+VFF10kv/32m9JLKaJbw+23355qhMU14mRwySrCBS70p59+OvIiOiMuiFvBl8nXiU6CpXzKtZ40EOIk/vzzT3WNiRCJRi76FjYXJbbqi3Lo0CF1m6KaU4QvkeSkFpKwYL0c3UAnOgkMVp54G2zEmXEExMTGSom2hSVp2QnIK1YfHnEBFNG9A5plQkQ3a0kSfSZOnJiq6915552q8WnHjh3PeRz6EyCfHcbZUJqKs6MX8Tw4ycGRgi9VvXr1rD4cB2MmCRTRiXOd6BTRo9lclE50Yg/+97//pWY4FiuGJnPEGcJXjJRoe5+c2DXZ6kMjDoNOdG+DShafPvKp40ligeMU0UlYoIjuLREdMLnDOvr06ZN6e+nSpdK5c2fp0KFDxJ6PIjrxPMaFXrt2bZVpRYKFIjpxLsY9wKqraMQwXCpnDy6XxCMU0Yn9olzYF8Vpwlec5Cp21qpDIg6FjUW9zdmDBSU5CeNH2n3JSUkSd5zrQBIeKKK7l8REOJrTfjYGrIxO9IyPI9F1pUcSiujE8zAPPdxxLsxEJ86DTvRoxjA0k+SkJpKw4A85usHqoyKEgpqzha9EOXvot7QCF0L8gD0QvE3ikfySsOByKdF2k8TEJqtxJGHBT1Iy7karD424gKSkJDYWdTEQxnv3Fvn9d/3zoUPaiT537i654gp932WXiUyZYuFBktRGovHx8XLq1CnJjAoVKkgwUEQnnod56OHCTBIwaUgSkQx2MUJsDJ3oVuSPXiondjF/lFgP85GdKnyJJCwYJ4lHtktSEhZIea0+ROIATp48KQkJaG7NjTMvc3RDBTmxq7TkKvalnD10jyQeqSlS1+qjIm4Aot3p06dVZRvnFe4EAvrateYnbcA6fnyXz33ESlavXi3Dhw+XH374QX0XMwPfz7Nng6tkpIhOPA12pdasWaNu04keKpgkQCHDYPR/InK+1QdEiN+71Hv26AoKOtGjGcMQK7mKMX+UWA9dqU4Uvo7L2UP5JfFIF3X/2bPItecmKAmsB0IojcWIOzbmEo+gD8YBEdEbK4SEK8rlvPPOkzx58lh9OCTiaCe61j+wrgkuFsrf+BfGxGTPunXrpFmzZpIrVy5p06aNzJs3T8U2n3/++Ur3+/fff6Vly5YhGecoohNPs3btWrU7VapUKbn44outPhyHg+GkbIoTHYIkRXTiHAENO9E42VJEi27+6NlDBRjDQCyHcS5OFL7M5hvG7L/kzBm8h4EtiLhg9SbsgUDSUzLlGkI6IaHDKBevgY24IiLyH2qbRaR6WGJiMoMxMTkzcuRIdb1y5Uq57LLLJDY2VjUaHTFihJw4cUKGDh0qM2fOlAkTJkiwUEQnnsY3D50T6XCAyQImDtiBr2/1wRASUJQLctHiqJREMX90miQeYf4osR7GuTgZXxE9MLhg9SbcNCNZiejJycmok7P4eIjTYVNRrxGT4kZfH5KIfm5MDAmG5cuXS4cOHZSAbtBju0j+/Pll3Lhx8tNPP6m4l6lTpwb1HBTRiadhHnq4wWRhZYqITogzYFPRaMcwbJOzh1pJ4pGTVh8SIQqK6E5GC6Fnzmh3caBwweo9GN9EMhfRT0lSEqIYClp8PMTpUET3IkZE32X1gXiew4cPp0uYyJ07txw9ejT1ZzjTEecybdq0oJ+DIjrxNL5OdBIOzGRB50sT4gTYVDTaMQwX+ZRNs7EosY+oRmeqE9FCaDBOdOJN+H0n6YFojtzq05KYiLkJRXQSGhTRvYgxYuk1JbEO9CI4ePBg6s/IQt+2bds5DcaPH8emaXBkaPNFiLcm0bt371a7UfXrM3okPJRPuaYTnTgHOtGjTWH4AlJux1t8LMTroC/KgQN6U4fOVCeL6ME50Yn3YJwLOTeKQbvRz55lLjoJHYroXm4uSie61VSvXl22bNmS+nOTJk3k22+/TU2g+P333+Wzzz6TSy+9NOjnoIhOxOsu9Msvv1wKFSpk9eG4BDNZoIhOnAOd6IGBJnuhPQ4LVtNNlCI6sZb//e9/qeWeJUuasn7ivDgXOtGJfzDOhZxLCfVfiugkHFBE9yLGiEUR3Wquv/56+eGHH1I3zB999FGVid60aVMpXbq00v4OHTqkMtGDhXEuRLwuojMPPZwwzoU4V0SnEz2azfggomNyQxGd2EdQY4NxJ6KF0LNnKaIT/2CcCzkXvYGamJhg9YEQhwOxjiK6l53ojHOxmgEDBkj37t2lePHi6ufatWvLokWL5Pnnn5edO3fKlVdeKffff78S24OFIjrxLKakg3nokYhz2SciSSx2IbYnKSlJxToBOtGj2YyPTnRiD9hU1NuNRYn34HeenAvjXEj4mhqarOVy5cpZfTgkahgjFjbi/hORIhYfj3fJnTu3lClTJt19jRs3lvnz54ftOahwEU9y5swZ+fXXX9VtOtHDCRYkcPKdEZF/rT4YQvyKckAmclxcHB0jUYUiOrEHFNTc4kT/V83tCMkONBNLSNBuYzrRyblOdIroJDSMC71EiRKSP39+qw+HRLXfk4kEpBvdSp599lkV55Idy5YtU48LForoxJOsX79eTaRR5nHJJZdYfTguAs0Cz0+5zUgX4pymohDQc+VicVb0KJ1yTRGdWAvzkZ0OFq167N6/f7/VB0Mc0gMhb968qaXexI29VwKFTnQSHhjl4mXYXNQOPP3007JkyZJsHwOR/Zlnngn6OagYEPF6HjozUMMNJg1w9mESUc/qgyEkW9hU1GonOitWiD2c6HSlOhX4gbABskdtiFC4INnBHghe6r0SCBTRSXigiO71SBckHVBEtzumCj1YKKITT+ehM8olEhg3Hx1hxP6wqahVMM6F2APGubgBLaKb95KQrGBTUS/1XgmEEuq/jHMhoUIR3cuwuahdyG6THAI64lzOO++8oP8+RXTiaSc6m4pGAhPnwsUscU6cC53o0YYiOrEHjHNxA2XTvZeEZAU3zUj2TnSdl09IsFBE9zLGkEUnerS5+OKL0/08ZswYmThx4jmPS0xMlPj4eBXr3Ldv36CfjyI68Rz/93//Jzt37lQ7VA0aNLD6cFyIWZjo3ElC7Ayd6FZBEZ3YA8a5uAH93tGJTnKCTnSSOWwsSsIDRXQvQye6VSQlJaW6z3GdnJysLhnJnTu31KhRQ1q1aiVPPvlk0M9HEZ141oVevXp1KVq0qNWH40LoRCfOgU50q2BjUWI9Z8+elX//1bn8dKaGDpr8+RMx6e/j/Ee/dxTRSU5w04xkDjPRSXhF9HLlyll9KMTCxqJawGXfjWib4kBsbKw8+OCDMmLEiIg9H0V04ummoiSSIjqd6MTeYIJjRHQ60a1zonOiSaxi//796vOH5kKlS5uNHeKcZoAGLYgyzoXkBOObSPZO9IOq3D+UhnPE2+zbt09d04nuRYwh64gaS0yvBRJddu3aJcWKFYvoc1BEJ55jbUqXmnr16ll9KC6FcS7EGcCBeuLECVX2Vb58easPx5MLVpEzkpT0n4iwKohYJ6idf/75yrlCnNYM0EAnOvEPxrmQzDFiV7IcOnRISpY0cxRC/Ofo0aPq8wMoonuR/Clmwv/J6dPIRaeIbgWZVZej8nTjxo3qds2aNVWsSyhwxUA8x8YdeyRvhculXNWa4iVQPh3Ox/nnRD83i4oQu5V+YTGdJ08eqw/HgxPNgurW2bOMdCHWwCaDboGNRYl/8DtPMgeCSmF168ABRrqQ0FzohQsXliJFilh9OCRKxBU+IXkrxKtr01z01Ck2F422+3zChAmydevWc3735ZdfqnglGGhxwfn/s88+C+n56EQnnmLCkt8lrtOLcn5srDyw8LAcL7JbetSvIF4gemXWZVKuT4sIS5mIfWFTUTtEuhxLEdErW30wxINQUHMLF6Q2jofbiMsbkhknT56UhIQEdZtOdHIucJ8fSf2MEBIobCrqPQrV2i0l2m6UmFiR5CSRhAXXytENK+T0aTYXjSbjx4+XUaNGyc6dO9Pdv337dunevbs6/8OhXrBgQfn999+ld+/eUrVqValbt25Qz0cnOvEM/xw+ISO/2SkxKSXbSckiw2dvUvd7rcw6q0t2Arv/5BOR4im3GelC7AubilqNzqCmE51YBaMd3DSWxKl8ewjphGS3aZY3b14pXtzMUwkx6AgXOtFJsFBE9xZwnhsBHeC6RNuGEle4ZEqcC4kWy5cvlzp16pyzpn/jjTeUgH7vvfcqt/qmTZtk1qxZqvfFuHHjgn4+iujEM+yKP3ZOuEhicrL8GX/coiNyMybShfmkxL7QiW6P5qJnz/5r9YEQj0InuluIldy59byDkS7En+87eqEQkh6K6CQ0KKJ7i1zFj6UK6IaY2BjJVewCOtGjDATyBg0anHP/N998oyJbX3jhhdT7OnXqJM2aNZNly5YF/XwU0YlnqFSqoEhyehk9LiZGLipVwLJjci9sLkrsD53odhHR6UQn1uaXUkR3Prlzs7koyfn7DodgyepXeaoKlfgLRXQSGhTRvcXZgwVVhIsv+Pnsob/pRI8y//77r5QqpdeVBkRz7dixQxo2bKj6FPiCGBezBggGiujEM5Qtml+KbPlSkpMSUwX0F7rUVPeTcOPbXJQQe+JEJ3r0GgRHA4roxFq27f1XNRovcSEz+Z1OrlwU0Un2LNh2RMoNmCjxl/eWJi8tlk9X7bb6kIitoIhOwiOio4khcT+JR/JLwoLLJTlJVzbhOmFBGUk8ckBOnfpTRcyR6JA7d+5zxu7Vq1erazQTzQiy0UOBnXeIZ0hKSpKdCz+Rk4tnypQ530rzKy5zvIAOoQwNQ8P1uPDBOBdibzCxMU50J4no0WsQHD0RPTEx3kVjH3EKU1fsklNtn1SNxh9ZdlISS3un0bgbyZ1b59ozzoVkBpznCw+fp0rtffsiNb+ktOPXAiRclFD/pYhOgsU4W+lE9w5HN1SQE7tKS65ix+XsoQKSeASLjhhJTj6herSUKVPG6kP0BJdc8v/s3QeYE1XXwPGzy8ICS++9914E6U3pRURRERFRsGIDC1awIjbsDT8FKYoIiihVepcO0nuv0tsCu/mec3Hybkm2JpmU/+95QkIymdxkk8nkzLnnVJDZs2fHu27mzJmmdFujRo0SLa/7iumZhUoQHSFVK+nChQsSGXlNbmtaQyIiAv/t778BNcq5wL/pFK/z58+byyVKlAjIBsGh3FjUf7d9CJSA2suTNyVqNE5ALXBRzgXJ9UWSBHXQrb5IfOYRNxNd9w+BtKCcS+hmpOvpf3QmwgETeyKI7hu33XabvPzyy/Lwww/Lo48+Ktu2bZNvvvlGsmXLJu3atUu0/OLFi6VcuXJpfrzAjyICKbRhwwZzXqVKlaAIoPt3QI1yLgiMUi6FChWSzJkz2z2cEJW+ci7+ue1DoATUNHAeFwG14Aiik4kO932RYrXrm/M6+iIhPsq5IO0uX75s6jIrguihrrQJoutvzQYNGkiwGjZsmAwaNMhcXrp0aaLnevbsWRkyZIhMnDhRjhw5YjK/u3fvLoMHDzbBbU966qmnZPz48SZwPmLECOes8w8//DBR6ZaVK1fKjh075KGHHkrz4wVtTfQVK1ZIhw4dJFeuXOaF0z/qzz//nKp1REdHy+uvvy7ly5c3QZYiRYrIgw8+aKZmIPCsX7/enNeoUcPuoYQAyrnAv9FU1J+C6Nd/dAC+DKiFCY3Gg7GcC5nocEUPjmVYPZ6+SPBKED0lfWgCo1cN0so6gKsxozx5rpcGQigH0a9XQQhW//zzjwmGu6strtUfmjdvLsOHD5dKlSrJ008/LRUrVpT3339fWrVqZQ46eVLWrFlNdvlrr71mMs979uwpkydPNsH1hFavXi233HKLdOnSJc2PFzzpuHHMnTtX2rZtazZid911l+nGqkdA7rzzTtm/f78MHDgwRfWz9cWdMWOGCcDrFIHt27fLt99+a+rtLFu2TPLnvz4VHYGViV69enW7hxICKOcC/xaITUWDD41FYQ8NnFW7vEHWZ6oqYeEZCKgFWTkXZk8jIc1IO7LkV4lePl1++mOONK5Zns87PBZET67EHOXlQquUi9ZhRigrFdRB9KtXr0rv3r2lVq1aJtl4zJgxiZZ59913Ze3atfL888/LO++847xeM9c1g12D6y+88IJHx6XZ7a+88kqyy2lStJ7SI+gy0a9duyb9+vWT8PBwWbBggUnp/+CDD2TdunWm4PyLL77ozEBMyqhRo0wAvUePHrJkyRLzx9dA/BdffCG7du0yNXcQWAii25GJrnUFo20eC5AYmej+1Fj0lPnuBnzp8sY5cvCr+6V38VOyaFBLmooGSSa6Thl2OEj5RHxnzpyRixcvSsy5f6XDDeUIoMPj5VysEnOuTkn1b0FwoB46EmaiWwlbweatt96SjRs3ynfffScZ9Aiii4PWmnjsKqit/9fr9fZAFnRB9Dlz5sjOnTvl7rvvNkdHLDlz5jQB9CtXrpgAeXKsWjpDhw6NdzRRa+eUKVNGxo4dK5cuXfLSs4Cn6d9KZxIoyrn4gk5jy/jf5aM2jwVIjEx0f2BNd3XIqVOnbB4LQo3uE2hArXXNUgTUgkBERAGTQKMzSSkRhYQOHjxozrXMp077BtwF0fVgi6dLDSB0guhFi2pTSYS2wMhEP3funKlbbp20lHVytBTKW2+9ZUq5aJ9Bd/vXWt6ocePGicq96P/1ek1K1gohgSroyrnMmzfPnLdp0ybRbVriRc2fPz/JdegX5/Lly03dnoRZihpQb926tXz99demKH3Tpk3drkffiHHfjPpGtaZA6Am+rYeuP6zy5ctn6pQF0+vfsaNItWrub9e3sPV0fbnsxImF5OLF/dK+/QGpW7dwmtYbKqz3YzC9LwMliK4ZI4H2uvvDZ8hT25Lx4/PIlSsnTQkGDW54axsVyNg+eOfA+r59+8zl0qVL89oGyT7JkSMFTCb6jTfuk9q183p8DP6GbUPqZ59pfyter8Dgqe1Dws+wu2UdjiwydmwGM5Pl6NGj5r3iifW6Wtbb2Db4nhUQ1OaJvO6hvU9y/nwx+fXX6987Ggvs2DHcr37bWLN/EwbBNTCujUDd0edy7733mkTl5557zu1yVuKqlnpxRa/Xih+6XPHixSUQBV0QPak/WqFChcz0AWsZdzSTXQOuSf3hrcdKKoiuWexa3D4hLTOzadOmZJ8LPEfr2FtfbNOmTQuql/aGG66fkjJ1qu+XXbYss+hHrXbtP+WGG46nab2hZtasWXYPIWRoV26lOzhTA+wN5w+fIU9tS2bPzizai+mPP/4wGRve2kYFA7YPnqOfe51uqhmp2oie+qXBsU8ybtz1DOPChafIDTccDpntCNuGlP8OyJQpU8B954cqT24f4v7Jk1p2ypRspvTPb7/9ZmYqemq9CZf1FbYNvqPJlUrfP2xjQnufJCYmRiZPDjcHU7Re+A035POr3zYnTlzvRaXxyLgzJyIjI5O836uvvmrin6tWrXJZxsWinwGrEogrOXLkiLdcIAq6IHpK/mjJ/cE89YfXYvkDBgyIN5VQj/g0a9aMEgKe0revyNatrm+rWFHkv3pL2mxWtTh+XDoMHZrkskmu0x+X9VNaEkk3tLpx7tChg93D8Wv6Jas7ujrLJWNGqwwO0iWJz9Dpa9fMdF11zz33SNSTTwbv59jPx6uzvXTKX7ly5dhOuMH2wfPv89+WLjUXK4eFScc4DY9cLWv7tsEftiMBQvsg6RRhnWEUCtsTtg0p1LevrJszx1ysefBg4t8BfI4RJ+FOf99XrVpVmjdvLoGKbYMXJPMZfmvnTmc1hA6TJtm/HWGbYyv9faPJQWXLljXlS/yxvFn27Nmdcc3kLF26VN5//32TqV4tqVT5EBF0QXR/okdz4h7R0VpDSr/M+ELzEG0Wqh1bXLlyRV9sc/Gff/4x57WOHJGMR44kuWyS6/THZf2UdWTz+PHjvN9TiG2DByXxGTr037mWd9ISIkH9Ofbz8ebPn9+cnz59mvd+Mtg+eO59vuu/GYkVL1yQjMuXJ7ms7dsGf9iOBAgtv6C0FEMofVbYNiRjwwY5YjX9033S4wlq5vM5Rpz9wq1bt5pAejB8ptg2eFAyn+GD/73OmiiZ0R+2I2xzbKWlAjWIrmV+/O0zGBERkeryL7179zZ9BQcNGpTs8lYisruEYysm6i5hORAEXRA9JX+03Llzp3sdcZeD/9ugXyQiUt3ugYRYNofSWseAP7F6pTMjyD9+sMadWgj4glXUz3XRPgR6EJ39Drg7eE7LPyQlb97rvRT+/fdfu4eCAKIlqg//V6haZ0IB1m9Mf28umhLnz593lsPWkmiuNGzY0Jz/+uuvzlrr7kpoJ1czPRAEXRA9br3yunXrxrtNmw3pm6B+/fpJrqNMmTISHh4e1H/4UKIZSceOHROteFrV7sGEYBBdP3eAP9kbZ6od7GVlohNEhy9t+++8gs3jgGdp3xtFEB0JXZ+8ThAdSSOIjrTQX7qO/zJ8CxQoYPdw4CeZ6GrPHit1K3BpZY0HHnjA5W0LFiwwsdEuXbqY33R68EBjpJrUsHjxYrlw4YJERUU5l9f/6/X6+gRqU9GgDKJr/TJt6Dlz5ky566674t2mXWCtZZKSJUsWE2hftmyZaT4VN9Cijai0xpi+GW5Iruo//CoLvVxkpGSNjrZ7OEHv8JlLsvvEBcmS5/qPWYLo8DdkovtfJrqWfQJ8hUz04M5E1z4LQFwE0ZESefLkMecE0ZEaB+KUMtVETCCYMtE1Nvqtm/r59913nwmiay/IBg0aOK/v27evvP766/LGG2/IO3F6D+n/Nan5xRdflEAWdEH0m266yWSSjxs3Tp544gmpVauWszTL22+/baYg3Hvvvc7lNVtFb9PslbjlWR588EETRNc3xNixYyUsTPOYRb7++mvTtEhv1zcU/N/69evNefXMmUUIonvV+BX75IVJGyTWIRImGSVbjdZy+HASTU0AG4RUEL1y5ZTfnpplPYRyLvC1szExJmtMEUQPLmSiw5VrDocc/e/y9cMsQNKZ6CdPnrR7KAjQIDoQbJnoafHcc8/J5MmTZdiwYbJmzRqpU6eOrF692iQ616tXT5566ikJZEEXRNdpNHqkpG3bttKsWTOTja6dZydOnGiyyrWrbNzAiQbJR40aJd9//705kmLR4vnjx4+XH3/80RxB0uz1HTt2yKRJk8yH4s0337TpGSKtmeg19KCHmzr3fseGYJYnMtCtALrSszxt+8ux/3vYzOCwDkQBdguZci4xMSJjx6ZsOZXSZTNkEE8hiA5f2/7fwXSdcJ3L7sHAK0F0nQEXGxtLRiCMo1evSqyI6DcXhRaQFMq5ID0zXaiHDosVb9TGotqYM7XNPANdVFSUzJ8/X4YMGWLisHPnzjX7aAMHDpTBgwcHfDJyUP41W7ZsKYsWLTJ/IA2EX716VapXr26OhNx5550pWofueOvRE51+MHr0aBk+fLiZ4qX1gDSAbtVxRQA1FQ2UD2tqAl8eDGall5ZwsQLolrDwDOKIyienT59OtqEv4Cshk4me0u1DarYjHt7mEESHXUF0stCDT8GCBc0Be/3BqtsUatNCHfyv4Z8eYvGfvWb4I4LoSE8mOkF0WDRgrLXEo6OjTSDdykwPNiNHjjQnV7TKh8ZQ9RRsgjKIrrSm+bRp09L1h9c3vgbi9YTAFBMTIxs3bvxfJnqoBr58oHS+KAkPk3iBdEdsjFw7fchMrSaIDn9wTqfphkomegCgsSh8bdvly+acpqLBJ2PGjGabos3kdb+DIDriBtEp5YLkEERHWhBEh6uEXP2duW3bNlPSJViD6KGKeY4IalqC5/Lly5I1a1YpkymT3cMJaoVzZpGh3apLhv/Ktuh55PqJEnPuX5qLwu9KueTOkEFy5Mhh82hgZaJrkxndVgMhkYmuJdlq13Z/8sOSbYFW0oXmorAc+i+ITrViJIcgOtKCIDqCvbkoQiQTHYjbVLRatWoS/t9ONLznznolpFmF/LLnxEUplS+r9Lz1fdn+X31SwK/qoXNQzS/ogQytE2iVX+AHCLxt239BdNsy0QO0ZFugKFKkiKxbt47mokiUiU4QHcnR0q1WY1H6OSGlCKLDlVBvLhrMyERHaNRDr17d7qGEVEZ6w7J5zXmhQoXMdfyYhd/VQyeI7hf0Byp10eErGhTZZncmeoCWbAsUZKIjIYLoSG0mupYDPXv2rN3DQQDQpsU0FoUrZKIHLzLRERKZ6DVq1BBZvdru4YTsj1ky0eEvCKL7Hw2i6zaCIDq8Tafon9YMbxEpJwEiudIulH5JlImuOHgPy8ErV8w5NdGRnMyZM5sSoBcvXjTfF9oYD0jKMRG59l9mqpU8BsTNRCeIHnwIoiOokYluL2tngiA6/AXlXPwPzUXhK9rgSRUXkawSACj9kuaD9wTRYTl0TUNcZKIj5dnoVhC9TJkydg8Hfs7KQi8YEWGaWwMWyrkEL8q5IGidi4mRXbt2mcsE0e1BORf4GzLR/Q/lXOAr27dvt7+paGpQ+iXVKOcCd5noBNGREjQXRZrqofO7Am7Kuej+SPR/pQQRHAiiI2htvHzZ+YPKCtLAtyjnAn9DJrr/sbbPx48ft3soCJFMdNuaisLrKOeCuM6fPy9nY7VqMUF0pAxBdKQpiE4WOlzMtNXyUNqPZ9++fXYPBx5EEB1Ba/2lS+acLHT7UM4F/uTif7ULFZno/oNMdPhKwGWiI13lXPSHK0KbNSMhm4hkt3swCAgE0ZEaZKLDnbCwMJqLBimC6AhaG/4LopumorA1iK47olf+m04L2MXKAdAf0rkof+A3CKLDV8hED539jqtXrxIEgxw8eL1iMVnoSKk8efKY85MnT9o9FAQAMtGRFOqiBycaiyJobfivnAuZ6PbuiGqTFf0xe/ToUSleXNu5ATbXQ/8vOwD+gcaiSLfKlZO9XbOSyUQPfpkyZTIH5nR7otnolPMLbQTRkVpkoiM1CKIjKWSiByeC6AhKjjjlXMhEt094eLgULFhQDhw4YEq6EESHvwTR4T/IREe6xMSIjB2b7GKH9u2Tixcvis5BuZ4XhGAu6aLbEy3lQSJFaLOC6Ncr5QPJI4iO1KCcC1KSiU4QPbhQzgVBSSsgnoqJkQwZMkjl5DLU4JOp1TT5gt80FbV5HIiPxqJIlxSWZtq2c6c5Lx0ZKfzUDW40F0XCmuhkoiOlCKIjNUl7VhC9KJnocIFyLsGJIDqC0vr/zitWrCiRkZE2jya0WU2+aC4Ku5GJ7v+Z6DQChLc4S7mwTxBSzUUR2ijngtQiiI6UOiUi14vHEkSHa5RzCU4E0RGUNvx3zjRe/8lEJ4gOu5GJ7t8/WLV3wrlz5+weDoK9qShB9JAJoltZyAhdBNGRWgTRkVJWFrqmgmQOJ6wG95nox44dMyUFERz4tCOoM9Gph24/MsLgL8hE909Zs2Y1J0VddHgLmeihg3IusFATHamVJ08ec37y5Em7h4JAqYdu8zjgv3LlyiU5cuQwlynpEjwIoiMokYnuP8hEhz/Q6ZZWOIVMdP+TP39+c04QHd5CJnroIBMdKjY21nkghUx0pDYT/ezZs2aGHOAOQXQkJywsjOaiQYggOoKO7u5s/u8yQXT70VgU/mD/f+ea73y9Ajf8Cc1F4U0xMTGy87/GomSiBz9mwMH6Prl27ZqE6b6o3YNBQGWOauBLkY2OpBBER0rQXDT4EERH0Nn6XyA9e3i4lCxJzqndaCwKfyvlcv2nEfy1uSjgaXv37jUZhdpovHimTHYPBz4s50Kz4tBllXIpGBEhtPxDSmXIkEFy585tLlMXHUkhiI6UoLlo8CGIjqCth149SxZnJgH8o5wLP2ZhF5qK+jeC6PBFKZdy5cpJBvYLQma/Izo6Wk6dOmX3cGATq5xPkYyE0JE6NBdFShBER0qQiR58IuweAOCteug1smSxeSRI+GP29OnTzuwOwJdoKurfCKLDJ01Fy5fXtHS7hwMvy5w5s2kOqKUYNBvdahSI0MxEL6pB9EuX7B4OAiyIrt8bBNGRlOtbGD/tuVC5cvpuh8eQiR58CKIjeJuKZs5s80hg/ZjV+oIaQNdsdILosAOZ6P6NxqLwSVPRChUIoodQKTkNoms2ctWqVe0eDuwMolPCCalkHXijJjoCMhM9JkZk7NiULZchgy9GFNLIRA8+lHNB0JZzIRPdP0u6AHYgE92/kYkOn2WiIyTQXBRWEJ1yLkgtyrkgOWf/O/llJnpKA+ME0H2aia4H5c6etd41CGRkoiOwJZiKdPraNdm/4XouerWaNW0aFFwF0bds2cKPWdgeRCcT3b+D6MePH7d7KAj2THSEXHNRhHZNdFPOBUgFguhILuZw8PJlkc2bJWeGDJK9Rg3Ko8Ct7Nmzm22Kbk+0pEtNYlQBjyA6ApeLqUobFi4UadZMSpQoIbkmTGCakp9lhJGJDjtc0R/T/10mE90/kYkOb9F+HHv/K+FCJnro7XdYgVSEeE10IBUIoiO5mMOBWbNE2rSRYpUqiaxe/b/liDvATUkX3Z5oSReC6IGPIDoCl4svqQ3/ZaFXr17d7TLJohGHx1HOBXbXLIzV+vwiUtDuwcAlgujwll27dklsbKxky5bN+V2E4EcmOgiiI60IoiMeF/GEAweuV0QvVixORXQC6EiipMvKlStpLhokCKIjqKxfvz5+ED21aMThFVbggh+z8Jk4B7v2njsnsmOHlIiMlLAqVRLdDv9pLKr1AmNiYiQD21d4uB66lnIJCwuzezjwEWqih7bLly87m0L6RU10EnQCCkF0JMdlEB1wg+aiwYUgOoKKlYleQ2uTpQWNOLyCci7wqQQHw/Z8/73I/fdLqebNRWbMiL8cn2W/kCdPHnPucDjk1KlTzsx0wFP10CnlEloo5xLarL975syZJbfd3/Mk6ATsPglBdCQXRC9a1O/aisKPm4uSiR4cwu0eAOApGnxJVM4FfoFyLvCpBD9CrXrIJUsmaCvKj1W/ERERIblz5zaXaS4KT6KpaGiKW85F9w8RoqVciha1fwYKCToBm4luzWYA3G1jyERHajLRCaIHB4LoCBoaKDt37pxkzJhRKlasaPdwEAflXGAna+qclQUA/0RddHiznAuZ6KGZiX7p0iU5c+aM3cOBjUF0ID3lXDgIB1co54LUsH6D6m9StimBjyA6gq4eeuXKlU0gHf73Y1Z3Rq9cuWL3cBCiQfREmejwKwTR4Q1kooemLFmySM6cOc1lDuCHbjkXa0YCkJYguv5muXDhgt3DgR8iiI60BNE14ZMZLoGPIDqCRrrrocOrtQW1XIM6duyY3cNBiLHKuZCJHhjNRQmiw1POnz/vDKaRiR7aJV0QWshER3pkzZpVIiMjzWXqoiMhneFkvS8IoiOlB/atmfk0Fw18BNERNKiH7r/Cw8Mp6QJbXLt2Tfbv328uE0T3b2Siw9N27NjhzCq0GsUhdNBcNHQRREd6aB39uCVdAFfbFz3YkitXLruHgwBBc9HgQRAdQVfOxW0meuXKIrVruz7pbfAqmovCtumWWXNJVJna5hz+H0SnsSg8hXrooY1M9NBFORekF0F0pKSUi+2NixEwArW56OXLl2XAgAHSrFkz852aOXNmE9dp3LixfP/993L16tVE9zl79qy5j5ZS1Vk9egDh2WefNTNEg8H1+gpAgNMPt1X31GUmekyMyNixSa9El8mQwUsjBEF02OGLGWul6MPfS1h4uDR9d54M7VZd7qxXwu5hwQUy0eFp1EMPbWSihy4y0ZFe1uwl6hcjIeqhI73NRQOJBr6//PJLqV+/vnTs2NGU3zx16pRMmzZN7r//fvnpp5/MZa08oLSPRPPmzWXt2rXSpk0b6dGjh6xZs0bef/99mT9/vixYsMAE4gMZQXQEhc2bN0tMTIzkzp3bddZJSoLjBNB98mOWjDD4yuEzl+Tn3RESFn49SyTWIfLipH+kWYX8UjhnFu8PILkZLsyAiYcgOjyNIHpoY78jNDkcDoLoSDcy0eEO2xeEUia6HlA8c+aMZMqUKVHJ1NatW8vMmTNNEF0D7Ordd981AfTnn39e3nnnHefygwYNkmHDhsnw4cPlhRdekEBGORcEXVNRplX5JzLR4Wu7T1zQypbxrotxOGTPiYvef3Br9svq1e5PersuB4MgOjyNci6hjXIuoUkzh6Ojo81lyrkgrQiiwx0y0ZGeIHqgZaJrhnnCALqKiIiQW2+9NV4PIj2I/e2330q2bNnklVdekbj0/3q93h7oCKIjKCxdt0UiS1SXcjVusHsocIPGovC1ErmziCM2Nt51GcLCpFS+rN5/8JTObGEGjJNOD1QE0eEpZKKHNsq5hCbr761BUK3FCqQFQXS4QxAd6Qmi79q1S65cuWL3cOTcuXOmdrl1sg4+p1RsbKxMnz7dXK5WrZozeUW/g7VeelRUVLzl9f96vT7//fv3SyAjiI6AN37FPpkW0VAK9Rgqs7O2MP+H//6YJRMdvnL2yF45OeNTccTGOAPob3er5ptSLkg1MtHh6WxUK/hRrlw5u4cDG1DOJTRRagGeQBAd7uw+etok70XlYxuD1AXRtTSKBqvXrVtn93CkSpUqkjNnTudp6NChSS6vgf8hQ4bI4MGDpX///lK1alVTxqVPnz5y0003pWgGqHW9tVygoiY6Ar7m8QuTNoiEXT8e5JAwah77Kcq5wNf+/vtvOb9+ltQokFHe/+oHk4FOAN3/g+iaGaE7mGQQIj2sHXQt56DTRxG6QXRtcqXblezZs9s9JPgAQXR4AkF0uDJ68U451WSAFAoPl9fWiGQuvU/urFfC7mEhQMqiNGzYUP78809ZsmSJ1KtXz9bxbNq0Kd73ZHK/uzSI/tprrzn/ryWUn3nmmXjBd62drjQo70qOHDniLReoCKIj4Gsea7NAVzWPvR4ss2oep2Q5LdkQ4gH3uOVctF4WtevhiyC6alSrijQse/3HEPyX7nBlyJDBNInWbHQCIEgP6qFDD55o1pfOSti6davccAMl/0IBQXR4gm47lG4/ACt579UpWyQs/HrynsYgfJq8h4DXqFEjZxD9ySeftHUsmlhgBbVTuk+lMZzY2FhTsmXKlCny4osvytKlS2Xq1KmpWlegI4iOgFY6X5SEicNkoPt1zePUBtyDOIiuGaZ69DFXrlx2DwkhEkSvX7++3UNBCuiBNc1GP3r0KEF0pBv10KGsrK+FCxcSRA+xmug0FUV6kIkOV8l7CXL3fJe8h6AJoisNogdyRn2xYsXkkUceMb/b7rjjDnnrrbdk2LBhzgx0d5nmWns9qUz1QEFNdAQ0/cIqfmSh/9c8psmgZMmSxbnBpKQLvO3y5cvOenN2T5dDytFcFJ5CEB2qWbNm5nzBggV2DwU+QiY6PIEgOlwl74kjNt51PkveQ1DQ36Q661ab0+7bF/h9/Nq0aWPO582bl6Ka58EyS5RMdAQ0nVKyZer3cvLy/8lXYyZKx+b1/S+AjnjZ6HpkUku6VKpUye7hIIitXbtWrl27ZoKyJUuWtHs4SCGai8JT3O6oh3hptVANomsmuk5B1gwqBDeC6PBkEP306dOmzJwGvhDaCmaPlIvzv5UszR6QsPAM/pu8B78VFRUltWvXlpUrV5ps9BIlSgTFzK+MGTM697l1FtjixYtNPxp9vhb9v16vDVaLFy8ugYw9SQS0nTt3yvHjxyVD9Dnp1bYBX2IB0uSLTHT4spQL9fcDL4iu23UgPQfYXWaiW6XVVq92f9LbdTkEhTp16piZcJpNunnzZruHAx/+qCeIDk/URNfvk1OnTtk9HPiBjRs3yvHlv8upUf1lzP31ZNGgljQVRdCXdNEGpBcvXkx0/cWLF2XAgAHmcocOHcy5/ubu27evnD9/Xt544414y+v/9fp+/fpJoCMTHQFNj2YprXOZXEdh+E9ddILo8DbqoQcmMtHhCVpXX3fUNeu4TJky/7uB0mohJ1OmTKYu+pw5c0w2etWqVe0eErzo6tWrcuzYMXOZmuhIj4iICFOGUmfQ6kE4a/8EoWvRokXm/MYaFaVJhQJ2DwcBHET/5JNPAiaI/vPPP8uHH34oTZo0kVKlSpkGojrja9q0aWbb2LRpU3n66aedyz/33HMyefJkUyN9zZo1Jplh9erVMnPmTFPO5qmnnpJARyY6Apq18WncuLHdQ0EqguhazgXwJoLogYkgOjzBykLXUk4cYAd10UOH7l9q5rBOLSfoCU9lo588edLuocCPkvc0mAikNxNdS49qiRN/16lTJ7nrrrtMDfcff/xRPvjgAxNAr1Gjhnz99dcmSUFn/Fm0hMv8+fNNsFxnAOryW7ZskYEDB8rs2bPjLRuoyERHUHyZWRsj+DfKucAX9MeOVQ+ZpqKBhcai8IRgaVwEzwfRNcBKia/gr4euWejUv4cn6qLv3r2b5qKIl4lOEB3pofXAixUrZpqLatJXy5YtxZ9pxQc9pUbOnDll+PDh5hSM2LtAwNJGL1qbTBFEDwyUc4EvaLMWVbZsWWdjKAQGMtHhCS7roSNk3XjjjSYzWQOsGhBD8NdDp5QLPMHahySIjv3798vevXtNg1n9TgHSw6qiECglXRAfQXQErKVLl5rzcuXKSYEC1CULpEx0yrnAmyjlErhoLApPIIiOuLJmzerMotK66Aj+THSaisITCKIj4ez3WrVqSbZs2eweDgJcoDUXRXyUc0HAsjY6ZKEHDjLR4QsE0QMXmejwBMq5wFVJF02+0JIuvXv3tns48BKC6PAkgujwq1IulSun73b4DSt+pfslsbGxlB8LMATREbBoKhq4QXQNkF29etVMrwY8SevdEkQPjiA6tYuRFvpjZMeOHeYymeiIG0QfNmwYzUVDpJwLQXR4AkF0+E1T0ZgYkbFjU7Zchgy+GBHSoWbNmqbB5qlTp2Tr1q1SmQMgAYUgOgLStWvXZPny5eYymeiBtTMaERFh/n5Hjx41TTUAT9cs1PeW1iysXbu25x+ALBCfBNGvXLki58+fl+zZs9s9JATgNiA6OtocpC1RooTdw4Gf0IQLPSinB1i0pJxVXg7B21gU8FQQXRvWI3SdOXNG1q9fb2/yXkoD4wTQA4Luo2qy1/z5880BGoLogYUgOgKSfpFduHDBdP6tUqWK3cNBCulUpYIFC5ofOVrShSA6PM3KQq9Ro4Y5wu/RwDhZID6pXaynixcvmmx0guhIaz10bSysB20BpfuLmvm1du1aUxf9jjvusHtI8ALKucCT8uTJY87JRA9ty5YtM7PcypQpwwFYeIwmgmoQXasr9O3b1+7hIBX4dYGAnlLVsGFDakgFYEkXK4gOeFqqS7l4IzBOAD3d2ej79u0zzUVLly5t93AQYKiHjqRKumgQXUu6EEQPPloCjCA6PIlyLvCbeugIOtasBpqLBh6ijwhI1EMPXNYRfJ1ODXjaihUrUhdEJzDud2guivRYt22vRJaoLsUqVLd7KPDDILqiLnpwOnfunJmlqijnAk8giA5FEB3e0KBBA3OuNdH5zRNYCKIjoDPRqYceuM1FyUSHp8XExMjKlSvNZZqKBi6C6Eir8Sv2yYzIJlKox1CZFtHQ/B+wNG3a1Jxv2LCBGsdByMpC19I9UVFRdg8HQYAgOq5eversw0YQHZ7evlSqVMlZMgiBgyA6ArJpmJ60cSCBssANopOJDk/bsmWLaUapP55p0BK48ufPb84JoiM1Dp+5JIMmbhAJu75r65AweXHSP+Z6QBUoUEAqVqwYLxkDwYNSLvBWEP3SpUvmhNCzZs0a87ePG/AEPMVKCGWfJLAQREfAlnLRBlHZsmWzezhIYzkXMtHhrXroN9xwgznIhsBEJjrSYveJC+JIcF2MwyF7Tly0aUTwR5R0CV4E0eFp2tzcalDN7JXQLuWiwc6wsDC7h4MgDaJTFz2wEERHwKEeemCjnAv8pqko/BJBdKRF8VyZxREbG++6DGFhUipfVtvGBP9DED14HTp0yJxTDx2eokHTPHnymMuUdAlN1EOHN1nxLP0Nq6WDEBgIoiPgUA89sFHOBd5CED24gujHjx+3eygIIBuWL5CTMz4VR2yMM4D+drdqUjhnFruHBj8Moq9atcqU/0LwIBMd3kBd9NDlcDgIosOrKlSoYA7UXb58WdauXWv3cJBC1+cnAQHiwoULzg0MmeiBX85Fd06YGgdP0HqF69evN5fr1atn93CQDmSiIy1GjRol59fPkh4takmfJ543GegE0JFQiRIlzGnfvn2mkdfNN99s95DgIQTR4Q0E0UPXjh07TEJHZGSk1K1bN+V3TK4vE32b8J/w8HBp2LCh/Pnnn6baAr9hAwOZ6Ai4TNOYmBgpVqyYFC9e3O7hIA0KFixozvWI69mzZ+0eDoKEHly7du2aaRynARIELoLoSK1Tp07Jb7/9Zi4/3PsuaVg2LwF0uEVJl+Au50IQHZ5EED10WVnoOsNVA+kpEhMjMnasyOrV7k96uy4HUBc9IBFER0ChHnrgy5o1q+TIkcNcpqQLvFHKhdkNgS1//vzmnCA6Umr8+PFy5coVqV69utSuXdvu4cDPEUQP7kx0aqLDkwiihy4riJ6quEOGDJ5dDiETRNeSxTpLH/6Pci4IKNRDD56SLpqFriVdKlWqZPdwEASohx58megnT540M48y8EMDKSjlonr37s1BNKQ4iK7lXKKjo1OeYQi/pd8VVsP6RJnolFZAOhBED13UQ4cv6G9X/a2jB4L379/PjOoAQBAdASM2NlaWLl1qLpOJHvjNRbdu3er8wQOkF0H04KENdqxtvpbpsILqgCv6XaLBUP0B0rNnT7uHgwBp5KWlv44dOyYrV65knzIIHD161HnQ1SobGK+0QnJ0OQ7YIol9Ej2wj9Ch3w/btm0zl0neg7dn6essSt0f0aoLBNH9H+VcEDA2b94sp0+fNhuaGjVq2D0ceKC5KOVc4An6w0ab/ygasgS+jBkzSq5cucxlSrogpVno7dq1MwdogeTobIWmTZuay5R0Ca566LoNiDd7idIKSCcy0UO7hGy1atUkd+7cdg8HQY666IGFIDoChrVRufHGG02QBYHLCnSQiQ5PWLFihTkvV66cM2MIgY3mokgJzTwdPXq0s5QLkFLURQ8u1EOHtxBED02UcoEvEUQPLJRzQcCgHnrwIIgOT6KUS3A2F9XZBQTRkZQ5c+bIgQMHTJZY586d7R4OAjCIrvuW9F4IniB6onroqUX9dCRAED00pampaFqwzUGc+NbatWvl/Pnzki1bNruHhCQQREfAsI7MUbsy8FHOBZ5EED34kImO1JRyueuuuyRz5syefwB+3Aat6tWrS86cOeXMmTOybt06qVOnjt1DggfKuaQriE79dLhAED30XLx4UVatWuX9THS2OfhP8eLFzUkbi+oM65YtW9o9JCSBIDoCwvHjx2X79u3mcoMGDeweDtKJTHR4isPhIIgexEF03fYDrpw9e1YmTZpkLt93332efwB+3AY1zTzXpIypU6eaki4E0QObR8q5UD8dSQTRtf+ONjwPD6cabrDT3xXXrl0zB+VKlizpvQdim4ME2ejjx483iaME0f0b3wIIqCz0qlWr0twjCBBEh6fs27dPjh07JhEREVKrVi27hwMPIRMdyZkwYYJcunRJKlWq5J2Gwvy4DXrURQ8eHivnAiRg9drRALoevEXolJDVLHRtRA14yuEzl2TJzhPmPCHqogcOMtEREKyNCfXQg6uci2aZXr16lUaxSDMrC71GjRqSJUsWu4cDDyGIjpSWctGGovzIRXqC6AsXLjSzmngfBS6C6PCWyMhIiYqKkgsXLpiSLrly5bJ7SPAymorCG8av2CcvTNogsQ6R8DCRod2qy531Sjhvt+JcS5cuZdaLn+Mvg4A6Ikw99OCZGmk18dIsYiCtKOUSnKwp+TNnzpS9e/faPRz4mZ07d5rAp/7A6NWrl93DQYBmfdWtW9ccfNWDdVu2bLFlfPCjmuiAG9RFDx3aaJo+bPA03QexAuhKz1+c9E+8fZOaNWuafZJTp06xT+LnCKLD70VHR8vKlSvNZTLRg4MGPgoWLGguU9IF6UEQPTh17drVlO/S7UO7du344Yp4fvjhB3N+8803EzRDkllfjd+ZI3ePWG7O9f9xZcqUydlnh5Iugd0E8PTp0+mviZ5a2li4dm33JxoPBw2C6KHjn3/+MWV7smfPbhpQA56w+8QFZwDdEuNwyJ4TF53/15n51u9ZSrr4N4Lo8HurV682gfT8+fNLuXLl7B4OPFzS5fDhw3YPBQFKm/5YB9gIogeXbNmyyfTp06VYsWImG6NLly6m/jWgU1ytILqWcgHSmvWlqIsePKVctORGjhw5fPOgVuPh1avdn/R2XQ4BjyB66JVyadiwoem3BHhC6XxRpoRLXBnCwqRUvqzxrrNmPxBE928E0RFQ9dCpVxk8aC6K9Nq8ebPJQNOAqzYXRHDRALoG0rX+qH4P9OjRwxw4QWjTYOeePXtMsExnLABpzfpKGETXuugI7FIuPvudQOPhkEIQPTSbigKeUjhnFlMDXQPnSs/f7lbNXB8XzUUDA0F0+D3qoQcnguhIrxUrVpjzG264wVljH8FFS7pMmTLFNPaaPHmy9O/fn0BXiLMait5xxx2SNWv8DB4gtVlfWs5Fsw0PHDhA/4UARVNR+CqIrr04rly5Yvdw4EU0FYW3aBPRRYNayo/9GpjzuE1FLVaJua1bt5p+LfBPQRlE1zpWAwYMkJIlS5of3qVKlZJnn31Wzp8/n6r1aDaDu9N9993ntfHjfzRYEjcTHcGDci5IL+qhhwb9ITNu3Djz3fv111/Lm2++afeQYBPdj5swYYK5zH4YPJH1pQdi9ECsoqRLYAfRfVoPHSGldevW5nzixImmzAdN/4LTvn37ZP/+/SYxh98W8AbdB2lYNm+ifZG4B+ys2dVLly718eiQUkFX6OnChQvSvHlzWbt2rbRp08ZM/16zZo28//77Mn/+fLODnDlz5hSvTwPxrn6o1apVy8Mjhyu7du2So0ePmuZPdevWtXs48CAy0eGpIHq9evXsHgq8rFu3bvLZZ5/JY489Jq+++qo5CNe3b1+7hwUfmzRpktnP0/4oHFhHcjTLq1mF/KaEi2agu/vRqiVdli1bZn4j3HvvvT4fJ9KHTHR4m5YO0+8f3e/QXl116tSRDz/8UB566CFKjQZhFrr+fbXHAmAH3b/VA3WaSNq5c2e7h4NQyER/9913TQD9+eeflxkzZsg777xjzvX/OvV/+PDhqVqfZrEPGTIk0Yk6nL5hZaFrAD01Bz8QOEF0MtGRFtpkcv369eYy2SKh4dFHH5UXX3zRXH744Yfljz/+sHtIsKmUiwY6CVzAE1lfiuaiwVMTHfCWW2+9VTZs2GCy0nUf9JFHHpFbbrlFjh8/bvfQ4CGUcoE/8Lfmonqg+qOPPjIJyiVKlDDJrRrHue2222T58uVerQzir8KDrfTHt99+a5rMvfLKK/Fu0//r9Xo7Agf10IO/nAuZ6EgLnWEUExMjBQsWlOLFi9s9HPiIlnLR2WH6t9ea2Jo9itCg9arnzJljLpMtDE/SfUw9KLN9+3b2SQIQmejwFS0ZpA3PNSlPA0nas6V69ermOgQ+morCH1gzLXXG9dWrV+0ejnz66afy9NNPmwoRGkgfOHCg+Yxoryod6/jx411WBtHtpJam0ftWrFjRVAZp1aqVXL58WQJdUAXRdedXsxF0ZzjhFBz9v16vf3ytdZVSp0+flm+++Ubefvtt+eqrr8wRaPgO9dBDo5wLjQKRnnroZKSGDv1b63dy+/btTSZYp06dTPMdBL/Ro0eb85YtW5rMFsBTcuXKJTVr1nQ2DkRgoSY6fCk8PFyeeuopM8Ndm59r2VHdJ3niiSfMfgkCk8Z8rDgPyXuwU4UKFSRPnjwm2KwVNuymv7XnzZsnO3bsMAnJQ4cOlV9++UXmzp1r+gforJzo6GivVQbxRxHBFkRX5cuXd3m7Xq9/QF0upZmL69atM/XO4mrXrp2ZUlygQIEk76tvprhvqHPnzpnzQ6cuSNGiSR9VOnzmsuz996KUzKs1HDOH5LJb9x+T7WfDJEP2vKbmsT8ciYPnaOMM/dvG5i4im/YckgrFCvj1+9Gby+7/95xsPxNmzovnze734/WHZeevWC+RJapLpToN2DYEqaTeD9poVKdUr1y5Utq2bSu/TJ0tlzJkC5j3r93bB394Xqla9vQl+X7qYvOd0bNnT//8zGfKJJIlS9K3++O44QyabNi5X35ZuF5ubNkuID4X7DuIxMbGypGz0WZ/ICxrbv/cNiAoJHxPVq5c2SR7vfTSS6Zni2Zrzp49Wz788jvJWrAU24YAW/b3vxZKpuLVpFjOTCaAybYEdmrQoIHMWLhcxs1eKQVLV/Loe/3atWup7kvlStOmTU1iy8yZM80BKG3SnlxlkM8//9zc/sILL0ggC3MEUQqo/qjWH1f6ZaZTvhPS6zWjXBuDaF2z5DzzzDOm1o8eDdIpW//884+88cYbMm3aNBPU1Y65evTFHa2d/tprryW6vsRT46VVnjNSJfNpl/fbdDmXzLtQWBwSJmHikBZRh0NuWV1u7vnCmnYojthY6VHOIQ0LBs1bFdpx+miY/LgjTMLCw7UWk7SIOiSVI0+5XHZzdG6Zf7GI833TPCvLhtqycbPNN0XnkrnnCpv3ji57Z5lYtg9BuH0Yvyvc+X5w9Tc+c+aMDBo0SM7lryZ52z0uEhbuP+/fqENSJdLN92B0Lpl/oYit36+Bsi/gan/g9pJXpFmxoMoBgR8Ys2SX/O0o5/xe8YvtSDAvm4ptZFLLrj2bVRZfKcn+AGzdJ9Fmo5988olcK1FP8rR9nO1IAC6r+yS6HymOWLmrLHEH2OvTP1fJ9lz10rQtSe578MSJE6ZJslbnKFasWLrG2alTJ/nzzz9NmdVatWrJtm3bTOkWTXByVeZKk5E1qXnfvn0BXY7VL4PoWmcnbgZ3cp588kmTZe7pILq7jAet5TN//nyZOHGi2yMzrjLRdbphlSpVpPhTP0tYxkg5+NX9EnPu33j30Syrog9/fz2w+B9HbExILetqufAwkXkDmyV7ZA2BQY+WtvhggcTG2fr46/uRZf1/WbYPwb99cPc3Xr5hm/T8aZffvSf9dVm7Hz+oP+99+4okVVqoYkUR+vL4JfZJgmdZv90+IOj3STbuOihdv9twPRDrR58Jlk39smxHYPc2p/n7CyRukNaT71+NSZYuXVo2bdoUr5eINgDVU0rt27fPWXpGA/KaXKwBdQ2s9+/f38zOSejxxx83M3d01o7GVAOVX6byfP3116YgfUrdfvvtJoieM2dOZ3aauy6xylourXXQ+vXrZ4Lo2nwiqSB6wjei9fgqLDyDFK9cR8KO74h3H0f+8uKI8yEIxWVdLac7LgfPXJES+ZKekobAcODMmXg7o9Z7oUTVGyQ8wfsmNn85iXXxvilRpa7L9xjLht6ybB+Cf/vg7m8cnrOghIXvCfhtiZ3fr/66L+BuWb/8vMfEiIwalbLlkpjBCP/aJylZtZ6En9gRr2+LP29HWNZPtw8IiX2SixHZ4gXQ/eUzwbKpX5btCOze5iTMck7NPkly79+IiOshYE3ujWvw4MGmkkZKXL16VXr16mUShocNG+aszmHFYd3FW3PkyBFvuUDll0H08+fPp+l+Vi10qzZ6amump1S+fPnMeWoC/QllCAuTRTMnS+Gc8etnHj5zSRq/Myfel3WoLetuuVL5siZ8GRGgSueLMkdJE70Xpv+a8vfNjN9YlmWdy7J9CP7tg6u/cdBsS2z+fvXHfYGA+rynNDBOAN0vud+OTLJ/28Cy7A8gIPZJ3G5H/OAzwbJsRxBa+yQpef+6ykRPaWWO++67TxYsWGCSizWYHmriH7YIcBoc187smiGeMMCt/9frdepCeuvvLF++3JyXKlUqTffXD8Xb3aol+hAovW5ot+rmza/0PNSWTc06EZjsfo/527K6TVBsGzy7LAKTP7x3gnX74E/Pi887/IU/vH/t3jYE+7JAWgXi9yvbBrYjCFy+ev9mz57dZIZbp5QE0TWAfv/995sy2vfcc4989dVX8W73RWUQf+CXNdHTQ6chvP766/L888/LO++847xem4/pVAOtiR63G+zFixdNPZ+sWbNKiRIlnNdrh9lKlSpJxowZ461fu3C3bt3aTGHYvHmzlC1bNsVjO3DggAngL1+/RepXr5jksnpUac+Ji+YoUnIfgmBdNjXrRGCy+z3mL8vuO3FOfp46V+7o0DLZqYP+MN5AWxaByR/eO8G6ffCH58XnHf7GH96/dm8bgn1ZIK0C6fuVbYN3lwV8wVvvXysmmdrGohpA79Onj/zwww/So0cPGT16tLOMi4XGogFKM84bN24s69atkzZt2kidOnVMx+yZM2dKvXr1TC3zLFn+98aaN2+etGzZUpo3b24uW3SKghbGb9KkifkDazB948aNZj1hYWHy+eefy8MPP5yqsVlv2N27d6c5ix1A8NGDclOnTpUOHTokOnAHILSxfQDgCtsGAK6wbQDgySB63AD6nXfeKWPHjk0UQFcaWtZ1asb5kSNHJCoqKl6ctlChQpI/f37ZtWuXBLKgKuei9A+lgfKnnnrKZIp/8MEHsmXLFhk4cKDpAhs3gJ6UW265xRmM/+6770x3Wa0bdNddd8nSpUtTHUAHAAAAAAAAAH9nlXDRAHr37t1lzJgxLgPoSpON+/bta3pcvvHGG/Fu0//r9VpHPdD5ZWPR9NIaO8OHDzen5LRo0SJeh1vLrbfeak4AAAAAAAAAECq0VPaoUaMkW7ZsUqFCBXnzzTcTLdO1a1epVauWufzcc8/J5MmTTSntNWvWJKoMosnOgS4og+gAAAAAAAAAgNTbs2ePOdcs8rfeesvlMlqq2gqiW5VBhgwZIhMnTpS5c+dK4cKFTWUQ7V+Z0sog/owgOgAAAAAAAADAGDlypDl5qzJIIAq6mugAAAAAAAAAAHgKQXQAAAAAAAAAANwgiA4AAAAAAAAAgBsE0QEAAAAAAAAAcIMgOgAAAAAAAAAAbhBEBwAAAAAAAADADYLoAAAAAAAAAAC4QRAdAAAAAAAAAAA3CKIDAAAAAAAAAOBGhLsb4HmxsbHm/PDhwxIRwUsP4Lpr167JiRMn5ODBg2wbAMTD9gGAK2wbALjCtgGAOxqLjBubROqxVfWh/fv3m/NGjRrZPRQAAAAAAAAAIeTo0aNSokQJu4cRkAii+1DlypXN+T///CM5c+a0ezgA/MS5c+ekSpUqsmnTJsmePbvdwwHgR9g+AHCFbQMAV9g2AHBHM9A1gF67dm27hxKwwhwOh8PuQYSKs2fPmuD5mTNnJEeOHHYPB4CfYNsAwB22DwBcYdsAwBW2DQDgPTQWBQAAAAAAAADADYLoAAAAAAAAAAC4QRDdhyIjI2Xw4MHmHAAsbBsAuMP2AYArbBsAuMK2AQC8h5roAAAAAAAAAAC4QSY6AAAAAAAAAABuEEQHAAAAAAAAAMANgugAAAAAAAAAALhBEB0AAAAAAAAAADcIogMAAAAAAAAA4AZB9AQOHjwoH330kbRp00ZKlCghmTJlkkKFCsltt90my5cvT7R8WFhYsqf9+/cnut+VK1fkww8/lBtuuEGyZ89uTtWqVZPHHnvM5bi2bdsmd9xxh+TLl0+yZMkiNWvWlC+//FIcDodXXgcA9mwfLl26ZLYNderUkdy5c0uuXLnM5/2tt96SM2fOJDvG8ePHO9f9008/efT5A/DMtkFt375d+vTpI+XLlzff60WLFpXWrVvL77//7vZxxo4dK/Xr15eoqCizfejUqZOsXr3a5bK6fzBp0iRp2bKlFC5cWLJmzSoVK1aUhx56SHbt2uWx5w7A3u3D1q1bpV+/flK7dm3Jnz+/REZGSqlSpcz2Yfbs2YmW//fff+Wbb76RLl26SJkyZczy+vuiffv2MmPGDK+8BgB8v23Ys2dPkr9BhgwZ4nZs69atk7vvvtusX7cRRYoUMduIuXPnevQ1AIBAE+YgChvPoEGDZNiwYVK2bFlp0aKF2RnVL6vffvvN/CAdN26c3Hnnnc7l3X357Nixw/zYrVKlimzcuDHebadOnZJ27drJ33//LY0aNZKGDRua63fv3i3z58+XEydOxFt+06ZNZjkNrmkgXb/E/vzzT7Pe/v37y6effuqV1wKAb7cPV69elaZNm5od51q1apnHULrDqjuzVatWNdsNDYa5cuTIEXMw7vLly3LhwgX58ccf5a677vL46wAgfdsG/YxrcFs/8xrI0h/Dx44dM0FvPVim247BgwfHeww9kPbyyy9LyZIlzQ/sc+fOmQNlelBeA2WNGzeOt/zAgQPNATkNoN9yyy2SI0cOsx2ZOXOmZMuWTZYsWWK2FwACe/vwyy+/mINj+ntCtw/6Wdfg3OTJk+Xs2bPy5ptvyksvveRc/quvvpJHHnnE/J646aabTJDswIEDMnHiRPNb491335Vnn33W568TEGq8vW3QIHrp0qVNMk7Xrl0TPb4+pvVbI64ffvhB7r//fsmZM6c5GKfbCI1PrFy50ux/xN2eAEDI0SA6/mfixImOefPmJbp+wYIFjowZMzpy587tuHz5crLr6d+/vx6ccHzwwQeJbuvatasjLCzMMXbs2ES3Xb16NdF1zZo1M+uaOnWq87ro6GhH06ZNzfVLlixJ4bMD4M/bh/Hjx5vrb7311kT3ueWWW8xto0aNcrvezp07O0qVKuUYOHCgWfbHH39M8XMD4LttQ/v27c1n9Lfffou3/J49exzZs2d3ZMmSJd7y27Ztc0RERDgqVKjgOH36tPP6NWvWOCIjIx2VK1d2xMTEOK8/fPiwIzw83FGyZMl4y6sPP/zQPHafPn089vwB2Ld90MuxsbGJ1n/w4EFHgQIFzGOcOnXKef3s2bMdv//+e7xthtqyZYsjZ86cZnm9L4DA3jbs3r3bLN+7d+8Uj2nlypVmf6NBgwaOkydPpihWAQChhHIuCXTr1k2aN2+e6HrNDtUjv5pFvmHDhiTXoVmgmmWqU7J69eoV77Zly5aZo8v33HOPmSKVUERERKIyLgsWLDCPrVOoLLruN954w1weMWJEqp8nAP/bPlglFuJ+1i0dO3Y058ePH3e53pEjR8qUKVPk22+/NVmmAPx326CfdZ1KnfCzrlmk1atXN9mg58+fd17//fffy7Vr10z2l2aGWXTGSo8ePWTz5s2yaNGieNlnsbGxJjs97vJKs8qS2pYACKztg5Za0OUT0kxz3QZo1urevXud17dq1Uo6d+4s4eHxfwZquSfNetXldaYKgMDeNqSF7mfExMTI6NGjTdm45GIVABBqCKKnQsaMGVP05aFTqvRLT6dZ6bSshPWKVffu3c20qO+++06GDh0qY8aMMTUKE5o3b54511ppCTVp0sTURdUSMAACf/tglVaYNm1aovtpCSfdcdad6oS0rvpTTz0lDz74oJmaDcC/tw36Wdep2gk/6/v27TM/mHXqdd68eVO0L9C2bVtzHndfQKd464G6xYsXm3IOcf3xxx/mnG0FEBzbB3f0d4WWf9AScFr7PK3jARDY24ZDhw7J559/Lm+//bb83//9n+zcudPlY54+fdqUfNP+CuXKlTP7Fe+9954MHz6cA2sA8B/2kFJIv5z++usvU1tUj/QmRb+cVN++fRPdtmrVKnOu9c40Gz3uj1vNHtUs0ri1z3Q56wdxQhkyZDB1zrRmumaoscMLBPb2QbPNtWbhr7/+anZg49ZE154J2ghMG47GpTvTDzzwgKmB+v7773v0eQHwzrZBaxRrgPv22283B9QqVKjgrGuqtVGtA+5x9wV0H0EbjiVk7R9Y+wtKf0S/8847pi56pUqV4tVEnzNnjjz66KOmpwqAwN8+xJ29qjWUNYtUg2baaFCDYloDPXv27MmOR3+TaH31zJkzm0xYAMGxbZg1a5Y5WTQpp2fPnmbboAl5Fm1Urr8rihcvbmarWAfdLdrAdMKECYlmuAFASLG7nkwguHLlirMu+Q8//JDksrt27TL1zkuUKJGo1qCqWLGiWU+GDBkc9957r2Pnzp2mTuGYMWMcOXLkMPXP1q1b51y+X79+ZvlZs2a5fLxGjRqZ213VLAMQWNsHpdc///zzZjldp3XSeoZa8zChL774wtw+ffp053WDBw+mJjrg59sG/TzXq1cv3uc8b968jo8//thx7dq1eMvqvkHRokVdPo7WS9f7dunSJdFt2mdB66TGfYwmTZo4Fi1a5MFnCsDO7YNlypQp8ZbPli2bY/To0SkeU48ePcz9Xn/99XQ9NwD+sW04evSo45VXXnGsWrXK9EfReMFff/3luPHGG839unXrFm95/d1gxSkKFixoaq+fOXPGsXnzZrOPobfdcccdXn8NAMCfEURPhga07r77bvOloQHt5Lz88stmWQ1iuVK+fHlze61atRI1AbKCYQ888IDzOoLoQOhsHy5cuGB2UnXH9aeffnKcOHHCnPSyXqcNwrRJkEUPwkVFRTnuv//+eOshiA7497Zh+fLljsKFCzvatGljftzqZ18/z08//bS5T/fu3dMdRH/ttdfM/YYOHerYv3+/49y5c46FCxc6brjhBtM0bPLkyR5+1gDs2D4kFB0d7di6davjmWeeMQfkH3/88WTHNGjQILPudu3auQ3SAwjsbYNF72cl9ul6LGPHjnUG5n/99dd499GGpZoEpNuUffv2eeDZAkBgIoiezBeZZn/qF8k999zjNnM07vLFihVzhIeHO/bu3etyGf3xquvTo8IJHThwwNxWs2ZN53W6A6zX/fLLLy7XV61aNfNlRqdsIPC3Dy+99JJZn6vglmaD6G19+/Z1XteiRQsTWNPskrgIogP+u23QLLPSpUubz67+kE2oa9eu5r5xs8Xz5ctnskpdWblypVm+V69ezuv0wLtepz+sEzp8+LAjS5YsjnLlyqXzmQLwh+1DUh599FGz/NSpU5M9wN+qVSvHxYsX0/CsAATatuHNN980y3/yySfO6/744w9nJro+XkL6G8RVgB0AQgmNRd2IjY2VPn36yKhRo6RHjx4ycuTIRF3sE5o+fbocOHDA1AsrUaKEy2W0873KlStXotus67SzdlK1Ti1a81DrJGtddOqhA4G/fbAaBblqHmpdt2bNGud1evngwYNm26H1Da3Ta6+9Zm7Xsen/P/roo3Q9XwCe2zZs2bLFfHffeOONpuFfSj7rui9w/vx5OXLkSKLlXfVOSWpbonXVtU76jh07zDoBBPb2ISlWM2KrOXFCr7zyiqmzrD1YpkyZIlmyZEnDMwMQaNuGfPnymfMLFy4kilPo+q3GpsnFKgAg1BB5TeKL7IcffjBNPkePHm2aeCYnqYaBllatWsnYsWNNM9CErOtKlSrlvK558+bmXDtlDxo0KN7yixYtMl981jIAAnv7cOXKFXN+/PjxRE3A9DoVGRnpvO7ee++VixcvJlqPNgbSnWjdoS5TpoxUq1YtFc8QgDe3DXE/5664+qzr9/zSpUvNvoB+7uOaMWOGc5nUPIb+QHf1IxlAYG0fkqINRpWrz7oVQNdtx59//ukyMAcgOLcNy5cvTxR30OakmuijjU018adYsWLJxioAIOTYnQrvz1OptK5YSsukHDt2zNQezZ8/v6lF6I4259Bp2ZkzZ3asX7/eeb3ep3379uZxv/3223j3sZqLxJ2Kqcs3bdrUXL948eI0PVcA/rV9eOihh8y6telw3GmcWp+0Z8+e5jYt+ZIcyrkA/rtt0Lqi2khcSzvNmDEj3m1aZ1S3E1qmTWsaW/Sy1jGvUKFCvPJNa9ascURGRjoqV64cb5thNQerWrVqonJPX375pbmtcePGHnr2AOzcPmhJp4R9lqwGhMWLF3dZ4kHLSur1+lvi/PnzHnmeAPxr27B69WqX24aJEyea9eTOnTvRPsLbb7/tLBEXd79i3rx5Zv2lSpWijCyAkEYmegKvv/66mUqVLVs2qVChgsnQSKhr165Sq1ateNfp0eOrV69Kr169JFOmTG7XnyNHDhkxYoTcfvvt0qBBA3OeO3du+euvv2Tjxo3SoUMHue++++Ld54svvpDGjRubx9Uj1IULFzYZI7p8//79pVGjRh58BQDYtX148cUXZfLkyWb5VatWmZkravbs2Sb7Q8s1DBw40AvPDICvtg2aJfbee+/JQw89JO3bt5dOnTqZ8ipaqmXSpEmmxIp+znU9Fr08ZMgQefnll6VmzZpy2223yblz5+Snn34yt+t+Rdyp3927d5cvv/xSFixYYO7bpUsXMw1bZ6nMmTPHlGz48MMPffTqAKHN29sH/b+WZ9IyD5pFqtuCnTt3mrJOmr36zDPPmN8RFi0V8cYbb5hSkPXr1zePl5CWd9ETgMDdNjz99NNmW9CwYUOTVa6lYHU/QGez6/p0W5AzZ854jzdgwAD5448/TEa8/vZo1qyZHD58WCZOnGju891331FGFkBoszuK72+so8FJnb7//vtE99MsML1t06ZNKXoczQhp166dI1euXI5MmTKZbLFhw4a5PbK7ZcsWx+233+7IkyePyTqrXr264/PPP3d5dBlA4G4fDh486Ojfv79p+qfbBv28V6xY0fHss886Tp48maJxkokO+P+2YebMmY6OHTua2WnaxCtnzpxm5tmYMWPcPo7epg3KtTGoLt+hQwfHqlWr3GatDR061FG7dm1H1qxZTSa7NiTThmUp3VcB4P/bhwkTJpgs1jJlyjiioqLMzDf9rHfr1s0xffp0t/sISZ10GQCBvW0YMWKEiTfojBTdb9DfFLqd0AahmzdvdjsubVyqs1Ws3yIaf7j11lsda9eu9crrAACBJEz/sTuQDwAAAAAAAACAP4rf9hkAAAAAAAAAADgRRAcAAAAAAAAAwA2C6AAAAAAAAAAAuEEQHQAAAAAAAAAANwiiAwAAAAAAAADgBkF0AAAAAAAAAADcIIgOAAAAAAAAAIAbBNEBAAAAAAAAAHCDIDoAAAAAAAAAAG4QRAcAAAAAAAAAwA2C6AAAAAAAAAAAuEEQHQAAAAAAAAAANwiiAwAAAAAAAADgBkF0AAAAAAAAAADcIIgOAAAAAAAAAIAbBNEBAAAAAAAAAHCDIDoAAAAAAAAAAG4QRAcAAAAAAAAAwA2C6AAAAAC8qkWLFhIWFmb3MAAAAIA0IYgOAAAA2+3Zs8cEWfXUtm1bl8ssW7bM3H7ffffZGtA9ffq0DBs2TJo3by4FChSQjBkzSs6cOaVOnTryxBNPyPLlyyXUDBkyxLym8+bNs3soAAAAgMcRRAcAAIBfmTlzpsyZM0f8kY6rfPnyMmjQIDl8+LB06dJFnnvuOenTp4/ky5dPRowYIQ0aNJCPP/7Y7qH6lR9++EE2b95s9zAAAACANIlI290AAAAAzytVqpTs27dPnn/+efn777/9qgTI2rVrpVOnTmZMo0ePlp49eyYa38mTJ+Wjjz6Ss2fP2jZOf1SiRAm7hwAAAACkGZnoAAAA8BsVK1aUXr16ycqVK+Xnn39O8f3OnTsngwcPlqpVq0qWLFkkV65cpizMokWL4i2nQe/58+c7L1unlJSI0VItly5dks8//1zuuecelwH+PHnyyOuvvy4vvPBCmscYt+TM1atXTakUPbgQGRkpFSpUkC+++MLl+BwOh3z33XfSuHFjyZEjh2TNmlVuuOEGc11S5VdGjhxpStHo8vq46syZM86SNUWKFJFMmTKZ83vvvVd27tyZaKyvvfaaudyyZUvna6pjTvh8Erp27Zp8+OGHUrNmTfOaaFkcXceUKVMSLavj1HXouc5WaNSokRlz3rx5pXfv3vLvv/+6fF0AAACA9CITHQAAAH5Fg9A//fSTvPzyy9KtWzdTczwpmv3drFkz2bhxowkgP/zwwyYTfPLkySYgO2HCBOnatatZVoPYGoTdu3evuWypVatWko+xfft2Wbhwocmo1kByciIiItI8xrh69OhhMvLbt28vGTJkMAcWHnvsMfOa9OvXL14AXTPjf/zxR1Nu5u677zaB71mzZskDDzwgmzZtkvfffz/R+t977z2ZO3eu3HLLLdKmTRvzGEpLr7z66qtmbLfeeqtERUXJli1bZNy4cfLnn3/K6tWrpWTJkmZZ6wCEHpzQYLYVPNeDBEnRMd9+++3mNdCDA/q8Lly4IOPHjzdlcjS4/vTTTye63++//27G0LlzZxNIX7BggSkXo8F9VwckAAAAgHRzAAAAADbbvXu3Q3dN27Zta/7/zDPPmP9/+umnzmWWLl1qruvdu3e8+959993m+hEjRsS7/ujRo47ixYs78ufP77h06ZLz+ubNm5vlU2PUqFHmPr169UrT80vrGG+88UbHmTNnnNdv2bLFERER4ahYsWK89XzzzTdm+T59+jiuXLnivD46OtrRuXNnc9vKlSud1w8ePNhcFxUV5Vi/fn2i8Z4+fdrx77//Jrp+zpw5jvDwcEffvn3jXW+tb+7cuS6fv6vX3HpN9TYdp2Xv3r2OfPnymee5c+dO5/Xff/+9WV6vX7RokfP6a9euOVq0aGFu0/cIAAAA4GmUcwEAAIDfefHFF00m8xtvvCHnz593u9yJEydM5nKrVq2kb9++8W4rUKCAPPvss3L8+HH566+/0jWeI0eOmHMtaZLQ6dOnTXmUuCeti+6JMQ4dOtSUZolb7kYz2bdu3WrKw1g+++wzky2upWbiZu5rNvpbb71lLmuWekIPPvigVK9ePdH1WlZFS9MkpJnpWo4mva+nGjVqlDl/9913zTgtmu2vGeha6mXs2LGJ7qdZ9voaWDR7XjPg1YoVK9I9LgAAACAhyrkAAADA7+TOnVsGDRpkTlqGRAPTrmjQNCYmRqKjo10uo2VYlJYi0aag3qBBdKsmuEVLnTz11FPpHmPdunUTLV+sWDHn42bPnl0uXrwoGzZsMAF+rWOekNZVt9afUP369d0+L62XrgcDli9fbg4EaFDbEjfonVZr1qwxNc1djUGD9VYz14SSe00AAAAATyOIDgAAAL+kjTw1w/qDDz6QRx991OUyWmtcLV682Jzc0Vrb6VGwYEFzfujQoUS3aQ1wre9tyZw5s8fGGDcLPWG9dQ3Mq1OnTpnHP3jwYKJgfnLrt55XQlqj/c4775Rs2bKZ5qf6HDXgbTX21Jry6aU14YsXL+7ytsKFCzuXSctrAgAAAHgSQXQAAAD4pSxZspigsDbG1PNevXq5DagOHDjQZeNMT9EGllbzzNjYWAkPT3lVRG+P0Vq/ZmivXLkyVffVoLgrmjGvBwNWrVplGpXGpU1fPTXuY8eOJVk+x1XAHAAAAPA1aqIDAADAb2mta63BPWLECNmxY0ei2+vVq2cCwUuXLk3xOrWGdmqzljWQ3KRJE9m3b5+MGTMmxfdL6xhTQ0u6VK5cWTZv3uyxciY7d+4060wYQD98+LDs2rXLI69p7dq1TSmav//+22UpGVWrVq00jB4AAADwLILoAAAA8FsanH377bdNXW9X9cQLFSokd9xxhyxZskTee++9eGVVLFrTW4O1Fqth5v79+1M1lk8++cRkx2tpGVdNOq3yIwnHkJYxpqX0jd6/X79+Lsu27N69W/bs2ZPi9WlNdz1ocfToUed1ly9flkceecRZYz2utLymVjPQF154Id46dR0ffvihKdHSs2fPFK8PAAAA8BbKuQAAAMCvdenSxWSBL1q0yOXtX3zxhWzdulWee+45GT16tDRs2FBy5cplgrFa3kQbd2oGtdb0Vq1atZJffvlFbrvtNmnfvr0pW1KzZk3p3LlzspnTf/zxh6kVfvfdd8vgwYOlWbNmpq74uXPnTJb6zJkz5cqVK2a86Rljaj300EOybNkyGTVqlKm7fvPNN5tGoxoE14aiGqQfN26cqW2eEo8//rg56XO+/fbbTVPRWbNmmQMA+lqtW7cuUSNQzbZ/8cUXZePGjZIzZ07z/Pr37+/2MbQ8z6RJk2Ty5MlSo0YN01RVDwCMHz/e1JHXWvhlypRJ0+sBAAAAeBJBdAAAAPi9YcOGSePGjV3eplnQmuWtTUg1ADt27FhTt1wzwDXg+8orr0i+fPmcy2u2tmZla21vXa8GiDUrOrkguhWA14D3V199JX/++af89ttvcubMGRP8Ll26tNx///1y7733Sv369dM1xtSyGn526NDBlL7RYP/58+elQIECpiSL1mLXwHpKPfbYY5IxY0b59NNPzfo0IN6xY0cZOnSodO/ePdHyVapUke+//94EvvU+0dHRJps9qSC6jlkPZnz88ccm+K/3y5Qpk9SpU0cGDBhgDp4AAAAA/iDM4Wo+KQAAAAAAAAAAoCY6AAAAAAAAAADuEEQHAAAAAAAAAMANgugAAAAAAAAAALhBEB0AAAAAAAAAADcIogMAAAAAAAAA4EaEuxvgebGxsXLo0CHJnj27hIWF2T0cAAAAAAAAAEHO4XDIuXPnpEiRIhIeTk51WhBE9yENoBcvXtzuYQAAAAAAAAAIMfv375dixYrZPYyARBDdhzQDXe3evVvy5Mlj93AA+ImrV6/KzJkzpU2bNpIxY0a7hwPAj7B9AOAK2wYArrBtAODO2bNnTWKvFZtE6hFE9yGrhIu+YXPkyGH3cAD40c5u1qxZzXaBnV0AcbF9AOAK2wYArrBtAJAcykunHUVwAAAAAAAAAABwgyA6AAAAAAAAAABuEEQHAAAAAAAAAMANgugAAAAAAAAAALhBY1E/FRMTY5qCAPAubbiTIUMGu4cBAAAAAAAAP0UQ3c84HA45cuSInDlzxlwG4P3O1Dlz5pRChQrRpRoAAAAAAACJEET3Mxo8P336tOTPn1+ioqII6gFepAeqLly4IMePH5csWbJIrly57B4SAAAAAAAA/AxBdD8L6B07dkxy5Mgh+fLls3s4QEjQ4Hl0dLT57GlGOgeuAAAAAAAAEBeNRf2sDrqeNIgOwHf0M2d9/gAAAAAAAIC4CKL7kWvXrpnziAgmCAC+ZH3mrM8gAAAAAAAAYCGI7ocoJwH4Fp85AAAAAAAAuEMQHQAAAAAAAAAANwiiAwAAAAAAAADgBkF0BKQhQ4akuQTHyJEjzX337Nkj3qLr1sfQx0LKlSpVSu677z67hwEAAAAAAAA4EUSHT23cuFHuueceKVq0qERGRkqRIkWkZ8+e5vpQduzYMRk0aJBUr15dsmXLJpkzZ5Zy5cpJnz59ZNGiRRJMlixZYg6CnD592u6hAAAAAAAAAMkiiA6fmTRpktSpU0dmz55tgsNffPGFPPDAAzJ37lxz/a+//pridb388sty6dKlNI2jV69e5r4lS5YUf/D3339L1apV5aOPPpK6devKsGHD5LPPPpM777zT3Na0aVNZsGCBBFMQ/bXXXnMZRN+6dauMGDHClnEBAAAAABAsNO5SrVo1OXfunN1DAYJChN0DQGjYuXOnCV6XKVPGBITz58/vvO3JJ580gWK9ff369WYZdy5cuCBRUVESERFhTmmRIUMGc/IHp06dkq5du5rnsnbtWqlUqVK8299880356aefJEuWLOKvrL+JJ+jsBAAAAAAAkD5Wedlx48bJQw89ZPdwgIBHJjp84r333pOLFy/KN998Ey+ArvLlyydff/21Cca+++67ieqeb9q0Se6++27JnTu3NGnSJN5tcWl2+RNPPGHWlz17dunSpYscPHjQLKfLJ1UTXWtxd+rUyZROqV+/vimnosH8H374Id5jnDx5Up555hln2ZUcOXJI+/btZd26dWl6Xb766is5fPiwyUJPGEBXOs4ePXpIvXr14l2vz+v++++XggULmsCzZrJ/99138ZaZN2+euf/PP/8sb731lhQrVsw8r5tuukl27NiR6LGWL18u7dq1k5w5c0rWrFmlefPmsnjx4njLJPU30QMgWs9cXzd9nEKFCpkx/vvvv/Hu/+yzz5rLpUuXNuuK+7dwVRN9165d0r17d8mTJ48ZV4MGDeTPP/9M13MFAAAAACCYPfLII+Z88+bNdg8FCApkogcQDTK7o5nVGjRMybLh4eHxMptTs2xaTZkyxQRINePclWbNmpnbEwZHlQZQy5cvL2+//bY4HA63j6HBVw2iaka7Blrnz58vHTt2TPEYNdh6++23mxIzvXv3NkFpXaeWWNEgtRXQ/e2338yYNAh89OhRcwBAA84aWNYa76l9XfT17datW4rvo4+pz0+Dxv379zcHJaZNm2bGffbsWXnqqafiLf/OO++Yv6MG/8+cOWMOVGgdeg2aW+bMmWMOBuhzHTx4sFn++++/l1atWsnChQvNgYXk/iazZs0yr49OGdMAuta514Mmer5s2TIzXn2e27Ztkx9//FGGDx9uDniohAdW4j7XRo0amQMweoAkb968MmrUKHOA5JdffpFbb7011c8VAAAAAIBg16JFC/nyyy9N0hmA9COIHkA089mdDh06xAtAFyhQwAQeXdGAb9yNqAavT5w44XLZG264QVasWJGucWsw89ChQ3LLLbckuVyNGjXk999/N/W6NJPcUrNmTTP9KCmrV682AXQNIGtwVj366KMmoJvSLHGtx62lZqxA/x133CHFixc3weT333/fXKcZ6BoE1kCtRYP2mkX+f//3f/LKK69IamzZskUqVqwoGTNmjHe9vgbR0dHO/2ug3SqZ8tJLL0lMTIxs2LDBBJXVww8/bDLWNdNbp2nFPfBx+fJlUyomU6ZM5v+aPa4ldP755x9TH02D4Hr/li1bmmC8leGv69GDB1p/fubMmfHG5+pvoq/3wIED412nwX4dl2b46+uqf2Otf69BdC1jo++9pGhQXAPpGsi3Mt779etn1jNgwADznor7t0juuQIAAAAAEOyuXr0qjRs3ds4a11n1OrsbQNpRzgVeZzWxiBsYd8W6XbOp49IAb3KmT5/uDOTG9fjjj6d4nFWqVImXKa/Z0Rrg1uxqi5ZOsYK2GsjWUiV6cEOX00B+aulzdXVwRAPz+vjW6fnnnzfXa8B74sSJ0rlzZ3NZD35Yp7Zt25oDFgnHoQcSrKCysp6j9bw06Lx9+3ZTnkWfj7U+naGg5VD0wEJsbGyyf5OEgXtdhwbRVVpeGzV16lSTBW8F0JW+Xg8++KApAaPZ/6l5rgAAAAAABDtNkNOkQKWxA/1dDyB9yEQPIOfPn3d7W8JGmceOHXO7bNzMXRW3Nnhyy6aFFRxPriO0u2C7lk1Jzt69e81YEy5brly5FI+zRIkSia7TTGZt/mnRYPLHH38sX3zxhezevdsE0i1WVnhq6HN19Xd9/fXXTakW1bp1a+f1x48fl9OnT5syKXpyJeHfPuHz0uekrOelAXSlJWzc0eC8dT93fxM9sv3aa6+ZRqgJx6D3Twv9u954442Jrq9cubLz9rgZ5sk9VwAAAAAAgp3+Jo9bDlerEehscABpRxA9gFjlPOxcNi20UWXhwoXNFKKk6O1FixY1zTrj8kRN9pRIeCDCEveLR2uAa8kWbZj5xhtvmOlQGrzXMjIJs7VTQsvAaLkZnWoVt6SLlitxxXqMe+65x23QO+F9k3te1jq1+WutWrVcLpswW97V30TL3yxZssQ0DtX16H103dqsNC2vjbf+hgAAAAAABDMrsU1/l+vv4bgJgADShiA6fKJTp04yYsQIUxs7bmkOi9a81ox4rcOdFiVLljSBWs0O14aXcZuFepI2s9Ta4Vr/PC7NDreaZKb2ddGmm7/++qsJQidHS7to9rp+Ad58883iCWXLljXnevAirevUTO/Zs2ebTPRXX33Veb2V5R6XVXM9pX9XrVXvqpa8dTsAAAAAAPgf7S2mtBSq9hpL2IcNQOpREx0+odnJmr2sQXKtu52wDIjW2M6aNatZLi20HrjSMitxffrpp+LpTOeEWc0TJkyQgwcPpml9jzzyiBQsWFCefvpp07A0oYSPpY9/2223mbro2iwzIS33klp169Y1gXRtnuqqtExK1mllgCcc70cffeR25oMeeEiONsz9+++/ZenSpc7rtFa7lrLRpqRaxx4AAAAAACTORNe66ATQAc8gEx0+odnho0aNkp49e0r16tXlgQceMHW1Nftcs7q1CeWPP/7ozIpOSyBYg8satNUgvTa0nD9/vjMwnZrs5+Qyx7VeuTawbNSokWzYsEHGjh0rZcqUSdP6tByMZqFro9CaNWvKXXfdJfXq1TNfcvv37zcB+oS1vvUo8ty5c02t8H79+plAsh6I0Oadf/31l7mcGlqO5ttvv5X27dtL1apVzXPTsjp6YEAfRzPUp0yZkuQ6dJlmzZrJu+++a0rT6P1nzpxpZga4+lupl156yTxffa76/F2VFRo0aJB5X+jYnnjiCfN66ftI16sHEjxRsx8AAAAAgGAMohcoUMB53cWLF03yIoC0IYgOn+nevbupAT506FBn4FybcWp5lBdffDFeg8i0+OGHH6RQoUIm6KqBaS1NMn78eKlYsaJkzpzZI89Bx6mZ0OPGjTPrrlOnjvz5558m2JtWDRs2NFnlH374oVmXrldL02ggWkvfaNZ106ZNnctr5rpmZ2swf9KkSSb7Xl9HDYAPGzYsTWNo0aKFyfbWOu+fffaZyUjX11ID9SktsaOvyeOPPy6ff/65yUhv06aN6QhepEiReMvpQQJ9nK+++kqmT5/uLMPjKoiuz1XrrD///PNmVsHly5dNzXcN6nfs2DFNzxUAAAAAgFAJoq9atUruvvtuE0Bfs2aN3UMDAlaYg457PnP27FnTZNMKHiekAUINJmqGtqeCvqFu7dq1Urt2bRkzZozJggdcsfuzp9n7U6dONeVrmGoHIC62DwBcYdsAwBW2DbA89thjZma+JrlpHEqT5HSGvsajdIY3QjcmeebMGVNNAKlHJjqCxqVLl0zd9bi0vIuW/NBSIwAAAAAAAMFOg+dxVa5cWTZv3iwLFy6UW265xbZxAYGMIDqChtbj1mlKWh4mIiLClBLRk3aj1mYaAAAAAAAAoUZLuGoQfd68eQTRgTSiKx+Chjb61KaaWm974MCBZurSkCFDEh2BBQAAAAAACEbXrl0zpX3iat68uTnXIDqAtCETHUGjdevW5gQAAAAAABCKtGRLq1atpEGDBrJ06dJ4QfR169aZ5EPqogOpRyY6AAAAAAAAEASOHTtmziMjI53XaWPRSpUqicPhMEF2AKlHJjoAAAAAAAAQREH0AgUKxLu+Z8+esn//filWrJhNIwMCG0F0AAAAAAAAIAgcPXrUZRD95ZdftmlEQHCgnAsAAAAAAAAQRJnoBQsWtHsoQFAhiA4AAAAAAAAEcTkXdfXqVVm2bJls27bNhpEBgY0gOgAAAAAAABDkQfSnn35aGjZsKF999ZUNIwMCG0F0AAAAAAAAIAg0atRIWrduLaVKlUp0W5MmTcz5vHnzbBgZENgIoiOojRw5UsLCwmTPnj0eW+eQIUPMOn1NH1Mf29P0y1PXHehfoi1atJBq1arZPQwAAAAAAGzz/vvvy8yZM6V27dqJbmvevLk5X7t2rZw6dcqG0QGBiyA6fGrjxo1yzz33SNGiRSUyMlKKFCkiPXv2NNenx9tvvy2//fabhDo9WKABceuUMWNGyZcvnzkS/eKLL8q+ffvEX23atMkcJPDkAQ8AAAAAAHBd4cKFpWLFiuJwOGThwoV2DwcIKATR4TOTJk2SOnXqyOzZs6VPnz7yxRdfyAMPPCBz58411//6668eD6L36tVLLl26JCVLlhRPefnll806/VmPHj1k9OjR8n//93/yyiuvSJkyZeSjjz6SypUry08//RRv2WbNmpnno+d2B9Ffe+01gugAAAAAAKRBTEyMaR6a3CxuFeiz0QFfi/D5IyIk7dy50wS0NZi7YMECyZ8/v/O2J598Upo2bWpuX79+vVnGUzJkyGBOnhQREWFO/kwPSmjGf1x79+6VNm3aSO/evU0wvWbNmub68PBwyZw5s00jBQAAAAAAnrB69WqpX7++KXW6YcMGt0H0r7/+miA6kEpkosMn3nvvPbl48aJ888038QLoSsuN6Ab8woUL8u677yaqPb5lyxa54447JEeOHJI3b14TdL98+bJzOV1G7ztq1ChnGZP77rvPbU10ba7RqVMn84Vxww03SJYsWaR69erOLxDNmNf/a2C5bt26smbNmiRroutjxS2hEvcUt4Z5dHS0DB48WMqVK2dK2RQvXlyee+45c31c+n/tmK2vU/bs2aVLly5y4MCBdP8NNBtfX48rV67Ee51d1UTfvn273HbbbVKoUCHzOhQrVkzuuusuOXPmTLzXvX///jJ27FgzHcx6vfQgScLg/aOPPmqW0dda/4bdu3eP9zfRcel1qmXLls7XL+6Ypk2bZuq36Wui74V69erJuHHjXGa06zqyZs1qygbFfa4AAAAAAASrY8eOmfNMmTK5XYa66EDa+Hc6LQytVXXx6kXxF1kzZk11Y80pU6aY4LVmnLuipUT09j///DPRbRpA19uGDh0qy5Ytk08++cRs6H/44Qdzu5Yt6du3rzna+uCDD5rrypYtm+R4duzYIXfffbc89NBDJmNbG2907txZvvrqK1M7XIO+Sh9TH3/r1q0mY9sVXcfNN98c77rp06eb4HKBAgXM/2NjY00wfNGiRWaMmgmuR4WHDx8u27Zti1eKRp/LmDFjzPi0lvmcOXOkY8eO4gkNGzY0r82sWbPcLqNB9rZt25pg/uOPP24C6QcPHpQ//vhDTp8+LTlz5nQuO3/+fBk/frw88cQT5sCAluhp166d/P33384mnytWrJAlS5aYILwG4zV4/uWXX5qj3xrw1mC3/v11Hfq31ddfXx9lnWuQ/f7775eqVavKCy+8ILly5TIHN/R11tfJou8Lffxu3bqZv9svv/wizz//vDko0r59e4+8hgAAAAAA+HMQ3YpFuKuL/umnn5rGo5qkBiBlCKIHAA2gZxuaTfzF+RfOS1SmqBQvr9nLhw4dkltuuSXJ5WrUqCG///67nDt3Lt6GvHTp0jJ58mRz+bHHHjNZyBqsfeaZZ8x9NAj+8MMPmzIwCUuYuKNBcQ3salBZValSxQSO+/XrZzLfS5QoYa7PnTu3CZJrdrVVNywhXYe1HitArxnarVu3NvdVmjH9119/maBzkyZNnMtqoFnHrmPRgPm6detMAF2D+J9//rnzOWvzVS114wn6mPp6nj171ryWCWlge/fu3TJhwgS5/fbbnde/+uqriZb9559/ZOXKlSYDXWmgXDPOdVnN6Fd6ACDuepQesNDXbOLEic4yP3qARYPo+rrFfa31/aMBdj1IopnpcUvP6AGmuPR9pgdXdJ1Ka+5rBr7WhieIDgAAAAAIZkePHk02iK40ZgEgdSjnAq/ToLhK7gindbsGd+PSIHJcmh2tpk6dmuYxadA8buD7xhtvNOetWrVyBtDjXr9r164UrVfLytx6660m+P7jjz8667FrQFqzqitVqiQnTpxwnvTxlDZXjfucNGgc11NPPSWeki1btnh/l4SsTPMZM2aYEjxJ0dfQCqArfe30YIneVxuaKC3hYtEGJ//++68paaPZ5FqvLTmaNa9jHTRoUKLa7QlnROhzi3sgRaewafA9pX8/AAAAAAACPRO9YMGCdg8FCDpkogcALZ+i2d/+NJ7UsILj7oK2yQXby5cvH+//Wo5ES6vEramdWnED5XEDx1qn3NX1Ka0Tppns2kRVM8u19nfcGuObN29OVA8+4Red1g/X55awHI1md3vK+fPnkzyooZn/AwYMkA8//NCUpNEMcS1Fo8HpuKVcXP1tVIUKFUzw/fjx46YUzKVLl0xZnO+//96UhYmbPR63xro7+noqqzxMUrRcTMLAuh7Q8FQWPwAAAAAAgVzORenvck3209neb7/9tklyA5A0gugBQIOCqSmf4m808Ko1t5ILZOrt2gjSVYmRuFJbj90VK0M8pdcnLBviyscff2yyz7UcS61ateLdpjXRtS63BqZdSRi89yYtwaJfqEm9zh988IFpmKplX2bOnGky462a9BqoTg2dOaABdM2m18x1fT/o31BLv+jr4knp+fsBAAAAABAKQXT9Tf7KK6+YHm1a+lRLrgJIGkF0+ESnTp1kxIgRprFm3JrgloULF5rMcquGeFyaxa3Z0XFrjmvwVZuNejKwnh46fq3RroFirV+ekGaWa73zm266Kcmxav1ufW6afR03+1xruHvC0qVLzbpTUjteg/56evnll01mfePGjU3j1TfffDPe3yYh/RLWZqFW1r029+zdu7cJzFsuX75smpTG5e51sbLyNfivZWAAAAAAAEBiWs5Uf1snnN3uivYi09/vmo1OEB0IwZroWi7io48+kjZt2piSHVoTWUtK3HbbbbJ8+fJUrUuDmdqxWAOJWtdZg4I9evSgvnIaPPvss+Y11CC51sSO6+TJk6a5pgZedbmErAabFv2bqLiNIqOiohIFZX3l8OHDcscdd5iDA++9957LZfR2fW/qgYSEtNyJ1lKP+5y0wWZc+p5OLy0Vo9nl+plw9TpbtCb9tWvX4l2nnwEtMxMdHZ0oKB+3rvn+/ftN9rp+/qyscD1PmAmuf0OrZnrcv6FK+HfUdWnpGc2E1+B7XGSYAwAAAABwnSa9aY8yTYJLSRBdaRAdQAhmomtwbtiwYeaomwbfNPCt2bK//fabOY0bN07uvPPOFK1LA77ffvutVK1a1ZSzOHTokPz888+mvIWWtXBVDxqu6Ws1atQok6WtAdkHHnjAZJdr9vn//d//mSabWgrF1dHS3bt3m5rc7dq1M0FbLZdy9913S82aNZ3LaHPLv/76y5RLKVKkiFm31RTU2/S9ofW/n3vuOfnpp5/i3VajRg1z6tWrl3nv6MECbSKqX2gaRN6yZYu5Xr/kbrjhBlMGRg/UfPHFF6ZeeKNGjWT27Nkm+z41NLCtr5MeCNKg9IoVK2TixInmiPTo0aPNmNyZM2eO6dTdvXt3U99cA+p6Hw2G68GouLROedu2bc1rEBkZacatXnvttXizEPT+WsZFG7rq31D/VnFrxit97voY+vnV567r08arOg1t+PDh0rdvX6lXr57522udc83s19rr+r4CAAAAAAAp17x5c3O+Zs0aEzegLjoQYkF0nbqiR9GsjUHcchtaSuORRx6Rrl27mgBdUjTQqQH0Zs2ayaxZs0z2rtIAXocOHUyQUQOfSDkNylaqVMlkFFuBcw2ktmzZUl588UW3jSPHjx8vr776qgwaNEgiIiLMa58w41uD5w8++KApPaKZ3Vo+xFdBdA2ga0Bcm3EmNHjwYBOw1ixuPYijweAffvhBfv31V5N5X6ZMGXnyySdNsNry3XffmYM/2tRT76OB5D///DNVddP1gISe9PXS2ud6EENLzWgQP2FT1YT04IQGxqdMmWKy53Wcet20adOkQYMG8ZbVz5nWOdeg+b59+0yQfOTIkfGC9ForXoPj+nw0k1wPIGgQXR8jLp0xouVi9P2hB1n0NdXPoQbR9f96/s4778gbb7whGTNmNO+lp59+OsWvCQAAAAAAwUqT6DQJzopfJUcTEDUWoSVdtPSuJsABcC/MEUL1EDRop1nkmpWrWb9J0WC5BiHnz59vAulxadBXA/VaHiO5gGTCMhmajWsFjxPSAKNmXWsWdebMmSXUDRkyxARnNUidL18+u4eDBDSr/bHHHpPPPvtMAp3dn72rV6/K1KlTzQE6PUAAABa2DwBcYdsAwBW2DaFNZ7pXrlzZ9I/T37cprcDwzTffyMCBA+X999/3+hhhHysmqTP/NdkSqRd0mehJsb5ENDs3ORok1xrNrupIaTBeb9cAu5bpcEfrR8etIa1vWOuLTU8J6XV6TEOPHuop1FnHd3g9/Jf1fg10+hz0uehn0Krl7kvW9sDVdgFAaGP7AMAVtg0AXGHbENq0BLEV+0rpe0B7u2kQXbPRed8EN/6+6RcyQXQtNaElJAoXLmxqcidFmzxqs0gtL+IqoGbVQtda60nRshRxa0NbtESFlshISIP7WtLi/PnzcuXKFQl11gGIc+fOpXg6EnxL36fWwaFAfx5aBmjBggWJmqr6kpaOAgBX2D4AcIVtAwBX2DaEpiVLljhjSzojISU04D5ixAhTUjal90Fg0p5ySJ+IUDnaohnjGpTVpoXJZZrq1Aal0xxcsaY9WMu588ILL8Srk63BRq1rreVg3JVz2b9/v2TLlo1yLiLOuvXZs2dnqomf0oMbwfC30c9elixZTOkmu8q56I5u69atmXYJIB62DwBcYdsAwBW2DaFNSw6rihUrmpI+QFzBkABpt6APomuZhvvuu89kmPbr1y/J8iveCAK7amCqX2auvtC0kaLWmdYmlHoKdZrF7yqTH/4hmNop6OdNP3vuPpu+YvfjA/BfbB8AuMK2AYArbBtC07///mvOtQIDf38kxHsi/cKDPYB+//33y7hx4+See+6Rr776KkX3szLQ3WWaW0dv3GWqAwAAAAAAAL5y7Ngxc16gQIFU3W/z5s3SsWNHadWqlZdGBgSHiGAOoPfp00d++OEH6dGjh4wcOTLF2d3aUFSP3Gk3Y80OT1j+xaqFbtVGBwAAAAAAAAItiK4lWrUeusbMNJmUhFEghDLR4wbQ77zzThk9enSyddATat68uWkwunjx4kS3zZgxw5xr/WRvCKYyGUAg4DMHAAAAAAhkderUkbZt20qFChVSdb+iRYtKiRIlTCxtw4YNXhsfEOjCg7WEiwbQu3fvLmPGjEkygH7ixAnZsmWLOY/rwQcfNOevvPKKXLlyxXn9tGnTZN68edKmTRspWbKkV+oT0TEX8C3rM0eNMAAAAABAIHrppZdk+vTpcvPNN6f6vlWqVDHnmzZt8sLIgOAQdOVcXn/9dRk1apRky5bNHH178803Ey3TtWtXqVWrlrn82WefmeaVgwcPliFDhjiXadmypfTt21e+/fZbczRP60MdPnxYxo8fL3ny5JFPP/3U42PXYH+uXLmcU3CyZs1qmh0C8F4GugbQ9TOnn73UzlgBAAAAACDQaRBdA/AE0YEQCqLv2bPHnJ8/f17eeustl8uUKlXKGURPytdffy3Vq1eXb775Rj7++GMTmL/11lvNesuWLSveUKhQIXNuBdIBeJ8G0K3PHgAAAAAAgVaV4dq1a5IpU6Y03d/KRNcmowBCJIiuDUT1lFKafR43Az0ubarwxBNPmJOvaOa5NjXVRhBXr1712eMCoUpLuJCBDgAAAAAIVIcOHZLixYtLvnz5TFJmaqsaUM4FCMEgerDQoB6BPQAAAAAAACTFqmagSWJpKQtcuXJlU7pYKzdoQif9woDECKIDAAAAAAAAAR5E16oGaS1xeuLECfryAUkIT+pGAAAAAAAAAP7r6NGj6QqiKwLoQNIIogMAAAAAAAABnolesGBBjzQpBZAYQXQAAAAAAAAgRMu5qKlTp0rZsmWla9euHhwZEDyoiQ4AAAAAAACEcBA9KipKdu3aJQ6Hw4MjA4IHmegAAAAAAABAgKpRo4a0a9dOKleunOZ1VKlSxZzv2bNHLl686MHRAcGBIDoAAAAAAAAQoAYOHCjTpk2TLl26pHkd+fPnl7x585pM9K1bt3p0fEAwIIgOAAAAAAAAhDgrG33Tpk12DwXwOwTRAQAAAAAAgACkmePR0dEeWRdBdMA9gugAAAAAAABAADp79qxkzpxZcuXKle5guhVE37x5s4dGBwQPgugAAAAAAABAADp27Jg5j42NlcjIyHStq1atWlK/fv10NSgFglWE3QMAAAAAAAAAkPYgeoECBdK9rmbNmsny5cs9MCog+JCJDgAAAAAAAASgo0ePeiyIDsA9gugAAAAAAABAAGeiFyxY0GPrvHLlipw/f95j6wOCAUF0AAAAAAAAIMTLuagXX3xRoqKi5IMPPvDI+oBgQRAdAAAAAAAACECeDqLnyZNHrl27Jps3b/bI+oBgQRAdAAAAAAAACECVK1eWdu3aSbVq1TyyvipVqpjzTZs2eWR9QLCIsHsAAAAAAAAAAFLvscceMydPBuXVtm3bTEZ6RAShQ0CRiQ4AAAAAAABASpYsKVmyZJHo6GjZvXu33cMB/AZBdAAAAAAAACAAabDbk8LDw53Z6JR0Af6HIDoAAAAAAAAQYLTcimaN58yZU06ePOmx9VpBdJqLAv9DYSPAx1asWCEvv/yydOjQQWrUqCEtW7a0e0gAAAAAACDAnDhxQhwOh5w/f94E0j3lpptuktjYWGcwHQBBdMDnxo8fLzNnzjSnDBkyyJkzZyQqKsruYQEAAAAAgABy7Ngxc54vXz4TX/CUPn36mBOA/6GcC+BDeoT4l19+cf4/JiZGli1bZuuYAAAAAABA4Dl69Kg5L1CggN1DAYIeQXTAx6Vc9u7dazLPb731VnPdwoUL7R4WAAAAAAAI0Ez0ggULenzdmvS3Y8cOUyoGAEF0wKcmTJhgzjt16iRt2rQxlxctWmTzqAAAAAAAQKAG0b2RiV6/fn0pX768LFiwwOPrBgIRQXTAh6VcrCB69+7dpWnTpuby0qVL5erVqzaPDgAAAAAABBJvBtHLli1rzjdv3uzxdQOBiCA64CMrV640pVyyZs0q7du3N12u8+TJIxcvXpQ1a9bYPTwAAAAAABBANFO8Q4cOUrNmTY+vu0qVKuZ806ZNHl83EIgi7B4AECquXbsmrVq1MrXKNJCuGjduLFOmTDElXXSqFAAAAAAAQErcf//95uQNBNGB+AiiAz7SsGFDmT17tsTGxjqve+yxx6Rbt25y00032To2AAAAAACAhEF0Leei5WnDwsLsHhJgK4LogI+Fh/+vilLbtm1tHQsAAAAAAAhM0dHREhkZ6bVSMRkyZJAzZ87I4cOHpUiRIl55HCBQUBMd8IFly5bJkSNH7B4GAAAAAAAIApodnjt3bsmRI4fs27fP4+vX4LzVXJSSLgCZ6IBPvtjuvvtu2bNnj8yaNStR6RadGjVjxgypVq2a3HzzzbaNEwAAAAAABIYLFy7IpUuXzOU8efJ45TH69u0r586dk+LFi3tl/UAgIYgOeNnq1atl9+7dkiVLFmnQoEGi28eNGydvvvmm9OrViyA6AAAAAABI1rFjx8y5xhqioqK88hjPPvusV9YLBCLKuQBeNmHCBHPeoUMHl19sTZs2NecLFy70+dgAAAAAAEDgOXr0qDkvUKAATT8BHyCIDni5lMsvv/xiLnfv3t3lMg0bNjTNRrXcy4EDB3w8QgAAAAAAEKiZ6AULFvRqTEPrrWtpWiDUEUQHvGjt2rWyc+dOyZw5s3Ts2NHlMtmzZ5datWqZy4sWLfLxCAEAAAAAQKAG0TUT3Vu05nqpUqWkTZs2cvz4ca89DhAICKIDPirlki1bNrfLUdIFAAAAAAD4UxA9a9asUrJkSXN58+bNXnscIBAQRAe8aPLkyUmWckkYRCcTHQAAAAAAJKd06dJmxnudOnW8+jhVqlQx5wTREeoi7B4AEMw0s1wD6Z06dUpyuSZNmpjzrVu3yvnz55PMWgcAAAAAAKHt7rvvNidv0yD61KlTZdOmTV5/LMCfkYkOeFGePHmkT58+yQbFtRHIkiVL5OTJkwTQAQAAAACAX6hcubI5J4iOUEcQHfATDRs2NPXGAAAAAMAuFy5ckO3bt8vRo0dl+vTp4nA47B4SABeio6N98jiUcwGuI4gOeMG6detMUPyLL76weygAAAAAkGJjxoyRChUqSKFChaR9+/ayd+9eu4cEwIUSJUpI9uzZvR7ctjLRDx48KGfOnPHqYwH+jCA64AUTJkyQZcuWycyZM1N8n8uXL8tTTz0lDRo0MJcBAAAAwJc06/zTTz+Nd93q1attGw8A12JiYuTEiROmp1ru3Lm9+lg5c+aU119/XUaNGiUZMmTw6mMB/owgOuCFHU8Noqvu3bun+H6RkZEyfvx4Wb58uaxYscKLIwQAAACAxObNmycbN26UqKgouf322811q1atsntYABLQfmqxsbHmcr58+bz+eK+88orce++99HBDSCOIDnjYhg0bZNu2bSYo3rlz5xTfLywsTJo0aWIuL1y40IsjBAAAAIDEPvvsM3Peq1cvadWqlblMJjrgf7RngcqbN69ERETYPRwgJBBEBzzMykJv27at5MiRI1X3bdq0qTkniA4AAADAl/bt2ye//fabudy/f3+pW7euMxOd5qKAfzl27Jg5L1iwoE8e79y5czJnzhyZMmWKTx4P8EccrgL8oJRLwiD6kiVLTI0z6o0BAAAA8IUvv/zSlIdo2bKlVK1aVS5dumR+jxw/flwOHDggxYsXt3uIABIE0QsUKOCTx1uzZo3cdNNNUqpUqVTNuAeCCZnogAdp/cCtW7dKpkyZ0vTFUqNGDdNd++zZs6YsDAAAAAD4Ihlo4sSJ5vLjjz9uzrNkySJVqlQxlynpAoR2EN3aFuzZs0cuXLjgk8cE/A1BdMCDNHOja9eu5qQdrFNLMz0aNWpkLlPSBQAAAIAvaH+mtWvXysiRI+MlAz3//PPmunr16tk6PgDxFStWTDp16iT169f3yeNp89L8+fOby1u2bPHJYwL+hnIugAdpJvmvv/6arpqBWtJFM9qpOwgAAADAV7JmzSq9e/eOd13Pnj1tGw8A97p162ZOvqTZ6PPnz5fNmzc7eyYAoYRMdMBLmRxp9dxzz5mmPk888YRHxwQAAAAACWkpSRJ4ACSncuXK5nzTpk12DwWwBUF0wEMWL14sO3fuTPd6MmbMmK4gPAAAAACk1COPPGIaic6ZM8fl7UuWLJFPPvlETpw44fOxAXAtOjra549p1UUniI5QRRAd8BDNHC9XrpxMmjTJY/XVz50755F1AQAAAEBCR44ckQkTJpjyDLly5XK5TL9+/eTJJ5+U5cuX+3x8ANwHtLNlyyYrVqzw6WMq3V4AoYggOuABhw8fdnasb9KkSbrXN2rUKNO04+mnn/bA6AAAAAAgsa+//lquXr0qjRo1kjp16rhcxrp+1apVPh4dAHeOHTsmFy5ccHvwyxtq164t33zzjWk2DIQiguiAB0ybNs2ca9f6AgUKpHt9efPmlZMnT8rChQs9MDoAAAAAiO/KlSvy1Vdfmcv9+/d3u5zVQNBKGgJgr4sXL8r58+fNZU/EH1IqT548ZmZKw4YNffaYgD8hiA54wNSpU815x44dPbK+xo0bm7ro27Ztk6NHj3pknQAAAABg0TKUWs6lUKFCctttt7ldzspEJ4gO+E8WusqUKZPkyJHD7uEAIYMgOuCBDI6ZM2eayx06dPDIOnPnzi3VqlVzNiwFAAAAAE/67LPPzPnDDz9sgnFJlXBQ+/fvl+PHj/tsfACSDqIXLFjQJN/5kib6jRgxQqZPn+7TxwX8AUF0IJ00yK0NQHUalTXV0ROs2uqUdAEAAADgSevXrze/YyIiIuTBBx9Mctns2bNLhQoVzGWy0QH/CaL7spSLZcqUKWab8d133/n8sQG7EUQHPFTKpX379hIe7rmPVNOmTc05QXQAAAAAnlS9enWZNWuWvPvuu1K4cOFkl7eShWguCoR2EL1KlSrmfPPmzT5/bMBuEXYPAAh0r776qskaL1q0qEfXawXR16xZYzLdNQMEAAAAANJLS0DcfPPN5pQSzzzzjDz22GNSs2ZNr48NQNK0j0Hnzp2lXr16tgXRt27dKteuXTOzWYBQwbsdSCcNbt9yyy0eX2+xYsWke/fuUr58eVN3HQAAAADSy+FwpLqOstVcFID9tBebp/qxpVbx4sUlW7Zscv78eZONrrNagFBBORfAj/3888/y1ltvSd68ee0eCgAAAIAAp5mjWprl2WefldOnT9s9HAABRkvY3nDDDeby8uXL7R4O4FME0YF0GDBggLzyyiumUz0AAAAA+LM//vjDlIv8/vvvJTIyMlX3/e233+SJJ56QlStXem18AJJn90z1hg0bmvNly5bZOg7A1wiiA2l08eJF+fLLL+XNN9+UM2fOeO1xNENEm5fa/UUJAAAAILB9+umn5rxfv36SJUuWVN133Lhx5v5z5szx0ugApET9+vUlKipK5s2bZ8vjN2jQwJwTREeoIYgOpJF+YV2+fFlKlCghVatWTdV9Nx3fJM/OfFa2nNiSbL3CihUrSseOHWX16tXpHDEAAACAULVp0yYTANdyDI888kiq769lYBS/SwB7HTt2zCT15cyZ05bHb968ucyYMUMWLVpky+MDdiGIDqTRn3/+ac61oUdqG/P0m9JP3l/6vtT6qpa8v+R9iYmNcbmcrtc6yrtkyRIPjBoAAABAKP9+ad++vUkESi2rueiqVas8PjYAKRMbGyvHjx83lwsUKGDLGDR436ZNG8mVK5ctjw/YhSA6kAaaIa4lVlRqu2LvP7Nfluy/HhCPjomWZ2c9K02/bypbT2x1O1VLsbMKAAAAIK2sWuZNmzZN0/2tIPqOHTu8Ws4SQNLlXrVBsMqfP7/dwwFCCkF0IA02b94se/bsMc14WrVqlar7/rzxZ3PetERTGdF5hGTPlF2WHlgqtb6uJR8u/TBRVrrV+ZoGPgAAAADSyvo9Yf2+SK28efNKyZIlzWVtTgrA944ePWrOc+fOLZkyZbJtHDt37pTnnnvOnIBQEZRB9DFjxshDDz1kdg40yKklMUaOHJnqetd6P3en1K4PwcXKQm/RooVp6JEa4zeON+d3VbtL+tbpK/88+o+0LtNaLl+7LANnDpTmI5vLtn+3Jao9uG3bNnPUGQAAAABSIyYmRtq2bWt+I1sZ5WlBXXTA/nrodpZysWhs4r333pMRI0aYEjNAKIiQIPTyyy/L3r17JV++fFK4cGFzOT0NEzRQmlCtWrXSOUoEsqtXr0qePHlMw8/U2HVql6w4tELCw8Lltsq3metK5CwhM+6ZISNWjzBB9MX7F0vNr2rK263elidufMK8j0uVKmUy33VnNbWZ7wAAAABCW4YMGeSLL75I93o0AD9p0iRT0gVA6AbRa9SoIVmyZDHBdE34q1Spkq3jAXwhKIPo3377rZQvX95MNXvnnXfkhRdeSPO6NIA+ZMgQj44PgU/fU88++6yzFllqS7m0LNVSCmYr6LxeZzc8WPdBaVu2rTzw+wMye/dsGTBzgEzaMkm+v+V7kzGiQXSdgkkQHQAAAIAdHnzwQXnggQekUKFCdg8FCElaVqlz585SrVo1W8eRMWNGE6dYuHChLFu2jCA6QkJQlnO5+eabnbXaAG+JiIiQzJkzp6mUy51V73R5e8lcJWVWr1nyZccvJVumbLJo3yKp8WUNydcxn3zzzTdy223Xs9cBAAAAIKW2b98uly9fTvd6tJEhAXTAPppU9/vvv8vbb79t91CkQYMG5nzp0qV2DwXwiaAMont6Z+Ojjz6SoUOHyujRo+XgwYN2Dwk2O3TokDgcjlTfT+ucrz2yViLCI6Rb5W5ul9Os9IdveFg2PLJBWpVuJZeuXZKv9n4luRvnlrJly6Zz9AAAAABCzU033STZs2eXFStW2D0UAEGiYcOG5lwz0YFQEJTlXDxp3Lhx5hQ3+/jxxx83DRS0rlxSoqOjzcly9uxZZz1tPSHwaMMMrQOoXbC1uWjFihVTfN9x66+/j24qdZPkyJgj2fdA0aiiMvWuqdJ/Wn/5du238svGX+SW8rek+znA/1jvBbYLABJi+wDAFbYNSI2jR4/K/v37TbKOJuWk933z448/yk8//STdunWT3r17e2ycSD+2DcFPY0waj9DPs92sJsX//POPnDx50hyog/9iu5B+BNGTmKam9dQ7depkmjpeuHDBTFEZNGiQDB8+3GywPvjggyTXodnrr732WqLr586dK1mzZvXi6OEt2kBHd0K1jMuWLVtk586dKb7v91u+N+cVrlYwAfiUKnO+jDn/Y/Mf8uhfj0q1KtXMexLBZ9asWXYPAYCfYvsAwBW2DUgJ7aukihYtauoXp9e0adPMScvD6O9m+B+2DcHdn03jEM8995ypSW433QZoYP+HH36Q0qVL2z0cJOHixYt2DyHgEUR3o2rVquZkiYqKkltuuUVuvPFG04X4k08+keeffz7Jjsi6cRswYEC8TPTixYtLy5YtTTMIBJ4333zTnLdt29a8H1Jq4/GNsm/tPsmUIZO80v0VyZU5V4rv2ya2jQwbPkzORJ+Rb//8Vl4v9rp06NAhTeOH/x4R1h3d1q1bmwYtAGBh+wDAFbYNSI1Vq1aZ8+bNm3vkd4SWttRMdE0u4neJf2HbENy0vPC///4rV65cMXGlpk2b2j0kWbt2reTLl88vMuORNKs6BtKOIHoqaRMVDZ5+++23snz5ctMV2Z3IyEhzSki/zPhCC0wzZsww5/p3T83fcNLWSea8bdm2kj976rI1MkpGubnMzTJx80SRciJr1qzh/ROk2DYAcIftAwBX2DYgJfT3g6pfv75H3i+6HqUzczVoyyxr/8O2IfjMmTNHevToIceOHTNB67p16/rF37hIkSJ2DwEp5A/vl0BHY9E00A2W0hIvCB3Hjx+Xv//+21xu3759qjI1xm8cby7fWfXOND12u3Ltrl8o97/pmAAAAACQ3G8R6/eDp0o/FC5cWAoWLGj6Ra1bt84j6wTgmn7O3n77bTO7QAPoWhlhyZIlkjNnTvHH7Q0QzAiip4FmoCvqUoeW6dOnmy+F2rVrp+po67qj62Tbv9skc0Rm6VKxS5oeWzPYjaIi+0/sN1MnAQQOrRN45MgR03BHD8DS1AUAAPjCoUOHzD5IhgwZpFatWh5Zp5Zt0CxYtXr1ao+sE4Brmn3+0ksvmWB6nz59ZNmyZVK+fHnxFxoj6dWrlxQrVixVPeOAQBTyQfQTJ06YaWh67qpuXEIff/yxaQyqG6169er5aJTwB3/++ac5T23dv/H/XM9C71C+g2SPTFu36uI5i0vV/FWvf2LLkI0OBBL9vGo/DM3a0n4Y2bJlM6XB4urWrZs5OKcHZwu3Kyy9h/aWmNgY28YMAACCg5YX/eCDD0yvLk+WXalTp06Sv5sBeEbHjh3N51hLCn/33XeSJUsW8Sd6UE2D51qvfenSpXYPB/CqoKyJrhuXRYsWmcsbNmxwXjdv3jxzuUmTJtK3b19z+bPPPpPXXntNBg8eLEOGDHGu47bbbjP1gnTKmx5R08xBPeKn9eRy5colY8aMMUfzEToeeeQRE/jSYJcvS7nELemiDUqtki76ZQrAv+nOZJcuXUw5qLgyZcoU7/86NfPw4cMiOsGpocgPV36QqW9PlcFtBkufWn0kKlOUj0cOAAA8TX8b+Lr5npYi1QC6p2kmevbs2SU8POTz8gCPbyf0t4GWTFL33nuvtGjRQkqUKCH+qkGDBiaArjEzzUoHglVQfuNpAH3UqFHmZE0vW7x4sfM6K8CeXMBUMwcXLFggn376qYwcOVIuXbokTz31lAnMW81UEDq0m/1HH33kzLpIiZWHVsru07sla8as0rF8+oLeceui/73iem12AP7r4sWLJoCuwfGqVavKmTNnTBkXPSirM6DiGj16tOlsf+/r9zqvOxFzQh6f9rgUH15cXpr9khw+d9iGZwEAADxh9+7dJiGnZcuWpp5xoOvUqZOcPn3aJKsB8Nzvh969e5tkzrhJOP4cQFcNGzY052SiI9gFZRBdA9569M7dSW+3aPa5Xhc3C109//zzpvuxZhFevnzZbMw2b94sw4cPN5npQEpYWeidK3ROdyZpkxJNJEtEFpHsIi989IKHRgjAW2JiYkwJF80AmzJliuTIkUMiIiLMVOqEjYBKly4tNWvWlI2XNpr/1z1UV+RPkQxnMsipy6fk7UVvS6mPS8kDkx+QjceuLwMAAALHrFmzTHapzo5u3LixCUJ7uymn/s796aefZOvWraaesifpPg1Z6IDnbNu2TW688UaTXKO9DLSMcKCwgujr1683CUNAsOJbD0iBd999V2bPnp2qZoCxjlj5eePPHinlorQxaavSrczlxUcWp3t9ALxLpzhPnjzZZGRokDw5Jy+dlNWHr8+eGv/6eGkY0VC+r/O9TLpjkjQq3kiuxFyR79Z+J9W+rCYdxnaQ2btmmx/HAADA/23atMmca/8TLQuq/Za00efTTz/ttcfcu3evaUpYvXp1rzY193SAHgg1uj3Q7PN//vnHlHHR2MMdd9whgUITTYsWLWqSiOiTgGBGEB1Ixv79+83MhNatW8vZs2dTfL9lB5bJ/rP7JXum7NK+fHuPjKV9uevrmb5zukfWB8A7P5Kt4Lb+SC5XrlyK7jd391xxiEOq5K8iZQuWNaXHet3TS26tfKssvn+xLLl/idxW+TYJDwuXaTumyc2jb5Y639SR5QeWe/kZAQCA9LrnnnvMrGbNMtV9hTvvvJ5kU6FCBa89pvZRUjVq1DCNCT1Ns9x1/FoKFUDaaIyhZ8+ecu7cOWnatKnpw6c10AMNJV0QCmxrLKrlUbQWnNYqP3DggJw4ccJMcc+fP785Uq71p1MaeAC8adq0ac5mGXnz5k3x/cb/c72Uyy2VbjFZ5J5g1UVfsHuBfP7t5/JY38c8sl4AnqHfa1rrVHeEv/76a9OgOqX+2vWXOb+59M3mPO4U6SNHjsiuBbvkl56/yM6TO+WjZR+ZrPS1R9ZKz0k9ZccTO7zwbAAAgKdolqme4gagX3jhBalcubLzup9//ln+/vtvGTRokCkHl14rVqxwPrY3aEmX7du3m5J1ANJGfzNo76RKlSqZDPTU/H7wJ82aNZN9+/Z5ZNsF+CufB9H1qNRXX30lv/zyi6k17m4qunYt1x2Khx9+2HQj5osZdk6tUh07prwxaExsjEzYNMFjpVwsZfOUlfwZ8svxmOPyf7P/jyA64Ef27NkjXbt2lStXrphGW5qFnhp/7f4viF7mehDdogeZ9cev1kbUWupaQ/XTDp/Ky81elmLDi8nOUztlz+k9UipXKY8+HwAA4F3aD8Wi5VY0qL5r1y755ptvZODAgfLMM89IVFRUujPRvRVEr1OnjjnfsGGD2f/JlCmTVx4HCGZa/lHp7PdADaCrxx9/3JyAYOazci4bN26UDh06SJMmTeTHH380zVRefvlls8FYtmyZaaKgjVW0eYIG2bUj8fnz5+WJJ56QsmXLyieffCLXrl3z1XABIzo6Wv7663pgS9+/KbVo3yI5fP6w5IzMKa3LtPbomFoWa2nON139X8kIAPZPw+zcubMcP35cateubaZqp6bZlgbBd5zcIRnCMkjzUs3j3abZHF26dDGf97vvvts0uVYFsxWUekXqOUvBAAAA/6TZmePGjTO/iZPK6v7888/NfoSWdRgyZIj06dMnXXXKrdrE9epd31/wNO35kitXLhNAT+q5AXBPmw3rLBTdzwfg38J9eZRdu4J//PHHJptu5syZ8tprr5mgQ/369U3pFquMy4MPPijfffedyerToHrbtm3Nkfhhw4b5ariAMX/+fFN6qHDhwqbxT0qN33i9lIvWMo6M8Gz9wR71epjz6GLR5jMCwF7aQEd3erURUKFCheT3339PddaYNglVNxa7UXJEJp55pd+dOkVSf1RrQP3UqVPmeqvZ8Jw9czzyXAAAgOfNmTPHlHp78skn3S6jM7HbtWtnssfHjBljrps0aZI5QJ8WO3fuNCUiMmfOLFWqVBFv0DFb2eg0EwTSRg+gde/ePWhmcly4cMHMpAWCUbgv6zxpEL1///6pqpGkQXXdidDmK40aNfLqGIG4dCaEZoBYWei6k5gS12KvyS+bfvF4KRdL6/KtJSwmTCS3yO9Lfvf4+gGkznPPPWfKPumPVA2ga3f61HKWcvmvHnpCOrVTy6CVLFlSduzYIXfddZeZndWyVMv/NSVlZgoAAH5Jf8uquPXP3dGZbBpwr1u3rjlQP2HC9RKRaa2HrolA3iwRoeNUq1ev9tpjAMFIE+J0Fkcweffdd035yddff93uoQCBHUR/4IEHzBG2tCpfvrxp1gb4imaSFi1a1Jw/+uijKb7fvD3z5PjF45I3S165qfRNnh9Xpigpcq2IuTxl0xSPrx9Aym3ZssVkiatRo0alabp0rCPWmYl+Uxn32wxtvK0l0LQJt87m0qZjjYo3kkwZMsnBcwdNORgAAOB/rFJsqckIt0o7aBmYtNDZ3L/99pu89NJL4k1WJjpBdCDlNPlFs8/LlCkjS5YskWBRokQJc/BPSzYDwchnQXSrvjTgzzSzUzPQlWaef/vtt2ZqorVzmBI/b/zZnHer3E0yZvBO1kejAtdnZaw9v9Yr6weQMpUqVZJp06bJe++9J3fccUea1vHPsX/MgbesGbNKg2INki2NNnLkSHN56tSpEhMd47zP3D3URQcAwJ8z0VMTRL/zzjtNw/Knn346TY+ZN29eueWWW0xDcm/SpqW6f2JlpANIWYknLd108uRJkzAaLBo2bGjO16xZI5cuXbJ7OEBgB9G16UirVq3M1I6FCxeaDuSAv9i/f7+0aNHCNPCxyiLoVKSKFSumeB1XY67KxM0TvVbKxXJn3evrPpnjpFy8ctFrjwMgea1bt5Znnnkmzff/a9f1Ui7NSzY3WeXJ0ayVsWPHmgyPbNmy/a+kC0F0AAD8jgaSdu/eneJyLhadEfvrr7/KbbfdJv5Me5utXbvWNEUFkDJWvz+t2KCzTYMpE117RGlyIrNTEIx8GkTPkiWL6TysdaY1WKlBdQ0+vP3227J06VIz7QOww5QpU0y9wMWLF5syCbt27UrTembvni0nL52UAlEFpHmp5uItXRp0kcJRhcUR4ZAF+xZ47XEAuK8zmtbthLsg+s1lXNdDdzfFO0eO6w1IqYsOAID/0r5g+v2smeG+CpZprWVNXPvrr+v7GAD8h850nzVrlmTIkEEGDhwowURn81vZ6BrjA4KNT4Po//77rzka9eGHH5ppZZGRkTJ79mx5+eWXpUmTJpI7d27TwFGnxevUFoIB8DZt5KFfXF26dDFTqXQ6ok49Klu2bJrWN37jeHN+e+XbJSI87T0AkqPNgTpVvD41c/qO6V57HACuPf7442Y78eOPP6ZrPVdirsj8vfNTHUS3aPmpLbO3SGR4pBy9cFQ2n7hecxVA8Dl37pzs3LnT7mEASEcpFw0wpZY2FH/jjTdMH5aUWrBggQwePNinzf30d9WhQ4d89nhAIDffVHfddZeUKlVKgk2DBtdLTRJERzDyaRBddxo02/epp54yzdE0qK5H4T744APp2LGjORI3ffp0ef755+XGG2+UPHnymDpugDfotEo9eKMHdZS+LxctWmSae6RF9LVo+XXzr+byndW8V8rF0q5cO3NOEB3wLf0xu3z5cvOdpSXK0mPZgWVy8epFM3ulWoFqqb7/gAED5OG+D0ueC3mc2egAgtM999xjyiboTBgAgUNnXuus17Q2+NSSca+++qqMHj06xffRhDSlCUK+oM8ve/bsZjsFwL3t27fLL7/8Yi5r3CsYxQ2ikxiLYOPTILqroHrt2rVNs5Tff//dZALrF/77778vVatWlTNnzsgff/xh5xARpGJjY6Vz587mh6jOgNCDOsOHDzezI9Jq5s6Zcib6jBTJXkSalGgi3lbwYkEJc4TJ1n+3yu5T1+ssAvA+rUeubr75ZilYsKBHSrncVPomCQ9L/Vdy7969zfmJFSfMOXXRgeDdb9F9ZWUd/AcQGLSEi87Cbtu2bZruryXc1Lhx41IckLKC6PXq1RNf0P0hzURPTbY8EIo0vqXf6ZpEWr16dQlGevCuR48eMmjQIEo2I+h4r95EKh04cEDmzp3rPO3du9dcr03TAE8LDw+XL7/80mSEjBkzxjTASK/R669nh3Sv0j1NwbDUypU5lzj2OURKikzbPk0erf+o1x8TCHX641W3GcoT2VbaR8EKoqdFo0aNTPPjrdu3ijQTmbdnnsQ6Yn2yDQLgO0ePHnVe1pmcAEKHBuD1N7HWOdem4la9YXeuXr1qylP6MhNd90XU4cOH5ezZs86+LQDi0wTSZs2aSaZMmSRYZc2a1Rz0A4KRbb+yjxw5YmrJPvjgg1K+fHkpWbKkyaibNGmSyULXbsW6k6DZ6YA3NG3aVObPn++RAPre03tl0uZJ5vL9te8XX6hUqZJk3JvRXJ64bqJPHhMIdTp7Rcu56M5h165d07Wus9FnZfmB5Wmuh27N6Orbt6/IQZHwa+Hy76V/5Z9j/6RrXAD8T+HChZ2Zpbod0iw2AP5Ps7O1nvnEiRPTnJEZd58jJYEprcF++fJlyZkzZ5r7PKWWPpZup6xGqgDcq1u3btBmoQPBzqdB9J9//lkeffRRqVy5shQtWlR69uxp6kFpkxVtJqo/CjRorlNcnn32Walfv76pOQt4ih6Y0Wa21lTItDT3ceXTvz+VGEeMySatUbCG+IJ+NqpGVjWXlxxeYhoUAvAuKwtdf8ymd6bU/D3zzXajXJ5yUjJXyTSv59577zWNjGP3XA+qURcdCE41atQwwbTTp09TMgEIEHrgXeuZ9+nTx8yETSurpMv48ePl2rVrSS5rHXDTQF16HjOt2ehsnwDXzcE1kTRU6MH+zZs3O0vRAcHCp0F07T78zTffmCPiWn9ap5nplFStR63N0Xz9RY/Q88orr5g6xlZHbE84F31ORqweYS4PaDhAfKlFpRYi50UuOy7Lkv1LfPrYQKjRg29Tp071WCkXqx76zaXTloVuKVCggHTp0kXkv9YIc/bMSffYAKTP8ePHTfDMkzJmzGgSTNS6des8um4A3qFZ4UqTyNKTvKO/X/Lly2e2LZoQlBRfl3KJO0tWEUQHEvv888+lVKlS8s4770go2L17t0mW7d69u0RHR9s9HMBjwu04IjVv3jxzREozzpcsWWLqtgHepjt0f/31l9mBvfPOOz223u/WfGfKMlTMW1HalWsnvlTvhnoiO69fnr5juk8fGwg1uu1Yv369/PTTT+bHbHr9tfuvdJVyicuUdNkTJ8M9liY+gB1031ZLFerBrSeeeMJj69VgmNZF1mQADaJpwy4A/k8zMZUGk9J7EO2OO+6Q7Nmzy759+5Jc9uOPP5Z//vlHHnnkEfElguiAa1pe6aOPPjLB5CJFikgoKFOmjGmqrCWtrAN7QDDwaRBds8615vkDDzxgfgDo1DZtqpA7d24TkNB6cQsXLiSoDq/44osvzHnnzp3NUWBP0EDVx8s/NpefbvC0z5v5mQyT/xLdtLkoAO/SUgp6EE5/zKbHoXOHZNPxTRImYdKydMt0j6tNmzayY+EOyRGZQ85En5G1R9ame50AUp8o8vjjj8uIESOcJRWs8nHpodO/V61aZWbC3HjjjSYbFUDgZaKn12uvvWaaDPfr1y/5ko9Vq3rs905K6UwZnXneunVrnz4u4O9GjRplPrvFixcPmYPgmnzUoEEDc3np0qV2DwfwmAjxIQ2Wax1ZqzGKBtU1K33u3LnmfPDgwebDljlzZvOBa9GihTlpA0ggvTXIRo4caS4/9thjHlvv71t/l92nd0ueLHmkV81e4mvlypWTAucKyDHHMVl/bL0JzBXJHhpHtwFfB8f0+8lTfRTm7L5ecqVO4Tpm+5Fe+oO5bOmy0qxkM/lj2x8yd89cqVukrgdGCiCldH92z549EhkZabLNNGFk//796W5gvnbt9YNiFSpUkKioKA+NFoAvg+jpzURX/n4ArWHDhuYE4H+0obD2/1MDBw5MdyJOINGY3pQpU0xfOiBY2FqAPG/evHLbbbfJZ599Zqac6dE5nSZ/3333mWlqQ4YMkZYt05+hB2gzQA2k6w9QT5RhsHy47ENz/nDdhyVrxqzia9pD4PDOw1K/2PUaqTN2zPD5GIBQMHbsWKlWrZr83//9n0fW56yH7oFSLnG1LHX9O3PGVrYFgK9Z2wdtIFinTp14Df48EUSvXbu2c2ad7svMmjUr3esG4N3g2datWz2WiW7RGS5ab9iVCRMmmIbj2nMMgP0mTpwoO3fulDx58lwvvxhCrINqZKIjmPhNF0/tMr59+3bZtm2bOR06dMjsIHhiGixCm76H9ECNevTRRz3WvHbFwRWyaN8iyRieUR6r77ns9tTS59Ou7PVa7NN3Uhcd8FYQXbPJDhw44JFtkreC6FumX69DumDvArkaQ2k0wFdOnTplShYqLVtoNfRbsWJFutdt1RK1guha2kUbC+osTgD+SwPdOitFZ1l7qrTKyZMnTVa71h8/ffp0otunT58uo0eP9si2J60HDvR5Hzt2zJbHB/yJ7vMPGzbMXNY+KaE2m6xevXomVqGz8g4ePGj3cIDADqLrF6xO69DuxG3btjWlXrRsizZM0h8GWne2W7du8sknn9g1RAQJneGgpRj0S6t3794eW+/wZcPN+V3V7rK9hIrV0HTWzllyLfaarWMBgo3WI7YyPnv27Jnu9W39d6scPHdQIjNESuPijcWTWlVpJXJJ5ErYFfn7wN8eXTcA98aNG2eCZTVq1JC6des6g+ieyES3gui1atUy540aNTLnS5YsSfe6AXiPBs71APzvv/9uyq55gmaz6rq0WZ914C4ua5tjbYN8TbPgtaHgDz/8YMvjA/5Ek0N1G6Cxrf79+0uoyZYtm1SvXt1cpqQLgoVPa6L//fffzhroixcvlgsXLjgzzXPlymUaPmr5Fj3pjxDAEwoVKmS+vPRLTN9nnnDg7AGZsGmCs6GonbS3QN8OfUU6ipySUyZDvmFx6hECnjJ+/HhzIE7r+mkfgvSystCblGgiWTJmEU+6teutkunPTHKl7BUZMWuENO7r2SA9gKRLuWgWuvZOiBtE133dtPZT0FJ0O3bscBlE1/3qq1evhlR9VSCQREREmDIunizlou6++2556aWXzMG7+++/33n9xYsXZePGjbYG0cuXL2/Ot2y5PjMOCGUVK1aUvXv3mpkhWso4FGlDZD3w16RJE7uHAgReEF0DEPojQn9M5MiRQzp06OAMmusPA081bAMS0veWfol5ymd/f2YyvluUaiG1C1+fXm0XzUg5cuiIyE4RqSYyfcd0guiAh3sqeCoLXXmrlIvShoaNCjeSeTJPpm2Z5vH1A0jsxIkTpsRCpkyZnNsJ7aGgjcw1K11LFqY10K3r1qC5nhcoUMBcp/szOoNTS8isX7/ePAaA0NGjRw8TRJ8zZ44cPnxYChcubK5ft26dme2tCURFixa1ZWzW7y2rFjwQ6vS7u2PHjhKqbrnlFruHAARuOZc2bdrI0KFDZfny5ebHhnbqHTBggKnxSAAd3rB69WqTleFJ56+cl69Xfe0XWejKmfF2PVGNuuiAB+mPQM0k1QyKO++8M93r04Nvc/fM9VoQXT3R5QlzfizymOw/tN8rjwHgf/Llyye7du0y2wor00yD5tqPRZuMpidTvHTp0rJo0SLZvHmz8zqtL2o166KkC+C/hgwZYuoha6Dbk3S7oNsATUz7+eefXZZyseu3tdZqV2SiA/6h/9T+0nxkczlx8YSt4/j888/NjN6aNWua5IDWrVubALvOrOnXr59pvgoEAp8G0bXRyXPPPedsMAB4k9YK1NkOxYoVM5lanjJq7Sg5ffm0lMtTTjpV6CT+wATR//ve0XIudn9JAsHUUFS1a9dO8ufPn+71rTq0Ss5Gn5VcmXNJ7ULemcXStVFXiYiOEMkkMvSHoV55DADx6X6tVffTGxIGxKiLDvg3DXC///77MmjQIJcNQNNLA09KS7r4Sz10VaFCBXOus2f0BIQqDRprzz9t9GuXBXsXyOcrPjfnPSf1lJjYGFt7TGmgXOMyS5culb/++sv0i/jxxx/l22+/NbPrLDqjRk+APyKSjaA1ceJE01Q0S5YsHqtFGOuIlY+Wf2QuP3XjUxIe5h8fIbOzfE4k85nM4hCHzNw50+4hAUHh5ptvNuUZ4tYc9UQpl1alW0mGcM80GXMVbKuZq6a5/OvaX73yGACuO3jwoDlo74o2GtVGWro/klaXL192eb0G0bXPizYrA+B/9u/fb/p/aV10T/RTSah79+5mlpz2RrD6Jpw9e9Yc0NOENbtERUVJiRIlzGVKuiCUabklnUnm6ZkoqTmQ98rcV5z/1/jAGwveELs89NBD5vWYMWOGaYqs5TK//vpr+fDDD+WNN96Q4sWLm+W09I1uR0gSgL/yaU30tAQhNBhgNWsCUkOnUVsbbE813fpj2x+y4+QOk0Xau1Zv8RdWxkn0xmiRRtfrot9d/XqGCoC0a9asmTl5yl+7/6uHXto7pVwsPRv1lFWzV0m51p7/4Q7gf3r37m2yqvTHoJYtjEsbmmvJhWzZssmtt96a6lmY2jRU+55oQGrhwoXxZsPodkkbizOzE/BPmzZtcjba9Ebz34IFC5oyqTVq1JBSpUqZ63799Vdn4N5OWhd93759JojeuDENzhF6NIBtBYGt8mu+Nnv3bJOBHpkhUoa0GCIvzH5BXp//ujQo1kDalWvn8/FodQA9peS10yQE3YZqJj/gb3z6DTty5EhnY9GUIoiOtFizZo354tKdSK2x5SnDlw035w/VfUiyZcom/kK/kLRpybFtx5xBdM2a95dMeQAiF65ckCX7l3i1HrqlQ6UOMmD2AFlxeIVcvnZZMkdk9urjAaFoz549Mnv2bLfNy3UWnGaKnz9/3gTUrVrBKaV10C9dumSy2Kxa6xbNQAXgv6w+BlWqVPHaYzz77LOJrtMMTrvdddddUr9+fVP7GAjV/QMtX6KxCDvKK2m87eU5L5vLD9/wsAxqMkj2nt4rX636ypR1Wf3gaimZq6T4I913mjZtWrxeMIA/8flhat2QaJ1qzdyxOokD3qhBpm6//XaPvc/WHF4j8/bMk4jwCOlfv7/4E/0Br8/1zPkz8mvEr3L84nEz3rpF6to9NCAgaXkGnVqo06U1y8sTFu1bJFdirkiJnCVMTwVvqpC3ghTOVlgOnz8sS/cvleYlm5OxCnjY999/b85vuukmKVmypMt93tq1a8vixYtlxYoVqQ6ir1271pzXqlUryc+vNlCnrAvgn5no3gyi+ytPlcADApXW/FZ16tQxpWV97c/tf8ryg8sla8asJoCuPmr3kaw8vFJWHlop3Sd0l4V9FkpkRKT4G2ubaW1DAX8T7uvApgYjJk+eLHfccYe89dZb5gidHp278cYb3Z6A1Dh58qSzyc5jjz3m8Sz07lW6S7EcyU9F8jX9fI0ZNUbalLs+nXzajml2DwkIWFqv780335S2bdt6rLGNVQ9dS7kkbBLoabr+lqVbmst3v3S3fPPNN159PCDU6HbBCqI/8MADbpezMtCshn+pnVVnBdFd0Rl3ZcqUkRYtWqR63QC8ywoAeaovkzvbt283Gen6va+9EmbOpC8SYDerlIvVBNyXdDa6VQu9f73+UihbIXNZA+YTuk+Q3Jlzy4pDK2TAjAHijwiiw9/5NIj+yCOPmEycdevWyaOPPmqaLXXr1k2KFi1qvvz5oMATdGq1Tn/WKYSeqsN36Nwh+fGfH83lAQ398wvH0q7s9RpnWtIFQNqMHTvWnPfo0cNjZRO0NqG6qcxN4gstS10Poh/JcsR0vQfgOX/99ZdpHJg7d27p2rWrV4LoVia6ZrO7UqRIEdm9e7cJtut+DwD/oSWcfJGJ/s8//8j7778fL/vVblpKQrePup1013gZCGZ2BtF/3fyrrD2yVrJnyi7PNX4u3m2lcpWSMd3GmMtfrPxCxq6//nvHn1gHHrVxuzZLBvyNLXO7q1evLh999JH5YPz000/mx8Hw4cPN9dp4QX/s69RUIC20/ILuuH755Zcey/b8/O/P5VrsNWlSooncUMT3dc1S6tq1a1Imtoy5vPTAUjl16ZTdQwICju6w6Ywpdc8993hknScunpA1R65nld5U2rdBdCkqsmr9KmdADkD6fffdd85tRObMmZMNomugW7+jUxOESi6IriVktGSdrjctQXoA3qONNfUz7O1M9Pbt28f7f926/lHKUQ8etG7dWnbu3Gn3UACfio2NNc1+8+XL5/OmojGxMfLqvFfN5acbPC15s8bvp6I6lO8grzS7nqn+4B8PysZjG8Wf5MqVyyQJKOqiwx/ZWiBVO5VrwFMbB+iOhtaf1fOHHnrIHLkG0qp8+fIe+9K6ePWiacKhBjTw7yx03WFtc2MbKRVVykzlsspHAEi5SZMmyeXLl039YnfBq9Sas3uOOa9eoLoUzFZQfKFM7jJSPEdxEU2kL/H/7J0FeFRXE4Y/4i6EQHAnOAQJ7u5aKBQo0kKhRYq1tNBSqhRK0UKhLV5ciru7kwDBgwcCxN34n5n77xYoEtnduzJvnzznkGzunaTZe8+dM/N9EJNuQdARERERWL9+fbq0f0uUKAFXV1euFM/IwyCZktF5aK38uiScRr7h+ao3QRCMA9JBpq5YOzs7vZ6HNvGoEE3DyybEakDXJo0HxOXLl9UORxAMCnmY0LNEaGgo8uUzrATs8gvLcenxJZZs+bTGp6993df1vkaTIk04z9FpZSdEJ0bDmGjVqhX7ven7+ikImcEoXMaozevgwYPYv38/Hj169w2PtAAA+y5JREFUxNU3b6rqEYQ36aHrmkXnFyEsPowTUm1928KYKVOmDI/5EpQbtuiiC0LmpVyowlRX3SxaPfQijWEoKPaGhRsq/ygELFmyRCQfBEFHVVJU+T1x4sTX6pU//zA9b948XuMWK1YsQ5Vs77//Pjp16vTGh0hJoguCsGDBAk7af/HFFzAWJIkuWDr69j96GeqaH79/PM9H1RwFDweP177W2soaSzsuZZ+3K0+voN+GfpyDMxbIy2nVqlU6K2YSBLNJolNr6+DBg7ldg3RnAwICMGLECK7UadpUMUcUhPRC7YI+Pj5sWpuRluk3QdXcU49N5fkQ/yF8wzFm6taty2PSxSStLrox3RAFwdh58OAB+yoQ3bt319lx1UiiPy/pYudrx1WtVBkjCELWocrP0aNf1Bp9HV27duX7MyW50kvRokU5MbZsmeLHkp4kutzvBcE4INnS/v3749ChQwY5X6VKlRAdHY3vv/8exoKvry+PkkQXLI0nT56ocj+mwr/rYdfh7eSNwdUGv/X13s7eWNl5JWysbLDq0ipMOz7NIHEKgqljpUal8PTp03lXiXQif//9d9SuXZvbYu/du8dVPZqbriBkBNJAT05O5kWkjY2NTo659dpW3p11s3dDX783t2wbA/Xq1eMxaHsQnGydEBITgoBHAWqHJQgmA23iUis0mRIXLlxYJ8ekBW1wRDAvUusWVDa6DEWDwkoSPTlnMmD/r46zIAjmAa2n7e3t+aH9+vXraocjCAKADRs2cAeKIfXAdWWCrutK9CtXrqgdiiAYDOoiI1nZ/Pnzs/G3oUhMScQ3+7/h+ee1P4eLnUu6vq9G/hqY0nQKz0ftHIXDdw7DWKCNCPJQFASLTqJThXDevHnx6aefIjExET/99BM7d1MCvW3btkZ38xdMBzKi1ej9fvzxxzo5ZnxyPN9MiA8rfQhXe1cYO6S96O7ujujwaFT2rKytRhcEIX00atSIq9HfVv2ZEZYELOGxfqH66V7U6ooC7gVYiuoZnqH2e7UxcOBAg55fEMyN4cOHs9RTYGBgur+HuuNITonWvyRhmB4uXbrEhQFvgxLo7733HgYNGiTraEEwEuj9q/EqslSer0SXLhnBUqC/d+r8DA8PN6ge+p9n/8SdyDvI7ZIbA6tkbK3/if8neLfsuywH02V1F4TGhkJt6Hfo5ubGmxGxsbFqhyMIL6Cbct10snr1ajZIatOmDbef0g114cKFb/2+9LbLCpbL8uXL+WJLlaMvu9Rnls93fY6gJ0HwcfHBmNpjYArQAzR1dmzevBk5InNoddE/q/2Z2qEJgslA9ylatOlKEmrBuQU871OxD9SAJF1uht9Eta7V0LlpZ1ViEARz2rCPiop6q6Hoy/fmIUOG8EN1z549WXrhTVBVOXmckD/Q06dP4eTk9MbXi2mwIBgP1HVNHl/PV2NbIlSNS5rQkZGR/PsgyU1BMHc0/iT+/v78PGEIqPDvuwPf8Xxs3bFwtE2/dBxB79N5bebh3MNzuPzkMrqt6YadPXfCKpuVqt4ztAaKiYnhbpa3rZsEwWyT6ARV1VCL28aNG9O1K01vakmiC29j2zal2rpPnz46qcTaeWMnpp+YzvP57ebDy0l9p/uMSLpQEj3qdBRQFjh89zCiEqNYkkYQhNdDUlAuLi46NQLaG7wXtyNvw93eHR1KdoBaSXSqUNl7a68q5xcEc2HNmjWcQKcN+/r166f7++iaQhKGO3fuZEPStz0Mnjt3jkeqYntbAl0QBOOThSNoM97V1fi7WPUFJcBIo52S5xnxgxAEc0iia/xKDMGcU3NYwpW6T/v59cvUMahTdk2XNfCf5489wXuw8cpGtCvZDmpCnTwHDhzgzh5JogsWm0SfP3++IU8nWBBkUktUr149y8cKiw9D73968/zjqh+jebHmMCVatmzJu7ZkznvnzB1cC7uG3Td3o0MpdRJ4gmAqkCQCXUvmzJmDVq1a6eSYf51TNMi7le2W4coQXeuinw05i2Pnj2HXxl345JNPuMpDEIT0o6n4pg17K6uMVWhpkugnT55kw8H0rGkqVqyY7uMnJCTgzJkzKF++PG8GCoKgDiLl8i9jxphGJ68gmGoSPSYpBj8e+pHnX9X9CvY29pk+Vmnv0hjsPxg/Hf4Jk45MUj2JXqpUKU6iazYmBcEik+jvv/++IU8nWAjUJqgx0yKDraxA3REDNw/Eg+gHKOFVAj83+RmmBrWAf/ONYizSIqoFrp24xrrokkQXhDd3Se3bt4+r0XXVchyREIG1QWt5rqYxcR7XPPD18mWT5C4ju+DurrsoVKgQ6zoLgpA+aJ2xf/9+rirv3VvZaM9oEp2gSvS3oalEz8iapnLlypy8o868Zs2aZTg+QRB0gybhI0l0QbAsSIpNY6Sri8K+9DDj+Aw8jnuMYtmLoVeFXlk+3pBqQzDl2BTuZD969ygbj6qF5hqq2ZgUBGNBPaEjQdAR9EA7ffp0DB06FDlyKDrgmWXZhWVYeXElrLNZY0mHJXCyNe02ak0VPemii6mPILye48ePcwLdy8sry5txGpZfWI6ElASU8S6DKnmUBJpakKQLkbtmbq0shSAIGe+mpAR1ZjwTqlatyuOFCxcQHx+v80p0TZJeUwUnCII6hIaGaqsoLR1aV1GBAslMCoK5c+zYMa0XAj1P6JvIhEiuGCfG1xsPW+usa7Dnds2NHuWUIhvNsdVCkugCLD2JrgtXXXHmFV4FOTcPHjwYU6dOzdJxyNF60OZBPP+q3leomld54DVFSLN13bp1uHPgDhxsHHA36i4uPZYbkCC8DpJZIBo3bpxhmYbX8dfZv7RV6LrUWc+KpMtjt8c8UrWq3FMFIX3QJvSyZcu0Ui6ZgfTNc+bMiZSUFJw/f/6N5qWaSraMbOhpWscliS4I6rJkyRJeh3fr1g2WDm0INmjQgCXkBMHcKVCgABf1kYG4Ifj12K8ITwhnGZZ3y76rs+OOrDmSx/WX1+Pq06tQO4l+48YNJCYmqhaHIKiWRCcTpkmTJmXqof3o0aNo3rw5pkyZopfYBCHtWRp6r++NyMRIVMtbDV/U+QKmDFW6dezYEePGjEO9gvX4cyTpIgjCm5PoTZo00cnxLoRewMkHJ2FjZYMe5dWXTWlatClsrWwRHBOMvBXysn7y1q1b1Q5LEExG7omS59WqVcu0X4LGXJQICAh47esCAwORlpaGXLlyIXdupXMkI0l0qoRLTU3NVIyCIOgGMhQVbwKlIpe4ffv2WztwBMHUIU8SKur74gv95xGexj3FlKNKbuyb+t/A2spaZ8cu5V0KrUu0xjM8055DDWgN1KVLF4waNUqS6IJlJtG7d++OsWPHstYsaaNv3LgRjx8rFXEvQ1U6p0+fxk8//YRy5cqhdu3auH//Plq0aGGocAUTgiqu6YGU/m4yy7Rj07D31l6Wb1ncYTEnvkwZelB3dHTk95ifq59W0kUQhFf7Kpw4cUKnSfT5ZxXphzYl2iCnc06ojYeDBxoVacTzwi0L87h2raLXLgjCm7Gzs8O4ceM4Qe3s7Jzp41AxCK1n32QsSuvkb7/9NsOVm1SxRZ15ZCxOG+mCIAhq4+3tzSbm1M1z7do1tcMRBLOBpFaik6JR0aciOpbqqPPjj6o5iscF5xYgNFaRqDI0VHywYsUK/Pjjj7y+EQSLS6LTrhwt6jt06ICVK1eiffv2/KBAbS+kE0mJizp16rApIr1J/P39eRePbrrz5s3j1ldNBY8gaKCqhnfeeQcVKlTAw4cPM10xOma34h4/pekUFPcqDnN44NdUpdnfUVy6D945yA7egiC8yN69e7lys0SJEnxPyipJqUlYHLCY530qZk76QR90KtWJx8feygb2pk2bpLJDEAyIr68v8uTJ88bXFCxYkItO6CMjWFtba43MRNJFENSB/EYaNmyIGTNmqB2KUUBJME01+uXLl9UORxD0Bm2Qk/6/IaQSSQt91slZPJ9QfwKssuk+pVenQB345/VHYmoiZp6YqfPjC4IpY1Bj0eLFi2PRokV8kZk2bRratm3LD/BUdb57924cPnwY169fZyMW0pPav38/J9779u2rM41awbygtmdKflGlQ968eTP8/YkpieixtgffIFoVb4X+lV9fHWZq1K1bl8egw0Eo7FGYE3t7g/eqHZYgGB3FihXDp59+yvcaXbD56mY8jnsMHxcftChuPB1U7Xzb8UL7StQV5PRVquMvXryodliCYNSQDAEVf1CFt7FTo0YNHiWJLgjqcPLkSd6Yl4Txv2iS6BqvB0EwR6i7k/T/u3btqvdzkecSFcaV8S7Dsiv62gDTVKNTwj42SR0fJSqoDQkJkQ47wahQJTOdPXt2blMlGY5Hjx5xIv3BgwcIDw/XJtWp5ZUq0wXhbYY1GvOtzBj3fb3va5x/dB45nHLgj7Z/qG7+p0vq1VO00A/sP4DmxZrzXHTRBeG/lC1blu85n332mU6ON/+cIuXSq3wvo5KG8nb2Rt2CyuZarx97ITQ0FJUqVVI7LEEwepNAeigmWUJdMH36dLRu3VorIfU8VBRAa+Nbt27xg2NGadeuHSZPnsybgoIgGJ6goKAXDPGEf5PosrEgmDOazWvNZra+SE1LxYwTSqfLkGpD9Jq76FCyA4p6FkVYfJj22cbQbN++nTv43n1Xd8apgpBVjKK829bWlqVd3N3d1Q5FMDHOnDnDY2YSQQduH8DPh3/m+dzWc7lq1JwgAzR7e3uWuSnvVF6ri56ZB3NBENJHSHQItlzbwvM+fsYj5fKypMuR8CNwcHBQOxxBMAl5Bk2CWhdQ5+XmzZtfWS1OlZpkCk4be5m5V1NBwYgRI2RzTBBU4tKlSzxKEv1fJIkuWAKae7pGTlVfbLq6CcERwcjumB09yvfQ67nIrHR4jeE8J4PRlLTM+89l9fpx9erVLPnfCYLZJdEFQReV6BkhKjEKvdb1Ytdp0izuUKoDzA1KkFEinch2KxvsrO34pnstTIx9BEEDVYNSUishIUEnxyMt9NRnqaiRrwZK5lAWfsYEVZUQR+4ewYPoB5yo09XPLgjmRnBwMK8zSFJQV0l08gEiTp069Z+vnTt3jkfyeREZQ0EwLeheevPmTZ5LEv1f6Fnk999/F514wWy5d+8e7ty5w94kmnu8vph2fBqPH1b6EE62TtA3vSv25o59yiGsDVoLQ0NeVU5OTkhOTsaNGzcMfn5BeBWyQhdMFrqYBgQE8DyjVVdDtw3F7cjbrBU+rblyMzJHyNCXbjj9e/dngxBi67WtaoclCEYDSR80btwYEydOzPKxKCGtaXfs66cbfXVdk9ctL6rnU8wHxy8fz0aHw4crVSaCIPxX41Qjj5YjRw6dHLNKlSpa7eTXFQZUrFgx08en7jOSoNHELgiCYaBKybS0NHh6eiJnTsV3RAB3m/fv31/vFbqCoBZHjx7VboC7uLjo7TwBjwKw99ZeWGezxsdVP4YhoES95lzUwW/ojnYqKCC/xOc7fQRBbSSJLpgs1BZIGvqurq4oUqRIur9vXdA6LDi3ANmQDYs6LIKrvSvMFarQp98N6aW1KKYYHG67IbrogqDRH6YqdKJJkyZZPt6xe8dw+cllONo4okuZLjBWNJIuJ2JO4Nq1a6zBTA/+giC8WsqlUyflPaMLKleurE24RUZG6qS77nl27NiBnj174pdffslipIIgZFbKxZw8lgRBMA4pl+nHp/PYsVRH5HfPD0NBSXQHGwecDjmNfbf2wdBokugazwlBUBtJogsmS+HChbFlyxZuD0xv2/OTuCf4aPNHPB9dazRqF6gNS0FjLko3v/jkeLXDEQTVoYRVWFgY3Nzc4O/vn+Xj/XX2Lx7fKfMO3OzdYKzQ4pu4EH0BLjlduHJVU0UjCILC/fv3te+LDh10J/nm7e2NggULvuDrQlB1l0bOJStJdM1DPMnFUKGBIAiGIS4uDrly5RIpl9dsMPz55584fPiw2qEIgkkm0SmHsTRwKc+HVR8GQ+Lt7M3yt8SkI5NgaDTXVKlEF4wFSaILJgu1S7Vo0QLvv/9+ur9n2LZhCI0NRWnv0vim/jewBFavXs0JgIv7LiK/W34kpCRg/+39aoclCKqzc+dOHhs0aAAbG5ssHSs2KRYrLq7ged+KxinloqGIZxFU9KnI2u1lOpV5oeJWEASFAwcOaB+K8+TJo9Njv0oXnTRVnz59ypqqZcoo78vMULRoUU7UJyUlvZCkFwRBv/Tt25c3pWfNmqV2KEbHokWL8MEHH2D58uVqhyIIOmf27NmYNm0a6tevr7dzzD09l5/hq+Spwr5LhoYMRqmLf+v1rbgQekGVJLpUogvGgiTRBYth45WNvINrlc0K89vNh72NPSyB06dPY/369di6dau2Gl100QXh3yR606ZNs3ysNUFrEJ0UzQnqugXrwtjRSLokF0vmkfSTDa1zKAjGTLdu3dhYdPp0pX1al5AuOhllRUdHaz+nqUKnh0UyBs8sJCOhqYbTVMcJgmA4bG1t1Q7B6CD/FY0UpyCYG+TNNmTIEOTOnVsvx09OTcask8rm3NBqQ1WRiyqWvZi2k3XykckG//1++umnGDbMsBX4gmB0SXTSaf74Y8MYIgjmB+n3jh8/nhM/VG31NiISIrQyLiNqjIB/3qxLN5gKZIhG7N+/X3TRBeG5tmtNW7Eu9NA1Ui7U7mgKWqiaJHpgbCAcPRxx+/ZtqVoVhJcoVKiQVsNclwwePBhRUVGYMGGC9nPVqlXjKs2xY8e+9vtooyvt2dv9CySJLgiCMVGyZEkeJYkuCBln9aXVeBD9AD4uPqp6Lo2qOYrHvwP/xv2o+wY7b/78+TFlyhT2exEEi06iP3nyhHVoBSEz3LhxA9988w3ee++9dOmhj9g+gm8+JbxKWIyMi4ZatWpxezhV1Pna+cLGygZXn17FzfCbaocmCKpx6NAh3oAjbeJixYpl6Vg3wm6wRBK1Ob5fIf3yUmpSyrsUSuYoieS0ZJTtVJY/J5IugqCg764MqkKn+/Lz5MyZE127dkWXLq9/QB60eRC8fvbCbyd/e2OMzyfRpcNEEPQPJYdpPfHOO++oHYpRV6KTbNXzHTiCYOrMnDkT8+fPx+PHj/V2jmnHp/E4sMpA2FnbQS2q5auGOgXq8LODJiZBsERUS6KXL18eV69eVev0ghkYAhLlypV7q5bx9uvb8de5vzjB9Vfbv+Bo6whLwtXVldugiDNHz6BW/lo8F0kXwZJp3Lgxyyf8/vvvWa4cX3BuAY9NizZFfvf8MBU01eg2ZW1Yq5Q8JgRBADp16oTWrVvj/Pnzej9XepPcx+8dx5zTc7iz7uMtH6PNsjZ4FPPola+l6nmSlCB95jt37ug4YkEQXoYM7+i9Rl1dwn/Jnj07bxQS8vwvmAt0/6bOePJDuHlTP8VpdO8/fv84J88HVB4AtdFUo/9++ndEJUYZ7LwRERFcAGWIdZkgGG0S/bPPPsPGjRuxd+9etUIQTBiN7IAmOfw66OL+4cYPeT7YfzBqFVASyJbG85IuGl10kXQRLBnqYKlQoQKaNWuWpeOkpqViwXklia5xrje1JPq52HOYOmsq6tSpo3ZIgqA69KC2adMmbN68Gfb29no1IitVqhQmTpyIyMhITJo0Cbt3737tg/qY3WN4Xil3Jdhb22Pztc0oP6c8tlzb8p/XOzo6sg/KgwcPuDqW2LVrFzZs2IDkZMUHQRAE3SbRCXpPC2+uRr9y5YraoQiCTrh27RobgtNawc/PTy/n0FR8dyvbDblcckFtWpVoxZ2slGMhs1NDQf409JwydepUg51TEIwuiR4eHs5mbvRBrW8///wzFi5cyO7dL38Iwusq0d+WRP9s52e4G3UXhT0K44dGP8BSeZUu+p7gPezyLQhC5tkdvBv3ou7B08ET7Uq2gylR0aciCnkUQnxKPLZdl001QSAogU6JZjL41Oj46oP4+HiWgDh+/DivaUaPHs0dIa9i181d2HtrL1eireu6Dic/PImyOcsiNDYUrf5uhU+2fIL45PgXvqdRo0YvmJxRtVy7du2QN29eNueiYgSRehEE3RAUFMQjXTeEVyO66IK5ofEdqVq1KuzsdC+zQrrjqy6t0hqKGgNW2awwssZInk89NhVJqW/3ptMFmg1KzbVWECwyid67d2+ukklNTWUd1s8//xx9+vR54YNeQ6MgPA899GmS6G/a9d0bvJdbn4k/2/4JZztnWCq1a9eGg4MDt1IWdyuO3C65EZcch0N3DqkdmiAYnHXr1rE5Dd2DdGUo+l659+Bg4wBTgmRsNNXoa4LWcDLvl19+UTssQVAVMiwnOnbsqNfzVKlShcdTp05p1zQVK1b8z+vISFRThT6oyiAUcC+AcrnKcSJd81A96+QsVJlXBecfvrrNmdbaZFyaK1cu1m2dNm0aS76QtOLkyZMREhKix59UEMwfqUR/O4MGDeJuGzJWFgRzSqLXqFFDL8effWo2UtJSULdgXfjl1k+le2boUb4Hm5zej76P5ReWG+Scmg1KutZKAYCgNm8Wk9YjZMAgCJnh/v37/BBIplykif4qYpNi8cFGpaLro8ofoUHhBrBkPDw8uEVd05pOki7zz81nXfTGRRqrHZ4gGDxJtmTJEuTLly9LOuBh8WFYd3kdz/v4meaGLyXRfzn6CzZd3YQV3VcgLSkN7du3R9GiRdUOTRAMTmxsLLZt26bVRdcnVARAG1lktKc556sKA9ZcWoPTIafhYueCL+p8of08bdpNbT6Vu8t6/9Mblx5fgv8f/vix0Y8YVn0YV4tpoPUSbZCRdMz27du5y/Off/7BhQsXMGrUKJZWJPkaQRAyDm1SaaqrpRL99bxqk1AQzCGJrjHz1iXULU6648ZUha7B3sYeQ/yH4Is9X2DSkUnoWb5nlv2l3kbx4sV5LUPGxJQLomc4QbC4JPr777+v1qkFE0dTsUULVaqufhVf7vkSN8NvIr9bfkxsMtHAERonz2u7apLopIv+C6TyVLAcqHqBtIGJJk2aZOlYywKXcRtjhVwV4OdjPBUiGaFavmrI45oHD6IfoELbCji/+jxvMlBiTRAsDepOIZmVIkWKsGeCvk2/Sd6AWpN37NjxyiQTVaCN3TuW59Q+7e3s/Z/jNCvWDAEfBXDhwIYrGzBixwhsvb4VC9sv5Pf285ARe6tWrfiDZBVXrlzJCfVevXrp9WcVBHOGDAUTEhJ4nV24cGG1wxEEwQBQcdrFixf1Von+d+DfeBL3BAXdC6Kdr/HJRX5U5SP8cOgHXAi9gH239um9YJHkciiRThuWtG6SJLpgkXIugpBZ6OGPTGnmzZv3yq8fvnMY049P5/m8NvPgZu9m4AiNG9rBbVKkCVepUeXancg7aockCAaDKi8fPnzIxnu1amXNaPivc4qUS1+/vnqvwNAXdB3oULIDz52qOPFIEmuCYIlo/vZJysUQ72mNpIuGlyvRF5xbgKtPryKHUw4MrzH8tceh5Pr6rusxp9UcONo4soZ6udnlsC5I6ZR5FZ6enhgwYAAOHz6MLl266OCnEQTLJE+ePOzvVaZMGa6UFF7PsmXL8MUXX4iElGDynDt3jkfq3CSpNF0X/JDeOPGJ/yewtjK+64qnoyd6lOvBc418riElXQTBopPopE1Li3fSZSxWrJj287TLRGaj1K4hCM9jZWWFEiVKsL7ny5CxVt8NffEMz9CnYh+u0BIUkpKS+IGdpF2So5NRI5+ya/6mh2xBMDd27typNdt9vjsjowQ+CsSZkDOwtbJF93LdYcpodNEvP7vMqwLSRieJCUGwNMiMs27duujcubNBzkdmZBq8vLxeqKyi9cz4feN5/mWdL+Fq7/rGY1HSf0CVATgz4Awq5a7EclMdV3bE7pu73xoHfS8ltagqPS0tLUs/kyBYGs7OzpwcXrhwodqhGD0//PADfvzxR20CUhBMlfr167O87OrVq3V+bKrsDgwNhJOtE/r59YOxQtXoxNqgtXgY81Dv59N4TkgSXbDYJDot0rt27coPKlT5Q61wwcHBL1TIfPnll7ygF4T08vW+r7lqi4wzf2kqMiUvt0FRIp3eewcOHEDXMl3580sDl6odmiAYPImeVSkXzfumVYlWXCVqytQpWAdejl4ITwxHmVZltBvcgmBpfPDBB9i/f/8rN+n1gb+/v3ZOUi7PV7//dvI3Nu0iI1HNg2p6KJmjJI72O8pmx8SonaPYnPRNpKSksLQMSS2ePn06Uz+LIFga5COg2XSiCvSyZcuqHZLRQ9cZQqMhLwimTI4cOfSi9T/t+DQe36/wPld8GysVfCqger7qLD3311mlO1eftGvXDrNmzeIuOkGwyCT6r7/+ilWrVvGbgHQZR44c+cLXqS2mTp06YnQkvMDTp0/RrVs3TJ48+T/OzCfun2CDPGJO6zlGfdNRC6qwIyhJ0LVsV1hns8bJBydx5ckVtUMTBL1DmqX0t5/VJDolpJZdWMZzTaLKlLGxskH7ku157lHdg0eRdBEE/UPJetJgP3XqFFdoaohMiGStUWJ8vfFsIpoR7Kzt8GuzX+Fq54qzD89i+YXlb3w9aaU3bqyYjG/ZsiVTP4sgWBL0HNK6dWv06dPnP88jwuuRJLogvBnydCN/E2JItSEwdgZWGcjj3NNzkZqWqvfuvUGDBqFSpUp6PY8gGG0SfcGCBfxG+O233+Dm5vZK7UmSd3m+Ol0Qzpw5g+XLl2Pu3Lkv/M0kpiSizz99OLlF0gptfduqGqexQhIWBCUSczrn1MrdSDW6YAk8ePCApaBy586dpYqxI3ePsJcAJahaFW8Fc0Aj6XLN5hqQDbh69Son9wTBEkhOTsZff/3FrdmGhgzSK1eu/EJV+uQjk1mOpVSOUuhZoWemjks66Z/X/lxrtk7rpDfRsmVLrbmqIAiv548//tCab5NGr6l6oqiBr68vj+RtJQim7K9E8m8TJ07U+bFnnpjJsrTNijbjzjJj553S78DTwRO3I29j+43taocjCOadRL9+/TpXmr8J0oekyuOMsmTJEq5wJ/1n0rylxQ0l7TMKtejNmDED5cqVYxM6b29vroIm6RlBHc6ePftK861fj/3KJpmUGJ7eXDEVFV5fiR4YGIiwsDCtIciSgCVSSSOYPUWKFGEdzmvXrmXpoffvwL957FiqIxxtHWEONCzckE2YQ+ND8ce2P3D37l2+7wmCJUAby/369UOFChVU1wR/FPOI1zTE9w2/506RzDKs+jDkcc2DWxG3MPvU7De+tnnz5jyeOHFClc0EQTAFqIu6f//+PP/ss8/4Q0g/UokumAMHDx7Enj17+EOXRCdG48+zf/J8aLWhMAXoOah3xd48f9s6QxcEBASw/wTlEgXB4pLo9HAeGRn5xtfcvn2bTRAzytixY7lSmb6fKg4zCyXihwwZwslFGukBY+3atVxBT0kYQZ1KdOL5Np7k1GTMODGD5z83/hleTl6qxWfskEySZgFLC4B2JdvBxc4FwRHBOHrvqNrhCYLBTMAyC11vVl5caTZSLhrsbezRpkQbnl96don1XQXBUtDIF5E8A5mXq8n3B79HbHIs/PP6a2WWMguZkn1T/xuef3vgW0QkRLz2tXnz5uVNBFrz7tixI0vnFQRzZPv27Xjvvff4PUKJdDLIFDJXif7o0SOWcxUEU+TIkSM81qxZU6fHXXh+IaISo+Dr5avtFjcFBlRWNMo3X92M2xG39Xou8kzs3bu3rFMEVVHtSYEqiWkxQhq1r4KqZLdt24bq1atnqs3u1q1bXEnz0UfpN2N6nr179/JxqHKXErfUrrN48WKsX7+eY/vkk08ydVxB95Xo6y+vx4PoB8jlnAvdynVTMTrTk3ShB2yNjMPi84tVjkwQ9Afda+Li4rJ8nJ03d+Jp/FO+3jQo3ADmhOZasCZojXSmCBZDamqq1ki3Y8eOqsYSHB6MOafm8PzHRj/qRCaCKsRIFobkYSYeenPreYsWLXgUXXRB+G/SjK4PJP3UtWtXliMVGZeM4+rqyht2hEi6CKYK+ZgQujQhj02KZSk3jRa6VTZ1N/Qzgm8OX+5oJRmaP878oddzkYQWcenSJb2eRxDehGrvTqrsvnfvHjp16sTj89y4cQMdOnTgSnV6XUYhc6SCBQtmKb558+bx+O2338LOzu6FB4z69evz7tedO3eydA4hY0RFRbFO78tJ9JknZ2p3QclMS3gzVGnXvXt3rbRLj/KKpMuKiyuQlJqkcnSCoB82bNgAT0/PLDu6a/wDupbpmiWZBWOEql5oY410DVt92Ir14+U+J5g7R48e5apId3d3NGzYUNVYvt73NZLTktGkSBN+INUFdJ36qfFPPJ96fCruRb245n6VLvrOnTtVl7URBGOCrhGUQKeu5EWLFkm3VhagTUsqdnveB0IQTAW6N2qkfTXd3bq6/9P6u4B7Abxf4X2YGh9VVgpX/zj7B3ft6otSpUrxGBQUpLdzCMLbUC0D0K5dO9aRowpvSnhr2utz5szJOuhUBTdu3DjVHmj27dvHMdWqVes/X2vWrBl/nSp5e/Z8veFTYmIifzyfBCZoEUYfQsY4ffo0j/ny5WOZH/odBoQG4MDtA/yQ2LdCX/m9pgP6+6UPgn5ftfPWRm6X3AiJCcHGyxvRtoSYshoazd+t/P3qD+p8SkpKYimxzP6eqUqEOl+ILqW6mN3/L1vYolmRZlh3ZR1OxZ7C42uPcfLkySzJoglZR64P+tc41mwwU2WpWr/nC6EX2J+EmFBvgk7jaF64OWrlq4XD9w5j3J5xmNtq7itfR15CpDXapEkTrtCnD8F4kWuD4aDrA20uVaxYUdXrhDlAv0NCrjH6Q64N+oM8g+h5wsbGhmVSdfE7PhNyRuuFMrP5TNhlszO5/3cti7bkLt2HMQ+x5uIabXerrqECH00luqn9jowF+b1lHVXL6EhLjpLkM2fOxPHjx7ndnnb3aJefKtA1iT5DExsbi5CQEJQtW/aVlQbFixfn8W266PTzffONokX5slSMk5OTDiO2DGjjgv5/5MmTR9tq/Nvd33is5lYN5w6eA/0nZBx/R3/8E/MPpuycApvr5lVda0rQA5qge2hTduPGjTx3c3PLtFTBgfADiEuOQy67XHh87jG2nDc/yYPCCYV5jC0Qq00w0oOCoD5yfdDPtWHZsmU8z58/v6oyJj/c/IFboWu618Sjs4+w5axuY2nj2AaHcRiLzi9CpYRKKOBY4JWvo4p8MhcVTAe5NuiHJ0+e8DXC29v7hWcRQTAV5NqgewIDA3mk64IudLlTnqVg1NVRSHuWhrqedZF2JQ1brpjm80Vdl7pYFbsKP+78EY7Bjno5R3x8PI8PHz7EypUr4eLiopfzmDO6kDe1dFR/MqZqF/owJjSGp/Qg8SooCfP8617HmDFjMHz48Bcq0ekhrUGDBvDyEvPLjEJtxhMmTEBERAR8fHwQHh+O7jO789e+bf0taheorXaIJgNtVlEbVHR0NPsO5HmUB//8+Q9Ox5xGzYY14eGQcUNfIWs7wrTQpWuhra2t2uGYHbThSR4ZJM1F1+TMGovOXalUb/at2het6rWCOVI7sTZmTp2JOKc4wBuIiYnRSjwI6iDXB/1x+fJl7n6kwgZas1GnihqQsfeJcydgnc0av7/7O5uK6ZqWaIlja45h/ZX12Ja6DetbKl01guki1wb98eDBAy7momTD1q1btdWPgm6kcX7//Xd+Lp48WdGAFnSLXBv0+7sleUgqttTF+njS0UkIjg9Gdsfs+LvX38jpnBOmSpnIMlg9azUCYgJQrFoxlPDSz3WT8mnUEUBjjRo19HIOc0ajjiGYcBLdnLG3t+ePl6GbmdzQMgf93siUhlhyaglXhZbPVR71i9QXg58M8Pfff+O9995jPULqAqmStwrKeJfBxccXseHaBvSr1E/tEC0SuTboB03lWM2aNVkKKjM8jXuKHTeVipOeFXqa7f8nL1sv1mPefG0zUAo4d+6c2f6spoZcH3RPuXLluJrp/Pnz2gIJQ8PyhfvH8bxPxT4o61NWb+cibfSNVzdiy/UtOPrgKOoWrPvKeH7++WeuyqcqL2pXF4wbuTbolosXL7IHFiVpSEKSKh3l96s76Brz3XffcZcbJdHld6s/5Nqgezp37swfpKCQ1d/t9bDr+Pbgtzz/tdmvyOuhmO6aKsVyFEPL4i35GWJ+wHxMbjpZb+aidH0mrzyNx5uQfuSaYMLGokWLFsWHH36IpUuX4v79+zAmNBXor6s01+zevK5SXdA/1PI06+Qsnn9S9RNJoGeQ2rVra3XmqRqdfn8ag9HFAYtVjk4Q9NPOmpWup9WXViMlLQV+Pn4o5a2Y2pgrWh3DcuD7c2hoqNohCYLeoJZsMqRXi+03trO3i721Pb6u/7Vez+Wbwxf9K/fn+eidozmZ9TK0HqDk+YEDB9hLQhAsCZLcJD8sStD4+vqy/xV5dwm6I2/evNz9k5KSguDgYLXDEYRM4eDgkKXvp/tv/439kZCSwMUrPcu/3mfPlPioimIwOv/cfMQnK9IruoY6B7dt24b27dvr5fiCYLRJdDIS+fPPP9GrVy8UKFCA2+QGDBiA5cuXc1WQmlCrPxmp0Y39VYYnGi10jTa6oH/Onj2LqlWrshktse36NtwMv8myI93LKZIuQvqh91yhQoX47/vo0aP8uffKvcfj/tv7cSfyjsoRCoJuoIe0PXv2ZDmJvjRwKY+WcL3pVLoTnG2dWc4FhZTrryAIeqpC36tUoX/i/wnyueXT+zm/rvc1v7+P3z+ONUFrXvkaTYs6yVgIgiV1aZKECxVRUbHJ4cOHUaRIEbXDMjusrKx4g0IjqSUIlgglmffe2gsnWyf83vp3sykIbFGsBQq4F0BYfBgXIOmDevXq8bU6R44cejm+IBhtEv3WrVu4efMm/vjjD3Tv3p1NAubNm8dz2qEuVaoUBg0axNUwakBvTjIYpQXUy2gqc6R9xHCcPHkSp06d0iZzZp6YyWPfin3hbJc5fWNLh6QtNNXoRH73/KhfqD7P/w78W9XYBEFXULvlF198wRu2lSpVytQxaFPp4J2DyIZseLfsuzB33OzdtBUx7k3ceSNCEMyNhQsXskcNJc7UYt+tfTj14BQcbRzxWS2lSEDf5HLJhZE1R/J8zO4xSE5N/s9rSMpCs96V979gCVARF8kckt7xO++8wx1s5uxfdSviFlLT/lsoZihKlizJoyTRBVODNLhbtWrFvgmZ5WHMQ4zYMYLnE+pPQGHPwjAXrK2s0b+S0vE25/QctcMRBPNKohNUCdunTx8sXrxYq2s0d+5cvPvuu+yITqYjlFTXJ3QeuoHT+Dz9+ytv/nHjxiEpKUn7earKIX3dpk2bSnufAdEkzykJRvphW69v5YTWoKqD1A7NZKlYsSKPpHmsoUe5fyVdXtXmLQimBmmZUgcLJcysra0zdYzlF5bzSPrBhqgUNQYGVh3IY0y+GPjV9VM7HEHQORs3buT13PXr11WL4ecjP/PY168vvJ2p9cMwjKgxgs3LaD0197RimPw81apVQ/bs2REeHo4TJ04YLC5BUAvaOCKjwBEjRnBCPatSDcbMt/u/ReFphVFnfh1EJUapmkS/dOmSKucXhMxAXSrHjh1jzxCNR1tmGLJ1CCISIlA5d2UMrT4U5gZ5q9lY2eDI3SMIeBSg8+NTjmLZsmX46quvEBMTo/PjC4JRJ9Gfh6q+6UGGpFKuXLnCC3d6g5BmWkah6vbevXvzx6pVq/7zOZprmDlzJle90/g8VJ30wQcfsCYkJW4pCUOVjKS9RA8WM2bM0MFPLaSXM2fO8Ojn54ffTv7GczKuKJq9qMqRmS4VKlT4TxKdZBxIl/XS40s4/+i8itEJgvGg6czQSB5ZAmTYXLtAbaQ+S8W80/PUDkcQdApVm2q8Epo3b65KDPRgSdJ0VtmsMLzGcIOe29XelWVdiG/2f4PoxOgXvk4bjlQsQlCyQBDMkcTERG3BCPlckbwhGV2S3Ii5MunwJHy17yueH713FM2WNFMlka55BtE83wmCKUAqChovlcwm0Tdc2YBVl1bBOps1/mj7ByebzQ0fFx90KNmB53NO6b4anaRvPv30U3z77bcICgrS+fEF4W1Yqdliv3v3bowdO5ZlJSgxTRqMlMz29PTEhAkTWEolLCwsw8c+dOgQVx3Sh+bmTMfSfI6+nh6oEn7atGk8p5EeJDp06MBVOaThLhgGaiUOCFB2MUuWL4m/zv6l1Q8Vsr6ApY0r2sQiSGO+jW8bni8JWKJqfIKgC0gPnTZo09LSMvX9F0Mv8oaSrZUtbzJZEoOqKJ0+VKkan6gfcyBBUAOqJCOTeJJrqFy5sioxTDoyicd3Sr+DIp6G113+sNKHKJ69OB7HPcbkI5P/83XRRRfMGfLfIgPRqVOnvtC5Zs7MOD4Do3eN1t7fPR08cezeMTRf0tzgiXTyuSJu3779Qse3IJhCEr1o0cwV8dH7bNBmZW1NsmoVfZSucHNEYzBK3e0vb9TrgtKlS/Mo3SyCRSXRKVFOVS6//PIL7OzsWLOW2mqpAp2qg+jfpDllY5Px3bkFCxZwZcHrPujrGsaPH8+fo/FlqBJhyJAhuHDhAif9SfKFWvwye+EUMgfJ7dDvn3Z8j8YeRWRiJIplL4amRZUqKSFz5MqVi99/mzZteuF9ppF0oepbNfUSBSGrUOK8Xbt2bAKd2UoFTRV6i+ItkN0xOyyJjqU6wi7ZDg9iHmDypv8m2QTBVNm2bRuPtA7NrMxTVrgdcRvLApfxfFTNUVADW2tb/NDoB57/cvQX1mh9HjLtoqRivnz5uHJfEMzpuYKeMckT6KeffkJERATMHdoMH7JtCM/H1R2HWa1mYVevXZxIp4r0FktbGDSRnidPHly8eJGL5SgPIAimwI0bN3jMrOHwmF1jcD/6Pop6FtV2g5krDQo1QAmvEohJisGyC8p6R5dIEl2wyCS6poWOdBep2oUMGurUqSM3UuG1eugVKlbQSrl8XPVjboEWssbw4cP5/Wdvb6/9nCZZGBITgj3Be1SNTxCyAlWgk1YeaZv6+vpm+PvpHvX3BSWJ3r2sfv05jBF7G3sUfKp4fyy+vFjtcARBZ2iqqzUGmobm12O/slRSo8KNUDmPOpXwRKdSnVAtbzXEJsfim33fvPC1nDlzcoLrn3/+ga2trWoxCoIuOXjwIHdA37p1C8WKFeNOZQ8PD5gzi84vwkebPtJu2n1TX3mvV8pdSZtIJ+1iSqTro2L0TUkwNTYxBUGNSvTDdw7jt1NKHmNem3lwtHWEOUOSKwMqD9BKuujaa02TRBc5F0ENVMtCrlu3jqu8qfJ8zJgxWhMjqhok6ZTAwEC1QhOMUM6Fdnx9/H0QGBoIJ1sn9K7YW+2wzBY7azt0LdOV50sCRdJFMP0NuPLly2eqq4nanG9F3IKzrbNW5sjSaOXTCkgDrqVcQ9BjWagK5iHjoLk2aHS/DcnTuKeYd0bxGRhdS5FWUPMh9+cmirkpxXQjTKmy0yDJc8GcuH//Pr/n6dmzevXqOHLkCCfSzZkVF1agzz998AzPMNh/MCY2nsjvew2aRDrJOVIivfnS5gZNpAuCJVSiJ6Yk4sONH/K8n18/NCjcAJYA5WvIa+3sw7M4cV+3JuXkaUhIJbpgUUl0SpaTDt358+cRGhqKFStWoHv37nxxIqOAihUrchVM165KMk+wXPr06aPctPyVf/cs35MXe0LWIU3YtWvXsv7/8/Qor0i6rA1ai9gkRS9dEEwNTaKMDImzIuXSoVQH3ryzRBr4NQCuQm/mQIJgaCIjI9G6dWvufiRZM0Mz+9RsxCXHsRZqkyJNoDZ1C9ZleTyqjNd4zrxMcHCwSLoIJg95YpE8JFUwki8XmQOaM+uC1uG9te8h7VkaeyBMbT71hQT6C4n0nv8m0g1VkU566D179uTrsSCYAs7OzmxCnNFK9B8P/YigJ0HI5ZwLk5oofiiWAHW2dy2r5PLmnJ6jl0p06g6IjxffJsGwGIUeBhk7de7cGbNmzcKOHTswadIk5MiRgzXIV69erXZ4ghFwP+o+1l1ep5VyEXRXkdepUyfeuEpN/Vf/vEa+GijsUZh1zMhFXBAsLYmekpaCFRdX8Py9cu/BUuHf3UllvuDcAtlUE0weknbauHEj9u/fb/BzxyfHY/rx6TwfXXP0KxNaavCB3wc8Ljy/8D9eKLTZQFV3R48eVSk6QdANV65c4ZGq0J2czHtjfMu1Lei6uitvjlHx0ZzWc94og0myUppE+uG7h9Hy75Z6T6ST1N6SJUuwZcsWLuoRBGNn/fr13MlSu3btdH/PxdCL+OGg4j8yo8UMeDp6wpL4qLIiJbX8wnKEx4fr7LhUbEsqFiQTc/Xq/6t9BMFSkuiPHz/GypUrMXDgQJQsWRL58+fH6NGj+fO5c+dGt27d1A5RUBFK7NLF8ffTv/NCsF7BeiiXq5zaYZkNtJNOu+q0g3vt2jXt5+nBXlONLpIugilC1w1NEp06mzLK7pu78TjuMbydvFm32FIhU0GvSC8gDIhKitJW5wuCqaNGApuS1HRdKeheEO+UeQfGQlvftlwxRoZnO2/ufOFrBQoUeEFHXhBMeVO4d+/eaNTIvO/ptH7puKIjktOS0aVMF/zV7q90+UhRIn1nz52cSD9055DeE+nUCUTP/c+v1wTBFNYO6V0/UOFJr/W9+L1I99nOpTvD0qierzoq5KqAhJQE9mfQFfT/gDxbKH9RtmxZnR1XEIw6iU566OXKlYOPjw8nyklOgtzR33nnHfz222/snE7adbRDLVguJDXi6e2Jyfsm878/8f9E7ZDMCjL0ofchce7cuRe+pqm+3X59Ox7FPFIlPkHILCEhIbwZa2Vlpf0bzwhLA5fySA+gttaWqwtMi9RKfpW01ehkiqRrcyBBMGT3FUkIqAFVeE8+oqxlRtQYARurjPs06NNEWHPPn39u/gtfI/NxgqpFBcGUadOmDebPn8/yoebKwdsH0WZZGySmJqKdbzss6bAkQ9eaKnmq/CeRTl2p+qJq1ao8njp1Sm/nEAS17vnd1nTDmZAz8HL0wqyWs4ym+8yQ0M/8UZWPtJIuJC+lK6gjgHwtxKBYsJgk+syZM/lhpkOHDpg+fTouXLjA/16+fDkGDBiAEiVKqBWaYERQZUJknkjEW8Ujr2teXhAKukVTpftyEt03hy+q5qnKHQAaWQtBMBXc3NywatUqTJ48OcNt26RXrJGP6l7OfB+200uzZs3QpkAb2GWzw7mH59hwVRBMkTlz5qBQoUIYOnSowc9NHiM3wm9wxXdfv74wNjQxrb+8HmHxYS+8/+khOCAggItbBEEwTujeTEnv+JR4NC/WHCs6r8hUEYAmke5u764k0pfqL5FepUoVHk+e/P9OvSAYKQsWLGAd7m+//fatr6VikyFbh2Dj1Y1wsHHAxm4bkc8tHywV2qR3tXPF5SeXsSRACmQF00e1JDol7KhKkDTPP/74Y605gCA8z5kzZ7SGorSLackVoYZOohNaSRe54QkmhouLC3ttkN5/Rtl0dRM/MBbyKMT+AJbOiBEjsGH5BnSv0F1bjS4Ipsi2bdt4rFChgkHPSw/UEw9P5PknVT+Bs50zjA0yOqWPpNSkF2SbyKPI319ZiImki2CqxMbGIigoCElJSTBHroddR/MlzXnt0rBwQ6ztspY7TDLL84n0g3cOosrcKpxQ11cSXSrRBWPn0qVLfA15+vTpW1/7y9FfeK2cDdm4G6RGfst+lnC1d8W4uuN4PnrnaEQmROrkuKGhofjuu+/4OUUQLCKJXr58ebVOLZgI9NB5/O5xID9gk82GneUFwybR3y37LqyzWePkg5O48kQxZBIEc0eTQOpetrtFtl6+jkFVBvG48uJKPI59rHY4gpAh6MH3xIkT2upqQ7Lv1j6cDjkNRxtHo5al61tRqUb/6+xfr5R0kSS6YKocOXKEC7Yy45FiCnx/8HtEJkay/vCGdzfA0dYxy8esmrcqJ9Jzu+TGladXUGd+HXy8+WNEJerOBLRy5co83rhxgw0bBcFYuXnzJo9ktP0maI08auconk9pNgWdSncySHzGztDqQ+Hr5YtHsY8wft94nRwzMTER48aNY1ULc90gFYwT1Y1Fb926he+//5610OmhhsYffviBPy9YNg8ePEBE8Qiedy7VGblccqkdkllCetGkG/3o0SOWVHqenM450axYsxc0ogXBFCDJMEr4JCQkZOj7yDl+yzVF+1ekXF7c1PRK9IJfTj+uVH05ySYIxs6OHTv475jueXnz5jXouX8+8rNWMsXb2RvGCl3z7KztcPbhWZZu0tCiRQsed+7cKQ+qgkly5YpSCFK8eHGYG3cj72o7Rqc1n6bTThdKpF/6+BI+8PuA/03VtWV/K6tdJ2WV7Nmz8/8TMgYkLxtBMFZoo4coWrToa19D3Rq91vXi+RD/IRhWfZjB4jN2aG0xvcV0ns84MQMXQi9k+Zj58uWDs7MzUlJSEBwcrIMoBcEEkujTpk2Dr68vvvrqK6xZs4YX5zSOHTuWP09fFyyX/Sf3A//3Axxaw/D6pZYC6UWTuzWZ+ebMmfM/X+9R7l9JFzEUFEwBMqkePHgwV0/GxcVl6HvXBK1BcloyyucqjzI5y+gtRlODkmj04FD5WWWtORCZJgmCqUm5aBLChiLgUQC2Xd8Gq2xWGF5jOIwZLycvrffM/LPzX6gWpWsqacIKgikn0UuWLAlz49djvyIlLQX1C9WHf97/a2DqEDIZndd2Hnb32o0inkVwN+ouWv3dCj3W9sCTuCdZPv7FixcRGBgo0q6C0ULPv2+rRKeO7XbL27Gpb/uS7bkKXXiRpkWbomOpjuy3Nnjr4CznFahbWLMxeu3aNR1FKQhGnETftGkTa9W6u7uzlhG12dEO0tGjR7kSnT4/fPhwbN68Wa0QBZVZdH4RYANkT8iOanmrqR2OWdO6dWveuKKK9JdpV7IdXOxcEBwRjB03dqgSnyBkBI00UcGCBbnKKSNoOi5IykX4F43Zt+N1R3g6eOJWxC1ODAqCKZCWlobt27fzvHnz5gY998+HlSr0d0q/wwkoY6dPxT7aa2FiSiLPaW1A7dIdO3aEnZ2dyhEKQsahQhGC1rrmBJkAzz09l+ef1fpMr+cirfXAgYEYWWMkbwrSNaLUrFJYFrgsS8kwW1vxuxKMXw4uKkqRMSpcuPB/vv4o5hFaLG3B70fKWSztuBTWVtYqRGr8TGk6haXtSOaOpG909Xxy9epVHUQnCEaeRJ8yZQonN8g4csyYMahevTonPKpVq4bPP/8cp0+fhqenJ79OsEyeOinGHY1yNhJdYhVxsnXS6qR+tPkjRCdGqx2SIKQrie7n55eh76PWwv239mv9AIR/0fwuA88GsiQFIQajgqlw/vx5liyjtt9atWoZ7Ly3I25j+YXlPB9VU9FINYVKsbyuefE0/ik2Xt2odjiCoBPMtRL9t5O/ITY5FhVyVUCzos0M8kwwqekkHOt3DOVyluNK9O5ru6PNsjYsK5MVSJJBEIxZyoWk4BwcHF74WlxyHNoub8vFZrRRvqHbBn6fCK+moEdBfFHnC56P2DGCzZCzgiTRBYtKolPyvGvXrqxl9Cry58+PLl26cDJdsEwiHBQ99AHtBqgdikXssE+aNOm17tbfNfwOhTwKcfXpyB0jDR6fIGSEs2fP8pgRAzHS+e65riee4RnLGdAiT/iXSpUqaX+3Ayor1+St17biZrjS3ioIxkyxYsWwatUq/PjjjwatpCaZBWpbblS4ESrnUaSQjB2qnutVQdF0nX/uX0kX4uTJkxg/fjzu37+vUnSCkHFiY2Nx9+5ds6tEp+Td9OPTtVXohiw4Iq30U/1P4dsG37LW8eZrm1HmtzKYfXI20p6lZehYycnJvLnp5uaGx4/FtFwwPuhvlJ4pXn6uIFnD7mu648T9E8jumB1b39vKfmLCmxlZcyRvONyPvo/vDnyXpWNJEl2wqCQ6GRNRRdCbcHFxEQMjC4V2JW+EKbu+pE0s6Beq/hg9ejR+/fVXfth4GVd7Vyxop2ihzj0zV2QcBJNIomekEp2c4slIz8vRC3Naz9FjdKYJaZVS8jEyMhLWkdZc8UYbDr+f+l3t0AThrbi6uqJz586s620onsY9xbwz8wwis6AvSRe619+P+jdhPmzYMHzzzTcitSiYFJrkSo4cOeDl5QVzgXwLHsc9RmGPwninzDsGPz8lz8fWHYtzA86hZv6aiE6KxqAtg9B4UeMMVaWTnAsV88THx0vxnGCU1K5dm58tSI5YA0kYDds2DP9c+Qf21vbY8O4GlPBSErrCm3GwcWATZGLK0SmsJ5/VJPr169d1Fp8gGG0Snf7gN27c+NrWLfo8Xag0bwzBsjgRfIITNLldcsPb2VvtcMyeXLlywcfHhxcEFy682i27XqF6GFpNMXjtt6EfwuPDDRylILydhIQEXLp0KUNJ9MN3DmPi4Yk8n9tmLnxcfPQaoylCD7nlypXTdpINqjqI53+e/RMJKQkqRycIxsfsU7O5UrSiT0U0LtIYpkRxr+KoXaA2V5QuDlis/TyZNRNbt25VMTpByBiUPP/2228Nuommb8hIdPLRyTwfUWMEbKxsVIullHcpHOxzEDNazICzrTP23tqLcrPL4e/Av9N9jCpVqmi7XQTBFKBOs5knZ/J8cYfFqFXAcFJx5kDrEq3RqngrJKclY8i2IZn2VahQoQKCgoIkiS5YRhK9V69erE/XrFmz/+w6nzp1Ci1atOCvv//++2qFKKjI/K1KC/GzR1lzbRYydhN6Xk/6VfzQ6AfeZX8Q/QBDtykJdUEwJmgTKDU1lavNXicX9jyk8d9rfS9OFr1f4X12jRdejWZTgqpxaOFbwL0A6yavurhK7dAE4bXs27ePq6cDAgIMds745HitzMLomqNN0tdF44Xy19m/tA+3tDYndu3aJZ2igslAEqFjx47FV199BXOB7rsksZjDKQf6+CmdI2pCRqOf+H+Ccx+dY2PFyMRIvLf2PXRb0y1dRTeaJDrlAATB2Hg5wbs2aC3reROTm0xWpRPEHJjafCp3tOy4sYMr+jMDadST14WYngsWkUQfOnQo2rZti71798Lf359bbYsWLcojmYvu3r2bv06vEyyP8w/P85jfNr/aoVgMGp23NyXRyShlYfuFvFim6rR1QesMGKEgpG8ziP6Gly5dmq7E1fDtw1nXmxLCmtZC4dW0b9+ejb+bN2/OuskabfRZJ2epHZogvBa6FpCO9/z5L+p765MF5xawzEJB94Im+3BNcVNV6bWwazhy94h2nUCdazExMTh69KjaIQqCxSb0NN1zQ/yHGJWJYbHsxXCo7yGMrzce1tms2Vi5/Jzy2BO8543fJ0l0wZihJG3ZsmW10lBf7FaMMT+u+jGG1xiucnSmC10vNKbrJI1DBQiCYAqolkS3trbG+vXrsWDBAtSvX593j+7cucNjgwYNsHDhQqxbtw5WVqqFKKjI7YTbPFbOZxpGXJaSRCeq56vOlXXEgE0D8DhWTIAE45IdoUQ6dTm9jY1XNuKPs38gG7JhUftFcHdwN0iMpkqrVq3YmLFOnTr8735+/WBrZYvj94/j9APRMRWMM9m0bZvi4UGbP4aANuW+2POFUcgsZAUXOxd0KdNFW41O0Jq8bt26PD98+LCq8QlCRrpRKPlFXWrmAFVtnn90nje5Pvb/GMYGXfO+rv81Dvc9jOLZi+Ne1D00WtQII7aPeK38Gz2D0PXlwYMH/CEIxiQTee3aNVy8eBHZs2dHWHwYrjxVNLwnNJhgkp1mxsQXdb7gQqbbkbfx06GfMnUMkoDu3bs3Fi1apPP4BOFVqJ6hJlkXqjonQxFyPqaR2kR79uypdmiCSqSlpSHKMYrnjcualo6oOSTRqeX9bQ8a4+uPR9mcZbnSbuDmgZnWMRMEtaDNnw82fsBzqiIhzX8hY+RyyYXOpTvzfPoJRbpCEIwJeui9d+8et/tqkr/6hDTQO67oiIiECJY06F+5P0wZjcHoyksr2fBdY7BGHDp0SNXYBCG9zxSk5e/r64sbN27AHPjpsJJooutLdsfsMFaq5auGswPOarvWphybAv95/gh49F9pLRcXF5QqVYrnYi4qGBO3bt3i51xSSyCpyBP3T/DnaYPImN9/pgJ10kxpOoXn1GFDhQgZJTAwkAtwKacoCGaZRKf2z4YNG/KFyM3NDU2aNMGJE8rFSBCI45ePAw4AUoFmVd5eTSrohuLFi8PR0RGJiYncFfIm7G3suXKXqk3WBK3hdk1BUBva/BkwYABmzpzJlSOvgxbD/Tf1R2hsKG8GfdfwO4PGaco8efIEO3bs0Br4DKk2hMfF5xdrHywEwVjQVKFThyPd3/QJXVc+2vQRV4jmdM6J1V1W873SlCFzUWq3pgT66kur+XO1atXSbrjLBrpg7Ny9exfx8fHcpVa4cGGYOnSf3XdrH6+/P63+KYwdZztnzGk9Bxve3cDXxcDQQFSdVxWTj0xmL5rnoc2Odu3acX5AEIwFzeYbyQ5T1fnxe8e1m0SCbiA/KjJgT0xNxKfbM35dK1GiBI8auR1BMKskOu0SNWrUiNvqYmNjWVORdozo4YaqhQSB2HJ6C48O0Q5wcXRROxyLgSSWzpw5w+/L9Dxo+OX2w7i643j+8ZaPERIdYoAoBeH1ULvl3Llz8dlnn/ED85v0itdfXs9SJEs6LIGDDe3aCelh2LBhLJWzfPlyrbxTz/I98QxKAjE1zTza5QXzYOvWrQaTciFvAPIKIR3gFZ1XIJ/b242NjR1KGGiq0eefUzTlSS6LdIupOk/a2AVj58qVK9oE2JvWBaaCRgv9vXLvIb+76fhGtfFtg8CBgWhTog2SUpMwaucolni5G3lX+5qff/6ZpV7r1ZPOQMF4uHlTqYwuUqQIjyRhSFC3maAbaC0xvfl03hzccGUDtlxTckHpRZLoglkn0X/66SeuDvzyyy/x8OFD/hg3bhxXCEycqCwKBOHYrWM85rbKrXYoFmmcQm3v6WVM7TGonLsywhPC8eHGD6UqTVCVs2fP8li+fHneFHoVweHBGLJNqZ7+tsG3qOBTwaAxmjqVKlXikTbcNExqMgkeDh44+/Asfjv5m4rRCcK/0IbwwYMHed6iRQu9nuvwncPa6qmJjSeifqH6MBd6VejFZuIHbh/AtafXYGNjg8qVK/MoCKaSRKf1ralz5ckVrAtax/PRtRRvIlOCKtH/efcfzG09l/XcqaKeTEfXXFqjdmiCkK5KdHrO1XRd+uf1Vzky86KUdykMqzaM50O3DUViSmK6v5f+3xBhYWEsDS0IZpVEp4cZ0lL89ttvkTNnTv745ptv2KRs//79hgxFMGKSPZN5rFG0htqhCG/B1toWC9svhJ21HTZf26ytVBMENZPofn5+r/w6VUm/v/59liYgmYKRNUcaOELTR/O71fyuNdroPzT8gedj946VrhTBKLh8+TJLuFD1WLFixfR2Hvp7f2fVO0hJS2EjTvJYMCeoor5p0abaLh5BMLXrAEGa6KYOSaBQ11db37Yo7V0aplpx+mHlD3Huo3OchCT/iM6rOqP/xv6ITYrlJCVJStImqCAYWyU66XU/jX/Kz70VckkRjq4ZV28ccrvkxvWw65hyVNFJTw9OTk7In1/pzJFqdMHskuiPHj1C9erV//P5atWq8dcEgXiUTflbeL/Z+2qHYnGEhoaif//+GaraK5OzDFf0EsO2DcPtiNt6jFAQMp9E/+XoLzh45yBc7Fx488fa6tXV6sLr0fxuScohPDxc+3kyOKuapyqiEqMwYscIFSMUBIUqVaqwhv/OnTv1JjuSnJqMLqu7ICQmBGW8y+DPtn+apcRJ34p9eVx4fiFvRoaEhKBfv35o2lRJrguCsWIulegPoh9gUcAinn9W6zOYOuS1cKjPIXxe63NkQzbMOzMPVeZVQbV21VCwYEH2XhEEY4CS59ThStcQjZSLn4+fyXueGCNu9m7c3Up8te8rjN0zFgkpr/e4eh6RdBHMNomenJzM7tsv4+zszF8ThPjkeFx9qlz8yucqr3Y4Fgft5P7xxx9sxpaRja0RNUagRr4aiE6KRt8Nff9jFiQI+oaql96URD//8DwvxoipzaaiiKeibShkDA8PD61nwvPV6LQhMbvVbJZ9WHZhGXbf3K1ilIKgQBrIGh1TfTByx0gcunOIH/zWdl3LG3TmCFW+ZnfMjvvR97Hz5k5ety9YsIA3KCihLgjGiiaJbuqV6FOPTWUtceqiq5m/Jsylm/XHxj9iV69dXH16+cllnK50GqgOnDx1Uu3wBIGZOnUqzp8/j/r162tNRUXKRX90L9cdPcr34O6+7w9+j3Kzy2FP8J50JdGpiIHkogXBrJLogvA2Dl45yAnYHI45kMs5l9rhWBy0yVW8eHGe04IhvVACjSp7HW0c+UY3++RsPUYpCP/l3r17rINHWuhly5Z94WtUxdBzXU8kpyVzMqivn1JVKehO0oWonKcyBlUZxPNBWwZlSM9QEHRJSkqK3j06/g78G9NPTOf5ovaLUMJLqYIyR6jijowMCZJtc3Nz48o84vDhwypHJwivhq4BkyZNwtdff43SpU1T/oQgyZM5p+aYTRX6yzQs3BABAwN4fZaWLQ1oDsyLnYfQ2FC1QxOEFzjxQNFDF1NR/UGJcFpTremyBnlc87C0C5kQ917fG0/inrz2+77//nvExcXhs8/M7xopGB8GT6IvWbIELVu2fOFj6dKl/LWXP08frVq1MnSIgoos27OMx9QHqWbZEm0KVKigaLydO3cuQ99X3Ks4G6oRo3eNxt3Iu3qJTxDepHtaqlSp/5jjjtszDoGhgfB28sa8NvPk2qIjc9GXk+jEtw2/5Q1Q6igi/VZBUINZs2ax0dTMmTP1cvyARwH4YMMHPP+yzpdoV7IdzJ0+FfvwuP7yeoTFh6FWrVr870OHDqkcmSC8GrrXv/vuuxg/fjzc3d1hqlACnTo9STKqZfGWMEdyOOXA+q7r8Vm5z4AU4Gn2pyg/uzx23BBZF8E4NuSpE+RsiLLurZZPkuj6vnZ3LNURlwZd4uIcknwiOblSs0ph8fnFryyS8PT0/M/znyCYTRL9+vXrLBXx/Ad9jt4ML39e8yFYDudClMRtESeRWlCLihUrZiqJTnzs/zHvzsclx2Ft0Fo9RCcIr6ZJkyaIjIzEmjVrXvh80OMg1kIn/mj7B3I651QpQvOhXbt2LPv0xRdf/OdrHg4emNJMMQP67uB3bMIkCIaG1o7BwcFITNR9N0R4fDg6rOiA+JR4NCvaDN/U/waWgF9uP1T0qciJBKrC1yTRpRJdEPQHddKRlAsxutZolkwz58TZhNYTYDvfFggFHsU+QrMlzVg2i647gmBoqNDT1dWV/cJIFjIxNZGlzYp6FlU7NIvA3cEds1rNwuG+h1E2Z1muRO+1vheaLmmKG2E31A5PsGAMeiemB5qMfmgckQXL4Fb8LR798r7aGFAw7iQ6Le5p55jYFbxL57EJwpsgiQGNsYwGSqA/wzO0823HrcJC1iG5HDIVfF17fLey3bg9mx7+B28drHdZDUF4nvj4eOzbt4/nzZs31+mxSW6ux7oevDlUyKMQlnZcalEGxZpq9L/O/oXatWtrO1JiY2NVjkwQ/suxY8cy7PFjbCw6v4iTyfnd8vO91dyxs7NTngHnAk09m2rXcTX+rKH1zBIEQ3Hjxg2+v1lZWWlNRUkPXTpaDUuN/DVwpv8Z/NDwBzjYOGDXzV0oO7ssfjz4Ixu8axg4cCDq1q2L+/fvqxqvYP4YNIlObtuZ+RAsg7S0NEQ6RPK8YZmGaocDS0+ikxkTaYtllMZFGvO4/9b+F25sgmBoHsY8xOKAxdoKLsEw0MPFrJazYGtliy3XtrD8gyAYiv379yMhIQH58uXTuQ7yt/u/5b9peogjvU4vJy9YEqSLbmdth7MPz+L2s9vInz8/UlNTceKEohMrCMbElClT0KJFC5YSNUVS01Ix6cgkno+oMYKNOC2BKlWqsKRL+bvlWeKFKn/PhJyB3+9++PPMn7IxLxgMTTEnGZSfuC966GpC178xdcYgcGAgGhVuxIU6X+z5ApXnVsaxe8f4NXv37sXBgwe1htKCoC/MtydMMDnOXD+DZ47PgDSgRZUWaodjseTOnRs5c+ZEgQIFMrWTS+3etOAl/caTD07qJUZBeJ7w8HCuPBg2bBhvxmmYcXwGtwDXzF+TPwTdERQUhNmzZ2srfl+mZI6SGFVzFM+HbhuKmKQYA0coWCoaGUBKnumyWuyfy/9g/P7xPJ/Tag4q5Va8ASwJ2jToVb4Xz6nLpGbtmihZsiRiYuT9LRgfmkSKr68vTJGfDv3Epnq0pv6gkuLBYAm0adMGI0aM4Gs4+U0EfBTA3W0kFfnBxg/QZXUXltUSBENUohPksaKpRJckuroUy14MO3vuZPNRL0cv9ryiTpU+//RBgdIF+DVXr0rXiqBfJIkuGA1bTm/h0T7aHh4uHmqHY7FQ0kEjp1S8ePFMSbrQDjFB7VaCoG9IToAqDzZs2MAtlwQlbWefms3zkTVGqhyh+UGVfYMGDdIag7+KL+t+yZIXd6PuYsL+CQaNT7BcNBs75JOgK+aenotOKzvxfGCVgXi/4vuwVH5o9AN7H5x7eA41h9TkDTVKegmCMUEb6ppECm30mBpknjd271iek4SBs50zLAWS4Zo8eTIaNlS6kvO65eWk2cTGE2FjZYPVl1aj/Jzy3PEqCIaoRM+RL4dWTojkXAT1cxU9K/TE5U8uo3fF3vy5BecWYH/5/UANIOhqkNohCmaOJNEFo+HozaM8+mTzUTsUi8fJySlL369Jou8O3q2jiAThzUl0ws/vXy8F0uwNTwhH8ezFRQtdD1SqpFThnjlz5rWvcbJ1wowWM3j+67FfcSH0gsHiEyyTiIgIBAQE8LxOnTo6kVMgU7sBmwYg9VkqepTvganNFZM/S8Xb2RvfN/ye51/t+wqhsaFqhyQI/+HOnTss62Rra4tChQrBlKAClL4b+vKcOroGVBkAS4cKdEiW72i/o7yuuxd1Dw0WNsCXu78U6UhBL0RHRyM0VLm/PXV4yiMZilqajJsxk8MpB+a3m49j/Y6hap6qSMqWBDQD/rT7E9uuK12JgqAPJIkuGA3Zcitt1/VL1Vc7FCGLaHTRj949KjIOgt7RmOBqkugpaSmctCWG1xhuUcZ/hkLzu75w4QKSkpJe+7rWJVqjfcn2/P9k0OZBomUq6N1U9KOPPkKrVq3g45O1DfnYpFiuPidTO2JC/QncPkya4JbOgMoD4Ofjh8jESHy+63OkpKTw714QjE3KhToqbWxsYCqcf3geHVd05Hvmu2XfxU+Nf4IlEhkZyfrGFy9efOHzVfJUwZkBZ9DPrx+bxv9w6AfUnl8bN8IU2Q1B0HUVupeXFy5GKH+H1fKJlIsxQv9fjn1wDKNKjAJigFjHWLRY2gLtlreTa4OgFySJLhgNdxLu8NilXhe1Q7F4Hj9+jEaNGnH1zvMa0+mliGcRlnFITkvGwdsH9RKjILxcia4xxV1zaQ1uRdziCoX3K1iu7II+KVy4MNzd3TmBfunSpTe+dlrzaVyVfvDOQSw6v8hgMQqW6enx22+/YdOmTVk6zoPoB6i7oC7+ufIP7K3t8XfHvzGu3jidaqybMrQxSebBxPxz8+FSygXz589XOyxBMGk99LuRd9Hy75bsKVSvYD0saLeAK7Atka+++orlXObNm/efr7nYueCPtn9g1TurWFqKDB8r/l6R1xeyUS/oCpKHbNeuHZo1ayZ66CYAXSuH1h0KzACyHc3G0k8brmxA6d9Kc8eKFPUJusQy78yC0ZGYkojLTy7zvHyu8mqHY/F4enriyJEjuH37tnYnPiNQoqFxYaUaXXTRBX1C1Y+XL1/WVkfTA9SkI5P4359U/QSOto4qR2ie0HtcU42u2cR4HQXcC+Drel/zfOTOkQiLDzNIjIKQGUjr23+eP86EnOGNuD3v70G3ct3UDsvoqJG/BvpU7MPzxEaJOHhYNswF40GzLjAVPfSIhAiunKQNvDLeZbD+3fWwt7GHpVKlShUeT5069drXdC7dmU1H6xasywmy99e/j/fWvofIhEgDRiqYK+XKlcP69evZA0iS6KZBnjx54GLrgrwX82JHhx1oUqQJklKTuGPFd6Yv/g78WzbaBJ0gSXTBKNh7YS/rjbrbuSOva161w7F4qPWVFg/PS2VklEZFRBdd0D+BgYFITU2Ft7c3L572396P0yGn4WDjgI/9P1Y7PLMmvUl0Ylj1YSjtXRpP4p6g8aLGWBqwlDdPBUFXJCYm8ubvm+SF3samq5tQ+6/auB99HyVzlMTxD46jZv6aOo3TnCCpCRdrFyA3sP3JdrXDEQQtgwcPxsKFC9G5c2cYO3Qv7LCiAy4+vog8rnmw5b0tXGFtyVStWlW7viC5qNeR3z0/9vTawz4N1tmssezCMlSYU4HlJAVBFwRHBPPa1dbKFhV8KqgdjvCWAh/qpr979y4alG2A7T22Y13XddwdTxuUtMnWbEkzlusThKwgSXTBKFhzeI0yeaRcAAX1qVChQpaS6A0LN+Tx/KPzYjwm6A1aLOXKlYsTunTtmHxkMn+eKiSpilRQ11xUA+lIz2szD442jjj78Cx6rOuB/L/m5xbLO5GKlJcgZAWqWKxVqxZKlCiR4e+lyqRpx6axfmZsciybY5OBHUmTCa8np3NOjK83nufhfuE4f+282iEJAlOqVCn06tVLe58yVtKepaH3P72x79Y+uNq5Ykv3Ldy9ZenQddzFxQVxcXEICgp6q7zUF3W+wOG+h/mafTvyNstx0TVdqk6FzBIVFcV/PyQXRFT0qcgFOoJx4+Dw7/8jei4kX6ZLgy7h2wbf8jPIzps70XlVZ65QF4TMIkl0wSg4e1+pZCzkWEjtUIT/o9GXzmwSnR6uK+RSEvF7gvfoNDZB0EAGgg8fPsS6detw6fElbL62GdmQDZ9W/1Tt0Mwe0onct28fNm/enK7XU0XvzaE32aCROo4exz3mFsvC0wqj/fL22HljJycUBCEzHDp0iMfKlStn6PvIwG/w1sEYtn0Y//2RYd3W97ZafCVoehlWaxgcIxwBR2DY5mFqhyMIJsWYXWOw/MJy1u9d23WtVLo+p0etuZa/SdLlZXPBswPOomuZrnxdp2t619VdEZUYpedoBXOE/v7c3Nzwz+l/+N8i5WK6kLTn2LpjsavXLvZo2nZ9G3qt64XUtFS1QxNMFEmiC0ZBcFwwjxVzK4lbwfST6ETjIoou+u6bIuki6BcnJyf8cuQXnnco1QHFvYqrHZLZQxI69erVY4PR9OLj4sMGjbeG3cKaLmu4Y4USl2Tg2HRJU5SaVQpTj01lfVhByAgHDyqa3LVr107391Bype2ytph1chZvvv3c+GfumLC1ttVjpOYFVYG2ytaK5/si94mMgqA6t27dwqxZs3D48GEYMzNPzMTPR37m+V9t/9KumYX066K/jJu9G5Z1WoYZLWaw/MaqS6tQdV5VBD4K1GOkgrlBEkJ0HYmJicG1uGvaTRrB+Dl27BgaNGiAbt26vbKYZ22XtXxtWHFxBT7e8rF0qwiZQpLogurQxSvcPpznDUo1UDsc4f+UL68YvN6/f58lMzIDtcQT1DolNylBn4REh2BJ4BKej6wxUu1whLdAVXcdS3XE7l67uc1ysP9gfvi9+vQqPt3+KfJOyYv+G/vjbuRdtUMVTIC0tDRtwqxOnTrp+p4bYTdQ488a2Hp9K7f4ru6yGqNqjRJJuUzQuVpn4P/WCJ9s/USquwTVu1I++eQTfPnllzBW1gWtw5CtQ3hOet49K/RUOySzSKITdA3/xP8THOhzAPnd8vO6otof1bD4/GI9RSqYG/fu3eNEup2jHS48vcCf88/rr3ZYQjrf/9Qlq+lOfJlmxZphScclXDjx++nfMXbPWIPHKJg+kkQXVOdC8AU8c3oGpAGt/JVqJkF9XF1dUaNGDTRp0gSRkZlzuq9TsA7v9pI+4c3wmzqPUbBsLl26hLx58+Ldd9/FjBMzWN+uVv5aqJG/htqhWQzHjx/H8OHDMW/evEwfo5R3KUxvMR33h9/H7FazUTZnWcQlx2HemXncji0I6bkWREREwNnZWdtF9SaoO4qqE0kCKrdLbuzvvZ83dYTMQdX/DdMawgEOOBNyBnNPz1U7JMGCuXLlCo++vr4wRqhbo/va7niGZxhQeQDG1B6jdkhGSd26dfHbb79h9uzZmfr+6vmq48yAM2hatCniU+LRa30vfLTpIySkJOg8VsG8uHHjBo95KuZBYmoiPB08UTy7dLiaAsWLF9duhMTGvtpAtEuZLpjTeg7PSVZS46clCOlFkuiC6mw6tYlHuxg75HAXI0Bj4siRI9ixYweKFSuWqe93sXPRJjR33dyl4+gES+fs2bN48OABbj24hdmnlIeskTWlCt2QBAQE4Ndff8WqVauyfCy6XnxU5SMEfBTAyXRCNt+EjEi5VK9eHTY2Nq99HXVETT8+Hc2WNEN4QjhXlp3qfwpV81Y1YLTmB21m7t6wG5NbKA+iX+z5Ao9jM9fBJghZ5fLlyzyWLFkSxgbd09osa8OJ3NYlWmNmy5nS/fIa8uTJg4EDB2bJHJYM5smslQyQNZWntf6qheBwRUZUEF7FzZvK2tPZ15lHWivI+9Q0yJ49O7y8vHh+/fr1176uf+X++KnRTzwftXMU/jzzp8FiFEwfSaILqnP4htKCnfNZTrVDEfSARtJld7Doogu6T6ITttVsWUObqkTa+rZVOyyLoly5ctpKYF1BDypUQaaR6RH0I39y9NJRHs0BTdvum6RcElMS8eHGDzF021CkPktFz/I9uQI9j2seA0Zq3tAmWEWfinw9HrNbqmsFdTDWSvT45Hh0WtkJT+OfomqeqljeSTEUFfTv2/B1/a/ZMNrL0Yu7ZSrNrYSNVzaqHZpg5JXoqT6KNJmYipoWJUqU4PHq1atvfN1ntT/DqJqjeN5/U3+sDVprkPgE00eS6ILqOBZy5LG5X3O1QxFeQ1RUVNbNRYN3s4GgIOg0iW4FBLkH8b9H1BgBq2xyWzMkpUqV0nonZFb26VVoEpuhsaFITk3W2XEF4HjQceQYngM1V9VEr+m9YA6MGDECEydORLt27V759Ucxj9BwUUP8efZPvkZMbjIZC9svhIONg8FjNWcePXyEfj79eE6/62P3jqkdkmBhpKamahMnxpZE/2TLJzj38By8nbyxtutaONspVa7C6yFJBpKLW7JE8bzJCqSFfHbAWd6kp42+tsvbYsyuMSwFKAivSqKHOYXxKHro5plEJyY2noh+fv04R9FtTTfpnBfShWQbBNW5Fqm4Xrf1lwpSYyM8PBwFChTgtqiEhMxpCFK1jaudK8Liw/jhQRB0AckycBK9NPA09Sk/lPaqYB4JQVPC3d0duXPnfqGFXhdQCzZV6JFm7KPYRzo7rqUz+PfBqLGoBsI9FTPv/Xf2wxygdv/Ro0e/Ug+dqg6rzKuCI3ePwN3eHZu7b8aImiOkNVtPHhVjeoxBr/LKtfjjLR+LyahgUO7cuYPExETY2dmhUKFCMBb+OvsX/jr3F2/iLeu0DPnc8qkdkklw4sQJ9O/fH1OmTNHJ8fK75+cOpCH+iqnrT4d/Qv5f8+PzXZ/jetjrpR8Ey6JmzZpo1r4ZQtNC+d+SRDffJDqtBX9v/Ts6l+7MG2rtl7fH8XvHDRClYMpIEl1QFbpYkbEXUT5XebXDEV7Cw8MD8fHx7FB+8eLFTB3D1toW9QvV15q5CYKuHpRpkwe1lH9/4v8JHG2VrhbBsJQuXVrnki6UaPBx8eH5g+gHOjuupRIcEoyCIwpi5sOZeObwDNYx1vz5cHslmW6urLiwArX/qo17Uffg6+WL4x8cR/Ni0vWmD6jq183NDTExMeiVuxdvWNAGBhkEC4Kh0Ei5kLmctbVynVObsyFneUOJmFB/AhoVUWQOhbdTpUoVHgMDAzNdzPMydtZ2mNZiGlZ0XsHG0tTxNvHwRBSfURyNFjXC8gvLWf5LsFw+/fRTjJg8gudFPIvA29lb7ZCEDCbRfXx84OLikm7JpyUdlqBJkSaITY5Fi6UtcDE0c3kPwTKQJLqgKrvP70ZyWjKcrJ1QwL2A2uEIr9idrVChAs/PnTuXZV30XcHSIiXoBq5CpyKz3ICjjSMGVR2kdkiwdEmXoCBFVkfXki6SRM8atHlZaV4l3HG7A6QB9VEfV0YpiaY4hzjEJMXAlFm2bBn+/vtvPH78r5ElteV+uftLvLvmXcSnxKNFsRY49sEx+OYwLnkHc4ISljVqKEbiQaeC8F3D73j+xe4v8CTuicrRCZZC7dq12SNh2rRpMAZINqTzqs5sJNqqeCuMqSNeARkhf/788Pb25mIeMjLXJV3KdMHtYbexrus6vkeQ8eie4D0s6ZB3Sl6M3DESV54o90rB8jh+X6lGFj1006NTp04ICQnBrFmz0v099jb2LLNFck9kPN90SVMxIBZeiyTRBVXZeEIxdbF5YiOt1UaKpj0+K0l0jS76wdsH+UFCELIKtWp7tvbkeZ+KfVj+Q1A3iR4crNvFpiTRswZda4dvH47Gixsj4lkEXJNc8UfNP7D3670omrMoV+CRXE7go0CYMj/88APee+89rbloVGIUt+P+cOgH/vfomqOxsdtGeDh4qBypZSQwicOHD7PJaIVcFfhhdPy+8WqHJlgIVHlYq1YtNGqkfrU3bea9v/593Ay/iUIehbCowyLxbckg9GyoqUY/deqUzo9P3bLtS7bHlve2IHhoML6q+xXyuuZl89dfjv6CkrNKot6CelgSsISNYQXzJzY2Fk+ePNFKeoiUi+mR2ZySi50LS/6VzVmWnz2oIl26UoRXIXdyQVVO3zvNY0GHgmqHIugxiV7auzRLM1BF4NG7R3UYnWCpFKhSAOE5wrly6NMan6odjkXTrVs3PHjwACtXrtTpcfO4KEn0kOgQnR7XElh5YCVyjcuFX4/9yv/+qPJHCPk6BP2aKaaPREWf/1/bTdirIiwsDBcuXOA5Jc405n0br26EvbU9FndYjIlNJnKrrqB/NP8PaEODPA2mNp/K/55zao60RgsWx6TDk7DhygaWD1n9zmpkd8yudkgmiSaJfuyYfo2KC3oUxDcNvsGtYbd447VNiTa86XHg9gH0XNcT+X7Nx3PBvNm0aRN3P2y/uJ3/LZXolgVdp7f32M55iytPr/D6RRBeRpLogqrcjLnJY3kf0UM39iT6+fPnkZaWlukdYU01+u5g0UUXss6Uo4rJVMdSHVEsezG1w7FoPD092VxU191EUomecZKSk9Dqh1bouqsrohyi4PzMGZu6bcLs1rPhbOf8wmsdIhx4/G3tbzBVjhw5otXjzpkzJ8uGrLi4gj+39b2t6FG+h8oRWhb+/v4s63Lv3j32rSA/lA4lOyD1WSqG7xjOhtCCoE/GjRuHuXPnIjo6WtU49gbvxRd7vuD5jBYzUDlPZVXjMWXq1q3L4969ew1yDaENwNYlWmNDtw0s90I69lSdHhYfhqUBS/V+fkFdbty4AXgAyXbJ/Lfgl9tP7ZCETPDZZ5+xufTixYsz9fxB73vi2wPfIjIhUg8RCqaMJNEFVQmzC+OxfknFeFIwPig5YW9vzw8kt27dyrou+k3RRReyxuPox9xaS4ysOVLtcAQ9oU2ix0gSPT0E3AxAzlE5sSV5C2AN+ET44ESfE2hVotUrX5/fLj+PwQmmq/mokXDRyIgsOr+IDcsr566MBoUbqByd5eHs7IxKlSppJV2ISU0mwdbKFjtu7MDW61tVjlAwZyIjI/Hdd99hwIABqm7Y0MYv+TGQnEuvCr3wYaUPVYvFHKhZsyZL+FHH2927dw167nxu+TCu3jh83/B7/ndwhOneL4X0cfPmTSCvMidJMgcbpeBAMC2ioqJw+/Ztrdl0Runj1wclc5RkaadJRybpPD7BtJEkuqAaQXeCkOasVDa39m+tdjjCa7C1tUW7du0wZMgQTqZnNYl+8sFJNloShMyyav8qNiS2T7BnAxhBfX7//Xe+TmzdqrskWW7X3DxKJfrbiUuIQ+3ptRHpGQkkAe97vo/7v9xH6YKlX/s9zSs25zHWOZYr2E2RgwcPapPolDSbd2Ye/1uSVupWfy1dulSrSV00e1EMqz6M56TRn5yarHKEgrmiSZZQZ5Sbm5sqMdDfd9fVXREaG4pyOcthdqvZ4vmURZycnLBr1y48ffoUBQoUUCWGwp6FeSR9e8ECKtHzKXORcjFdSpQowePVq1cz9f3UhfBjox+13c/yLCI8jyTRBdXYcmoLjzZRNvDJ7qN2OMIbWLFiBaZNm4a8ef+/NZ8J8rvnh6+XL1fm7L+1X6fxCZbFiZsneHSOf1GeQlAPMvzasGGDTjVLRc4l/TT8riGiPaOBRGBzu81YMGQBrKzevMRrVLERJ9xhC+w6a3odQvHx8Th58iTP69Spg8N3D+Pyk8twsnVCt3Ld1A7PYunUqRO6d+/O8joavqzzJbydvEVfVNArly9f1nZQqsXnuz7HoTuH4GbvhjVd1vD1SMg6dI338FDPHLqIZxEeb0feRkpaimpxCIatRK+WT5LolppEJ9r5tkPN/DXZ0+2bfd/oMDrB1JEkuqAah64pbdg50/590BLMG40uuki6CFnh0qNLPOZ1yPymjqBbSpUqxeOlS8r/G10m0UnnmiQ6hFez8sxKHLc9zvORxUaipX/LdH2fna0dnOOUjajt5xUDLVOCfDqSk5Ph4+ODIkWKaKvQ3y3zLiewBOPB3cEd3zX8judf7/uatYUFQV+V6Gol0ddcWoMpxxS/lvnt5qO4V3FV4hB0D61HyCCWEuj3ou6pHY6gJxITE3Hn/h1AaYSUSnQzSKJfu3YtS55uExtP5PmfZ//kQg1BICSJLqiGWwnlIbd9zfZqhyKkg6SkJDb1yYoeoVYXPViS6ELmuRun/A1SZ4NgXEn0oKAgnR3Ty9GLtZSJhzEPdXZcc+J+1H18vPtjnte2q41JfTOm21jAVmmNP3FH6e4wJapXr4779+9jzZo1iEyMxKqLq/jzH1YWKRe1OX36NCZOnIgzZ85oP9fPrx/K5yqP8IRwqegS9FqJXrJkSYOf++rTq+jzTx+ej6wxkk3PBd3y448/olatWggMDDT4ua2yWaGwh0i6mDukoQ2q7bMF3O3dZSPMhCFTURsbG8TFxbGfQmapXaA22vq2ZYP0L3YrZtGCIEl0QTUuPL7AY+OySnWyYNx069YNDRs2xN9//53pY9QvVJ8XorSTS8kfQcgMYVZKFWPlQpXVDkX4P6VLl9a2Taak6KbVmSpARNLl9VBFXPe13blSv6JPRewctTPDx6DvI67HXIcpkidPHjadWxqwlNtty+YsK5VjRsDUqVPx+eefY/369drPWVtZY0pTpUp31slZCHqsuw03QVCzEv1O5B10WtkJ0UnRqFOgDn5srOjoCrrlwIEDOHLkCHbv3q2qpIsk0c0X8v6q36M+z/3z+vMzq2C6nm7UpZhVSReCtNHpb2Hd5XU4cveIjiIUTBm5MgiqPfxfDL3Ic6pMEoyfBg0a8Lh9e+bb/j0dPVElTxWe7w5WZxEsmL6BYpKzIu1Rr0w9tcMR/k/+/PnZ/IvkNdiUSUdIEv31tPipBQ7cPgAXOxes6LwCDjYOGT5Gw9INeYxzjYOp8rKhqJj4qQ8ZvRKHDx9+4fONijTSVnSN3DlSpegEcyQ1NZXb9g1ZiR6dGI0vd38J35m+uBB6Abmcc/G1mAzpBN1DhTzEnj17VDm/phI9ODxYlfML+qdgwYIoWLMgz2VD3vSpVq0aF1pkdV1Y2rs0+lbsy/PRO0fzulOwbCSJLqgCmZglpibCPpu91vFcMG6aN2/O46FDhxAdHZ3p4zQuLLroQuY5eOEgYA0gGajqW1XtcIT/QyaWmsSFLiVdcrsqwpSSRH+RyWsmY1eScg39otwXKOGlaD9mlHcbvotsyIY46zg8inkEU+HChQt8T6KK51MPTuH8o/Owt7ZHj/I91A5NAFhygTh+/DhvrD3P5CaTWaZpy7Ut2HZ9m0oRCuZ4DyIpBpIdLFBAkanSF6lpqZh3eh6KzyiOHw79gISUBO603PP+Hu09S9BfEn3//v0663jLVCV6hFSimzMn7ivydmIqavosWrSIN/M1hYBZYXz98XC0cWQT+41XN+okPsF0kSS6oApbTm/h0TbMVlqlTIRixYqhaNGi/EBMDymZhSrRNEl02ckVMsqtmFs8eqZ5wsZaqr2MTRfd2dkZT58+1dkx87hIJfrLXAi+gM9OfAZkA3xjfDGm9ZhMH4uq2DWan5SINhX27dvHXVFbt27VVqG/U+YdZHfMrnZowv/lnTw8PBAbG8sGsM9Df2+D/QfzfPj24dyZKAhZhSoNyWS4fv36sLamnXb9QGtXv9/90H9TfzyKfYTi2Ytjfdf12NNrD1crCvqjYsWKfF2Jiop6wW/BUIici/lz9tJZrXkkybkIgoa8bnkxrPownn++63NZu1g4kr0UVOHU3VM85rfLr3YoQiaq0bdty3z1WM38NVl2ICQmRFyuhQwTbad0QTSp1ETtUISXmDNnDj/c9uvXT2fHFDmXF0lOSUa9afWQ5pQG+0h7HBp7KMvH1OiiH799HKYCdUQR/rX9sezCMq2Ui2A8VcE1atR4paQLMa7eODYODnoShN9P/a5ChIKQMUjDv/XfrdFkcRMEhgbCw8EDvzb7FRcGXUC7ku1ERsoA0OYIbZKoJekiSXTzp+PgjniGZ8hlnws5nclhVDAHXu6Iyyyja43mYg1auyw8t1AnxxRME0miC6qgMTETPXTTTKJT9V9mq8gpgU7GS4RIuggZ5cqT/xuHeRnWOEx4Oy4uLpw80yWaJDptuglAyx9bIswzDEgCVnZZiRzuObJ8zLQHaTz+uflPmAJ07zl48CDPE4olICYphq8HmvuKYNy66AQlIL9t8C3Pv9r3FcLjww0en2BezJ49G5999pnOK5TJuHnwlsEoN7scNl/bzHrnQ/yH4Prg61yVaGdtp9PzCcari66RH6W/iajEKIOfX9D/2uI+7vO8cq7Kaocj6ADqjKUueldXV50k0mntMrbOWO3aJS7ZdP2EhKwhSXRBFcJswnisW7Ku2qEIGYAqQOzs7HDr1q0sOV03Kvx/SZdgSaILGSPgQQCPkkS3DKQS/V9+2/wbdqUo18x+ufuhbfW2Ojlu2RxleXz47CFMAbr/PHjwALa2ttgXvY8/90GlD6QS1Eh10U+fPv3Kr39Y+UOU8S6DsPgwfHtASagLQmZZvnw5fv75Z515cpDO+S9HfkGx6cUw8+RMNsMlU9wLAy9gWotp8HLy0sl5hIzRqFEjeHp6IleuXAY/t5u9G3I4KRvXYi5qfjx69AjJOZVEa/3iSseDYNrQtSIkJASJiYm8dtQFg6oOQkH3gvxcMv34dJ0cUzA9JIkuGJybD24i1SWV562rtlY7HCGDlaZ//vknPxQXL67o6GaGxkUUc9F9t/aJppiQIU4FK1JQVuFy+zLGKp733nsPZcuWxZ07d3RyTEmiK0SlRGHsubG8aisSXQRzB83V2bHbVG3DY6JrIsKilA1uU5ByKVm/JE6FnGKTyvcrvK92WMJLVKtWDUeOHMGlS5de+XWq6J3SbArPZ5yYgatPM78xLwhXrvy/S803axvsSalJmH1yNifPR+4cicjESFTIVQG7eu7CP+/+A98csoGvtvfK48ePsXjxYlXOX9hDqUYPjpAkurlx/fp1IJ8yr1mgptrhCDqAumM1+YqsFP89j72NPb5r+B3Pfzr0E57G6c4HSjAdJAshGJwNJzbwaBNtgwI5C6gdjpBBevTogUqVKmVJtoE0eElTjNohTz1QkqKC8DZuP7rNWtBEndIi3WBsUCXwuXPncPHixdcmzjJKbtfcPFK1KlUGWiJpz9Iw9fZUxGSLQR77PDj8xWGdyuZULFoR2eKz8Ypw4/GNMJUkunVVxTywfcn28Hb2Vjkq4WUcHBxYF93e3v61r2latClaFW/Fm+kjd4w0aHyC+RAeHs5VpFlJoienJuPPM3+ixIwSGLRlEO5H30d+t/z4o80fON3/NBoVUTooBfXXGfo0jn0bootuvpy8ehJwAbKlZUOl3JXUDkfQESVKlNBpEp3oXq47b67SJusPB3/Q2XEF00GS6IJqpqI5UrOu5SqYJtZW1mhYWNE1FF10Ib3sPr+bR6tYK+Tz/n+5iGB0VWKErlrqPR08YW+tJOFCoi1TF/3X47/iTPQZ/j1s7bMVPtl9dHp8Ssh7JnjyfM8lw+vMZqbjwdHNEVcdlAciMRQ1bSY3ncxV6RuvbsTOGzvVDkcw4Sr0PHnysPZtRkhNS8Xi84tRalYpfLDxA9yOvI3cLrkxo8UMXBt8Df0q9eM1q2CE+tX3Ff1qQyJJdPPlyJ0jPGZPyQ5HW0e1wxGMOIlulc0KExtP5DnJfd2K0I1UjGA62KgdgGB5OBZ0BMKAdxu+q3YoQibZtGkTVq9ejb59+6Ju3bqZ1kVffWk1J9HH1lVMOgThTRy/fpxHtyQ3tUMR3pJE11UlOlWdkaQLtU6TpIvG2MtSGLNwDCbenMglD1OaTNGbGXcR5yIIQxjOhpyFsTN37lxU/6g6+m3sx631UiFqvJw9e5YNH3PmzInvvlPan1+mZI6S+Ljqx5h2fBr6/NOHO9WS05K5Op2qg3l87t+aOWkTtyjWAm1KtOGqQdHEt1wyI+VCHT60Bv1639e4/OQyf87byRuf1/4cA6sMlCSaERMWFgY/Pz/2xoiIiICzs7PBzi1JdPPlUuQlwAMo5lBM7VAEI0+iazrpqCBwT/AejNs7Dos7qCMxJaiDJNEFgxMQqhgD1iqqmE4Jpsf69euxcOFCZM+ePdNJdI0u+pG7RxCbFAtnO8MtggXT5MLDC4A1kNtOkfgQjI/SpUvrtBKd0CTRQ2IspxI9OCQYjX9pjJuuNzmB7vPUBx/4faC381XNXxWnHp3CrQTTqKaZf34+j/38+nFFkGCckHbxvHnz+CH2dUl04qt6X2FJwBKW0KCP9EBJrBP3T+Cb/d8gr2tetC7RmhPq9FArCVDL4vJlJQlesmTJdFUw/3PlH06eBzwK0HY8ja41Gp/4fwIXOxe9xytkDXr2oA6qlJQUHDx4EM2bNzfYuSWJbr6k5U4D4oGGvkqntGAe6CuJThv3VI1edV5VLA1YihE1RnARgGAZSBJdMCjUNhn4KJDn+qqoE/QPLVjJYHTbtm2YMkUxBssoRT2LooB7AdyJvINj945JNaHwVm7H3AbcgRLZlQWRYNyV6JSs0EV1qKWZi3699Gt8d/47pLmmAWlA5eTK+LTWp3qttG3h1wKzt81GkmcSV2gaa2I6MTERN6Nu4tCdQ7DOZo0+fn3UDkl4A+XLl9catsXFxcHJyemVryOPlIN9DuLgnYMs7UJmsTxa/3+0sn1hTuOVp1dYAmb79e2ceP/99O/84WTrxJv0lFCnxLqPi27ljwTj4+ZNJaH5ukr0+OR4HL57mCsGN13dhMBQ5TnEzd6NEx/Dqg/juWA6NGzYEH/99Rf27NmjShKdNvaN+V4pZDw/cTflLs/fq/+e2uEIOk6ik9E53R/S0tJ06ilUJU8VdC3TFSsurkDHFR1RPV91XnPQB8mCaeb04eXkJdcLM0KS6IJB2XNuD+JT4mHzzIaTqIJp0rhxYzb2oWrT27dvo2DBghk+BiWEquapykl0eqCRJLrwNp7gCY9+BfzUDkV4DbRIpfc2Gb2FhoYiV65cWT6mpSTRX6g+dwZsI20xs/FM9GnSB1u2bNHruZtXaQ77nfZITE1EcHgwimY3zvtzgwYNcLngZaAk0KpEK+3fhmCc0Ps/R44cePLkCW+sValS5bWvLeVdij/SS438NdC7Ym82HN53ax82XtmIDVc34F7UPWy4soE/CP+8/uhdoTcGVh2ok59JMD6WLVuGyZMnazdpSPaHuhQoab7n1h7ueExKTdK+3tnWGUOrDcWImiN4A0cw7SS6Icnnlo83cOnviXxa8rrlNej5Bf1w9elVxCbH8iYsSYwJ5oOXlxeOHTumt+N/3/B7rL+8njfW6ON10HUjl0suTqhT4p26nwTTxWy3Q06ePImWLVvCw8ODtdKqV6+OlStXpvv7FyxYwImA133s27dPr/GbK9vObuPRPtJejHpMGHpf0XuK2L59e6aPUzZnWR4vhF7QWWyC+VaJpLqn8rxheWm1NFYcHR25pb5cuXJ4+vSpTo5J1RzmnkSn6siys8sqCfQ0oEpSFTwc/xD9W/Y3yPmpyldzPT738ByMEapkPnHmBMILhPO/xVDU+KH1Ml0LiMBApfpX1zjYOKB5seaY1WoW7gy7g7MDzmJC/Qm8SU9QMnXQlkG49vSaXs4vGAHZgMc2jzH/yny0XNoSnhM9UXt+bXy17yveYKGEJ0n+9KrQCwvaLcCtYbfwfaPvJYFuwtCGKnHmzBnetDcU1AVT0EMpHBJJF/Nh05lNPJbPWV7yE0KGoKKTcx+dw9KOS/FL018wquYo9CzfE02KNEG5nOXYa4NIfZbKzzFnQs7g812f43HsY7VDF7KAWVai7927F82aNYODgwPeffdddmpfs2YNunbtirt372LEiBHpPla7du1QseJ/9Y0KFSqk46gtg1N3T/FiN4+NVI+ZOtQ+efjwYZZ06d8/c4keSaIL6YU6FlKQAjtrO9QsXVPtcIQ3cPHiRZ1Kj5hzJXp4fDiGbR+GRecXsd6/Y6wjptafarDk+fNUyFUBp0NOY9/lfehUuhOMjRMnTiC1WCrgBE6IUeJUMA1JF1qXBwQo+tP6hK47pElKH+PqjeNrBiVVzz86j+P3j6O4V3G9xyAYlidxT1BlbhXcjrz9wue9HL1YH1/zUTx7cTGfNSPy5MnDG/akh0+FbR06dDCopAsl0OmjTsE6BjuvoD+W7V8G2ANx1+PUDkXQE8nJyYiNjeVCQF1D3Qtv6mCg7qjQ2FA8jHmI3v/05rzH5mubuZtOME3MLolOJiMffvgh6x0dOHBAmwD/6quv4O/vjy+++AKdO3dOt/xE+/bt0bu3/IHrijvRdwA3oJiHOF+bOrRRNW7cOOzatYtvTLa2thk+RhnvMjxefHxRtAWFN0L6t0Sx7MWkSsTI0XWiwlyT6OP/Ho9JlychzjoO2ZCNtXknNJigmili3E3l4XHVwVWY0XEGjA0ykENlZd7Xry9XBArGj74r0d927ahfqD4n0U/eP4ke5XsYPAZBvwydO5QT6PZW9mhctDEaFW7ESfNyucrJmtICJF0oiU6SLgZNonuIuai5cSP+BifRq+ZTOpgE82LmzJkYNmwYevTowWoThoa6PUn6iT46lerESXSSnJMkuulidqsLupHeuHED3bt3f6GC3N3dnRPoSUlJWLhwoaoxWjJPU5X2/pI+ojdm6lSuXJm1Tqkr4/79+5k6BiVEqbI4JimGK40F4XUcvXqURzEVNR3IWFSXSfSQmBCYA2FRYSg2qhi+ufYNJ9Bz2+XG4b6HManpJNUS6EStYrV4fGKjeA8YG9tPbgeKUDNbNvTz66d2OEIGk+hRUVGqnF8r6/LghCrnF/TLlluKX0QTmybY1H0TPq3xKSr4VJAEugXQsWNHDBkyBJ06GbZzSmMuejNCkujmQEpqCqKclPtTy4ot1Q5H0AM5c+ZEamoqrl69qnYoaOfbjsftN7azp4tgmphdGY9Gq7xp06avrJwl9u/fn+7jnT17lnVdqcKdkoVkqEgGBekhMTGRPzRoHiCoapc+LJFYu1gey+UrZ7G/A3OCKkDc3Nx4ntn/n75evmwseu7BOeR1tkyDHs3vTt4Tr2f1vtVsthhyIUR+T0YObWSTlBq1TZKZYFbxdlD0BCMSIhAZF8nGT6ZM518744bLDeAZUDmxMjYP3ozsrtlf+3dtqOtDy0otMfjMYKS6pOLy7csomsd4zEVpDXYiWUmCVveujjzOeeQ6YEJJdDIWpbWCGv/PKuasqNX6j0uI44owc8HS1w6Xbl9ChHsEz4c3H26xvwdLpW7duvxBGPL/fQG3AjzeCLthtH9zln5tyAhbT24F7OiXBTTxayK/MzOkcOHCPFISXe3/v2W8yiCfaz7ci76HHdd2oEWxFgaPQe3fgTlgdkn0a9cU46Dixf+re+jj4wMXFxfta9LD9OnT/2Oa9vXXX+Ozzz576/f++OOP+Oabb/7zedKG1DjIWxLR8dFIc07jeXxIPLZsUapHBMvGM9mTx7WH1iLbNcvWq9y5c6faIRgtt2NvcxLdNdFVrh1GDiXPz58/z/NVq1axuXdWK9qpVT8xLRHLNi1DbnvFaNRUOfL0COAF1IqshVH1R+HYwWNGc32wjrJGqlsqfl70M9qVV6pljIEr164guYyy6K/lWEuuAUK6Iak4JysnxKXE4fd1v6OIk1JFak5Y6trh1wO/skSk/VN7RN2JwpY7cl0Q9M+DOEVa7vLDy0Z/L7LUa0NGmHNkDnutOEQ6YM+uPWqHI+iB+Ph4Hqkwdvny5doCQLUoZ1+Ok+izds/Cs6u66drNCHFxov2fVcwuiR4ZGamVb3kV9KbRvOZtO1YzZszg6vV8+fIhLCyMpWLGjBmDzz//nJPggwcPfuMx6LXDhw9/oRI9f/787Cie3mp2c2Jv4F6AZI2TgH7d+rFuvWBeNyfaZMoogUcCcWDfAaRkT0HLlpbZRkc7wrTQbdKkSaa05S2B+EPK31jHeh3Rspll/p2YEiNHjkRISAgKFCiAatWqZfl4+e7kw43wG/Ct7IvaBWrDVAm6E4TEc0qH2q8DfkXFov81Llfz+pBzX06EIIQlXYzpenxz100gFnBMdcT4buNZBkwQ0kv1yOrYc2sPHIo6oKWf8fxdZxVLXzv03duXx/re9Y3qeiUYjoSEBBw7doyf7du1M8zGb1h8GEZeHYnwlHDUb1LfKLvjLP3akBEmHJvAYzGnYnIdMWPy5s3L8rOU49PFc0lWsLlpg63LtyIwMRDNWzQ3uPyYWvJ65oTZJdF1Rb169fjj+Tdez549UalSJVSpUgXjx4/HwIEDYWPz+l+hvb09f7wM3cws8YaW6prKY9m8ZV/5exFMk6FDh2Lu3Ln4/fff0atXrwx/P2lXEpeeXLLI98XzWOq14W08DHuINBeli6VppabyOzIBSpcuzUl06vyqXbu2TnTRKYkeGh9q0v//Z++czaNDhAOqlqxqdNcHXw9fTqJffHrRaH7P1ImwOmQ1zwfXGQxnh6x1NgiGZ9u2bfj555/h5+eHX375xeDn98/rz0n0Mw/PGM3ftS6xxLXDlbtXEOYexvNRrUdZ3M8vKFCiuFWrVihSpAg6d+5skHPmtMkJd3t3RCZG4n7sfZT2Lg1jxRKvDZkyFXVQTEXld2W+lChRgpPoN2/e1MlzSVYgE2wXOxf2egp4HICqeQ1raCt/51nH7EqBNRXor6s2p52X11Wpp4cyZcrwG48q04OCgjJ9HEskOCKYxyLZza+V1pIhiSSqBKGH5MxQNmdZHi8/uYyUtBQdRyeYA3vOK+2V2eKzGZVOs/B6SpUqxaOu7pMac9EH0Uobtamy48YOHv1c/GCM1Chcg8cHqcbze151aRWO3D3C1X5Dqw9VOxwhkxJPJGV44MABVc5PSXTi5IOTqpxf0D0/rvuRn2IdIxzRyK+R2uEIKlGnTh0uaKPE2K1btwxyzmzZsv1rLhou5qKmLveVnEORiutcyzCbMIJ6SXTCGMxF7W3s0bxYc55vuLJB7XCETGB2SXSNFvqrdM8fPnyImJiYV+qlZ4QcOXJoHwqE9BMcriTRC3so5g6CedC8uXIT2LFjBztfZ5SCHgXhbOuMxNRENukRhJc5eu0ojy4JLmqHIqicRKeqDVMlNS0Vkd7KBv8nzT+BMdLOX2mHT/ZIRlJqktrhICImAn3/ViQbPqv1mfbvQDA9c1HiwoULmVonZBVNldeF0AuISxYtUHPgQuoFHut41VE7FEFFXF1d4e+vbJLRRp2hkCS6eXA97DriUuPgYOOAphWbqh2OoEdIYaJ79+6oWPHtMoqGoG2JtjxuuCpJdFPE7JLoGgkWSui9zPbt2194TWagxf+pU6d4XrBgwUwfxxJZt3cdj4mPFD1YwTyoXr06ew2QWcfp06cz/P2kA1YmZxntA64gvExgSCCPPrY+aociZDCJfunSJZ0czxwq0U+HnMbT+Kdws3fDO9XfgTHi7+sPDwcPpCIVlx7r5v9dVug2tRti7WJhHWuNoVWlCt1UKVq0KHumUNfajRuG3yzP65oXPi4+SH2WinMPzxn8/IJuCY8Px/kYxbx6+kfT1Q5HUJmGDRvyuHv3boOdU5Lo5sHpB8pza4VcFWBjJSrH5ky3bt2wdOlSg8k+vY2WxVtyDiTgUQBuRRimi0bQHWaXRG/UqBHrov399984d+7fhTLJu/zwww+ws7N7QbeZNFsvX778H/mXVyUDKYFOpqLXr19nc9DcuXPr+acxL0ISlArC7FbZ1Q5F0LGuVuPGjXmeaUkXb0XSRZLowquwyaUsbGuWqKl2KEIGNNFLlizJPiJpaYqevaUn0bde28pjkyJNYGttnHqE1KZOD5PE+YdKkkotLgRfwLY45Z7yQaEP4O6UeSk+QV2sra1ZDpEICAhQ5e+6ah6lGv3E/RMGP7+gW6j9neT/yuUsB98cvmqHIxhJEn3Pnj3soWEINF3VGqlSwTRZeWgljyXdS6odimBheDl5oXYBRZt945WNaocjWHoSnXTR/vjjD35or1u3Lvr3748RI0agQoUKrIFEifRChQppXz9mzBiumFu3TqmS1kDmofQ9ZCZKiXM6DiUFJk+ejHz58vE5hIwRbx/PY6XCldQORdCTpEtmk+jaSvTHkkQX/ktYNsU8rEOdDmqHIqSTXLlysZTLqlWrYGWV9aVGbpfcJp9En7FtBo/VvKrBmCnjpVyPt5zZomocXWZ3AewBpwgnzBwwU9VYBN1JugQGKp1FhkaTRBdddNNn1r5ZPHYubRwVhYK61KhRAw4ODlwYd+XKFYOcUyrRzYN9V/fxmC0km9qhCAaA8oNUPBseHg5joJ2vIqEoki6mh9kl0QmqEj906BBq1aqFFStWYPbs2fxAv3z5ck6opwd6Hemskev3lClTuLKdWlHHjh3LVTRU7S6kn7uhd/HMUakOqFW6ltrhCDqmWbNmPB4/fpxNdzNrLiqV6MLLUFXR1aeKCYxUnFkupl6Jfu3eNTx1eMrz+vnqw5hJvK1Iru0I+K8snqFYc2gNghwVPf2JDSfCxlrarE2d8uXLq1aJ/rwu+sn7kkQ3Ze6E3sHJMOX/YU0P6U4TwAl0euYn9u1TkqKGTKIbqvpd0L1PTYRjBM+bV1CKwQTzz1dQ8eymTZtgDLQp0YbHfbf2ITLhRVUMwbgx26cSMhnZulVpnX4TCxYs4I+XoYpzQXccvawYA2aLzwaf7KJrbG4UKFAA/fr1424NapvObBL92tNrSEhJYIMXQSCC7gchNjkW1tmstQ8tgulAD5dxcXFwdnbWSRI9OikaMUkxcLEzLZPZ6ZunA9kA+wh7VPVVknnGSpNyTfDnvj8R6RjJVTu66CTICHTO/qv7A55A3si8+KSNcZqwChmvRPf29oa7uzqyPFXyVOHxWtg1RCREsPa/YHr8uOZHwBqwi7RD4wqKlKAgfP/995g0aZJ2s07fFPQoiGzIxkbFobGhyOWSyyDnFXTHvvP7uNsNKUCbakoyUzBvypYti127duHEiROsNqE2xb2Ko1SOUgh6EoRt17eha9muaockWHIlumB8nA0+y6NjoqPaoQh6giSOhg8fDk9Pz0xJNXg6eLLp15UnhmnFFEyDzcc382gVaQU7azu1wxEyABn4eHh4oHfv3lk+lqu9qzZxHhKt+GuYEluuKdIoFZwUvXFjpkWVFkAq8MzhGY5fPm7w809cOxFhnmH8YLu412KDn1/Qn25xaGjoKwtXDEEOpxxaHeNTD06pEoOQddZfXc9jNTfjlsUSDEu1atXg5+fH/guGgNaj+d3z81wkXUyTDacUCQ3nGGc4OTipHY5goOuEpnPeWGjr25ZHkXQxLSSJLhiEoBClLTt7NjEVFf4LVa+LpIvwKk7fUkyePdMyvjkjqEv27NkRFRXF2uiWLOmSkpqCYGvFfOzdKu/C2HFzdoNDtNINtOm0YVtek1OTsejhIp7Xta+LBhUbGPT8gv7ITJearhFJF9PmwdMHeOjykOdDGw9VOxzBwhFddNPm6C2lS76gXUG1QxEMqFRBnDt3DgkJCTCmJDoV29AaWDANJIkuGISwZ4pOdl7nvGqHIugRMvWhKrObNzO+oJQkuvAqLj+5zGN+J6XiRzAdSHeQIFPvlJQUi02iL9+3HM+cngFJwIfNP4QpkMda+V0fDVYeMtNLwM0AvDPpHVy8dTFT5517ei4uP73MVcMbRkpVjrlCkj1q4J9HeYAWc1HT5MfVP7IQqW2ULTrUFKNx4UX27t2LPn364K+//jLI+TSdLcERyia5YFpcj7v+gtSXYP4ULlwYOXLkQHJyMs6fPw9joFreavB28maZuYN3DqodjpBOJIkuGAT3QooG5vtt31c7FEGPfPDBB7yAXb16daaT6BcfZy75Ipgn9xLu8Vjau7TaoQiZ8EpwcnLixeqNGzeyfDySfTLFJPqCI4p8hU+cD1wcTUPLvWwO5Xp8JSL98lpRsVGoPqM6VsetRt2ldXHk7pEMnfPek3v4et/XPJ9QfwLcHdTRzhb0K/tG1wWSflO1El2S6CbJ2streazqXNXgXg2C8XP27Fku5FmzZo1BzieV6Ka9kRvhIKailtgRp6lGNxZJF2sra7Qu0ZrnG65I8YipICsQwSAEhyu79GIMaN40b64sRLZt25bh75VKdOFVRForbuVVixi3GaPwXyjJUbJkSZ7rQtLFVCvRb0DZQGhUoBFMhbol6vIYahWa7u9p8H0DxHvE8zwsJQz1FtTD9OPT2Vw2PbT/tT2exj9FAYcC+LCyaVTsCxnDxsYGd+/eRUBAgCrnr5S7EqyyWeFe1D2T9FawZMJjwvHAWbn2f9JQzIaFV/suEAcOHODNe30jSXTThf6fke+LTTYbMRW1UF10Mhc1Ol30KxvSvWYW1EWS6ILeoYuBptWtsKfS+iaYdxL90KFDiImJydD3lvEuwyP9rcQkZex7BfMkLCoMKS6KDEiDcqKNbMqSLrpMoofEmE7yKyw+DHee3eH5hF4TYCp0qKFIJaS4piAqMeqtr/9u+Xc4Y3+G5yMLj0SXMl2QkpaCoduGosQXJfAwTNExfh17zu3BaWvF/+DDgh/CxspGJz+HYFyUK1eOR0qiq/GgSObEpXIo1ySpRjctdt3eBdgCOW1zomvdrmqHIxgh5cuXZy8Wev44eVL/729JopsuZx4q65WKuSuaTIegoBtatmyJL7/8Ev369YOx0KRIE9hb23MORDryTQNJogt65/Ldy4hLjgOeAfldRdfYnClWrBiKFCnCFSD79+/P0Pd6OXlp5RouPb6kpwgFU2JvwF6AvOgSgNIFRc7FlJPoly5dsshK9F03dyHtWRrLERXxMp1OrCK5iyC/m3K/Dnj05qrhC8EX8NXZr3hePr48JvWahOWdluPXZr8iW1o2XHe4joLfFcSm4683Ke25qCdgDXhFeGHsu2N1/NMIxkLp0qW5Q+Xp06d4+PDNGyv6QsxFTZPVQYpMYO+qvUXKRXgl9HfRoIFScLFr1y6DJdGpsyUxJVHv5xN0x+kHyqZ95dyV1Q5FMDBVqlTBd999p71WGAPOds5oXKQxz0XSxTSQVYigd45dPsajVawVHO0c1Q5H0LPWWL169Xh+5EjG9HAJkXQRnifKVqmALehSUB6aTRTSHmzVqpVWg9DSkugrz67ksUWxFjA1KvhU4PHcw3OvfU1KagoaTG/Axqn2kfbYP3a/9l4wrPowzPKfxff+JPcktNnQBp/+8el/jjH9n+l44P4ASAP+eOcPPf5Egto4OjqiePHiPFdL0qVqHtFFNzWoEGfz1c08f6fMO2qHIxh5lSmxaNEivRsYkxmgs60znuEZbkfe1uu5BN2y6vAqHgvZF1I7FEFg2vm241GS6KaBZCUEvXPutvIA7pIs7VKWQM2aNTOdRNdIukgSXSAeJCrJ0rqlFX1mwfRo0qQJNm3ahMGDB+s0iW4KmoGpaalYF7CO577WvjA1ijoX5XHtEcXM71UMWToETzyeAMnAis4r4OHi8cLXB7YaiPMDz8Mj3AOwA6benwq/MX6IiY/RJuHH7BvD89IJpdG+Znu9/kyC8Ui6BAYGqp5EN4XriABM+HsCYpNj4WXtJZWjwhvp2rUr3N3d2cxc39XotFmskSnVeH8Jxg9trtxKvMXz/NbSIW+JhIWFYfPmzdi7dy+MBY256PH7x/EwRp1OPSH9SBJd0DtXHl3hMYdNDrVDEQxAjRo1tIYdKSmKnnV6kUp04XmuPFWuHb5eppeAFHSPRu6JkinRSdEwdlYdWIU05zQgCeha3fQ0fG2eKLrkx28ff+XXqUL9zzt/8rxnrp5oV1OponmZsoXLIuTnEFRPqa58n8M55BmTB2dvnMWgOYMQ5xEHJAIrBypV+4L56xarWYlePld52FrZsl+Bxq9HMG6WByznsVBcIU5cCsLrcHZ2Rq9evXizzhCbZKKLbnocunCITUWRCrStrhg6CpbF0qVL0bp1a0yaNAnGQm7X3PDPq3Ttbrr6evlDwTiQJLqgd25HKS1u+VzyqR2KYCAN5LVr13IViI1NxszhJIkuPM/Ra0e1ci6C6UIPsqGhoQgPD8+yZqCbvZvJSLrMPzSfx1xxueDmrMRtSrTwUyRo4lzikJCU8MLXYpNi0W1NNySlJnEL6sJPFr7xWA52Djj67VGMKTyGPQ6iPaPRbG0zLHm0RDmXcwuUKaR0Ignmr0dKHWsavwRDY29jj4o+FXkuuujGT0RMBG7bK88RH9X9SO1wBBPg559/xvnz59GsWTO9n6uIhyTRTY1/Tv7Do2O0I1ydXNUOR1CBatWqaQv+jKkjrW0JZVNHJF2MH0miC3onNCmUx2I5iqkdimAASLu6Q4cO8PHxyfD3kvkeERITgqdxT/UQnWBK7ZbXI67z3DFOvBRMmd69eyNXrlxYsGCBziRdQqJDYOwce6r4gdTPVx+mSL3y9biKHjbA9lPbX/hasynNcPnJZf7/8UfbP9JdHfpDrx+wq8su+Lr74nHcY8Rbx8PHwQd/D/1bTz+FYGy0aNEChw8fxpgxioyPGoguuukwad0kwB6wjrFG7ya91Q5HMAEcHBwM1rGgrUSPkCS6qXDkliI3WtBWCnQslQoVKsDOzo5Nzm/eNJ73bltfJYm+8+ZO9gIRjBdJogt6J9paabsvl0/RwRSE1+Fq74pCHorJy8XHF9UOR1CRS3cu8YMzngENyhuPg7qQcQoUKMDjpUuXLMZc9Paj24hyU4xxBzUZBFPExtoGrrFKldaOgB3az4+ePxqHEw/ze3N2k9nI4ZQxqbZGfo1w5uMz6OfXDx4OHpjfaf5/tNQFQZ9Uzask0U/cP6F2KMJbWH5ekXIpZ1OOr0mCkF5iYmLw119/ITk5WW/nEDkX0+NazDUeK+WupHYogkrY29ujYkWlI+348VdLFqoBdeRTHiQhJQG7burX00HIGpJEF/QKmYaluCi62P4lFJ0nwTIMOyZMmID3338/w9+rkXS5GCpJdEtmb4Bi9mITY4PsbtnVDkfIAqVLKx0mQUFBFpNEn7F5Bq+w7KLsULe86RrjFrRXKrVO3lUqdo8HHcfkq5N5ThrnbctlTk/UydaJK9jDRoehebHmOoxYMBXi4uIQERGhaiX6mZAzbAAsGCdRsVG4aaskJz+s/aHa4QgmBEk0VK5cGf369cOGDRsMkkQ3JlkI4fVdrmH2YTxvVk7/cj+CaUi6GAvUQaORdPnnsiI7JBgnkkQX9ArJcjyzegYbKxtUK6lcrATzh7TQx48fj0WLFuHhw4w5TJf1Fl10ATh5U0nauae6qx2KkEU02seURM/qQ2YeF9NIom8M2shjGTvT1vn2y+3H443YG0hKTkKz35uxIZdThBN2fZn1KhkxCbRMxo4dC1dXV0yerGzIGJqSOUrC2daZTYqDnmR9c0/QD7/+8yvgAFjFWqF/8/5qhyOYEHRv6dy5M89nz56tt/NoumejEqMQnpA13xdB/5y+cRrPHBVT0fY12qsdjqAi/v7+RleJ/ryky8arG2WT34iRJLqgV4Ijgnks4F4A1lbWaocjGAg3NzeULaskw48eVcwhM2wu+liS6JbMpceK9Ec+BzEkNnV8fX35gZY6VB4/fpxl93riQYzxJtFpoyAih1Jh26tmL5gyjco04jHcPhwtf2yJSM9I1knf0GsDnB2d1Q5PMFHII4EqAgMDA1U5P61HK+epzHMxFzVeTsYq/28q2FYQKRchw/Tv35/XHrt378bVq1f1cg5HW0fkdlHWJSLpYvzcTbnLY+kcpU3S8F3QfSX62bNnkZREBkDGQd2CdeFu786+QSI5Z7xIEl3QK8HhShK9sEdhtUMRDEzNmjV5PHJEMXDJcBI99IK0Rlowd+PuaisGBdPG0dERhQsX1okuuinIuQSGBiI0IRSONo74qMVHMGXaVm8LK1jhmdMz7E7dzZ/7MM+HrGsuCJmlfPnyPAYEBKgWg5iLGjfJqck4EqasH3/98Fe1wxFMkIIFC6JVq1Y8nzNnjt7OI7ropsPpB6d5rFlIeUYVLJdixYphwYIFOHPmDHfQZ5aEhAQEByv5Ll1ga22LFsVb8HzDFf1JUQlZQ5Logl5ZuGEhj9F3FXNRwXKoUaNGpirRfXP4wjqbNcLiw/AwJmNSMIL5EG6ltMVWLqRUCwrmI+miiyR6SHQIjJWt17by2KBwAzjYOMCU8XT15GsyYwUUjCqIOQP1l4wQLINy5RSj+Vu3biE6Wp31oSTRDUtMfAxKjS6FAsMLoMMvHdg0jdZ5r2NP8B6Wx8jpnBO1C9Q2aKyC+TBw4EAeKVkWHx+vl3NIEt10OB2iJNHFVFSgLhXybiPfJiurzKdEN23ahCJFiqBLly46i62dbzseN1yVJLqxIkl0Qa/cibrDo3ua6BpbahL91KlTGWqToqRTsezFeC666JZJUmoS0tzTeN68qpgOmgPt27fHkCFDtMkzXVSiG2unyrx983hsVMA8qrUr+lTU3scPfHYgSw8bgkBkz54defIo7+ULF9S5z/vnVfRQzz88j8SURFVisCR6TOuBy86Xcdf9LtbHrEeTxU3g9bMXCk8rjMKfFUbTb5viu+XfIeiOstE6dcdUHjuW7ChykEKmadasGQoVKoTw8HCsWLFCL+eQJLppQBJiu4OUjrrCDtIhL+iGv//+m0dKpOuK5sWas58gSZteD7uus+MKukOehAS98jhF0b/1zfn/SjbBYihevDi8vLyQmJjIemOZlXQRLA96EEl9lsrGb2XzK38LgmnzwQcfYNq0aahdO2sVhRrt0fiUeEQmRsLYuPf4Hm4k3eB5BecKMAc+rf4p2pRog30D96FAzgJqhyOYCWpLupAhoJejF5LTkhHwSD1ZGUvgxoMb2BCpVNQViS6C6q7VUdSzKP/7VsQt3HK6hZ1pOzHuyjiUnl8aNqNssO3+Nv56qWdKF5MgZAZra2sMGDCAq06zKif3OiSJbhocv3wcKXYpbCpavXB1tcMRjICIiAhMnz4dI0aMyNT3R0ZGYsuWLTzv1q0bez9dv571pLeHgwfqFazH841XNmb5eILukSS6oFdibWN5LF9QeVgSLAdasFI1uouLC+7cUToS0osk0S2bK0+u8FjCqwT/HQnC8yZeng6eRquLPnPLTMAasI2yNRvd8Kp5q2JDtw3ainRB0AWarhS1zEXp3kJ/24SYd+mXd2a8g2cOz+AQ6YCgH4NwdPhRXB9yHeGfhWNd+3VoZdcKBSIL8HWTSHVJBeyAbHHZ0L9Zf7XDF0wcSqLfvHkTP//8s16Or/H9Co7QnS6yoHvWn1jPo0O0AzxcPNQORzACUlJSMHToUEyZMoW7VTLKunXruFiQJGHoGlOgQAEMGjRIJ7G19W3Lo0i6GCeSRBf0qn+Y6pzK8+q+suNricyfP593ed95553MJdEfSxLdEtlyQtnV97H1UTsUQYfQtYA8ErKqS5rbNbfRJtH/ufgPj6VspXpSEN5EgwYN0KtXL9SpU0e1GEQXXf/sPrsbZ22VbsSvqn8FO1u7F6rt2ldoj01jNuH2lNtI+iUJdwfdxXS/6XjH+R0sbrYYDnam7SshqI+npydLuugLTSX67YjbSElL0dt5hKxxOPgwj/lt8qsdimAk5MiRA0WLFtXKz2ZWyoWq0P38/NhkdOfOnTh9WtHezwqtiiumyIfuHEJ8sn78HITMI0l0Qa9tU6Ai0mSgTMEyaocjqHRzolbKjKJJopMWWNozRRtbsBz2Be7jMe5OnNqhCDqEKjVq1qyZZfmG53XRjU1v89qzazzvVKGT2uEIglHTokULLFy4EF27dlUtBkmi65/eS3pzd45XhBfGdBnz1tfn886HwW0HY+XIlXiv4XsGiVGwHG7fvo2oqCidHpM29u2t7VmG8G7kXZ0eW9AdV6KULtdKPmIqKvyLv7/ij3L8+PEMfd+jR4+we/dubRKdNuq6d+/O//7xxx91sjmXyzkXb8ydfZgxWVxB/0gSXdAbJ68rDyV2cXZiRCZkyASQjEXtrO0QkxSDO5EZk4IRTJ+HKQ95LJc7ayaUgnFRqpRSnZ1VXVJNEj0kOgTGxMZjGxUZgmTgk1afqB2OIAhvQSPnEvQ4CNGJ0WqHY3YcvnMY99zuIduzbJjXWTFcFgS1GD58OJv/LViwQKfHtcpmhcKeiqSL6KIbJ1Tk8NTuKc+blG2idjiCEVGtWrVMJdFXrVrFf1eUhNdUs3/22Wc8rl27FpcvX86y5Fz1fIqSw/F7GYtN0D+S2RT0RmhSKI/ett5qhyKoyIQJE1CiRAmsXLky3d9DjtSlcigJN9FFtzyi7ZVkRvXiIgNlbpXoRFBQUJaOk8fFOCvR5+1XkkResV7I7pZd7XAEwST0SGlTLSREnQ0xHxcf5HPLh2d4hjMhZ1SJwZwLJ0bsUMzaPqj8ATrU6qB2SIKFQ4kuSnrNmTMnQ4U96UHMRY2b09dO45nTMyAN6FBDrkXCfyvRT5w4kaHrQp8+fbBs2TKMHTtW+7kyZcqgbdu2fJxJkyZlObZqeZUE/7H7x7J8LEG3SBJd0Bv2uex5bF+vvdqhCCry+PFjXLt2DUeOHMnQ94m5qGVyM+Qmnjkqi5hGFc3DmFF4sRL90KFDWXqA1cq5xBhXEv10hKKBWDd3XbVDEQST4P333+eHzkWLFqkWg0i66IdFpxfh+P3jcLZ1xoQGE9QORxDQs2dPODs780b+/v37dXrsIh6SRDdmDt44qDUVlSIH4XlIy9zGxgahoaEs95Re6Fry7rvvok2bNi98fswYRbZs8eLFuHfvXpZiq5bv/1XyUoludEgSXdAbGpdyjWu5YJmQBjJBhoIZQZLolsnu84q+nFWMFXyyi7GoOdGqVSvY29vztWD16tVmpYlO0lNPXZRW4c86Ku2cgiC8GUqgE1n1ScgK/nmVKjRJouuOiJgIfLD8A54P9hvMFf+CoDZubm7o0aMHz2fPnq3TY2vkXDTPvoJxEeEYwWOXOl3UDkUwMhwcHFChQgWWHs6q3CRRvXp11KtXj4uFDh5UNm+yssmfDdlwO/I2HsYoUqeCcSBJdEFvBIcHv7CwECyTGjVq8Hj27FnEx6ffXVqS6JbJ8evKbrt7srvaoQg6pmDBgtoKjU8//RTR0dFmk0TfE7wHyWnJvGnsX1RJygmC8GbKlVN8LwIDA9WvRL9vuUl0eth/EvcEx24dw/il49Frai8s27cs08frMb0HUlxTYBVrhU+rf6rTWAUhKwwcOFCrWfzwoe6SUiLnYtycDjn9gg+GIDzPihUr2HC4ZcuW6Xp9ly5d8MMPPyA8PPyVX581axZu3rzJhqNZwdXeFWVyKsUGUo1uXEgSXdAbp66f4tE62lrtUASVE2e5c+dm7dNTp5S/ifRQxlu5aQQ9CWJnasEyuPRIqQLIY68kSgXzYvTo0WzsRYtV2ljLDLldc2uT6LrWNc0say+t5bFl8ZZsBiQIwtspX748j2TAlZSUpEoMlfNU1laQPo59DHNl+6ntGDV/FDr+3BH+X/qj0IhC8BjmAa9vvOD4vSO8J3mjxsIa+Ob6N1gcuRjd93ZHl8kZr9q8cvcKNkdv5nmfAn2Q0zOnHn4aQcgcVHFKxT30TPLnn3/q7LiSRDdeSAf/9AMliV45t3K9F4SX/RJIniU9XLhwgU1Fx48f/8Yuu/z58+sktup5FX+wY/dEF92YkCS6oBdCw0OR5pTG84oFK6odjqAilFDSVKNnRNKloEdB1tJMSk3C9bDreoxQMCayl1C0CltVb6V2KIIecHR05IoPSprVrZs57fDcLkoSna4N4QmvrgIxJDHxMVh0UtF0bpqvqdrhCILJUKBAAZZYSE5OxpUrV1SJwcPBAyW8SvD81IP0b/SbAlRd/u32b+H8qTOab26OyXcmY138Opy0O4nbbrcR6RmJMIQhMTWRX5/TOSecIp3gHOHMT4irYlfBb4wfkpLTv8HRZVYXwAFwiHDAbwN+0+NPJwhZq0b/+++/dbYRr5EufRr/FJEJkTo5pqAbzlw/g0exj4BnQLmcSveTIGQWMhMlWrRoAU9Pz7e+njrtYmJisq6Lfl8q0Y0JSaILeuFo0P+TpYlAwVwF1Q5HMBJd9IyYi1pls9K2MImki+UQHK3IQDUo10DtUAQ9UaVKFeTJk/lOA3sbe3g5ehmNpMuU9VPwzP4ZrOKs0LxUc7XDEQST2mQ3KkkXM9BFp029GbtmoMOKDsjzSx58dewrxHnEAang5Hi+yHzwS/BDa7vWGJx7MP6q/ReChwYj4csEPBr5CLFTYhH1SxSaWTfj451zOIf8o/PjYdjDdFW7B9gp+vYTak+Ana2dvn9cQcgw77zzDn7//XccO3ZMZ51jJLvg7eTNc9FFNy7WHV/Ho32UPVzsXdQORzBSvvrqK9YzP3/+/GtfQ5tumiR6eqRaBg8ezB138+bNy3Rc1fNV165PUtNSM30cQbdIEl3QC6dvKm1TjvGOaociGAG1atXi1qaSJUtm6PvKeosu+stQS+Kum7tgjtDiQNN14Ovlq3Y4ggHYsWMHNm7caNK66IvPLOaxTLYykjQShAwiSXTdyBUs3bMUFcdUhNs3bhhyeAjWX17PPg1+Pn4YXHwwLvS9gJhfY3B3yl2c+fEMNo7ZiOn9p6NPoz4o5FGINyc1kMHatrHb8Gm+T4FkINQjFL4TfXEv6t4b4+iztA9gDeSMyIlRnUYZ4CcXhMwZCfbv3x+urq46Pa5Iuhgnh24c4jGfVT61QxGMGNpUO378+Bu75unrwcHBLP3Spk2bdMlHEb/88gsSE5WOr4xSKkcpuNi5ICYpBpceZ934VNANkkQX9MKlEOVN7gEPtUMRjADa2SUNsZ9++ilD36cxF734+KKeIjMtwuPDUX9hfTRZ3AQT9k8wGj1oXXH86nGW6LDNZosC7gXUDkfQM6tXr0azZs3w4YcfIjIy0iST6FT1ecPmBs8/rPmhqrEIginSoUMHfPPNN2jbtq1qMWjM5shc1JTuq5duX8J3e76D+xh39DjYA+cdzuOZo9IV07dkXwR8FIAzA85gevfpKFNI6ezLCFP6TcG82vNgHW+NKKcoVPujGs6GvNrLYsP5DQjxCAHSgD+6/qGDn04Q9A+93zOb3HqZwp6KpEtwuFSiGxOXIy/zWDGXyMsKr6daNUU25cSJE699jaYKvV27dunSUO/Zsyd33t6/fx9Lly7NVFzWVtbwz+vPc9FFNx4kiS7oBc0CIo+jmAMKmUeTRJdKdIXJuyfzTjTx9b6vueosJdV8TFd3ntnJo1WEFS8aBPOGqjhKlCiBR48ecRulKSbRf1n3C545PINVrBUGtBigaiyCYIo0bdqU3/8a7xQ1qOhTEdbZrFk3923V1sbCndA7qPR7JZzKfgqJ7olACpA/Mj/GFx+P2G9j8WfXP1EuV9b1fz9o/gEuj7yM0t6l+Xpbe35tLDy28IXXpD1Lw7cnvuV5c+/maFP97RV6gqA2W7duhZ+fH8aOHauT4xXxkEp0Y+SJ7RMeG5durHYoghHj7++vrTZ/FampqezplF4pF8Le3h7Dhw/n+cSJE/kYmaFaXtFFNzYkiS7ohZD4kBd25QWBSEpKwt27dzOcRL/29BoSUhJgyZCx18/7fua5n4sfjwGOASg+ujjiEuJgDpy9o1S45UAOtUMRDAAtLmfOnMlzGt+kQ/g6c1G1k+iLz/5fysVKpFwEwVRxsnXSJpxNRdLlu03fIc0lDVYxVuju2h23PrmFO1Pu4OvuX8PBzkGn5yqWoxgO9z2MJkWaIC45Dr239UaHiR1YRoZYFriMTVld7VyxsM+LCXZBMFZSUlJ43UF6xVkx/vuPnEuEJNGNhXM3ziHNOY07ZDrW7Kh2OIIJVKIHBQUhKirqP1+njtnGjRuzITpt/qcXko4iA9KrV69i3TpFnz+zuuhSiW48SBJd0AupbspOm19hJdknCHv37oW7u3uGWrZ9XHyQ3TE7Up+l4n/t3QdYFFfXB/A/vTcLiKJiQ41G1GDXWGPvvddYY4xGYzRqsGvUqIlBTey99957x97A3isCSq/7Pffut7y0RZCF3YX/7334Ztyd3Znly15mzpx7jq+fb6qnZrae0RpFfymKgKAAZBVTNk5BtE00DMINsL/3fgx0GigbhT2xfQLXUa7w+6jMtNBn9/zvyWVBazYjzi6+++472eRLBGMGDRoUF5RJbSb662DlDVttCAoNwkMTZSmXftX6ae04iPTds2fPsHPnTjx9+lT7ddFf6n4QXZznnAw9KdebOzTH8h+Xo6BTxv7dtDe3x57Oe1AmqgxgAGwP3w730e6y4ejQ3UPlNqOqj4KjlWOGHgeRpjRp0gTFihWTwbFly5al+/1YE133bD23VS7Ngszg6MCxidRzdHSEq6ur/Pvq7e2d5PkcOXJg9erVePToEUxNU580I3oviAajwrRp076oZJwqE13URP8UkTTAT5mPQXTSODE4hFsos4Zb1myp7cMhHVG8eHGEh4fjxo0bCAoKStVrDAwM0lzSpd6ketgWtg0PrR9ixIoRyCq8vL3ksrxheXkiOH/AfIwvMV42/Xrv8B6FPQvj8Wv9rsP4OlIZEC3llPbaraS/Zs+eLWsLnj17FitXrtSbci4HHxwEzACzSDMMaDxAa8dBpO8GDhwoa4zu2bNH60H0i6/U10PVFceeHIPvB1/ZbKx9ifaZtl8TIxNcnXgVTU2bAgrgluUtuExzgV+UHywiLTCs8rBMOxai9BINdIcNU/43O3fu3C8utZA4iP4k8AliYtP3XqQZz2OUs5+LWBbR9qGQHmWjqyvpIhgZpb3cqAiiW1pa4sWLF2maka/iZO0kG4AroNCLG/3ZAYPopHEB4QFxd8nEF55IEI01xBQokWl66VLq/wCUzp36IHrTqU1xVHE07t/nQ7PGtKd9l/bhg/0HedE6q/2suMfFtO35VebL7PQghyB8NfMrOXVRX30yVY4blYoqT2Ioe3BxcYGnp6dcHzlyZLLTKHUxiL7z0U657Fe9H4yNjLV2HET67uuvlaVUbt68qfXmoqIsiajxrctmn5otl11Ld4WlkWWmBx53jd6Fka4j5U38GGtlsLB7vu6wMLHI1GMhSq/u3bvLUgsiu1TMhkkPF1sXGBsaIzImUuul5kjpg+kHuezXlLMFKXV10fPlyyf/zsV3+/ZtmQT4pY3Hc+XKhYMHD+LJkycyFvIlWBddtzCIThp3//19uXSycpJ1JolUqlatKpfnzp1L9WtKOSqzkm+9TzmI3m5mO+yJUmaxVYhVXgzfCbuDp4Hamx6uKaO3jpZLx4+OqOVeK8FzA5sMxMbGG2Vjw3C7cHy39js89FeWmNAnT98+VdYtFLMJyrL5T3YzdOhQNGzYEAsXLpRTH1NdziXotVYCXhHREdjus12uty+VeZmgRFlRmTJl5FJcpGpLqdyl5DmrSAK58VZ7x/E5l3wvYc9D5blOz9I9tXYcf/T8AytqrYDpR1PkCcyDf/or+1sQ6RMxC27AAOVMsjlz5qTrvYwMjVDQTllW6XGgfs8MzQpELy0xa0eoml95/UmUkp9++klmi//6668JHp84cSLc3d1lc9AvVa1aNVhYfPmNZtZF1y0MopPGbT68WS6j3kdp+1BIx1SpUkUuRdmG1EpNOZfuf3XH5lDlf3fVYqrh4oSLqO1aW/57zc010GevPrzCdQNlw8WhVZR1RxNrW6MtjnQ5ghwGOeAX64dqS6vh+pvUN2nUBQsPL5RLk08mGV7blXSPiYkJ9u3bh9atW8syTqnplyBExUbhQ6gy0ygzee33ksE2ZytnXpwRaSgT/datW1+c6aWJUiV1C9WV63vuaa+szOeMWDdCXr3ZBdihvEt5rR5L93rdETE7Ai//fMnZOKS3Bg8eLM9BTp06hatXlQ3uvxTrouuOVWdWITgyGPls8uGbvN9o+3BIDyRXqkWUoN21a1dcH6f0EjPyRZ+4tJ7rxM9E19Z5Ev0Pg+ikcXff3pVL62hrbR8K6WgQ/fz586luICiyw1Q1BoMiktZSX3l9JVYHrpbrHpEeODle2Wyru3t3uZx/Zn6q96WLxmwcI+sui+DyL21+UbudyFC//fNtuDu5423IW9RcXhP/7f8P+uKhqTJ7vpN7J20fCukAf3//FOuTioBXbsvccl0b06a9jit7FDh+cIShAU+liNLbM8XY2FiWcrpy5YrWjqNJsSZyuee+bgbRQ8NDcTr0tFzvVboXdEXiqe9E+lZucurUqdi7d6/MNk0PBtF1x5+7/5TLfEH5eJ5GaSKC1BEREXJ9x44dCAsLg5ubG8qXT9+Na/E+YuZdnTp1ZJ30tATDyzmXg4mhCd6FvJMxEdIujiikcaryGS5WLto+FNIxZcuWlVOZRIDs3r17qXpNTsuccLZ2jutKHd+GWxvQa0cv2Wijc9HOuDDpQtzFXItiLWAQbYCXES+x8kjqmhXqGvHH9XysctpW3zJ9P5vpJbJzj/c8jqouVfEx4iP6n+6P8WvGQ9eFRYVh7/29cn1w3cHaPhzSslWrVqFYsWJYvHhx6kq6BCsb0maWTyGf8MhUeYHcrxrrbBKll6mpKZo3by7Xe/TogdDQUK0cR+NijeOmS/uF+kHXjFk9RpY9E+XbJnWZpO3DIcoyRowYgUaNGqX7hhCD6LohMioS9wyV15ltSrXR9uGQHvHy8oKTkxPGjRsn/71u3Tq57NSpU6pmyqZExECGDx8u30fsZ8iQIakOpJsbm6NsnrJynXXRtY9BdNK4t5Fv5bJIDnbCpoTEdElRb0xkfNjZ2aW5pMvt97fjHhu7Ziy6bO0i6yF/X+57rOq8KsHJr4OVAwqGKsuCzD6ibMKlb448PgIfPx9Ym1pjWsdpqXqNvbk9drbbCcdAR8AEmOAzAefupL4GvTYcfHgQIVEhsimTR14PbR8OaZm4ySZ+Ro8eDT8/P51rLjpz60w5O8Qw2BD9GjGITqQJCxYskBeuAQEBePxYO/WE89vll7O5xI35fff3Qdcsu7VMLqtbVoe1BWd7EmWE9MxeZRBdNyw+sBgKSwUMwg0wuCmTcyj1LC0t8f79e1y4cEFeg4iGoKoguib06tVLJgmJQPo///wj4yKpDaSzLrruYBCdNO6jwUe5LO2iDHwSxTdt2jQZHHN2VmaXf0ld9AlrJ2CK7xTEKGLQukhrLGy6MNmpen0r9lW+DrcQHBYMffPXub/ksod7D9ia2ab6dTltc+LxtMewDbAFjIH+K/tDl/2yVFmmprJt5XTf5Sf998MPP8gp1SKY5unpqXNB9DXXlX0WyhiXYR1gIg1xdHTE7t27cf36dZQqpSzjpg26WtJlx9kd+OjwEYgFZnWape3DIcpyRKmFsWPHyvJSwcFfds3AILpuWHp2qVy6RrrC0txS24dDeqRSJWXtcW9vb2zYsAHR0dGyjIsYFzSld+/ecbNt582bh2HDhqUqkB6/LjppF4PopPG795GWkXLdoygzSkkz4gfRZ26ZifF3xwNGgMtHF6xpvwZGhkkbgQjDWw2X054VFgpM2TgF+uT0rdPYfW+3XB/4zcA0v16cNE6oNUGu3zS5iWsPr0FXa7w+MHwg16vnqq7twyEdIGoj//mnspblypUrERISojNB9MDgQDw2VWbJDqgxINP2S5QdeHh4IFeuXHH/1kbzrKZuTeVy/4P9iIqJgq74fffvcpk3KC8qFK+g7cMhynLMzMywceNGPHjwAMuWKWd9pFUh+0JyKXoThUZppyxVdidiEdcjr8t1lnKhtBLBchsbG1lWbsaMGRrNQlcXSP/rr78wZsyYVGeiX3l9BRHRyprtpB0MopNG3Xh8Q5aQEJkylUsov+hEiT179kze3RVNxNISRD/z9AxGXh0ps6vzBOaB71RfmJuaq32dmakZvjH5Jq4BqT4Zvn64HKFzBORAKacvy8ob0nwIbAJs5O/r+6XfQxd57fGSNzkMQg0wsHHabxZQ1iSa7hQpUkRmg23dulVngugztylLuRiFGKFPgz6Ztl+i7EbcQGvatGmKDYYzQsV8FZHLMpfsK3L2+VnoAtFU/ZG1MrP1t3q/aftwiLIkURJy6NChcn3u3LlfNPY4WDjIsorC4wDtlKXK7rad2YZom2ggCvillXKmK1FqGRkZoUIF5Y3qX3/9FXv27EHXrl0zZF99+vTBokWLYGtrK893UjPTRZyfRMZE4vpb5Y0i0g4G0UmjVCcMFtEWnD5FatWtWxcdO3bE2bOpu0D9KvdXchkaEypv0uQKzAXfyb6p+m9sVKNRcvnK+hUevFRmPOu6D58+4FLMJbk+4JsB6bogGFl5pFy/jMvwee4DXbPyovLmhlusG0xNTLV9OKQjRFmfnj17ynV1GWGqhsOZGUTf/Vg5O6SMEUu5EGWUt2/fYvDgwdi7dy+mTMncWWRiZlujoo3kumo2mLatvrEawVHBKJ6zOAY1GqTtwyHKskRjYwcHBzx69Ai7du36ovdgSRft8jrmJZdOIU5wdHDU9uGQHpd0uXLlCho3bow8efJk2L6+//57PHz4EFWrVk3VtZGqpAvromsXg+ikUaGmyqlrFYtV1PahkA6rUqWKXKY2iH7h1AXAX7luH2AP3wm+sLVKXY3w1tVbwyLQQpZ/mbYrdc05tW348uFQmCtgHGQMz47qa0Knxm/tf4NloCVgCsy7NA+6JDomGncUd+R65/KdtX04pGO6d+8uTxiPHTuGly9fqs1Efx38OlOOJzw6HI9NlDeKPdul73tJROqJBqOi0agwYcIEnD59OtvWRRelCbwuKYNCgyoMYt8QogxkZWWFAQOUySuzZ89OVxD9rt9djR4bpY5/buUFY6/KvbR9KKSnKlZUxrEuXryYKfuLX8bu2rVrsh+UunJ2rIuuGxhEJ416HKgMMBRyUNaEI0qO6m7ruXPnUh10z38zP4q9KQZfT1/ksM2Rpv2pGozeNr4NXScumDc82SDX6+eon+7sbJGNvqynMpN3le8qBIQFQFcsPbgUsVaxQAQwtLlyCi2RSoECBbBw4ULcuXMH+fLlUx9ED3qNWEVshh/PgQcHEBQZBBdbFzQr1yzD90eUnXXp0kXeSBN/Ezt37iwbDWeWBkUbwMjASAbBtJ1N6rXbC7ff34apgalsMk5EGd/cXPRmOXXqFC5dUs4KTQsPZ2VPsEknJ+Hq66sZcISkzpPAJ7j+7joMDQzxc9OftX04pKcqV1aWJM6bN2+m9mYR5zn16tXDxIkT8csvvyS7b1VddGaiaxeD6KRRPm99EjRWIUopE/3ChQtqaw6KzDPVc5aWlriy8Qp85/t+0dS835r9Ji+IxV1bXz9f6LKFexci3C5c1vL7u+ffGnnPtmXa4mvHr2UAcN5F3clGX3R6kVwWjCiY6pkFlL3069cPJUuWTPY5J2snGMAAMYoYvA95n+HHsvbGWrls91U7eYFGRBnrn3/+QdGiRfH8+XP07ds30y5mRU3j6gWUja733NNuNvrM4zPlsnBwYdiZ22n1WIiyA3HTXpScFObMmZPm1w+tPBS1XGshODIYjdc2loFdyhw7fHbIZY0CNZDbKre2D4f0lCjfcuDAAYwePTpTZ3+JUlKTJ0+W63/++SdGjhyZ5LynQj5lvXZxgz8zrn0oebwKJI3ae2avXL6/zy81qVe6dGlYW1sjKCgIt28nzA4PCwvDjz/+iBo1amDWrFkJpjp96R8yEWxrWLShXF9+dTl02fRj0+XSLdINRfIW0ch7ioDfmBrKrt/Tjk3Dqw+ZV0NaHXFS8NzquVxv/3V7bR8O6YHEJ5LGhsbyu52Wuuh/7/kbxiONUXFsRVlOKLX8P/lj4/WNcv27fN+l6biJ6MvY2Nhg3bp1Mit0y5YtsgFXdirpcu3hNTy3Vv6dHN9kvNaOgyi7+fnnn2VZF1FWIa3MjM2wrcM2mbzyJvgNGq5uiA+hHzLkOCmh6TuU11B18tbR9qGQnqtfvz5q1qyZ6fsV4878+fPluoiDjBs3LslN/pK5lMlFLOmiPQyik0YFGQfJZXGn4to+FNLxzteqph3xS7rcvHlT1iET2WfChw+aO+lsml/Z9XrWoVlpCp5lppdBL/HaTlnfeUozzTZTa1OyDcyCzBBuEI7vF34Pbbvx9gbeRr2FubE5fu/8u7YPh3SYGBc6dOggs9LVlXRJTRD9ScATDD83HDFWMbhkcgmFRxZGUKjyb9bnzNw2U/YVMAo2wnclGUQnyiweHh6YNk3Zz+TVq8y7AdzUTXnOcOzJMZlRqg3D1wyX/VxsAmzQoWYHrRwDUXZUrlw52ZehePEvu54Vga59XfYhv21++H7wRbN1zRAapewbRhnD55kP3pi+kesMopM+GzhwILy8lL1Qpk6dKq+D4qvk8v910V8wiK4tDKKTxoRHhiPaShmcrOSm/HITfa4uumguKjJM582bhwoVKuDWrVuyqdi+ffswY8YMje2vvXt7IBzyv9F/dimD9Lpm0ZVFiFZEy2mIbWu01eh7GxsZo3uh7nJ9/6f98PvoB23aenerXDYo0gDWptZaPRbSbSEhIdi4cSPWrFmDT58+JXjO2do5VUH0iOgINFzaENEm0comxTHAc9vncB3jmqqZGeturJPLsiZl5XeJiDI3K1Q0+Bo/PvOysUvkKiFLE0bGROLIoyPQxjn18aDjcr1biW6Zvn8iSrv79++jR48ecvbs6gWrsb/rfhlQP/fiHDpt6YToWN1M4skKZuyYISNbFoEWqF5aWY6LSF8NGjQI7dq1kzGS3377LcFzlfP9f130l6yLri0MopPGeN/zVv4XFQ2UK1pO24dDOk5klq5fvx5Dhw5F06ZNMWTIEERERKBx48a4ceMGGjZUll/RFNGMtHi0MqNk/hnlNCldEhUbhcVXF8v1wRUHZ8g+5vaZC+MgYygsFej3b9Ks3sy09PxSuWxdsrVWj4N0n5i1UqJECVnqSQTTk20uGqycwaHO8IPD4RvsC4QBvYx6YWqpqUAk4G/vjwZrG+BdyLsUS7k8NX8q1wd8O0Ajn4mI0tYgW9xkVxHNRjOaKB+nykbffW83MpvnWk/EWsfCINQA07opM/GJKHNdu3YNnTp1kk3OU+Lr64tu3brJc5WVK1fKmbSiKeFXub/Czo47YWZkhp2+OzF47+BMbVSYnex7tE8uK9srA4xE+k7URxez90V8RFwDJc5Ev/jyImIVGX8+REkxiE4ac/H+Rbk0CTVhph59VqlSpWQgXfxxOHz4MMzMzPD3339j9+7dcHRMe/PQ1Pjx2x/l8r7pfa1nYicXVH4X+g45TXOiVYlWGbIPS3NLdHBRTgnf4bcDn0ISZvVmloOXD+JF5AuZDVzTOfPrzZF+EcGsXr16yfVly5aluZzLupvr4HVJOS1yoNNATPllCkZ3GI3ltZbD3tQet/xvodrSangc8DjZ1/+x9Y+4Ui696/fW4CcjorR6+PChbE6+detWhIeHIzIyEtHR0TKwrungVPy66Jkd+Fp0TVn/vYppFTbeJtISMVtWJPyI2sQxMTFJnr979y66dOmCr776CqtXr5bjUJMmTWRTwK5du8ptahSsgVlVZ8lG6P9e/hdTTn1ZucbnH59jy50tcnYMJfQu4B3eWClLuQyqM0jbh0OkEW5ubrJ33MGDB2FhYRH3eGnH0rA0scSniE/w8fPR6jFmVwyik8bcfK6s12Qbw5N9Sr0yZcpg6dKluHTpkmwompFdsAc0HiAzsUVAbML6CdAlx0KPyaV7lDtMjEwybD/z+86XwcBYq1gM/G8gtGHu/rlymTMoJwo6FtTKMZB+ERejIhtVXNCKjK/UBtHvvr+Lvrv6ynXRXHf+sPlwdlaWgOnxXQ9c6HcBBe0K4oH/A3gs8MDmU5uTvMf6m+vlsqxpWXkMRKQ9S5YskaVd2rRpIy8qxQ14ExMTeUNefD/jB7s7d+4snxe9Vp48eZLmfdV0rQkrEys50+Xqm6vILOKiOMAhAFAAMzvOzLT9ElFCojSLg4ODvHknknziE2ONODdZu3atDJ43b94c3t7ecjtRgkp1PePv74+pXaei4B3l+e64Y+Ow7GrChICUrD66Gh02dkChvwqh7aa26L61e6bMxtEns7bPAkwgr/FaV+MMV8o6kuvLYGxoDI+8HnKdddG1g1eDpDEPPjyQS0fTjMkipqxLZHF8/fXXGb4fcZFdxaqKXF/vowyM6YKVR1YiPJco2A781e2vDN2XyGhrmbulXN/4ciNCwzO/0dFJv5NyWT9//UzfN+knMS1aVeJpxYoVqQqii2aAbTa2QUhUCGq71saEWklvnLnldMPZPmdR1KYo/KP80W5fO8zbOS9BKZdn5s/k+qCazG4i0jZRF71GjRpqn49/I15kqYsfcZO+Zs2aePBAeZ6aWqLxdb3C9eT6nnt7kFkWXFogly1KtEDVUsr+MUSU+aysrNC/f3+5Pnv2bNngLzg4OG6sGTt2LFq2bIkrV65gx44d+Oabb5K8h3iN6O3yZOMTGJ9TztQWN/f33VeWH0lOVHQUflv5G+yH2aPbqW7YeHcjYhQxMpt9w50NaDtLs32T9N3m28oECHdTdyY7UJb0/v172WRUNSMmri76C9ZF1waOMqQ59srF1/kzPhhK9KV+b/G7XPrZ+uHaw2vQBVMOKad2uoa6onSh0hm+v/8G/AejMCNE20Rj5bWVyEyXfC8hxD5EZtiNbDEyU/dN+k1V0kXUG1WdRKoLoosMsf67++Ou312YhJvg6eynuHL5SrLvK97jUOdDsA2wBcyAIZeGyItX4cCjA3LmimWUJXrW65nBn5CIPsfU1BQnTpyQTYY/fvyIgIAAmenp5+eHd+8S9jYQdYxFAEtkcj179kwG0n18fL64pEtmCIkMwfLry+X6oAq8cUekbYMHD4axsTFOnjwpZ88uWKC8ySW0atUK27ZtQ7ly6nuBiXHn1q1bqFevHqIPRAPXIQPi4ib/pZeXEmz7NuAt2v/ZHlajrDDt8TR8tP8oSx+WUZTB1f5X0dZaGTzfFrItwQ3/7CwqJgqvrJTngL2rsuQeZT2iZJ2HhwfGjBkjZ77Er4t+4SUz0bWBQXTSmFg75dSyNnXaaPtQiNSqV74eHCMc5ei3+2nmNwtLrP2s9nhsq6zFPLru6EzZp2iyOqWJMnA/+9JsxMQmrfOYUWbsnCGXNh9tULZI2UzbL+m/Zs2aoXr16rIZcVRUlHzM2VpZmuVtyNsE/x0v9F6ItTfXwhCGiFobhVf3XsHFxUXte7vmccWjCY/gFOAEGAPTHk5Dj797YMeDHfL5Qd8OYnYTkY4QGaA2NjawtbWFvb29LLeQM2dO5M6dO8F2uXLlQunSpWXQXSxfvXoVF9BKrcbFGsc18EqpAbGm/LTkJ1nntKBNwbgseCLSnnz58qFjx45xY8/jx8n3T0lJ/vz5ceDAAXh5ecHikAXwAAiLDkPdpXVx/8N9PAt8hirjqsB5hjM2BW9ClE0UDMINUCW6Cry7euP6+Osom6cs1g9bD9dPrvIaZuiZobh8/zKyuxNPTyDCMAK5LXOjb0Nl+T6irETcxBs0SHlTfdy4cbLRaGUXZSb6zXc35cxbyly8IiSNUTVlc7V31fahEKVoYuuJcrnp3iatB9A3hSiPodjbYuj1nTLTNjMMqjgIOSxy4L7/fWy8vTHT9nv45WG5rOVUK9P2SVmDqG186tQpjBgxAubm5vIxRytHGBoYyu70qgCXyOwaemCoXM/vmx94BgwYMCCuFro6Oe1y4smMJygWXEyeHa0MWIlNt5Xfz3al2mX45yOijOHk5IRjx46hbNmyMltdNDVPbU3hfLb5UC5POSigSLH8giZEx0Rjzb01ct090l2ObUSkffPmzYsr5zJ//vwveg9xI14Ewm5cvYFKzyoBr4Gg2CBUXVoVReYVwXnj81CYK2DyyQQdrDrg9cjXODvpLL5x+ybBe1wcdxHmgeaItYxFrfm1EByWvQNo2322y2WL4i1gYpxxPaWItEn0jROlLZ8+fYp///1XzqJ1sXWR1z+XX/FmWmbj2RlpRHB4sGy8JBSyL6TtwyFKUftS7WFqZIobb2/g+pvrWjmGfy7+ExdArxBRAX9890em7t/GzAbDKg+T6z9s+EFevGe0J++eINAuUK4Pbzw8w/dHWZ+RoRHyWOeJK+niH+aPdpvaITImElVzVMXTdU9lwH3kyNSVDjI3NYfPHz6oHKXM8IhFLPJa5kWFvBUy9HMQUcYSWelHjx5Fo0aNsGHDhjTNLGnq1lQud9/P2NlrbWa2Qbh9OBAJzOk+J0P3RUSpJ2a8DBs2DKVKlUr3exUtWhRnjp7B5JKTUcC2APxC/RAdG43yDuXxm+tvCPkjBOtHrIeTg1Oyr89tnxu7u+8GwoFg+2BUmaDs9ZQdiRmIm24qr6VallD2eyLKiiwtLeHp6SnXJ0+ejKCgoLhsdNZFz3wMopNGnLp5SrkSCeS0yKntwyFKkYOFAxoVbiTXR6waken7n3dhHn7c96Ncb5unLU55ntJKqYgeJXsAEUCASQDGrh6b4fs7+vKo/KtTyKIQapapmeH7o6xJNOgSddF37tyZoC76i08v0H1bdzz9+BRFHIogerPyxlBqstDjE9/Fc5PPoZV5KyAK8IjxSNCskIj0kyj7snfvXlnaJf54ktq66AcfHpQ36DLChhMbsDNEOaZ1ztUZhfMWzpD9EJH2GRkZYcxPY3Cy10lMrDURl/tdxuUhlzGlx5RUZVPXLVcXnqU9ZX+hWxa30G9+P2RHq4+sxrvwdzCMMkSdQnW0fThEGap3795wc3OTTUbFzJhK+VgXXVsYRCeNuPxQOY3ELMyMdWNJL5SOUV5EH/U7ivDI8Ezbb9/FfTFk/xC5PqraKGzst1Fr35n8ufOjmnE1uf73tb9TPb39S229u1Uue1XKvLI1lPUsWrQIPXr0kJkY8YPo446Nk83/zIzMMKLACFw8eTFNWeiJbf11K8J+D8OOUcq66ESUtYha6YUKFZKlXlJSIV8FWW9X1Co//ey0xo/D76Mfuu/oLvsx5AnMg1U/rdL4PohI9xS0L4hxNcehvHP5NL92fJfxqAllQspK/5W48jr55ulZ2X+n/pPLvKF5YWFioe3DIcrw2uiqa59Zs2ahuFXxuEx0hUKh5aPLXhjt1EH7Lu1DmVFlsGDP/7p/67rbL2/Lpb3CXtuHQpQqo9uOhkGYgawpOGOLstllRms9ozUWv1ws13+p8gum1p2q9QzXJX2XyBkkYfZhmLxB+Yc5I4jgw6FHh+R665KtM2w/lPV16dJFnkheunQJt2/fRl7rvHHNdQSvxl64feT2F2WhJ1fehYiybp1jkdHVuHFj2fRPHVGbXNVgdM+9PRo/jppTayLSLhKGIYY4/vNxJqMQUaocHndYzqyNiIlA6w2t8SH0A7IT72BvuWzu1lzbh0KUKdq2bYsqVarIZCJ3R3cYGRjJkspiNi5lHp6l6RBxB6n7X93ReHtj3LS4iUHnBmHu9rnQBw/9H8plHnNlbVoiXWdlYYUyKCPXl3gvyZQA+rawbXK9SnQVTK83XesBdKF4/uLwgIdcn3FxBsIiwjJkP+NWjpPT4J2MnfBV7q8yZB+UPeTOnRtNmyprFC9btgzONv8Lkvcs2xO9y/XG33//jcOHD+PXX3/V4pESkS5bvXo1mjVrhvDwcDRv3hy7du36bEkXTddFX+O9Bncs78j1qRWmyr/JRESpYWxkjLXt1soSdqKUXZNlTRAZlTElp3Qx6VDcfEQMMLLVl804JNI3InZw6tQp/PPPPyjgXADuedzl46yLnrkYRNcR4s5xm41tsCpwFWAKmSELE2DYpWF6kZH+KuyVXLKpKOmT4d8pm1s+s3iGEzdOZNh+Wv3RKi6AXjW6Kk5POK1TmWZL+iyRtZ9D7ENQeFRhBAYrm39mRCmXQuGFdOLmAem3Xr2UJYFWrVoFNwc3uf6149cyC1389yV+6tatizx5eGOXiJInyj1t3rwZbdq0QWRkJFq3bi3/nZz6RerD2NAY9z7cwwP/BxrZv2iG/NPRn+R6Y7vG+LUdb/oRUdrYm9tja4etMIEJLvhdQO1JtZEd/H3wb7nM+SknCjoV1PbhEGVqTwUV1kXXDt2J4mRj++/tR5mFZbDNZxtMDE3Qzq4d3o1+h5wBOWVAfdCZQVhyIOMzZdMjQBEglyWdS2r7UIhSrUvtLrAMtJQ3rGqvqZ0h37OW01tie/h2uV41pipOTdBOE9GUlClcBuNKjAOigTf2b1B7UW0ERQRp7P1FUP6FhXKa2YBvB2jsfSn7atSoERwdHfHu3TuYPTbDzo47caLnCbx4/AL+/v7aPjwi0hOmpqZYv349OnfujOjoaHTo0AEzZ85MUl/UztwONQrU0FhJl1hFLHps74EPYR9QLk85bPtReaOdiCityjiVQV+nvnL9rNFZjF09FlndaT9lf4r6Bepr+1CItOLq1as4s+GMXGcmeubSrUhONvMp5BMqjKmARusayWyU4jmL4/z357Fx6EbksssFnwk+sA+wB8yA/qf64/IrZfNOXRRmpiwBUb5Q2hujEGmLCGYfH3AcFoEWUFgq0O9MP2y5s0Vj7996ZmvsiFA2JawWUw2nxuteAF1lYteJmF1+NswMzHDt0zV8t+o7+IdpJhj557Y/5Q1Bo2AjdKvbTSPvSdmbiYkJunbtKtdXrViFZsWbyWwskaHu6uqKvXv3avsQiUhPiB4LK1euRP/+/WWD7Vu3biW7XVO3phor6dJ2VlscfnQYFsYWWNtmLUyNTNP9nkSUfXkN8ELZ8LJyfcb9GbjyNOs2Gr1y/wqC7YPl+ohmI7R9OERaMX36dNzYe0OuX359GVExUdo+pGxDN6M52cCeC3uQZ2weeJsqG2I0zN0QV/pfSdCdWwTS7/5+F07hTogxiUH91fVx463yi6JLAsMCobBQZuxUKVlF24dDlCYVilfAw7EPUTCiIGKNYtFuUzvMPJM0Cy0tRO3viScmYluoMrOsemx1nBx/UmcD6CrDWg3DyT4nkcMih5wWVn1xddx4lP4xZ/319XJZ2ri0zv8OSP9KuoSGhsrAl6iBfvbsWURFRaFcuXLaPjwi0rPp0QsWLMC6devw77//Jlt2TFUX/cSTE+marbXu+DpsC1KeH/TN3xclcpVIx5ETESmd8TwD2wBbmYA39dFUDFk8BCtOrMD9D/cREhmCrOKc/zm5LGBYAOWLMYGPsqdJkybBMNAQCAPCo8N1Mk6YVTGaoQX9FvRD011NEWYfJmufjy40GvsG7YOliWWSbfPkyIN74+/JekciK7Tuyrq4/Ey3MtJFIxNBBN7y5cqn7cMhSjPnnM54MPkBfqjwAxRQYOThkWjo1RDhkeFpeh8RyPtzz58oPb80PI97yseGuA/BCc8TehM8rpivoiyL4WTphLv+d+Ex3wOnbymnTH6J0PBQPDRWNh7uWamnBo+UsrvSpUvj+fPn2L9/vwx4jR8/Xj4uskmdnf/XbJSIKDXEONKxY0dZK131N71Pnz44c0Y5XdotpxuK5iiKqNgoHHp06Iv28T7wPXru6gkYAc6BzpjTdY5GPwMRZV+W5pY4NeQUDEMMEe0QjYXvFqLn8Z5w+8cN1tOsYTfNDuY/myPnsJwo+ktRVPu9Gjr82QG/r/4dPs99oC923t8pl4NqD9L2oRBpjZubG77v8z3wUvlvlnTJPPoR1fkCly5dQuPGjWFvbw8rKytUrlwZGzduTNN7REREYOLEiShWrJg8oc6bNy/69esna7Cmx9aQrbIGc46AHLj8/WVM7T41xe1tzWyxv+t+fOP8DfxC/VDRqyL2X9oPXfE48LFcsqko6TPRMGxeo3mY02AODGCAgx8OIv+v+fHivbKW9+dsPrUZuYbnwgjvEbjvfx+OVo5Y0nwJ5raYqzcBdJXSjqWxvsF6GAcZI8omCrVW1sLei19WHsNrj5ecqSJuGA5sMlDjx0rZm4uLi1yqstDF3+pff2VzPiJKPy8vLyxduhS1a9fGokWLZJBdlY3+pXXRa06tiUjbSBnkOj78uN6dHxCRbhN9jjY124Q8b/LALsAOeUzywMrESj73KfITIuwi4G/vj4fWD2X99I3BGzHp4SSUXFoSuT1z44c9P2Dj7Y14G/wWuigwPBBHHx+V661KttL24RBplaenJ4zeKBuNbrmguZK0lDJjZEHHjh1DgwYN5MW0yCixsbHBli1bZLMgkbU2fPjwz76HyD5p0aIFDhw4IAPwbdq0wf3797F48WIcOXIE58+fR+7cub/sAGOAFmYtsPnPzTA2St3/C0St172d9sLV0xVhdmFosrEJDpkcQp2ydaAt7wLeYea2mVj7YK2cNuZq76q1YyHSBHGBPLTyULz1fYvp96fDz94PxaYVw/G+x1GppLL7dWK3Ht9CuwXt4GPhA9hDNuesb1sfm37cJG+A6ataZWrhXL9zqLawGiLtItF0a1OsCl6FLnW6pOl9Ln66KJclDUrCzMQsg46WsjNRemnAAGXDWmahE5Gm9O7dG6dOncKmTZtkEs3169fRZEgT/HXhL+y5v0c2BzU0SH0QfNSKUbhrdRdQANMqToObi1uGHj8RZU/NKjeDkb+RTCgUPWTEeVJQZBB8Xvng+OXjePD2AZ4FPMOr4Ff4EPEBHww+yOC6n6Ef5nvPlz+C6SdTFDUuinpF66F3nd5wL+Ku7Y+GyRsnIzo2Gq5WrnJ2EFF2JpJ8W1Vohc3YjFsByfdzIc0zUKSn8K8Oio6ORokSJfDixQsZ6C5bVtlg4+PHj6hYsSKePHmCe/fuoWDBgim+z7Jly+TJc6dOnbBmzZq42ogLFy7EwIED5cm0qJmYFp8+fYKdnR3+2/Ef+jZXdtBOq7vP7qLc3HLyD51o0ifKLlQrVQ2Z5enbp5i+dTp23NuB11avZUa9ShvLNtj8y+ZMOxaijLTi0Ar0PtwbsZaxMmNsVaNV6Fy7c9zzgcGB6PRXJ+wP2S9vIgkuH12wpucafFvm2zTtS9RwFo0QVSe7usT3uS/Kzy6PUPtQIALwquqFQU1Tnj556d4lrD+1HhGOEVh9ezU+RnzEns570LhY48w6bMpGRo4ciZkzZ8r1V69eZbkgui6PD0RZnbhMmjp1KsaOHSv/XaNWDVz57gpCokJwqe8leOT1SNX7XL5/GRWWVJAzsypEVsDFKcobzOnBsYGINDU2+DzzwWW/y7j49iKOPz2ebH1lk08mKGJUBBXyVkDXul1R66taGd4UWZTW3HhyIzZd2oRL7y7hrcVbed1VNaYqzkxUltoiys4evX6EYouKoWSukvDu5w1zY2VJus/FJEV81NZWfxP+tCnLBdEPHjwos9BFwzExBTO+FStWoGfPnpgwYQJ+//33FN+natWqOHfunAy6xw+4i19X0aJF8fbtW7x//x4WFhapPjbVf7B+fn7ImTMnvpRo9Ofh5YEo2yhZbuFs37OyOWJGeRfyDtt9tmPipol4afpS1nFUEft3N3NH32p90bdhX05LpSzlzO0zqLukrrxphUhgXMlxmNBlAjbd2YTuq7ojwiJCbmcZaImZdWd+NrisrxfCoqRN6Sml8dHhIxAFTC83Hb+2UZbMCA4LxsZTG7Hr6i5cfncZrwxfIcY6JsHrnayc8HToU5gZMxOdMqZ8W7169TBq1CiMHj0aWY2ujw9E2cHOnTvRtWtXBAUFwaKXBcIKhsGzpifG11L2YkiJyFj/esbXuBN+BxaBFng39R2sLazTfUwcG4goo8aGBy8fYMnhJdjvsx++4b5yJjwS9VsWAfQyTmXgYugCm2AbNCzTEC2qtICVudWXH3tMFC6/viwbOM/dPhdvTN/EJSupiBKR+9ruQwOPBl+8H6KsRDQ7tzGzSdW2DKKnX5Yr53L8+HG5rF+/fpLnRHBdOHHiRIrvER4ejgsXLqB48eJJMtZFRvp3330ns9C9vb1Ro0YNaKPW2dn+Z1Hl3yqIto1G1X+rYmKjiciZQxmYf/bsGZ48faL29e5l3OUXRxAZ+48eP0p2u4DQAAQ5B+H0s9Oy2SL+/36B2UczVLSpiB/q/IB2NdoxcE5ZlpjlcW/UPZSbWg7+Dv6YdH8SNs/bjLsBd+X3wTDYEH0L9cU/Y/9JdWkmfeSS2wUPJz5ESc+SeG//HuPujMMj00c46XMSPh99/jcjRfV3OBaw+GSB2sVqo2O1jqhfpD4D6JRhKlSoIE8EiYgySvPmzeUMV1Hq8cntJ0BBYP2t9chtmRtnz5xV+7ocOXIgKmeUDKCbG5pjS6ctGgmgExFlpKL5imJaj2kQ/xMev36MxYcX47DvYdwPvg9FHgUCIwLh/cob4n/CqpOrgKOAZbAlXE1d8VWur+T5f9VqVWFkqMzC8/X1Tba/3Oug1/AJ9UGgbSBCo0KVD6piguGAY7gjKjhWQDuPduhQswPMTVPOtiXKTlIbQCfNyHJRH1G3XBDNQBPLkycPrK2t47ZR5+HDh7ImenLvEf+9xfukFEQXjUnFT/y7Pqq7w+InPdwLueNoj6Oos7IOou2i8dvZ31L92jWn1qR+R8+UCw9nD9R0rImaTjXR0KNh3NMxMTHyhyircnZwxqNJj1BxQkXcs7knA+iWJpb4udLPGFBmABztHaGIVSAq9su/06rxIL3jQkaytbCF7wRfdN/WHbuf7MZ/V/5TPmGizAjJFZELX9t/jQalGqBjjY5wzpGwpIYufzYiXaYP4wNRdiDO/8+cOYND5w6h67Wu8P3gi8H7Bqf8InHq//95LaJxeb1y9TT2XebYQESZNTa45HLB+I7jIf6nmp3/KPARrry+gmUHluHyq8sItAiEwlwBUQLyjvhf6B257Zp9qYw9iIS9KCCHRQ5Uz18drnCFRy4PtK7WGqYmCcvGcNwj+jL87qRflguiq7LRVJnWiYkpC5/LWEvNe8TfTp1p06bJ0jHJNT61tLSEJkwoPAFeN73gWNARZubKTM8PHz7gg98Hta/JXyB/XBmagIAAvH/3PtntDGGISs6VZOfr3KbKJqqx72Ll9DCi7GZ6tek46H8QLyNeokXuFsgVnAveZ5WZF5py6NAh6Lpedr1gk8cG/lH+KGpRFDlDcqJsmbIJZqRcPX8V4n9ElL3GB6LswBrWGOAyANeDrstAku89X/XbWlsjX758KGJZBHle5cHe15o/h+bYQETaGhusYIXBxQcDxSGTEG+9vIWLLy/C96Mv/BR+cpuixYrGXSe8ef0mLrEwPmMYo5h5MTT7uhmK5yj+v6bNocDhQ4cz/HMQZRehof8/04O+WJYLousSUZv1559/jvu3+IORP39+1K5dO1010eNrjMb4Bb9o5L2IKGVN0TTD7giLE11RKkof6po2QzNtHwJRtqFv4wNRdiDOv7WNYwMR6drYkFHXSkSkGcndxKJsHkRXZY+ryxIX/9E4ODik+z3ib6eOmZmZ/ElM/DHjyS4RJcaxgYjU4fhARMnh2EBEyeHYQESJcUxIvyzXETJ+vfLE3rx5g+DgYLW1zlUKFy4spxypq52eUt11IiIiIiIiIiIiIso6slwQvWbNmnJ58ODBJM8dOHAgwTbqiHrhFStWlN2jnz59muA5UftQTI+ysrKCh4eHRo+diIiIiIiIiIiIiHRLlgui161bV2aSr127FteuXYt7XJRmmTp1KkxNTdG9e/e4x1+/fg0fH58kpVv69esXV9dcBM5V/v33Xzx69AhdunSJa85JRERERERERERERFlTlguiGxsbY/HixbI79LfffiuD4cOHD4e7uzvu3bsnA+murq5x24sgecmSJbFt27YE79OjRw80aNAA69atQ9WqVTFq1Ci0bdsWgwYNQqFChTB58mQtfDoiIiIiIiIiIiIiykxZLogu1K5dG6dPn0a1atWwYcMGLFiwAE5OTli/fr0MqKeGqIm+Y8cOjB8/Hu/fv8ecOXNw5swZ9OnTB+fOnUPu3Lkz/HMQERERERERERERkXYZI4sSNc337dv32e2WL18uf5JjZmYGT09P+UNERERERERERERE2U+WzEQnIiIiIiIiIiIiItIEBtGJiIiIiIiIiIiIiNRgEJ2IiIiIiIiIiIiISA0G0YmIiIiIiIiIiIiI1GAQnYiIiIiIiIiIiIhIDQbRiYiIiIiIiIiIiIjUYBCdiIiIiIiIiIiIiEgNBtGJiIiIiIiIiIiIiNRgEJ2IiIiIiIiIiIiISA1jdU+Q5ikUCrkMCgqCiYmJtg+HiHREVFQUQkND8enTJ44NRJQAxwciSg7HBiJKDscGIlJHjAvxY5OUdgyiZ6IPHz7IZaFChbR9KERERERERERERJSNiMReOzs7bR+GXmIQPRPlyJFDLp89e8b/YIkowR3h/Pnz4/nz57C1tdX24RCRDuH4QETJ4dhARMnh2EBE6ogMdBFAz5s3r7YPRW8xiJ6JDA2VJehFAJ1/0IgoMTEucGwgouRwfCCi5HBsIKLkcGwgouQwoTd92FiUiIiIiIiIiIiIiEgNBtGJiIiIiIiIiIiIiNRgED0TmZmZwdPTUy6JiFQ4NhCROhwfiCg5HBuIKDkcG4iIMo6BQlSWJyIiIiIiIiIiIiKiJJiJTkRERERERERERESkBoPoRERERERERERERERqMIhORERERERERERERKQGg+hERERERERERERERGowiJ7Iy5cvMXfuXNSvXx8FChSAqakp8uTJgzZt2uDChQtJtjcwMPjsz/Pnz5O8LjIyErNnz4aHhwdsbGzkT+nSpfHDDz8ke1z37t1D+/btkStXLlhYWMDd3R0LFiwA+8ISZa3xISwsTI4N5cuXh4ODA+zt7eX3fcqUKfj48eNnj3HDhg1x771+/XqNfn4i0szYINy/fx+9evVCsWLF5N/1fPny4bvvvsPOnTvV7mfNmjWoWLEirKys5PjQtGlTXLlyJdltxfnB1q1bUbt2bTg7O8PS0hLFixdH//798ejRI419diLS7vjg6+uLvn37oly5csidOzfMzMzg6uoqx4cjR44k2f7Dhw/477//0Lx5cxQuXFhuL64vGjVqhAMHDmTI74CIMn9sePLkSYrXIOPHj1d7bNevX0fnzp3l+4sxIm/evHKMOHbsmEZ/B0RE+sZAwShsAqNGjcIff/yBIkWKoFatWvJkVPyx2r59u7wgXbt2LTp06BC3vbo/Pg8ePJAXu1999RVu376d4LmAgAA0bNgQFy9eRNWqVVGlShX5+OPHj3HixAn4+fkl2P7OnTtyOxFcE4F08Udsz5498n0HDx6MefPmZcjvgogyd3yIiopCjRo15Ilz2bJl5T4EccIqTmZLlSolxw0RDEvOmzdv5M248PBwhISEYN26dejYsaPGfw9ElL6xQXzHRXBbfOdFIEtcDL97904GvcXNMjF2eHp6JtiHuJE2duxYFCxYUF5gBwUFyRtl4qa8CJRVq1YtwfbDhw+XN+REAL1FixawtbWV48jBgwdhbW2Ns2fPyvGCiPR7fNi8ebO8OSauJ8T4IL7rIji3Y8cOfPr0CZMnT8aYMWPitl+4cCEGDhworyfq1q0rg2QvXrzAli1b5LXGjBkz8Msvv2T674kou8nosUEE0QsVKiSTcVq2bJlk/2KfqmuN+FauXInevXvDzs5O3owTY4SIT3h7e8vzj/jjCRFRtiOC6PQ/W7ZsURw/fjzJ4ydPnlSYmJgoHBwcFOHh4Z99n8GDB4ubE4o///wzyXMtW7ZUGBgYKNasWZPkuaioqCSPffvtt/K99u7dG/dYRESEokaNGvLxs2fPpvLTEZEujw8bNmyQj7dq1SrJa1q0aCGfW7Fihdr3bdasmcLV1VUxfPhwue26detS/dmIKPPGhkaNGsnv6Pbt2xNs/+TJE4WNjY3CwsIiwfb37t1TGBsbK9zc3BSBgYFxj1+9elVhZmamKFmypCImJibu8devXysMDQ0VBQsWTLC9MHv2bLnvXr16aezzE5H2xgexHhsbm+T9X758qXB0dJT7CAgIiHv8yJEjip07dyYYMwQfHx+FnZ2d3F68loj0e2x4/Pix3L5Hjx6pPiZvb295vlG5cmWFv79/qmIVRETZCcu5JNK6dWvUrFkzyeMiO1Tc+RVZ5Ddv3kzxPUQWqMgyFVOyunXrluC58+fPy7vLXbt2lVOkEjM2Nk5SxuXkyZNy32IKlYp470mTJsn1RYsWpflzEpHujQ+qEgvxv+sqTZo0kcv3798n+77Lly/Hrl27sHjxYpllSkS6OzaI77qYSp34uy6ySL/++muZDRocHBz3+LJlyxAdHS2zv0RmmIqYsdKpUyfcvXsXp0+fTpB9FhsbK7PT428viKyylMYSItKv8UGUWhDbJyYyzcUYILJWnz59Gvd4nTp10KxZMxgaJrwMFOWeRNar2F7MVCEi/R4bvoQ4z4iJicGqVatk2bjPxSqIiLIbBtHTwMTEJFV/PMSUKvFHT0yzEtOyEtcrFtq1ayenRS1duhTTpk3D6tWrZY3CxI4fPy6XolZaYtWrV5d1UUUJGCLS//FBVVph3759SV4nSjiJE2dxUp2YqKs+dOhQ9OvXT07NJiLdHhvEd11M1U78XX/27Jm8YBZTr3PmzJmqc4EGDRrIZfxzATHFW9yoO3PmjCznEN/u3bvlkmMFUdYYH9QR1xWi/IMoASdqn3/p8RCRfo8Nr169gpeXF6ZOnYolS5bg4cOHye4zMDBQlnwT/RWKFi0qzytmzpyJOXPm8MYaEdH/4xlSKok/TocPH5a1RcWd3pSIP07C999/n+S5y5cvy6Wodyay0eNf3IrsUZFFGr/2mdhOdUGcmJGRkaxzJmqmiww1nvAS6ff4ILLNRc3Cbdu2yRPY+DXRRc8E0QhMNByNT5xM9+nTR9ZAnTVrlkY/FxFlzNggahSLAHfbtm3lDTU3N7e4uqaiNqrqhnv8cwFxjiAajiWmOj9QnS8I4iJ6+vTpsi56iRIlEtREP3r0KAYNGiR7qhCR/o8P8WevihrKIotUBM1Eo0ERFBM10G1sbD57POKaRNRXNzc3l5mwRJQ1xoZDhw7JHxWRlNOlSxc5NoiEPBXRqFxcV+TPn1/OVlHddFcRDUw3bdqUZIYbEVG2ou16MvogMjIyri75ypUrU9z20aNHst55gQIFktQaFIoXLy7fx8jISNG9e3fFw4cPZZ3C1atXK2xtbWX9s+vXr8dt37dvX7n9oUOHkt1f1apV5fPJ1SwjIv0aHwTx+K+//iq3E++p+hH1DEXNw8Tmz58vn9+/f3/cY56enqyJTqTjY4P4PleoUCHB9zxnzpyKv/76SxEdHZ1gW3FukC9fvmT3I+qli9c2b948yXOiz4Kokxp/H9WrV1ecPn1ag5+UiLQ5Pqjs2rUrwfbW1taKVatWpfqYOnXqJF83ceLEdH02ItKNseHt27eKcePGKS5fviz7o4h4weHDhxWVKlWSr2vdunWC7cV1gypO4eTkJGuvf/z4UXH37l15jiGea9++fYb/DoiIdBmD6J8hAlqdO3eWfzREQPtzxo4dK7cVQazkFCtWTD5ftmzZJE2AVMGwPn36xD3GIDpR9hkfQkJC5EmqOHFdv369ws/PT/6IdfGYaBAmmgSpiJtwVlZWit69eyd4HwbRiXR7bLhw4YLC2dlZUb9+fXlxK7774vs8bNgw+Zp27dqlO4g+YcIE+bpp06Ypnj9/rggKClKcOnVK4eHhIZuG7dixQ8Ofmoi0MT4kFhERofD19VWMGDFC3pD/8ccfP3tMo0aNku/dsGFDtUF6ItLvsUFFvE6V2CfeR2XNmjVxgflt27YleI1oWCqSgMSY8uzZMw18WiIi/cQg+mf+kInsT/GHpGvXrmozR+Nv7+LiojA0NFQ8ffo02W3Exat4P3FXOLEXL17I59zd3eMeEyfA4rHNmzcn+36lS5eWf8zYKZtI/8eHMWPGyPdLLrglskHEc99//33cY7Vq1ZKBNZFdEh+D6ES6OzaILLNChQrJ7664kE2sZcuW8rXxs8Vz5cols0qT4+3tLbfv1q1b3GPixrt4TFxYJ/b69WuFhYWFomjRoun8pESkC+NDSgYNGiS337t372dv8NepU0cRGhr6BZ+KiPRtbJg8ebLc/u+//457bPfu3XGZ6GJ/iYlrkOQC7ERE2Qkbi6oRGxuLXr16YcWKFejUqROWL1+epIt9Yvv378eLFy9kvbACBQoku43ofC/Y29sneU71mOisnVKtUxVR81DUSRZ10VkPnUj/xwdVo6DkmoeqHrt69WrcY2L95cuXcuwQ9Q1VPxMmTJDPi2MT/547d266Pi8RaW5s8PHxkX+7K1WqJBv+pea7Ls4FgoOD8ebNmyTbJ9c7JaWxRNRVF3XSHzx4IN+TiPR7fEiJqhmxqjlxYuPGjZN1lkUPll27dsHCwuILPhkR6dvYkCtXLrkMCQlJEqcQ769qbPq5WAURUXbDyGsKf8hWrlwpm3yuWrVKNvH8nJQaBqrUqVMHa9askc1AE1M95urqGvdYzZo15VJ0yh41alSC7U+fPi3/8Km2ISL9Hh8iIyPl8v3790magInHBDMzs7jHunfvjtDQ0CTvIxoDiZNocUJduHBhlC5dOg2fkIgycmyI/z1PTnLfdfF3/ty5c/JcQHzv4ztw4EDcNmnZh7hAT+4imYj0a3xIiWgwKiT3XVcF0MXYsWfPnmQDc0SUNceGCxcuJIk7iOakItFHNDYViT8uLi6fjVUQEWU72k6F1+WpVKKuWGrLpLx7907WHs2dO7esRaiOaM4hpmWbm5srbty4Efe4eE2jRo3kfhcvXpzgNarmIvGnYorta9SoIR8/c+bMF31WItKt8aF///7yvUXT4fjTOEV90i5dusjnRMmXz2E5FyLdHRtEXVHRSFyUdjpw4ECC50SdUTFOiDJtoqaxilgXdczd3NwSlG+6evWqwszMTFGyZMkEY4aqOVipUqWSlHtasGCBfK5atWoa+vREpM3xQZR0StxnSdWAMH/+/MmWeBBlJcXj4loiODhYI5+TiHRrbLhy5UqyY8OWLVvk+zg4OCQ5R5g6dWpcibj45xXHjx+X7+/q6soyskSUrTETPZGJEyfKqVTW1tZwc3OTGRqJtWzZEmXLlk3wmLh7HBUVhW7dusHU1FTt+9va2mLRokVo27YtKleuLJcODg44fPgwbt++jcaNG6Nnz54JXjN//nxUq1ZN7lfcoXZ2dpYZI2L7wYMHo2rVqhr8DRCRtsaH3377DTt27JDbX758Wc5cEY4cOSKzP0S5huHDh2fAJyOizBobRJbYzJkz0b9/fzRq1AhNmzaV5VVEqZatW7fKEiviey7eR0Wsjx8/HmPHjoW7uzvatGmDoKAgrF+/Xj4vziviT/1u164dFixYgJMnT8rXNm/eXE7DFrNUjh49Kks2zJ49O5N+O0TZW0aPD+LfojyTKPMgskjFWPDw4UNZ1klkr44YMUJeR6iIUhGTJk2SpSArVqwo95eYKO8ifohIf8eGYcOGybGgSpUqMqtclIIV5wFiNrt4PzEW2NnZJdjfzz//jN27d8uMeHHt8e233+L169fYsmWLfM3SpUtZRpaIsjdtR/F1jepucEo/y5YtS/I6kQUmnrtz506q9iMyQho2bKiwt7dXmJqaymyxP/74Q+2dXR8fH0Xbtm0VOXLkkFlnX3/9tcLLyyvZu8tEpL/jw8uXLxWDBw+WTf/E2CC+78WLF1f88ssvCn9//1QdJzPRiXR/bDh48KCiSZMmcnaaaOJlZ2cnZ56tXr1a7X7Ec6JBuWgMKrZv3Lix4vLly2qz1qZNm6YoV66cwtLSUmayi4ZkomFZas9ViEj3x4dNmzbJLNbChQsrrKys5Mw38V1v3bq1Yv/+/WrPEVL6EdsQkX6PDYsWLZLxBjEjRZw3iGsKMU6IBqF3795Ve1yicamYraK6FhHxh1atWimuXbuWIb8HIiJ9YiD+j7YD+UREREREREREREREuihh22ciIiIiIiIiIiIiIorDIDoRERERERERERERkRoMohMRERERERERERERqcEgOhERERERERERERGRGgyiExERERERERERERGpwSA6EREREREREREREZEaDKITEREREREREREREanBIDoRERERERERERERkRoMohMRERERERERERERqcEgOhERERFlebVq1YKBgQH0hUKhwDfffIP69evr9edIraioKBQuXBjt27fX9qEQERERESVhnPQhIiIiIiLdldYgsghI65uVK1fiypUrOHfuHLIDExMTjBkzBt9//z3Onz+PypUra/uQiIiIiIjiGCj08aqCiIiIiLKt8ePHJ3ls7ty5+PjxIzw9PZPd/tmzZwgNDUWJEiWg62JjY1GkSBHkz58fJ0+eTJKJfuLECb28MfA50dHRyJcvH8qUKYNDhw5p+3CIiIiIiOIwiE5EREREes/V1RVPnz7NEsHlPXv2oGnTpli0aJHMzM4uQXThp59+wrx583Dv3j0ULVpU24dDRERERCSxJjoRERERZXnJ1RJfvny5fEwsd+3ahUqVKsHS0lJmQ48bN05mhAsrVqyAu7s7LCwsUKBAAcycOTPZfYjA9tKlS1GtWjXY2trK9/Lw8JCPpcWyZcvkcbVp0ybFGuIiw17cPDAzM4Obmxvmz5+f7LYhISEyQ19k4ZubmyNHjhxo0qQJzpw5k2Tbnj17yn0/efIkyXNif+K548ePxz0m1sVj4rmzZ8/KGu729vYJftfHjh1Do0aNkDdvXnmsTk5OqFGjBv77778k+xA10cXvUfzOiYiIiIh0BYPoRERERJStbdu2TQZvRWPLAQMGwNraGpMnT8bvv/8uA+ZDhgyRQfR+/frJwPrIkSNlzfL4ROC3S5cu6NOnD96/f4/OnTvLLHIRwBaPjRgxIlXHIt5HBJ2LFy8OBwcHtdt16tRJBucbNGgg39/f3x8//PCDzF6PLzw8HHXq1MHEiRNhZWWFoUOHokWLFnIfNWvWxKZNm6AJIoCuulEhfk8dOnSIy6qvW7cuLly4II91+PDhaN68OSIiIrBq1aok7yOaqYr66EeOHNHIcRERERERaQIbixIRERFRtrZv3z6ZlV2hQgX57wkTJshSInPmzJEZ5VevXpUBdkEEw8Vzs2bNQvfu3ePeY/HixVi3bh169eqFf//9VwaChcjISLRt2xZ//vmnDHyLIHFK7t69KwPiInM7JS9evMCtW7fk8anKoJQuXVrup2/fvnHbzZgxAxcvXpQBfhG0VmWIixsDonmnCHg3bNgQNjY2SA9Rw1wE9cXnj088proxIG5ExPfhw4ck7yMy5cXn8Pb2loF2kblORERERKRtzEQnIiIiomyta9eucQF0QQSURU1y0Yh04MCBcQF0QTT7rF69Ou7cuSMbYar8888/MtPby8srLoAumJqaYsqUKXJdBNk/RwTHBVHyJCXTpk2LC6ALInNdlJHx9fVFUFBQ3OOiLIo4nunTpycosVKuXDn06NEDgYGB2L59O9KrfPnySQLo8YlSOInlzJkz2W3FZxflat69e5fu4yIiIiIi0gRmohMRERFRtla2bNkkjzk7O6f4XExMDN6+fSvrp4tg+82bN2XN7z/++CPJ9iIgLPj4+Hz2WFTZ2aKueEqSy2h3cXGRSxEYFzcCPn36hEePHqFkyZJxz8VXu3ZtWf7l2rVr6NatG9Ij/k2I+Dp27IitW7fKrHdR4kaUdhH10HPlyqX2vUTNdsHPz0/etCAiIiIi0jYG0YmIiIgoW4uf0a1ibGz82edUwfGAgABZsuTly5eyFIw6oj7656gytkUt8y89ZhHgF0QQPaWsdtWNAtV26aFuH+3atZOZ7rNnz8bChQtlpr7IiBcBfFF6JrmbFGFhYXIpGrMSEREREekClnMhIiIiIkoHVUBbZIeLYLq6H1EX/HNy584tl6IuuqaOS2TMJ+fNmzcJthMMDZWXB/FL1ah8/PhR7b7il4pJTDQyPXHihLzZIOrPi4arx48fl7XYRdZ8YqrPrvpdEBERERFpG4PoRERERETpIEqniJIpoilockHhtChVqpQMZIva5uklguOinvuDBw9klnxiIpAtxM8Gd3BwkMvkthcNVtP7exKB8//++w89e/aUwf0LFy4k2U58dlEmR1XWhYiIiIhI2xhEJyIiIiJKpyFDhsja6H379k22bMvjx4/x5MmTz76PqIVepkwZeHt7IzY2Nt3HJZqHirIzo0ePltnwKjdu3MDy5cthZ2eHli1bJqltLp6Lb/PmzTKbPK1OnjwZV14mPlXTUHNz8wSPP3v2TGbIf/vtt2neFxERERFRRmFNdCIiIiKidOrfvz/Onz+PFStW4MyZM6hXr55sNCqyrUVDUZFxvXbtWri6un72vVq1agVPT0/5flWrVk3XcY0cORJ79uzBqlWrZKa8aOwpAtgbNmyQJVtEY1GRIR6/9EqRIkVkEP358+coV66cfN3Ro0fRuHFj7N27N803F169eoXq1avLzy7Kvpw+fRoXL16UzUbF4/EdOnRILuMH9omIiIiItI2Z6ERERERE6SSCwyLwLILToiTL7t27ZTNNERQW2dazZs2SgfXUEDXDRZPQ1atXp/u4xL5FAHzcuHGygeicOXOwbds21KxZU5ZzEY0/Ezc2PXz4sAxii0D3ggULZJNTkVGuylJPC5EBL5qIisz3f//9F0uWLEFERAT++OMP+bsxMjJKsL34zI6OjvJGAhERERGRrjBQxJ/XSUREREREWtetWzeZQf706dMEmeJZ2f3791G8eHGMHz8ev//+u7YPh4iIiIgoDjPRiYiIiIh0zOTJkxEWFoZ58+Yhu5g4cSKcnZ0xfPhwbR8KEREREVECDKITEREREemYggULyvrq2SULXTQ/FVnoK1euhJWVlbYPh4iIiIgoAZZzISIiIiIiIiIiIiJSg5noRERERERERERERERqMIhORERERERERERERKQGg+hERERERERERERERGowiE5EREREREREREREpAaD6EREREREREREREREajCITkRERERERERERESkBoPoRERERERERERERERqMIhORERERERERERERKQGg+hEREREREREREREREje/wHl6WKzCFlvkwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_generation_profile(hybrid_plant, start_day=115, n_days=5, plot_price = False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Visualize Wind Resource and Wind Farm Layout using FLORIS\n", + "\n", + "[FLORIS](https://github.com/NREL/floris) is a wind farm wake modeling and control software. It includes a set of visualization tools that can help you analyze specific site conditions and better understand your farm layout.\n", + "\n", + "### Wind Rose Plot\n", + "The wind rose plot displays wind direction and speed distributions at a given location, providing insights into the prevailing wind patterns over time. It is a valuable tool for understanding the wind resource at your site. " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhwAAAHWCAYAAAA8ZVAzAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsXQd0VNUW3ekNAqG30HvvIn6KFOkdBAEpIr0pCqgICCiKBRUQUEF6B+m9F+mg9N5bqIH0nr/2GV6YhATScye5e623JjOZTN68cu++5+yzj1V4eHg4NDQ0NDQ0NDSSENZJ+eEaGhoaGhoaGoQmHBoaGhoaGhpJDk04NDQ0NDQ0NJIcmnBoaGhoaGhoJDk04dDQ0NDQ0NBIcmjCoaGhoaGhoZHk0IRDQ0NDQ0NDI8mhCYeGhoaGhoZGkkMTDg0NDQ0NDY0khyYcGhoaGhoaGkkOTTg0NBRFt27dYGVlhe+++y7S66tWrZLXNTQ0NCwJmnBoaCgMR0dHTJgwAZ6enim9KxoaGhoJgiYcGhoKo169esiRIwe+/fbblN4VDQ0NjQRBEw4NDYVhY2OD8ePHY/Lkybh9+3ZK746GhoZGvKEJh4aG4mjVqhXKly+P0aNHp/SuaGhoaMQbmnBoaFgAqOOYM2cOzp07l9K7oqGhoREvaMKhoWEBqFmzJho0aIDPP/88pXdFQ0NDI16wjd+faWhoJDdYHsvUSrFixVJ6VzQ0NDTiDB3h0NCwEJQpUwadOnXCpEmTUnpXNDQ0NOIMTTg0NCwIY8eORVhYWErvhoaGhkacYRUeHh4e9z/T0NDQ0NDQ0Ig9dIRDQ0NDQ0NDI8mhCYeGhoaGhoZGkkMTDg0NDQ0NDY0khyYcGhoaGhoaGkkOTTg0NDQ0NDQ0khyacGhoaGhoaGgkOTTh0NDQ0NDQ0EhyaMKhoaGhoaGhkeTQhENDQ0NDQ0MjyaEJh4aGhoaGhkaSQxMODQ0NDQ0NC8K3336LKlWqIH369MiWLRtatmyJCxcuRPz+yZMnGDhwoHSWdnJyQt68eTFo0CA8e/YsRfdbEw4NDQ0NDQ0Lwu7du9G/f38cPHgQW7duRXBwMN555x34+vrK7+/evSvbjz/+iNOnT2P27NnYtGkTevTokaL7rZu3aWhoaGhoWDAePnwokQ4SkZo1a0b7nmXLlqFz585CSmxtbZESSJn/qqGhES3Yep4DQmBgoPxsbPfv34ejoyMyZMgAa2tr2NjYyCPDpdysrKxSetc1NNIUAgICEBQUlGifFx4e/tJ97ODgINvrYKRKMmXK9Mr3uLq6phjZIHSEQ0MjiQaje/fuSViTj8bGlYi3t7dsPj4+kR65GSHRuIDEI126dJLP5Wb8bDxykMmePTty5syJXLlyySM3vpaSg4+GhiXf3xmc3BCEgET7zHTp0slYYI7Ro0fjq6++euXfcUHSvHlzPH36FPv27Yv2PY8ePUKlSpUkwvHNN98gpaAJh4ZGPMCB4dKlS7h48aJs/PnOnTsRxII3P6MQOXLkiJjguTHsSQLwKoLAjasaI4rBLSQkBBs2bEDDhg3ldQ4yoaGh8Pf3f4nARP2ZKxtGSIx9IwniAMTVVNasWSNISJ48eVC0aNGIrWDBgrC3t0/pQ62hoRy8vLwk2vg/NIYt7BL8eSEIxj5swK1bt2R8iEuEo2/fvti4caOQDd7D0e1r/fr1JfqxZs0a2NklfH/jC004NDRiAG+Nq1ev4uzZsxHEwtg4aXPAoQqck3PhwoXh7u4eiVxkyZJFyAE/hykSYyN5oMiLhIE/R7eRUBi3Jh89PT3l54wZMwoBMUKv/HxGKaLbjN9xgOGgxdQLn/NvGQo2SIgRhbl582YEieIj31OgQIFIJIRbmTJlJDqioZHWCUdttICtVSIQjvBg7MLqiLRHbDFgwACsXr0ae/bskXs1KrjgaNCgAZydnbFu3TpJy6YkNOHQ0Hgelrxy5QqOHTsWsR0/fhx+fn4yyRrEwnwjoeDtwygDIwp8ZKiVG4mF+c98nzHxx0QQzIkCN4NU8PHx48e4du0aKlSoIISDn8fNIC2vIi8kN9wHvod/y0GHG/fF+JkbByUXFxf5mZ99+/btl4gWS+9IwnLnzi0hWvON0RwNjbSAlCYc4eHhUva6cuVK7Nq1C0WKFIl2H0k2eJ8zOsr7O6WhCYdGmgQnU4Ygjx49KuTi33//FcJQtmxZmTwrVqwoj6VLl5a0Aidskgpu1FmY/0xwomYEwXwCjzqpk0TEFyQNHDQaN24cr5Aob3OSj+gIkbGRXPEYcD+Z3uHG72X8zI3/m4Mij5dByvhIMsKojkE+6BHw1ltvyaCsoZHakNKEo1+/fli4cKFEN7gYMsB94jjE/WOZLO9pkhLexwaYRk3IWJQQaMKhkSZAfQVXAsbGaEH58uVlYjQmyVKlSsmEyjAkNRi8+fnIm5eTNW/k6CZivs7IQVIioYQjtmAUJCqhMn5mioUEioMaUzvGI78/f2+QEG6HDx+WiBGJW+3atWX73//+lyIE5LfffsMPP/wADw8PlCtXDpMnT0bVqlVjfD/LB0eOHInr16/LynHChAly3A1069YNc+bMifQ3XEnS50AjbSClCYdVDFVps2bNkuuTY9zbb78d7Xs49uXPnx8pAU04NNIEwWAagKTCfPIzVOEkFQbBMMrLzCdVbnxvSq0KkpNwvAokHMbxMsgYyRn3xzhexkYSQm0IfQHMz0FUAhKXfHV8sGTJEnTp0gXTp0/HG2+8gV9++UUIBVNDFPBGxf79+8XHgE6OTZs2lVUkCQcjOYx2ERzQqX/h4G6ARMzNzS1Jv4uGOkhpwmGp0IRDI1WAK/MDBw5g7dq1snFCiY5g8IZmhQY32v/y8jefLPkzq0RU87VQgXDEdNwNomYQN5IQTsDUuGTOnFkeGREyCMjOnTsjokxvvvkmmjVrJmV9DA0n9nEnyWAUa8qUKRFaHYp7mf/+7LPPXnp/+/btJapDgZ2BatWqSTSMpMUgHPyeq1atStR91bAcaMIRP+gifA2LBSe2LVu2SKkXJ2OSB65Kx40bh3r16glxMAgGK00ovOSExkmQq9uSJUvKza0aubAkMOrDcjtzwyGSEFbV8Lgz0nTq1CnRwZB4VK9eXcgFCQh1NCzn4/kbNWqUEAH+jhv1Hwn1CGFEhumdzz//POI1pr54bZCcRge+PmTIkJfSJVHJBQkTryFGNerUqYOvv/5arisNDY2YoQmHhkWBdeqMYHCS4kqZXhGcoCiM4mqZkwxz9efOnYtEMCiUKlGihCYYyURCSC64RSUgJBnmBKRJkybo3r27nLdt27bJeX333XclosNoDqMf9B6Jj/aD/4//O2oJL5+fP38+2r/htRPd+/m6Ae5P69atpQyROpUvvvgCjRo1ErKSkmk3DQ3VoQmHhvJg6oN59wULFsigztUvSQbFf/S/YBSDE8LevXsl1MnVNks0NcFQm4A8ePBAUl+MQvB39PegQdGff/4polOSD0arunbtKsSDLomc2FPajKxDhw4RP3OfWdlUqFAhiXrUrVs3RfdNQ0NlaMKhoSRYpsk8OkkG0yXMoXPCWb58uUQsuHolyWBKhRUkDG9z0OdqNKUnJI3YExCmtaiZ4Lmk+Rg7WzIVRsI4dOhQsWFmNILXwUcffSTREEZAeC0wPfOq6iDDeI0CT3PweUyeIXw9Lu8nGGXj/7p8+bImHBoar4BuT6+hDCjoY5rkww8/lAGeuXeWMXISYmSDEw1TKsz7nzhxQiIXNMLiqpfCQGoANNmwPFDPQbLIyBXPJUtRSUJYMbJ582aJiHz66aeSvmA6jee9RYsWMtGPGDFC9DnRgdcChcPbt2+PdI3xOdNv0YGvm7+fYPvvmN5PME3E9B19SDQ0NGKGjnBopDhIImbMmIG//vpLDKkYsuZEQxLBagAO6HzO1Sx7BdSoUUOnSlIpWIHDc8yN5MDQfdCkjaW2fP3HH3/Er7/+Kr4X8+fPF1LBSEmvXr3QsWNHiZAYoACUKZnKlSuL9wbLYklmGCkhWDJL11SWwRKDBw9GrVq18NNPP4m+ZPHixWIO98cff8jvWRY8ZswYtGnTRkgxSdCwYcMktUdxqYaGRszQhEMjRcBVK0kESw05cXCwnjp1qgjySDo4yezYsUN+ZnMxkg+mUjTJSDsgwWSqjBt1Eky78Lqg7oPVIdRPkHDQHZV+G7///rtEQphu6d27t6ThWObKDr2sguHf8zVeb4YwlP1jzNMyTNPQe+PLL78UMSijLaxQMTw4mKI5efKkGH+RDPPapKMjtSaxaSOuoZGWoX04NJIVDD0zkkFywcoEpk969Ogh4WiWUN64cUOEn5xkmCLhxKCV/+r6cKQESELp6cHIGCd9XiP58uWTRwpQSWIXLVok6Tg2t2rbtq1OtWkkKrQPR/ygCYdGsuC///4T8yWuHhnapvESK03o9U8LaU4eNObixMEQt54gIkMTjujB9AivHRJVRr94/eTNm1fI7OzZs8XWnJMDIx7cGJHQ0EgoNOGIH7RoVCPJQC5LAR6NligIZKTi0KFDkioh6aAQlKWszNXz93QEpbeBJhsacRGcFi9eXMppmWJhCTX9PJh26dSpk/ixkHgw8kGRKaNpbDSnoaGR/NCEQyPRQQLBvDctodu1aye24syVU7BH90iWsnJCYCSD2g1Wmug+FBoJAXUYTMuxmoTOnyQi9PKglToJCa9HRtl4bVIPwuuS/VE0NDSSD5pwaCRq2H/u3Lmy0uzfv78I9kg0WCnAtAlXngwZsoEX/QpYCqnTAxqJDZINdv4lmeU1xmuPJJcRN+o7GOFgaoXVTnwPSYnOLGtoJD004dBIMFglQH0GFf1U69OgiZ1B2eTqzJkzMqAzncJ2yYx6UBCqq000khq85qjpYJkrU3gUmNJTg6SXZbAkInydnh5M6dHjgxEQDQ2NpIEmHBrxBoV5tBfPnz+/+GiwjTdz5hzA6V1A4yauNqnhYDkiRaEaGskNkls6gTLdwvQeXWypLaLYlB4ajMK1bNkSPXv2lOib0QhQQ0MjcaEJh0acwVUgraaZG2eImqZIzIczRP3PP/9E9MagPwH9C2jYpKGhAjJmzCieLhQok4iw/wmt00k2GPGgSRjNwPj7gwcPpvTuamikKmjCoRFrcNVHW3GuAmk7TjMlWoxzAKclObuA0gmSFQPFihXT1SYayoJupBQrM/pGQkyi/O+//4oDKd1Da9asKb9r1aqVRO00NDQSDk04NGIFrvaowaCLI1eAFN7R+pkDNZ0XWXJIokGRHitRNDQsASQbRpda+h/QQv3SpUv47LPPpBkbK6lIsFlOyxSMhoZG/KEJh8YrwfLV1q1by2qPKROKQT/44ANZDbLskKWI/B39M17VuVNDQ2XQlpyVLayeotiUXjHsEsu+LWweSGE0o3bsYOvp6ZnSu6uhYZHQM4RGtGCTKq7yGHZmkyqu9vicqz+uAhmS5qqwaNGiOqKhkaoiHrzmqeGguJSl3BRHs3cKo3lMIZJ4zJo1S1e0aGjEEZpwaLyk01i2bBlKlCghAyzdQH/++Wc8ePBAVn1c/dFYiWJQrdHQSK0goX7jjTekmRv7/5B4MOVCDRObxH311VdSSqvNwzQ0Yg9NODQiQHEcoxbsczJ+/Hjxz+DAyxJChpTpZ8DVn7Ozc0rvqoZGsiBTpkxCLKjjYPksq1r4nPcK0y8ss6XJnU6zaGi8HppwaEj6ZPjw4TKoMnJB3QYFoXv27BHNRqVKlWS1l5qbCmloxASWz7ITLQk3PWeOHDkihnYjRoyQFAurWphaZBdknWbR0IgZmnCk8fTJ0qVLxU+DJl1srEbzLg6gfE77Z1amcLDV0EjroCiaVViGsJSRP95D69evFy+aMWPGSAqGgmoNDY2XoQlHGgUV+Kw+GTBggNg8M1RMJ1DmqkNCQkSnwVUbB1YNDY0XcHR0lGggnUvv3LkjHjTmaRb+PHLkSBGbamhovIAmHGkMXJEtWrQIJUuWFNEnQ8NMn7BNPNMnNPFifwmt09DQeDUyZ84saRZ60DDNwvLZL7/8UoTW69atQ+XKlbWoVEPDDJpwpLGoRtu2bTFo0CBR2i9cuFBeM0+fsLGahoZG7NMsJBzm/h20T6dRHiOIFJXSkVdHOzQ0NOFIM1GNxYsXi7ERB8WzZ89KyoSh4CdPnsgqTadPNDQSlmahuJobe7MwskEhNsn8mjVrdLRDQ0MTjtQP+mcwqsFS12nTpkk6xYhqsHU33UNZ+qqhoZFw0CSPkUI6lzLa4ebmJmJsI9oxevRoHe3QSLPQhCMVg222GdVg2JdaDYZ9KQ41ohpFihSRkj8NDY3EA7VRFJUy2kEhKatWGO2gkd6qVatQrVo16UWkoZHWoAlHKkRwcLD0fGjfvj0mTpwo6ZSHDx9KVCNv3ryy0tJRDQ2NpI92MHVpZ2cn0Q6KTNl/iK8xxUINlYZGWoJugpHKcP36dXTo0EGcQY8ePSrN1egYSn0GW25r8y4NjeSNdjDS4eHhgf/++08e6eLLXi1du3YVIjJp0iRdFaaRJqAjHDGgW7dukm747rvvIr3OkChfpzsnVy6MHpiDkz1/z4nfHHQoZG1+UuLvv/8W63GGc1maRyEb3UJJOqjV0GRDQyNltR10ImVakwZhJCB09WUpOlOeyYXXjW0E95E/R7eRNGloxAeacLwCnLDpvBldnwSaZDEsyhvTHHzu7u4e6fVr167hxo0bEkpNCrCrJUWhbBv/559/4tdff5XcMTd6arARm24dr6GRsqCQlC0CWEbL9CbvW0Y4WrVqJa/TGp0VZSk9tpmDhOjevXuRNl06/wK2RQrCtljhhG9FCsbp/9KskUSVqXGej5YtW8q5MgevL/b5YSqP81WbNm2kYCAloWehV6BevXqyMuHJjQ5csZgTC07wPMl9+/aN9Dp/5mBDZ8LEBtvFc7VEJTzL7rjPTKFwPxi21YODeuCkQp2Nr68vnj17Jt1IORDQtZLElNbyHDx4PbGEmatfOsASLLnka/wdhYc0a2NTsbt370pFEgXBXl5e8PPzQ2hoKFILfvvtN4kScqLk5EwtxKvAjse07Of7y5QpIwLqmNCnTx9Zuf/yyy9IavD/FC5cWNxIGQVl2pORz5UrV+Lzzz9H586d4e3tneJjmwGOH3yf+aYXLymP3bt3C5mg38vWrVtlPHnnnXdkTDHw8ccfY+3atXIv8P0cI1gtlZLQGo5XgLoH5ls7duwoZll58uR5iXDwhiXrZ9qCvhYUZDKSQWMtA3ydZIODX2KCgyj3jZEN7gcnrH379kn1CX01dAVKyoA3P1Nu3Ej8jC0wMDDiZ5IBnh+m5Xid2dravrRxYDfOIe3mjUeG5Ula+Bl8HnXj69wHgp/P646El4/G5uTkJKseFxcX5f1XlixZgiFDhmD69OlCNkgMGjRoIKQsOkLN6MF7770n90TTpk1FnMkVIAk5mxOagxM9B20a3yUnWC7LBQErWLggoc6DjeBIOPgd6d1BYpJSY5uG2ti0aVOk57Nnz5Z74dixY6LV40Jm5syZcu0bkfVZs2ZJtJvXOyulUgKacLwGDHeWL19e6ud5As3BVQpFYRwwOMDxkeWmHDwePXokqZQCBQoIu+zRo0ei7RMnmx9//FGaRc2YMUNCZRy4GB7lhZQlS5ZE+18aMZ8DEgquRvnIlYVBMuizwAmekzkndv5M90ljsudzvk5SEVtSSCt6EkxOmCQRsdk/EhxzkmNsjKgwAsJ9JTkxyIdBQPhIvQ9fVwGstOrZsye6d+8uz0k82DCNKYjPPvvspfczpdiwYUOp1CLGjRsnq8ApU6bI3xogQWcqcvPmzWLvn9zgeWRYnJEOTgJcKHAi4XdiKpSNFRmJSImxzUBUIkLvnuTUm2jEDiQYRKZMmeSRxIOLDvPrhxE/VilS36cJh8JgrpMs8dNPP430OpXlHDAMwkFiwUGOEwnTHHydAz9D3oyGJAY4YXDwZdSE/4+RDD5youCKiZOZRtKQi6dPn8qNbTwy0sAcqjFZk+gZP8eGFCQlSGQMgpMhQ4ZXkhKDKJE0GUSZPxtEiRs/wyBNyRk5I3nj4Ml0gwFGfjiQcuCMDnydERFzMCJCUaQBnrv3339f7ld61aQUeCy5KOFEwX4sXDQwMsM0UIsWLeRnkqKkOuYxjW0G2GPJvIQ+pa/r1A4vL69Iz3kPvm5M57X80UcfyQLYiOBR2MvFMO9Zc7Dzd0qKfjXhiAUYouKAxUGPCm9zkEgw5EvWz1JUVogQjHSQFPBiIDFhmDShYA6OqxIOuMz9chBiFQoHLIbKdAolccC0BAd+Tr6MBpBgcHLmpMuNomBOCByILTmfbU5KokbFeAzMyRWvPUZzDBLC93Pj8UjK647ngFEYDpTm4HPqWaIDB9To3m8+0HKi5cKA6QQVwOPIcYb3Ne9pRi2LFSsm9/vJkydFw5IUi4lXjW0Ex5aok5ZG0sHd3T3Sc0afvvrqq1f+DbUcbBzIdLrq0IQjlmAJGcOPHASiEo6vv/5acmXUbxj5cN7If/zxh0xURuolIaBIjnloDg60KL99+7YMuNwnnX9NPILBjT8bkzAHgLJly0rUwpLJRVzByZjqdm7mx4krMApTScQMVTzfk1wEJDHAiAnTLtR0qLSvHCMY6qYomKSD0VNGPXjf0yWYZe9JIQKPaWzTSH7cunUrkn3B60jmgAEDpDMxrxfzeYDiXkYHuWAwJ4wUp/N3KQVNOGIJrmg7deokJj3mYOqEF8XkyZMxYsSIiNeZg2XVwOrVqyOFg+OD+fPni5KeuWiGVyku48RIIkPxmUbcwZQBV7zcOHnyHHLCZI6TUSpGpVSajFQhIQz9c6OgkWSa0Q8jEmQQEKOygVGFhBJtnhOS+KjlfK8aOPn6q97PNAHvTZ5rA4yifPLJJyJIjeqhk5wgqWVYnNEzVp5Ru8PJ5MMPP5QyfIpJSQ6SY2wjeJyYxjUHCaZOrSQNXF1dY+WXxHuPcwFFz0zdMxJlDuoIeY62b98u0TKC9yfT+0lRLRlbaMIRB4wdO1bSJ+bgSpirEuooqKEwwAmMr/NiiK9+gxcVQ2okMytWrJCoCfsxcCJkyiaxq15SM3gsGblgRREnH2oWOJmxuogDuCYYcQePl6HxMAgIV1Q8viztpZCZ5MQgH/Gx0zecOjlwcqVPME3J51zdRQcOqPw989oGKBo1BlpqN6KKMRk55OuGMDWlQXEmjxcjm4wqzZs3Dz/88IMY+LEBI6tvknpsI6KLeqSk6FDjRRqFUXUuaHmdGOlCRhgp9uYjCxWoZeI9SBJDgsJ7ICXPnVV4cjnNaMQJDF/369cPGzduFBU9J0YOPpwkOUGqXsqoAnhps4cMqxF4Q/I5Jz4ey6xZs1rUKo2Kc1apNG7c2GL2m5omHncSEJ4HDoQ89kxTxcX1lhMhbcBZas7IIaMQrOBgSpHns0uXLsidO3eEpwTLYknImSpg9QndgFkCGl1ZrAF6fJCgmJMUVY4hIx283/nd6avAY0FNR3SaC43kAUkgJ/V6RT6GrU3CtTUhoYHYdulniRjG5t6IaXHE0lfjumBkilE7ElSKw0mqp06dqlMqGi8PMqyPp7ETB09OMIxssKypUKFCeiX+ChhhfmpcuBGcjDhYM/2UlnQYKQ0SDIZ6uZFAMzxP8SlTBKyqYs6Z2+vKb9mEkIRl1KhRQmBIuFk+aghDGSY2P69Mc3L19+WXX+KLL76QclNWqMRENlQGjw21YYwW8bix3Jc5e0Z7SOSGDRumx4M0iPBYxAkYAScx5aYKdIRDMTAk3bx5c8kpczXDyoBTp06JriC5zYksCfSVIMGg6IqEzVhJMyKUGkiGJUY4XvVdSBx4rqj/oCaAxIPXt6V/t6QCh2lWwvEaZ0icpcuNGjWScvyffvopVVzjloSUjnBYKnSEQyFw9ccVDPO3DAMzFUDrcpbUMgWgERnM5XPiosiPExfFisw5M2RIgaOGmiCpIBnkxrAvr3NOoCz/ZDSK6Q1Go/TK/QV4LBih4aqV0U5WsDD6STtrRjroNJlQga6GRlJDj8qKgApi5tgMW3TmpzkQsxJF18FHBiMYJBnsO8LcNgkaI0BaRGt54DljmpAbV408rxQlUsRL4kFSosnjC1CcS2JBPRc7Q5N8MOpFESmF5fER5mpoJBf0nawAWGvP8GivXr2k9JX5WqZWqEhnrlvDFFJm6SVXwoxqMJrBAZePeiWcOsBQMj1PWApqRD3oScHyVepA6IWiATkerILjuMFjxUo4GoRxscK0m46GaqgKTThSGAyLkmywLwpLnahIp2ELhWJ6xW4iGixlZWqJ3hmMZnBg1UQs9YIRDZ5nTqwsZWZHXLr2UiRKK38d8TM5p1Icyx4srECgkJTVOizBZ0lwVKdVDQ0VoAlHCoIGRCzb+/7776XjK8kHB1umUdK6eI76DArkSDRY4cBQMichHV5PO2DkyjAaYxrt8uXLYt/M56w8oSA4LUe3eBwYBWUKiqRjwYIFUhJJP6AdO3aIcFpDQyXo0TuFwDBos2bN8PPPP4vhEHOxzFvTTTAte2yQXLDMkZMLlfecWJjH1yr8tA2Wh9IRkxEOplqYTmCKhdcHRcJplXhQs0HSwfGD1Wxz5swRwyeDdFCEq6GhCvQonkJkgyIvmhGRbDCywcGTyvO0SjZYBkySQUdIEg528GT/CEY1NNnQMEDtAv1o6tevL2W0tPlnuoUVXmm1wt/w6mD6icdjxowZ4lVCZ2JqYTQ0VIGOcKRAGoWRDZoYUQhHMx+WALLKIi1OrJwkSDBYpUP1PY+DFoJqvA5MOTLNxnuI1UosqSVhpYgyaufbtADqvZiK5eKF0Q72RmH6kXonLnB0ekVDBaS9GS4FwYGAmg2mUQYPHiwDAnPTHDTTGtkwxKBcndJRlRMF7agpdtNkQyO2YESwYMGC0huF1w5F19Q00EApLZIOGqjxu5N00ZuDJmGMFEZtZqehkRJIW7NcCoJ186yXZwMmQ7PBQYGpAyrN2fI7rYAmXYz0MPxLssUBkQOlJhoa8QXJO03fSDyoa+D1xTb0rGxKK2A1j2EUSEM1Rn1mzpwp5eO8x3jfaWikJDThSAacO3dOSl/pscFulAx7clBk+oCGRyVKlJBVWWonHYzmUOzHVShXo5wc0mJ0RyNpNR505GQqgQSWETTefxQjp3aywe/JbqAU0bJkll4+JB2MdHCMYXQ1LREwDfWgR/okBks76SDKzq99+/YVskEPCbbcNiZahoRTM+lgiStXXvQH4HfmaourUV3iqpFUYMUXCT3FlGz8xooNpvBSo7DUnGywVNZIr5B0cDxhDxa2t6cwvW3bttLLRkMjJaAJRxKCqnH2RiHhGD16tKRVKIxk6WvUVX1qJR3sEMpVJokXB0QSLW1oppFcoEkYy0ZJcP/77z9JX/r4+CA1kw3z6hUKSanfoGX8ypUrxaWXnj9cBGhoJDc04UjC9AGrUaiknzp1qtiVM6zL0teYUgipiXQY6RNu7IlBQSi7gmpoJDeYWmF5NSNrjHywaiM1pFleRTbMSQd/z/eyNcDGjRslyjp8+PBk318NDU04kgAcyDp06CAD3cKFC2VQoHKcivHXOYhaOulgyJqrKYawjfQJdSpap6GR0mB0sVy5cpJmYeSNxIOTcGolG+Y9ajj2MLXCyMbmzZsxd+5c/Pjjj8m2vxoahE6iJ8GE26dPHxkQ6LHBVAJNiRjWpaAtNiDpIEg6YjOgqBTVYNiaXT+ZNtL9HDRUTbPQFOvKlStyjzECRzMxS9EUxYVsGOD7eE8ePXpUqlgY6WDfFd6jrJrT0EgO6GVnImPkyJHilrlp0yaZeCmW5MAQ12ZjlhTpIMmi+RKjGtRnsEJAkw0NlcHoI9OdTPXx/mK0Q/X7LL5kwwCrV2gPTy0Zx5e///5bFkckHxoayQFNOBIRs2bNwrRp0yRkyRQCextwNZEhQ4Z4fZ4lkA5GNSjEO3/+vKygWPOf1hvPaVheLxJGOahtOH36tNjspzayYYBaFvaf4T3LNMtff/2F9u3by1iloZHUsIwYogWAg9WAAQOwdu1asebmc5blJdRmWeX0Cvs0MIXCnhYkG5poaFhytINROYq7Ge3g9RzfhYKqZMMACQe7y3JMadmypbQVaNGihUQ+0qItvEbyQUc4EgG3bt1C69atpc08BwTeuIxMcCJODKgW6eAKkC6h3EiqdFRDIzVFO+h6S6dSip9V8O1ITLJhECyao1FMSk3HF198IeXq7dq10x4dGkkKTTgSCD8/P1klcIXQq1cvcdFkrtSITCQWVCEd3t7eIoZl1Q1bYOumUBqpCZyM6dnBdAPThJyQU3ISTmyyYf49uVgICgrC2bNnxY2UvkHs8aShkVTQhCMB4OqHVuUUhE6aNElW/GwmVbZs2STpC5LSpINdXXfv3i0pI5YW0tNAQyM1gqkFVnGwxJ0pFk7GqYVsGGBVDjVmTI3SjXX16tVYvny56NA0NJICmnAkAOPHj5eIxooVK6RKgySgatWqSeo5kRKkg4Pu8ePHpY6fxmVsOKd9NTRSO1jGzkgHBaVstsgy2uRKsSQ12TDARQPvaYpluXBi5cqnn34qJEtDI7GhZ414gquB7777Th45IbPFOlcLsfXasBTSwZQR89l8ZApFl7tqpCUwUkmRJfuSXL58WYh3UlexJBfZMI/mUNNBV2CmWX799VfpuXLt2rUk/98aaQuacMQDzHnSLId5T3Y75SBE4WRyqtqTg3TQhZEpFA56HHBpk6yhkRbBe4CeHey2um/fPikHTw1kwwCjOLlz55aIbbdu3dCxY0fRpXGhoaGRWNCEI47gDfjuu+9KCSx7pfAGpXU3b9bkRlKSDqaI+Ll0YKQdtE6haCQUv/32m0xsNIdjNJDVXK/CsmXL5Prj+2lYtWHDhki//+qrr+T3TAW4ubmhXr16cj8mFbgfbIbGahYS8cTWdaQU2TDAKAft37mA+umnn2QBNWjQoGTfD43UCz2LxBFUcdMaecyYMTh27JiUllHVnlJIbNLBXgs0AWIUh5MCIzgaGgnFkiVLMGTIEOmazAmNJJZdlNnTJDrQx+a9995Djx49xBuDlWDcqDUwULRoUUyZMkWuV0YdSGbeeecdEUAmFSgKZzSTaRbqOlgSnxrIBsFFBfUcrEBjSfCiRYuwatUqLFiwIEX2RyP1wSpchUJzCwEbsQ0cOFDMrmicwxwndQ0qeFAkxoDF8j/mcQMCAoRsxNWOXSPpwHPDFX7jxo2VuN7iCl5PnMxIEAxi6+7uLvfTZ5999tL76X7J9MW6desiXqOAs3z58pg+fXq0/4OtBLgq37ZtmzQNTGqQLLFslu6dJUuWjHdlmgpkwxyM3JBMMY1K4sf0Cr8nCZ5G5GutXpGPYWuTcN1eSGggtl36WcgeF7GpFdppNJZgTxT2HSDb50TMEljekMk9+HOw7T9gIIoVLSJRiMRyJGVOmn9L1TrNjyxxUksNpIJElo9cB3BS5iO3R48eyXu4eue54WqUExwfGQanWJmrbxVBrwdGAz///POI17jfTIHwmosOfJ0REXMwIsIVd0z/448//pBJgNGT5ADLw9kEjjbhvH8ouIxr6lE1skEwPcVUFUkGI0Y9e/YUAshzwrSSxgv45csIW7uEH5OQ4ADgElI9NOGIBTgJ8Ib78MMPZdBjyRhvyOQeIFiy1rdff1hZ28ggRSdTdqJNKOmgmRf/JmvWrFqvkQQggWDUyHzjNRX1NVY/8NiTUBhkgo/cfHx85LMMkmmQET5ysiX4d5wQjI0kxPy5sSU3MSFZ4neLWuHE5zTXig4eHh7Rvp+vm4MRkA4dOoi2iiZ0bJyYnPbc6dKlE4LO+4fEg1Gc2JJ1FcmGAerSeN6YzmL5P7/j0KFDMXny5JTeNQ0LhiYcsQBvNA7S3377raRTGPLiDZmcYKqjTdt2sHVwRpGWA3F921zcu3dHIhIMwxmDXFxJB3UfFNoxLEwtSFIYlqUlcPJ/+vSpnBM+cuNkyOsnKgngapyrZHMyYJCNmFIqrJSIOqGReEQlMMZzThrmrxEUPVKHxI37wE3V6MjrQHMu3pP8nn/++acIunk987gmF3hOKSblPcpUBO+715XHq0w2CF6D1KpwcUVjMGpw+JzHm20cNDTiA004XoOVK1di7ty5InTjjcf8JnUbyTkx3759G2+8UQ3WtrYo3KwPPC8fh/+jO3ApVgq+F85Iiof57riSjvv378sgSaKR3AQqNZELYyPJILkgCeQkzgmdRI4/M+2RVNcMP9cgLK8CiQlD/8b+3rt3TyIMJDMkIcY+cyOpphNlYoARBxIaXm/m4HO2AYgOfD027+e1z8Zr3KjxoJhz5syZkdI3yQHee/z/HCfoW8P7LiYNlOpkwwBJE5vYcRyhs/CMGTNExEviocXkGvGBJhyvmeg/+OADWTlxYKASnoNKcph7GeDKNH/+ApxVUKhRT/h4XIPH0c3IUq8xMtWsB8/9u/Fw02qZbJgaMezGX0c6qK6nDoUiPDar0ng9aPBGDQXD+lxRG+SCEzTz3qyS4M8kFyqCxIT7y81oLGhOQkiYOKmze6hBQhgp4CTP6ye+hInHg83Btm/fLpUmBFNBfM7y8ujAa5a//+ijjyJeY7qEr78K/FwjkpPcYAqM35NVMwbpiOrNYylkw0DmzJmFxFHPQV+OHTt2iIiUY6GlRsVSC/bs2YMffvhB9FFcPHBxbNxfBNOwFGRT90RPJZJEljlTi5hS0IQjBnAgpliqefPmaNWqlYQWeePFJT9MJXNCFcf8f6GhIchfvytCAnxxe+/fyFitBtxqmFT4btVrwdrBAfdXL5V8MqMwRkO1mEgHS95YXkgb9uQMPVsiOBlzEibJINmg+RknYGpdVCYXCSUhJLpMt/G7G34Z1FDwu/OaiWv0gwLQrl27yoqZ190vv/wiUTn2IiK6dOkiXjZMWxrl50wf0Q+iSZMmWLx4sUx6FIYS/NtvvvlG7k9e7ySA9Png9c+upyl5POkZwgWAkV4hGbVEsmGA1SmcsLhA4fngIoWPw4YNS+ldS9Pw9fWVcYiL4ujSXLznSBDnz58vi6EtW7agX79+cp/zvkkJaMIRA2bNmoWTJ0/KxMweIhxA4lIW1qhRI2zatEn+jhUu8Yki0PGPF1WOSu/AztkVl9dNQ/rS5ZC1YYtIq80MlarB2t4B95bPR67cuXH+3LkIb5CopIOrWAoP+TNXLxqRwcmWRJEEgxuPFycMTrTsIUNSl9p1Lvx+JFYkANx4TEg+eDw4YXJFRSLMY8ItNg60FF2TsI0aNUo+h5MW7w9DGMrGgOZiZVaAsQz9yy+/lPbpJPtcqdGciuDqmumgOXPmCNngtUzBJiMLPE8pffw4VnAfWVbKe40RJEskG+adZXfu3CnXAcfG+vXri/Eh07EaKYNGjRrJFhN47ZHkUwJAsJv577//LguIlCIc2ocjGjDdwIGNAx5XYxShUSwVW18Keg3QX0BgZQ1OT7/++suL12IJake6dusOG3tHhCMcDjlyInfXPqLliA4+F87i7uJZjCvj8KFDMgAb4OqKxImDBwdzSxv0khK8BajNYQqNkyG1GUYqgRNicqbQLMGHg6Fag5BxAmIUj8eKvhrauyUyUtN9x/uD6aI6depgxIgRQu4YxUksrY8l+nBUrzcm0cpi928bHW8fDl5fUVMqJBisMiJRZ1SDUXoSjfXr10s5d0pA1z/GkEphGoU16DxhNPWJ7UDKaMaggYPl52zl66BY649g6+KKQYMHi/AqLmCYedHCBQgN9EdYoD8yVDYJR2NCumIlkadLb1jZ2qLqG9WwcePGiN+l9lV5fEBiwQ6gXLkxAsRzzxAlVw0kmnnz5lWCbKgGRnko0uT13LBhQxEcc6Ck5oKrKqY1krrBmUbyg9EuRpIY+R03bpycc6ZWNBKXyHiZbQnRI7GEmXMXo+tM/fJeZdoxpcgGoQlHFPz111/C4pljZuqBRCO2imwK1t58szrCrQDnbPmQq2ojOGfNg+LthiJ9nmL458ABOfGGiVNsQI+Bw4cPiWjUY8UieB7c+8r3OxcojDzd+8Ha3h6NmzaVkDM1G/wuLN3jBZicre1Vg2GixbTA5s2bxceEkyf9VUg2GNHQYrjYg9czIxt0EiVBZ6qFqQPmi5mONPxD0iIMzYZx39GnI7H7ryQnuGgpW7as3D9GaoUtHswNCDUSBnd394hSdW6Gpim+hIPX3Jo1a2S8Izns37+/OPGmFNJeLOw1qRQKbdhDgCFsPmcqJbbRAZKDx48fwdrOAQXqdxGDLoIpEWs7e1jZ2CA4JARZs2XDlMmT5eTHBkyNPPX0lMH84YaVCH7yyKTjiMGgyylPPrh/OAA3/5qK2XPmSLUBBXgM5xoh3fg6kloquOJmSJiTAIWgjF4wt8ljo5E4MHRO1FtwUmIDQEaPaChHLREf00qkLapAlBvJrlFiaqn21TzHJB2McjC1wjGMWjNGttJiaiWxcevWrUjXRnwjrBzjqH1imoWia4LnjZ41P/74o7j8pgR0hCNKKoVqXwqimEqh+CymVApb01MBbIAskt0tiby1O8A+vUmZTjw6sx/Prp5EjjadkKd7f9g4u2DAoEGS040tyHZJgihgfHpwL+4unImwV4Tb7LPlxFuNGqNP794YM3ZsJF+C5Ghtrwp44xkrbqZPGK3iSpwaHU02kgYkFSQXrEjhwMZrlysskg9G21henJoRUzUKU0/cODlbctt36gG4+CHpGDt2rIT+OYlpJByurq6RtvgSDs4V3KK6RjN6y0h8SkFTUjMCwRAwy++MVApLiaIDvQF+/fVXEYS+U78eli5dinZt20naI1PRKnAr9KKXg//ju7hzYDUyVv0f0pcsK6/l6z8U95bOlQmfCn+WnBn+Ga8DCQJD/ydPncLNGZOQ5/1esHWNXOtPuJ4+iv7t2mDm0X04e/cWTs48JVUCZLyJ0XtFdTD3ST8JrrI5+dEfIS2tsFUBr2+SW0Y+jAgTJ2M+5/2V2tJXryt95ffmtUnSQbtwS9QIGakVLrg4HnHsZLSDPh26aiX54OPjg8uXL0c8ZzNRRjB43TGCy6g2XbJ5D9KAcPfu3VKIMHHixBTbZ12l8nwS50BAgy+GO19VlcKTWqhQYaRzzQ1Hp0x46HFCQokhoWGwtrVD6c6jYONgKhMMCw7C+b9/Rri9NfL2+gjWZtUF4WFheLxzM57s3ipEZfmyZWjTpk2s97lTp05YuHixREvydOkFhxy5I37ncPY/DG1cD2suncaRApkR+swb93/8E8H3HqDGW/8TwxgDluoNEBPI6hnJ4I1IgsEB0FLD16pWqSQEHG7o7UFSzzQXexJR1JYaiGBs7yUeA3qKMMpBfYelpiIoDjZSK/TkYDUOzdlSw7m0hCqVXbt2yTwVFSyFJQlkFRkj24zuco4j6WDlyscff5xi50gTDkDMUEgk1q5dKyeRYfeYrL45iT1+4onK/xsCJ5csuHl5O65f2hLxe+fs+ZC/Tic4ZMiCm3uW48nFI8jbdwgcskZuRGXA99I53Fs2H2FBgWjUoIFMKrEFFccDBg6Cla0NcrXvBpeiJWB9+Tw+qVEF+29exY4CGSPeG+rrhwcTZyLoxh2ULV1GTHxSE+ng5MVw/cWLF6WKgiK91OQzkloIhwEOO4x48Lrj9yExpGDXUieruN5DvF4p6GPIm4JbS22YSE8Hnj+OmfT+oSVAShqvpSXCYYmwzKs8EcHcMtngpEmTZNBgiDemqhSyeIrhChRtKGQjNDQY9+/+C+cseeDqXlze4/fgFs4t/R639v6Nx2f3I2ujFjGSDcKlSAnk6/8pHHLmxsaNmyK0GrEBBVuHDx1EeEgI7syfAd+dm9CvShmcvnsL2/NHTrPYuDgj+9BecChaQNIx5ukiS9Z0cOKi0IrhXaZP2OeBUarURDZSI0gsqMivW7euhH+pmaKng6Vdf/El7BxnWHrN9Aq/u6Wu+6iFYqSDugDabFN0n5YrkzRejTRNOHiTcNLmTcIac66OmZuMbrVB/cOPP05EOtc8yJ3f5Kdx49JWBPh7Il/dTijYuCdyVKzHXAnCQ0Pw6Ow/sHZ0QrriJmfEV8Eugxvy9hiIjG/WEObs4OAoAru4VLDY29uhb92a8Hj4AKtzRN8ozNrRAdk//gBOZYvjxs2bkdp/Wxrp4ADNkCEjUhzsubpieJEGVJa6Sk6L4MTLaCLFpRQiUtvAlCbvA0tAQqKDRsM33m90TbVEUHvGqiSmVjp37ixh+6+//jqld0tDUaRpwsHIBpvesHyIglGqr2NaGVNxT7fPYmXbwcrKGt5Pb+H2tT3IUaUBHN2yIzwsFE+vn4ZD9lxwzFuAM6KkSa5PngDvMy/SFzGBZl3ZGrVEzvZdAVsb1KlXT3JxsQGjIgxtMpXw04TvcX/qAoQFBkX/f+zskLX/+3CuWhYPHjyIFL6zFNLByYirYa4MuTo2VsmaaFguOPlSz0HiQZEbBW48vzRnUxWJkYpkmSlJBz+LkQJLBH1sWHnElCbTvIwWU7CtoREVaZZw0IBn+PDhYvDFECAjGMz7Rwf6z7PXQ96CteGSPgfCwkJw4fRyOGXJjezlTD71Hse2IODpQ+Ro2xHuH/QXnwxajIcF+OPekjm4t3wBQgP8X7tf6UuVQ76+n8A+c1bMnTcvxvbd5qD+hAZWzPEzROt/8jw8xk9FiGf0q0RqPrL07IB0tapKh1nztuYqkw5GpDiQUfTK8mBOTlwdp7ZKh7QMw+eBQkSSDabKeG2rhsTUPbE8m1VUJFjsuWJp4P3HhnWM0pA0fvjhh9LGwVLTRBpJhzRLONgUilELNiBiOJCTrPnEaw4SE0Y1sueuJM9vX90DP58HyFu7vZh7+T26g/v/7kDmWvUkwkFDLnZxzTdwOKyzmLqxep86LtEOv6uXXrtv9lmyIW+fj+Favooo+vm/qTWJDiRKVIdzxU81sq2di0RXgu/ch8fYSQi6dS/av+M+ZurSGq4NawlJ4QrTWE2qSDoY1SDR4CqQyn56pKQG8aRG9GCFGDUOPM8s9eP1r0q0IylE1lxYMC3IdBI79VoamJ5lSozVR/TmoCh9xYoVKb1bGoohTRIOriRoy2suFI3Jc4Po2LGjPB7b9wuuXdiEG1e2I1u5WnDOkltSKTd3LYF91uzI9LxlvAGKRQv1H4rMdRoKCQj18cbt2dPwYOMqKZl9FehMmqNVB2SsXouKBVSuWhU9evSI9B52kmV5HQeo8eO/hb1jRoQE+8JKWqZbIdTbFx7f/Ab/U9GHN5mCyNiuETK2aiAhURIu1UiHeVSDDdVYW260+9ZIG8JSRjt4fTLawRRoSiIpK7qYmuCkzfSoJfaiMReQfv/991J+yTFKQyPNEg6G+T799FMMGjRI6v9fJRQ1MHXqVIwePQphYcG4dXUnwsNCIqpSHpzcA//Hd5CjVXvRYUQF7cwz134HefsMAdKbKkfoFHpj6k8IuHv7lfsa7PUUXieOSmWJbeaM+GvWrIgUCytZuBpiOLZ9+w6wsXVCUMBT8fTI9W5XFBj8GeCSHuHBIXjwyyx47zwY46CeoVkduL3XXI4NjYgMgpHSpMOIarB80uhHodMnaQ8kwka0g4uFlIp2JHX5OO/F8uXLy33ICIGlpSSiCkgpxP/5559Terc0FEKaIxw0puGg9dlnn0n4L2fOnK8toeRq4+uvv3lxuKyscXntNFzbNg/3jm5Cxmo14Jg77ys/wzFXHmQoXgqwsTalPJ48xs3ff8bjXVsRHs1qhsZgHisWwMrORkSeOb8aDOeKpSXFQnK0b98+aZzFzqYcl0JDTGHYLPWbih+HnVtmFBowDDbcr/BwPJm3Ep5L1snnRgfX+m8hc/e2Qlh4PKhZSSnSwRUSiSDJBn1P2PNERzXSNoxoByuRSLaTO9qRXF41RrksBd0UYVoaGKXh+eEiYcKECVIqG5dmlRqpG2mKcHAiI9Gg+xoHMIrRYmPFS7OlkJBg2No7wjlbXsCWKQvg6eV/ER4SLJqL161G/K5fwbPD/8CtXWNk/6wPkN5JiMDjHRvFojzo8cNI73+ydzv8r19Fll4dYJPeBdZOjsjSr5NEIuq/8w6u37guKRYKXm3sHKWCJn3ZinB7yyRiJWycnFCwxwC4Vn5Tnntt3ouHv82LsYIlXY0qyNKnI2BtjXz588tKJblJB6Mae/fuFW8N9prhqlZHNTQMsIKFRlmMdiVXtCO5jfH4HakvozaLRlCWBN6rHCsoIKUfDiOT48ePT+nd0lAEaYpwsOcJRZYDBgyQAYS6jdf1MGEFyNat2+DonBlhocHIX68LSrYdAivbF4LFB2uX4/as3xD06EG0nxEWFIT7q5fAoXB+pK/3FhyLFoD7d8ORrvYb8vvAe3dw47cf8PTwP0Jc/G9dF9vzDE3ehmPxF46nJEnFG9bBB7164tfp0yUKQISE+MMhWw5kb/7uS6WhTOlkb9bWVDXD3i7/ncP976aL3Xl0cKlSFtkGdZVITLny5SMa1CUH6WD+l1EN5rEZ1bBU11ONpAWvcZZBG9EOltAmlW9HSrnw8h5gtIAaLUtrdsdUClOzHDvZXn3atGliyqehkWYIBwcmVqZ89dVX0sOADdPYP+V1oEiRwYvAgKfIVqEOHFwzwePfbaLXyNOtLxzz5JP3+d+8jutTvsej7RtfEoSSPIQ8eyopC6OlPE24MndpjWxDPgAc7MQt9MG6FSIqvbd8Puzz50aG5pFbCNvDCl3T5cTOoKd43Kkh7Eo8JyNhYbBycBDfj5gGaFbN5Or4gURVWLlyb8wkBN32iPb9NAbL/smHsLKzRd369bBkyZIkJR0kWRzUWY3AlZ2OamjEJdpB8sGoWGKnWFLa8p9VK9SvGJFGSwHHG0aguCDiI3tEjR49OqV3S0MBpBnCMWPGDCmj7NKli4QquXp4XadGlnXdunUbTi6ZYOfkiuzl3obv/Rt4cv4wstRrDOeCReD+4UBkb9VBdB2c+J/s2Sblr76XTM6BFIZ67t+FDC3qwS5n1pf+h1PpYsjz/WdwrlZenvtfv4IQzydwrlxG/DLM0dYlO7zDQrHZ/zFs0rkg5ycfSoWJ/J/bN3Bj6o/wv3ktxu9D11P2dWHKJNTLx1TBctoUJYkKx2IFkX14HyEyHTp2FL+SpCAdJIJU5TO6we6ZsfEd0dAwn9w4MdPSnukVVjQlhtgypcmG8d0qVqwoui1DU2UpoPaKhoSXLl3CuHHjZNFCc0WNtI00QThYmsXacOYSKWBihCOm5mzmIDmxsXGAv+8j5HqzqUQ1bv+zEvbZcyLDc10EIxYZKlRFoaGjTVqJ8HCJZtyZ9wfuLJ4Nj1WLYZc7B1wb1Izx/7DPSdZe7yFLv84mUamVFZ4u3YCH0xdK0zWisr0rStm5YJ7PPRjDqfzvZnWQbWhP+btQXx/cmjkFngf3xDjoOubMg4IfjQDSuyI8KBgPfv4L3rsPRftehwJ5kOPzvrB2dsLHn3wi+pfEJB08L1yZMmRcs2bNVN20SCNpQZdgElaG7hOahlCBbJhHcUg6GOWgSZ+lRTl4LCnM79mzJ0aMGJHSu6WRwkgThIOrc3r8t2jRQgYSplJe1xKaIUASEwoyXbLnR8ZC5eF56V/4PbiJbI1bRaRGDLBNfI7m7eDeczCs3ExVL77nTiHI4y4cixUArF9vu+1SuQzy/PA5bIoXlOd+R0/i7oif4HLlDtq5ZMN8Xw88C395IHUqURi5vxsO67w5hfA83LAK95bORVhg9AZCtq4ZUHjgcNgVKGyqYJnzNzyXbYi2gsU+Tw7kGNEP1umdMeH779G2bdsYSYfRxyQ2xIFaGubeuRLiwM6KGw2NhIAraqZAaWTHKi7ev5ZMNsxNtdhQkkSKwndLASvL6J3DqBPJBvVgNCjUSLuwTgsW5jSh+e6776TygSWurzL5MheYEvS2yFG5gVSj3D28HulKlIEzJ+oY4OSeD4UHfYasTVrJZE54b98vmonAa6/23SBsMqRH7k97InOPd+Xvw3380NEpG/aeOoEzPp4x/p2tmyvyfDkAro1MVSo+Z0/ixrSJCHwQvU7D2t4B+bv0htXzTrZeG3fj4dT5CAt6uVMtq2QYheH+rFi5UsR6UUkHS/kY+rVxdJGVGPu6xASKyeghQq0GLZEttTW3hnpgmpTVTRkzZhQBMrValkw2DBjVdIZQ3FLA/WY6iM6xbJLJvlUaaRdW4ZbmLhNHMH+4fft2Ydfbtm2TMB8Nv14HDjwM0T5+/AQ2Dk5wyVEAXrfOI/+g4bDPlCVW/zvE2wsPN60RW3PqJqjxSFfnTbi1biBpitf+/WNPlD91C82q18BHH3+MkPTOyNL7PTgUcH/l3/n9exYPf5srbqOMxGRv2QGuZSu+9L5n/x7G/ZWL4VylLPyOnJRUjn2+3Mg2uJsQH4IE5MHEGQi564HCI1vj5rSt8L/5CGVLlxFzIqJdu3Zo1aoVxv/4C86e+g/pSpaB98njMuiT8Bng6uzUqVNSjrxmzRohdcy7x4YApnVQ68JeOSzR1pburweHNfpYUK9FUssIp6WSDQMskWUKkuWmvLcsBRSDM8VF3RwFvryO+R0sGayKYkSter0xsLWLviVGXBASHID920bLOVYltcxxmpFCesJEjazRODM+SNWEgxoBDjQLFiyQpkKXL18Wm+S4dBX9448/0L//AISEhcLawQHZW7SXKEdcPoP9U24vXwD4eMmkbu3ijEydmsO5arlXfk4WazsMy5AfP+/ejIO//G4iLeHhyNCsLjI0rfOSqNQcwQ+f4O6PM4CHphVehqpvIVvDFhFuqCy9vfXXb0hXvSIydWuDgPNX8OCHP+V/kGxkG9JDRK6Pps0Xa/Ti372HdCXyIMQnABe/XALfS/eQP28+CVvzgmzWqi06tGuNaUdP4X6GLHi4aTWeHtgj4WC2keeAw6gGJ06ucg4coPNpOGxsbOHjE7mBnMbL0IQjfmDq7siRIzIOcLER3f1mCWTDAP0tWI3D1JGlRAY5RnDRx8goW9dz0bF+/XpYMlI74Zg9ezZ69+4tqW4aQZrfN/yZ90x8kKoJx6+//oq5c+fKgMMIB7UbZNjxAVvFs3srJ3y6itLXwilfgVj/Pcten/yzC4+3b4h4zbFEIWmgZpf95YgJT++A9O64GxqIFX4PEOzxEHcZtbhj8vqwy5sLWXu/B7uc2WL+n8HBuD93JQL/OSZExyFnHuR6r5s0nLsxfSJss7kh+/BeESQk+N4D3B07GQgOkZJYx1JF4P/fWRQZ2QYZqxWJ+NzQgCBc+mo5vE+YauttXTIgNNAP740ai2alimHmtXu44RuA+6uXwuv4IQmrsuMuL9T33ntPXAgzFasClxyFcGvPEtjb2UneXSNmaMIRf9Acj9oBihcZ7TAfPC2JbBBcaTJVRCIfG9NCVXD8+HEhSDwHjGgePHgQ5cqVg6UitRMOd3d39OnTR0wyE5PYWgZFjgfoPvjjjz/KAeOKgDdqbFIpMWHOnDkiqqRPBEtdb82cjDsL/4rR7CsqOKnbuLjIz+yNQgRcuIa7X07E09VbhRyYo6ZDRmS0tsVaP5MDqV2OrMj71UfI2KahPA++7YG7o3+B17Z/YrQrt7KzQ44e74pbKYlSoMcdXJ/yA27PmQ7YAFkHvB+p/wvJC0t0kdUN4YFB8D9+BplqlYxENggbR3sUHfsuXMqZUiEhvs+QqUYdHIUDNnk8QY8COZHPxRHZm7dDjqpv4oMPPsD+/fvRtGlTIRvZK9ZDjkoN8ODkTjEm47niAKqhPn777TeZMBiRogcGS5pfhWXLlkl0ke/nZE/SZE6i2ImZrzPHz0oTVoYldjt66okYwqfGyLxHiaWRDYKDP0uAr1y5YlGt7NljhRo6TqYcD6ip01A7KtWhQ4dEj6KlWsLBNApdRFu2bCm14MwfJsbBY7TE18db3PR8L54Vz437a5cjxOfVJWuh/n54tG09XN6siByf9UFWunk6ObBRC56t2S7Ew//MpYhUShPnrFjo64GgiCJYk2so3UfZVwVuGYCQUHguXIMHP85AyJOYBx+XahWQ6+shgIsTwgMDEPTAA46li8I6vYkARRWI5h07BDYVS8rzJzvP4NasXQgPixwIs7a3RfGv30X6N0wVNY93b4X3mRM48NgrgnQUc3XBqI8+wrMgk+ka2Xv2CnXgVrgiLq2ejLDwYOTr9ylcK1WTtAwHfg11QS8FCv9YwcUVK1eoDRo0kHMXHUgyGdGiBT9tyHkvcjP8GDio8XNGjhwpj3///bdUNDRv3jzR952EhqSDZfHcF07YlkY2DHBlzQmcx8xSqlbYZJKLCh73oUOHyrlmiltDTfCe5WIhsZEqUyqsRGEFxLBhw2RVTWFi/fr1X1sKG1dwcGTEw8fXD1Y21tKe3q16bdF6RMWDDSvx7N9DyPXtUNhmNIXM2NPk2fqd8Fq3Q1IejEJQ1zHioyHwtA7HMr/7Mf5vdoF9umYbvNbvFN2Flb0dMndpBec3yseoCwkLCMS9Pxcj5N+z8pykI0uv92CT7mV7d14WD1ZsRMCG3fLc7X/FUPDTZrB2iBzOJxG5/OM6PN3JScQKOVp3gGv5KqiVNQMa5ciEKz7++P3sVVz+aaykamzsHREeHgZbNzfk6dIbtvQDCQ0V3xK/a5fRp3dvsULWUC+lwohGlSpVMGXKFHnOyY6h14EDB0Z4tJijffv2oqNat25dxGvVqlWTjqjTp0+PkdCz4ol+GvFNf74KAQEB2LVrl0TV2OfjdY0bVQWPPb8Hjz/JhyWAAnKmtt555x2Z0LggZKrVEpHaUyqhoaEyd/r7+0sEMuqYM3HixHh9bqqMcKxatUoGOrZIZhkZyzcTm2wQdDhkCejaNauZocDjXVtw9eev8fTI/kgdYAMf3pc+KRR6GmSDsHawl4qVXN98CqsCueW1MtZOyBNihSWbo/fFMECNhVubhsjxRT/A2RHhAYF49MdiPJq2AKE+0fsP0E4914AuyNSllTwPOHsJ90b/HG25LklL9raNTc3cOFj8cxHnhy1A8FPfyO+ztkLhoU2RuWUlEYF6/L0IQSeOoELGdLjrH4Q8Tg5w2r9d+JSVmytCA/0RFhyIXO92EbIhn2Fjg5wdusE+c1ZM/+MPzJo1K45nQiOpwQmaxL1evRd2+4wY8jnLoqMDXzd/P8GISEzvJzjg8tpLqioMpmsoYGaKh6TGUtdbPPZly5aVRQ8nBUvx5eDGVBYJKvV1iZ0+00gcsAfO5s2bJQ1JkS+jgsbGqqP4ItURDg4gPFiffvqpiMU4gJFwJCXIBLkCHTd2LML9/aSZG1MtPudOy/483LwGtpkywvWd6EvBWA3iPmIAcvXtLMx/7pw5uDVrKTzGTUHgjTuv/N8OhfMh9zefwNrFVGbrd/wM7o74USpLogMH8/S1qyHHqIESkQh9ZrI49951MNrB16VqOTH+YvTF9/J9nB00W8pio35mwd7vIFun6rJqGfBmJXjc88Cks1exaNUqfNa7J94YNQR5xg2BFdM47NS7aBZC/V6QFxtHJ+Tu0hvWDo744IMeEi7WUAdMRXDVE1VrY1QhRQe+Hpf3M/pATQfTMEmxyjM0G/TpYMk7DevMNR2WBjZ4owjTkizDKdzneeBijeTz559/Tuld0ogGP/30E/766y+5XxhJ27lzZ8RmNPSMD1Id4eABYf39hx9+KNENCtySKwRNnQJDnQwlB3s+xt1Ff0lDN7+L55CxXSMRccYETtotataGr6szjliZHELZZM1j7GQ8WbgGYf7Ru4YSXut2iug0/0eNATtrhPn4iWX547krY2xFH+bjK74g1lmcTT1g5q7E4xlLon2/Q6F8yP39cMDOFkFPfHD2oznwel6hYo4ind7GuCk/ipht/LBPcHXqj1i7bAnWPLiOwSWqoEC6DMg9/hPA0R5Bjx/h9pzfI7mh2qZL/7wZXjgqMVXl4/PaY66ROkDC/u6778rknxQptagCUVqGM6XCsllO2JZKOpg6poaG38NSSBL1NByjKehnao2LQg31DPR4fyQ2Uh3hmDx5svj2c+LnTRibnimJjcWLFyMsNFR6IAQ/r2LxPfSflLbGBApF33bMhOUBD+HWsblJGMpmb+Hh4lR65/Mf4Hvk5EsDY8Dl6/De9g/ydK2FrA3KocKCgUj/P1NO12f3IdwdORGBVyKTg5CnXnj05xK4Vi6Iin/1R54eJudQ34P/CcEJvh85gkHYZskE95++gFW2LAgLCMaFLxbh0dYXXSxtwq3wbnAxWGV2wRL/kxK2DnnyGE7lSuBAemus83+EvunzoKBrJuQZPxSws5Gqmdvz/pTuuiQetxf8Cb9rF5G+/v9MfiMZMiAtg+eaGyMLTGkQvK5TYnLkRMEOvgyxmoPPY2q4x9dj836DbDDFsXXr1kSPbsRUjULSwWgHw/r8vSWCqSFWAbHXiiUISLmwouaE4lHqgUiYWAGooRYGDx4sc2liI1WJRjlgMWTHqhSusjnpcdJPSVDjQfHbUy8vWbmnq1UNGZvXjXDyNNA7XW48CQvGMr8Xin9qOHz2HZXoA6MQBL0xMr3fCnbZMotw9N6YX2Gf3hYlfnpfhKsGPA9cxOVv/ua/lM21ydvyfykwZfQj5O5dlJ7aA3YZTZUq3qdv4fxnC4BwK9GHZPmwPZwrlX7p+1Cbcm/6YgQfM5GNnB2qI3fnmmgWVhDZwp0xz+4cgq3C8GTfeVz5ZqW8J13tasjUuQVqOGVCU6csmOZ9G1ce3cedYRPkezkVKIQwf38EeT5GtkFd4Fi8ELw274HnkvVS0mhJTatiCxIICs+YRjA2epGYP39dAzKa8nDC4cYVifEzN06mrAxITO0SRaMUdBoDESc4XtsDBgyIUTTKSpS1a9dGvMYJntoDQzRqkA3es4xOsrdOYiI2pa+8vujgSXEcRZiWBksTkHLKoeszyQbPORtr8hxZipGZuWi07AfjRQifUIQGBeDkX18oIxqlczRTJxRV8zxFzRKwyghpnXAwREcRFcv3KHhhSIgiJRXAXDEZfXBoiHhfuDauLR1kKRwtaeeCTi458M2za/ALf3mVEurtK83VfPcdNbmNUlTXvJ6kUZ5t3IVSUz6Ac/6XB+rgp364+ONq+B27Lk5idnlywql0MXht3IWi33RAhoqRjcuCPX1x7rP5CLxpasbm2rCm+H5Q1GkOXjKP1u+E39+b5fm7g3ug2dsNMMv+DLytXqRknh27Kq6khMubFZD5g3ao4Zw5gnRc9riLu59/D7Dk1toKOUYOhEO+3BH/48m8VfDZfRBFixSV82qOCRMmiCcEz7Xq5bQkEhxISIKNjUI/kgJzkmC+kUDwJueKkAMxP4ODc926dSXSwOPD16KSFGPj55PUkHRQgGlsHMziS0J4rGmAx8oCEg82RaQ9Pd0vqc2ghwbLxamhMspi6YhJz4UmTZpI5I8dm6nPKV26tJANNgPkc1aymOs9SA4S2tAvLj4bTEvQU4SEyNLKZA2NDc20KNK1BNdeEkxGuzgmkrTOmzdPqlcsBamdcHTv3v2Vv4+vsD/VEA4OsjT2Yu0wbYxpMMWW56qBlrE0vuFBt07nDLfWDTGuWTvsD3yGvYGvNvJh+uT+9MXAk+f9SayskLlOKSlXjQk8vY93nsG1H9aaSm+tgPSl3FHsu45SYfLS+0PDcH3WDjxacUTe61AoP7L06xSpusaA739nkWfPCVndfjtzEqw+qAK7jJFLbCVyMnS+/OxUqbS4o9ZwyfKCdNy+JSJXwuV/lZG5W5uITryMpjz4ZRYCzl1Gm1atsXz5cnmdgyqtkk29Yqzg9ezZK5vFJTc40XMw5UZhIid/5q05QBkTP3+Oy4Qa17JYnnfeE+Ykh4MZCQpJCFcuTG0YqZLYgiWxP/zwgwg/Wd46adIkiXwQtWvXFs0Ur3EDvB+pbWLOnqtvNlLkdyD4GrugRgeSK35efBEfUy+G+TkRkiSRDFoaSJhINhhBUh28R7go5LGmQSOrH8wjYaojtROOpEKqIRxkyFxZUQDGwYqpFZXDox9//LGsEDmovte5E746tR92ZYu9tkcLJ2FqOjwXrzO1vA8LF9Lh3rNuRHokOgQ99MKFsSsQcNlUIZCujLsQFYds0esknh29goujlrLuFdbOjsja/304Fotc7eO45zhG1muGmTNnYufuXbDP4oqi37SHU57I3gbsu8LqFhIepoSyDuiCmumzRpCOS9ev4d7oX+S96eu9Bbf3mkUcB4plPb6ZKvqX78aPF1W7oQtI714C3rfOyeQQn1bkiQkKXDkJcyPJ4KDBCZ0TOwlGQoXLieHDYU5CqG/ivnLgZwtx7isjDIysWDri6yDK48OJjykWmoTFhYipAO43UyvsF0WCqzp4rHmfM41G4kmy97ome6pAE440Tjg4QDAXzJK6o0ePSnhO9QGDYsCFCxdi5l9/YfeuXXAokh9u7zaBQ6HXGx6FeHrBY85yhJ68IMSDhlzuH9ZB1oblo41cEFKiu+Ff3JiyGbCxhrWdDfL1b4DMdUtHS3QCH3rh3MdzEPzEVL6asW0jSbPwveGnL2FowfK44HMPe929cLLX7wgPCIG1gy2KjG4H17KRv4P/jUc43fdPiUo4FM2PbIO7o2aG7BGk4+KlS/D42mQolaF5XWRs+SK8ShfVe2MmIczb1xSlgRVyVn4HnldOIMDTQwSmXG1zAEvuQYd2zZy4SXgYLeDEzS2xV8hJYfzF64HfwSBKHOyYgmSpJaOFlhCaj4qE2pXznqQ5FSds6r/i0qRRBfAe4HegIaHqIPFlN1KWx3LsZpqN3b0tAZpwpGHCQWMShnXv3Lkjdrn0gqDQRXUwhHvz5k3UrVtP3DeNFvbOlcogY9uG0TZ1iwq/0xfxcOLMiOcuRXMi/+BGcC4Yc2+SgLueOPfFAoTcN4kxM75ZVP7GLsPLjqNhwaG4+usmeG43iUSdypdExmZ18KF1Jti5OmNtsaeAjZU0dDs7ZC4CbpgqXAoMaYIsdctE/r/3PHGq5+8iYrXPlwfZP+mBmm45I0jHhbNncX+CyXmQxIvkxkDg9dtSQSO/K1wRXrfPw9rJCbk6dsfDLevgd/kixo0dI+H7pASFnLzOKFDm4MD+H5ygGSVICnO55HQaZeqH0SN+P0ZpGPHgipPfzRIm3sTqjcIo0O7du8W/xxJEmFHPIdONltLCnseZGg5qtKgb4HhoCc0JNeGIHyxHFvwKUMRGhsxVJVdqlhCW4wRCnxDmXUk2rGzsYJvBVC7o96/JvOvJgtUI9XqNF0WwqZIh09smguV75T7ODJiFm39uR6hf9B1YHXO5ofzMfhHlsE8PXcLpXn/IY1QwClL40yYo9IXJndT/5DnUv+WDHDlzYmO+x0I2jIZupaf0gFv9UpLmufbjOtyZtydSCadjTjeUm91f/iboxm14fDcdux/diSiZLVayJLIN+UDe67l0Pbx3HYr4W4f8eeDWt5Ppd5ePwy5LVuTt/REcsudCzradxbV05OjRQuKSAoxgMF3HvDMnNkYAuDKrVKmSkI6kJBvJBd4/1GBQbM2wPHUxXDGzooDHldesqkjMRmxGYzpOglHLei3hHDI9YSllvrzeqOVh6wke9zVr1qT0LmkkISyecJDRU7/Ru3dvYcfMmaskIIwJjMRQvDdixJeik8hWrjbyVH5uA+1EM65weO88gDvDvsOzdTuiNeRilYrn4rVwrVgABYc2Q9lZfeFYJKekGO6vPIJTH/4Oz38uROvbwBLanG2rodS0D2GdzgEh3gHScv7aLxuiJSqZahRHmT97oVbdt/FOvXoY/8038Nh/9mWb84+aIWffuvL87sJ/cPX7NQgLelHeaZ8lPcrPHQgrB1sE330Aj2+nYpfHzQjSUbxcOWRgd1s2jpv7t3iDGHCtUhbpmrwtaZWgxw8jTMNsnJwl0sFUC7U7iR32JSnkqpHXGnuBUHfD1W9CqyhUBlMKJUuWlNQk26Az6kGyxWgiIwAqISm6vjI6wK6sTM9aWlk2ozKMUFmCGRirmkjmubKnf9KffzLtqqEaEisRYvGEwyin44qEYW4yZtVBoR5XjJs2bUJoaAhs7OyRtUwN3DuyCc6FiqHI0K+Qo3VHwNYe4UHBeLpyC+4MnwCfvUci9Vfx2rJP9A15e9eTkLdDjowoPfF9FB7VBrC1kr4nl7/+G5dGLUWgR/QVMCynrTB/EDK3Yi8UiJnX6b4z4H3m5f4q+XK5o3///pi6ej7u3LqNaxPX49qvGyIRCiJP86pSBUM82X0O5z9biOBnL0SdrGQpP28ArF3sEfLgCTzGT8WuO9ciSEe5t96Ea7fWpv2ZsRh+/70gNplaN4BDiYImo7C5fyA0wNRHwjGXO1wrVgWPTmKUQlMEysmGOWam6FiOyhI+ElpLSC8kFliSy2gOK74Y+SDpYsTj7NmzSkQ8krLFPCdDEstDhw4p8V1jCxJhdsdmubLqYGSQ4n6O3e+//74Q+5is7zUiY8+ePWjWrJlEWDkmsYdYVPDeYPdlpn+4iOAYxoV5XEExeWJEzSyecMyfP1+atHElykEhau8GFXHt2jWZFL/79jtZrWcr9za8bp5D4NMHyFK/sZSFupavjMLDxyJrA1Or7jAvHzyetVza2PudOCduoc/W70D2phXhlPeF1oMXntubRVFx6cdwa24yPXv273Wc6vUH7i09IJqM6NImBXvWR4lfugK2Ngh65I3zQ+dJW3qDTNBJtHlIIRy0uYfgDyog/8dN5PVHm0+K1XlUQuNaLh9K/9lLSmt9L9zF2cGzEXDH5O9B2Lo4ovzc/rB1c0ao5zPp57Lz5uUI0lH+7VpwafOORHoe/jYf/ucuv2gq93EPWGdMj+Anj3B38WyEhQTj0bYN8Dp6QAzVnj57hhYtWsTr3HD1Ts8UVjpxMCTRoJiNpCOtg9cs/TdIPNj5k66gjNRRpJjayIYBungyTUGCZUkgUaLO4PHjx1AdJLR0e+XESe0J/Vo0Xg82KC1Xrpz4EUUHLmp5PHkNs3qJbrQjR458pRh8yJAh0W68x+mnYzxPk6JR3kwU7HHQ4cGn4x6rFVQGRYccqLlqGjNmDGzsnVCy4xe4sPJX2OXMgdwdTRoGc4T6+8Nz3w482bs9ohTWmk6lwUEoN7svbNPHXBHB6pAL36xA8C3TZO+YO5MIRNOXib4SJiwwGFd+34KnG08KWXDMmwWFhrdAI/eKKByWEbPsziDMynTJ+F17gDODZokI1NreFoU+a4GMVQtH+jxGNk72/B1hfkGwcbBDkTHtkL70i3JlEppTff9EkIeXlN9mH9YbdQoVFyHpd0vn48TilULKrGxtkH1YL+nrIn/nH4hbH40BgkNhm9ENIc+eShVN+jpvStM7ltGuXrlS2H1sQLLKsjxOYhRJMo3AlJcqUKE9/UsVTw8fykRMbw8OalypJpdbZHKQDQMcW0hASbZ4bVgKeG6YqlDdGI/XEiMbTOFt3LhReukwuqgyVBONWllZYeXKlWjZsmXEax06dJCxgpKD2IL3L0lMVMExxb2sfGKUhP8rvg3cLDrCQVMhivYokmKOmUxZdTB0yNUyu/FxInUrXAHPbpxF0LNHyPx2g2j/xsbJCVnqN0GBT0fBsVSFiOZrYX6BUuLK6o+Y4JQvC8r93ks0HjzbfC/bzF/9aZ04kUYFy2uLDGqCYhM6CrkJuP0EAb/sQdWgbFhjfTmCbBDOBbKh4uKP5H+EBQTh0uhluD1nt5iHGWDlS4X5A+FcOLtUsjC98njHi+6WJCpl/+gNp0LZEOYXAI9vp2Hb+VNYsmsbhjVri9qjuyNzvVLiP3L/p5nS0E7+zskBOT7rKz+HPPVEuhqVkaFRLXFuzTqwi9izt2jZIqIHyasGO5rEMU3AVTudJjmxqEQ2VAQHHU6+NG5iRRgF0ByUGGlMTWSD4CDL78i23JaUWmEfKS7KVG+OxmuJYzdLzNu0aSPibEtIB6mMsLAwrF+/XjRtFLfzXqXsILq0iznoBMzrhZEQ8w6xtJigoV+a7hZrpFNoS8wDwvy66hcBQ9AUdVEgRcLx6Ox+3N73NxzzFoBDjlyv/Hs714zI264z8g0cDtu8pqZ0T/65IOLQm9O3RtJJRL2hM9cpjQpLPkaGeqZqFk76p3pMx8PNJxBOa/EocC2bDxWXfAy3KgUwqP8ALF+yDHuG//lS6sTGxUGs1bN3qyHP7y3eL43dzMkMSUXJn7siS5PyQGgYrv6wFncW7IsQIlHAWuqXbkhXNg/CAwNxf/xUrJo8DRvv/oc+FZrgfx+9hwzVCiOcDp7f/yHRi+B7D/Bw6nzYZTIJhH32HInQerCcOEvPDhJ5eRVxYPqEglAOcGT1lmprrcJkwdQTQ+LUvJAMJFUjseQmGwaoDSPxOHPmDCwFzLuz5JSRO9XBa4jjOBdjTZs2xYIFC5AW4eXlFWlj9DA+4LGkDo1pkIYNG2LLli3SH6V169ayMIgJdI1mC4O+ffvi008/TXSCbbGEgzoIThYsh+UKlRes6mI+MnjqApgGmjhxIvx9fSVMFRYagoCb13Dzj1/gc+HMaxXBDlmzo2D3vnD/cBCsMmaWFMv9tcdwsttUk04jMPqLxDadI4p+3AwlJ3WDTQYnqUa5/ssGnPtkrqRHooJk4sMRQ2CTNR1WrFgBnwt3cbrPnyaSYraPPO553/0fSkzsEmFnfrrfDPicux3pPQX6NUSeIY3k+d35e3Htx7URGhFWuBQf3xEZ3yoqVTbs33I4+BZ22d7Ge8HFUPuLrnApmdvkPDp+qmx2LrYo+UtX5PvclDZ5NG0Bgm7elZ+dK5aCa6NaEuGImmYzohpk6iSqb7/9doTwSiN+YCi2WLFiqFGjhpSSJkW0I6XIBsFrg1UrjKRyMLcUUDx67949mXxUBisLmaKglqNTp05COCw42x9vuLu7y3EwNqMvUVxhEH5q2ehqzTGQZIJkzmicGBMoLD127JikTDk/cUGWWGOjxRIOOnSyZI+5JqqaVU+n8ObhSoPRDePkUbxz5MgRBAX4S/+DwLt3cHfBTNz47Qd4n/4vUkVKdHDKmx+FB32GXB17SJdXto2/PXsXTnafJtUm5qkNc7gUySmVKfkGNpTnvpc8cGbAX7g1c4ekPQzkDHNB1dAc2JDhDsouHABnpj0CQ4SkXBqzXKpgzJGuRG6UXzwYtplcEPLMD+c+nY/7q49EGjhy1i+PEj+biMnjnWdx4fNFCPH2f9G6+ovWyPpOWdl3VtdsP7LPRDpCiqPet33gyPSNrx/C/PxReEQr2Gd1RbaapZCleSX5m/sTZ4oLK5GRFS1F8uPEqVPSr8GIavCYs7yTNyFvqNRg560KOEiyoiWxox0pSTYMcPVNnYElpVa4z6y2YWRVdXAM50KAOiWmNw8cOIC0hlu3bklKw9jYkDQ+oOsxF7e8Xs1BbVpsqlRIAOfMmSP/n72rEksYbpGEgxMY0ylkwmTvDHWq7s5GUsSTFh0xorCHlRHBQYGyQgx6eB/3ls7F9V+/xbPjh0W/EBOkHDZ7DtFbSDt5axvp+sqS1dP9ZuLpkSvR+3BYWyFb4woov2gQ0lUqIFESjxWHTd4dBy9JVUrTkIL4x+YuHlr7w9bVGaV+7Y6Cw03VH8+OXJHKF88DFyN/lwzOKD9nALI0Ly+feXP6Nlz5dlUkb490xXOj7Ox+cvX5nL9jqmC5+6KCJf/gxsjR7g2Eh4Th0rgV2PrPLhPpCC2OBpMGwi5zenFlvfzNygiyUqDvO3Aqkh1hPn548Mtf4lvCKEnWfp1h7eyEocOGyYTFHCRX4zS24qSokTzRjoR4WahANiw5tcJFDicy1fxTooLEiP4hHCfbtWsnY3xag6ura6QtvoshlkYzUhG1yza1VnExxqTwlAJetqNPDENNiyQcXGHwBmIFgpFOUR0cNClufZWKn4yUtdWMbPC7BT99gvurFuPqxHF4emgfwoKjF0A+2rUF1i5OyPxhe7j/NgYZ25m6cQbcfixRggvDF0oDtejAhm8lxryL4j90BhxtpW/K5THLUWqXt1TUHLCJ/HeZa5dEufkDYJc9A0J9AnB57ApcnbgOob6BkchMgd4NUezb9+Q5zcfODJwlFTMGHLJnEI2ITXonBD7wkuZu5t4f7t3fRs4eNYS0XPluFTZt3/qcdJRAo7+GwsbZXr7fhRGLI8hMqZ+6wMbFHsG3PfDo90VyHFkmm3XA+2jXtq2QujJlyuioRjJHOyhY43UdH9dOlciGpaZWjO7AFKyrDN6TbOTGMZ3avKVLl1pMJCkl4OPjI3MhN0NmwJ+NCMbQoUNFj0EzNUa42OmZHXn79esXp//D+ZWpmcRoCGiRhINKW4bdOEE/evRIecJB8Q+Ze1wY4urVq2XC7Nq1K8J8vPFg/d+4+tM4PNlH19EXK5WgRw/g/d9RZGhSRyo0rO3tpFojz+TRcKhtahvuffa2TOhXJqyO0QCMpaqVln6MbJ2rS973nUr/w4Rho3FnxQGEhUSOsNhnTo9yM/sgZ6868vzx9tM41edPeJ+KHKpzLZ9fyImVoy0C7z+TEtrHu85G0ohUWDAQLsVzItQ/CBeGL8DjXaaVI6MyQTeeV9+EA9d/Xi9loSQdHcNKosm8z8Wt1O/KfVz8apnoVig+LTenv5Tz+v93Fk+Xb4IdrNC7QnU0aNFcwoNGK3WN5AEJNis8KMplKosDX2xz86qRDQNGryZLSq3Ql4MW4kkl5k0scCwnmTO69bKRnkb0YOSB5JcbQX8M/jxq1Ch5TpEo9Rrff/+9LLRmzJghWjwe21eBC7Ovv/4aU6dOlfk16lz2wQcvWzekasJBlsYIAFdMXEUldmfOxAaZJ8OF8VlVsxSJg8SwYcMQ7u+HR1vW4+qPY/B452aE+vni8e6tsopPX7tqpL+zcXFGjs6tkPvHz2FbwZTHe7L3PE6youXP7RGpCHNY29og33s1MWTCKKzesQk3rlzD7Zk7cabfzJecR6U6oeUbYqdu7eKA4Cc+Um57a8aOSM6jdm7pkL5oLiA8DOFBIbg6YTVuTN0cYUBGklDyxy7I3qqqaDCuTliDu4v+we1Zu/B422k0GP8mGv1s8hG4OXUL1q1YZSIdKIWmC0dIasXn9G1Jr5AY2TjZo9zc/vJ++6NnMMA6M1ytbTExyAP3M7ngrsc99OrVK87nQSPhEwkNw2hGZHQ0tUSyYYCLB674LKV8k4aIJH9MQasMdlpm+o3pHwocOdZrRA+2WCB5j7pxzjBAckDtIB2CSZBfZ4jIahbaAtB8bcKECeKvwzS0AX4OtR1phnAwlULHNEY4qIvgBaoyuALiPjOdkhDw5JN4fP/9BFiFhODxri248sMYeJ88jvT13oJVDGZQtpkyIne/95Fz7Mewds8hZan3Vx3Bia5TcW/5wZdsyUuGZYaLjQOutsiJol+3lzb2dAg9/+k86bMS4hW59JZ26vTiyNbuLXnu8fdhEaAy8iDPlx+E14kbaPVbbdT/zkSKHqw7Lp8X+NAk7iTyflgHeb8wVZvcmbsHHssO4q3B5VCsYT4UqZUPzaaZWDmJyOoFS7HT5hY6WZVG08UjJKLx7OgVXPthrZAWRmDqTR2MH374ARcPH8NPh3fBF2HI8kE72GTKiD9nzpTVtoGDBw9K+ZhG0juV0reDoWCuXGPSFKhONgzCzVUjowbsBaI6uL9GozSVQT0b0z8c27moZDO3tFitklL46quvpByWlSm8VrjQ5XlgG47EgLUl9k7hSomRDeZQVSccDA9S8ZtYraKZl6O2YvasWUCoiSyw18qT+asQ8jhmAzD7PDngPmowsn/WB0ifDmH+Qbj9105TRcu2U+LFYR1uhdohebDH9jZCrcKRoVJBVPr7E2RuUUU+g5UvJ3v8bqqAMS+LtbZCvm41UHp6T8DeBgF3PCV9cv23zUIeKnUrAfc3cqDEOwXRdW1TWNtZmbra9puJZ8evRXxO9hqlUGpqj+cfClzbexcBXibdSoE38qDDQpMx2r1F+7Hqr4VCOjrblkXTxaaW9E/2nMP1yZtQIiQTeuWqiW0Pz2DqtGnwmDxHfDsoHs02sKt8Nlk8a9ybNGmCN6tXl3QLLcw1khaszOL9y3uCYlKGaC2NbBigqI/CY0uJctCTg6ld1ZvRcUwn4WB1BBdrUYWPGkkHiqGNlAlJKgkHu7G3bdtW5t40RzjIeMm4mFuiElfl6hROymSJXFkktseDKT1jBVjZAaGh0sqdDd4ezVwqxlgxwbFoAeSdOAJZB3ShSlVSIdd+Wocz/Wag+HVrhFiF4ZT1o0imXQV71UWZmX1glyW9CEVZAXP+0/mRRKAEHUcrLR+CzPXLmHqgrD8OK6twlGj6IrqTIXc69NndFtlLZBCh6cURi3F34b4I8zG6l5ZfMFCqbu6deIQl72/Bs9smD4Fsxd3QebnJx4PdcFdMnYOd1jfR2b4cmi4ykY6ywZnROCAflttexMUydsjcoIw0wGO5bKi3LwIv35AojxwLR0fRhdjnyAUb53Q4c/ZsjN0qSfLee++9BLnsaZjA3DxzzbwvGOkw/DosiWwYMDrpRiVOKoJjBj2AVBePknAY4ztJh25Zn7zXSFT/nI4dO4r+o3379mKfnhBYVC8VhmIZbmO4h2FMTuL0r1AVPHH0IqDTGwWuia089wsIRMlOo3B++Y8I8fcBwkJF00DjLOfKZZChaR3Yu+eM8TNYbuuz7yiezPkbjs5OmD51GmZvWo4Hb2WFS+GXI0e8VDz3X8SVr/+WVAv/T8521ZCzw1uwcYyc0qFA9cmus7CysYK1rTVqfVoBpVoXikS8Ti65gF0T/pWfXSsVRKHhzSP6woQGBOPfzr8CASGwd7ZF80m1kLOcqUmd110fzG5qYtuZapdEuyEf4u2wvDgSeAuVQrOLPe+T8m7I3cmUhjnVbwYCbjyGdXoXhD3zRrZmlURk+mjbaTrkwKVEafiee263bgUEBgRGaj0/ePBgTJo8Wb4vj6+vt3eyN3NTrZdKYoH5ZW5cfXMitCSyYYCeLuy3Uq1aNagOTuQ0TOSYlFx9b+IDEnuWVtOem71A9u7dC5WgWi+VxAK9rbgxrRIVixYtkiIG6q/i68uh7hUXg6CFWghWUViCfoPhQIZcE5tsUMPi4+uHzCWrw+fuZYT4PkPenoPg3nMw7HK7y8Tod+w07o3+BQ9+mYXAK9GvaOhTkb7WG3CfNg6thwySY7pr2QacHTgLV39YI5Ulkd5vZYVMbxVDxb8/gVuNYhLFuLf0IE71/B1PD78wFmJVzJPdZ/FmvzJwfyMbQgNDseObo1gzaA98H70Qq5ZtX8wUsbAGvP69Jr4hvhdNojaKWm3t7GDjYIUg3xCs6LkdFzebqmBcc6XDB5tN4if+nyXfTsdleOJ/DvmxJeyKEFI6mXqsPCzvKT35A1g72iLM2xQpydu3PvL1b0C6LcSJZCNr//eRpW8nqYgx7zj8ySefYNKkSSYmQoSFiZBKI/E8ImhSRDEpU1qWRjYI9qvgRG4JnVm5YON4FJ8S5ZRIq1A4SgOwqNUSGkkDWpozYhcdGOGlIJWl7vGFtSVWp5AFMsStcu8UCjyTqqEcb0LOjNnK1MCDk7vglK8QHHO7w8k9Hwr0HIx8A4bBoaipZ4r/6Yvw+GYqPCb8Li3eowtopXd0QvNKVbHRzRr21SrJa493n8OpD6dL1UnUihZWghQe3hKZ3ykr5Cb4sY80brs0dgUC7nrixq8bkK1kZlTqXgItp7yNNn+aymdvHvTAvDYbcHn7rYjPylQwA/rsaYP0OZ0kvXNuyFzcX3MUV8Yth4OjFbqtbY5K3YsgLCQcmz7fjyMzTdbv6bI6oef2VsIDKrnkRaHA9DgQfgcN05VAwxkmdn7rj+1iw85KGEnTPE/bsN+LNI2b2ScivWKbxQ0uVcrC+Y3yeOr1TGyA5diwFwujMuFhyPCGKWJy684di2tXriqYRqGFMss2mT9WvdFYTGFoLoJ4TageMDZ639DrQnXCQVLER6bfGN3TSHqwlPbnn3+O8fdMr5hXraRawsEQDkUrzZo1E+ZLMyHmglWFwchpZJOYING6dfsOMhYog2A/b/jdvwG3t2pFeo9DthzI17E7Cnw8AkifQV4LvHQdD374Ex5fT4Hff+ciDYzvOGXClWB/XLcLR84ebZH7+8+AjBnE6ZNRghPdpsJjxaFIFS003Xqy4zTe6FMaNb8oJ68xynG61x/wv/kYdUZUhjXTLnQQrJQNffa1QeZCrgjyCcaGof9g85cHEOhtEoTaO9uh25pmqNS1iFSZ3Jy2Fb6X7qPh+GpwdnNE9f4V0XhydXnvgd9OYdtXhxEaHAonNwd8tfkTfNijB74e9zWmfvkddoRdQ7cs1fD25AHyftqwP959FjaO9ihH0vG8CoavOWTPiDx960ma5MGUeWKXnvn9lrBOnw4Tvv9eUnhUbdvyOrOxxrND++BctZxEOSpWrJio5zUtwlyzwYoPRjv2799vEXqI6Dqz8nrh2KQ6SDi4nyp7iLCiiSkfilw55msdR+qAxRAOmpGwERcHJ4P5qoykaigndr/hYQgJ8MW9wxtg55YZLkUj++UbsLK1A3y84NqwFhzfNuWXg27cxcNJs3Fv1M/wPXwCGWGN6g4Zsc7fTCia3gU2IcHIULUQ7LK5IswvSCIdJz+YLl1mKfDkc5esTqjUpTjKtymOXrtaI3fFzBH9W7aMPIh7J198JklFx8WN8M73JuOti5tuYn6bDbh12BTa5XF6a2BFdJj/jum5NbDj6yN4etOkqC/8Vl50WdVEfj637hpW9dsN5ycZUcbvTZzJsR/nL52Fz7k7mD/8J+wIuYre7rXx9vcmR72r368RMsTmdQ6lTHbmbBzH9+dsXgVOBbMi1PMpHs1YCisnx+edZsMl1E+IUDQsHHZ5ciBL7/fgUrMqAoODsWzZskQ9t2kJ0QlESTiYMmWZsuo23FFBXQ01B/xOqkc5qBFg5E5lTw6OB0xtcqynbmn79u2J1s9DI+VgMYRj165dkjvizUwxZmJHDhI7CsGuh0mRTunWrZt0FPS5dw3e964gPDQEz44dRFg0bYyfHv4HVrY2yND0bWTv1ALuU76Cc2NTNCT47gM8mr4Qb59/gGN3buBO4AsvAe8d+6VBWr5+76D8rH4oNqEjrJzsEPzEW1rLn+wxHU8PXcb/BpeDraNJn+Loao82v9dF+3n1YWULeF73wrJu24Q0GKWtRPG6BdBrZys4Z3WA35NArOyzE3t+PI6QAFP0JFvJTEJebJ1s4XnDGwvf24QrO0zh34x508vfUogafAco6VEdJ3EAXhkeSlrG3tlG/D/mffI9tgddQe+idVBrXHchD0z3nBsyB8GX7qPA23mENF0cvQyB95+i1C/dpCqG7qTeW/bCqWRh8TYJDAqSng7sCeLs5CSW6f7/nkXGFvUl4sE+Axpxx6uqUThp8zX6pKjuihmdGRgnRWq3VAfHJtX3k2M8021ssshrgdo1DcuGxRAO5o3YRpzCLNbws6RRVTBcSfdTqpiTAvTK9/fzRdXKlRHi7YUHa5fjyvej8WDDSmn8RrDvytMj/yBdjSriP0HwMWvrhiISdXuvGXLlyY3qlatg9rjvcGf4d/DecQCh3j7w2rgbWd4pJykHwrVsPlRa8QkKfd5KJuag+6ayqTOrruLhxcjeH9lLZUb/A+/ijV4lI94zp/k6nF9/PWLl55jBAT02tkTtL0xpif8WXcTC9zbjwbknEeSFBKJA7VwICQjF+k/3Yd/P/yEsJEz+duDeDhgx4gvs27sP370/WSIpNnY26LWjNZzc7OF/+wnmfvQdtgdcRt8yTVBjWEfRavhdeYDq/cug2U//Q4GaOaUHy8Uvl0qH3PLzTekWz2UbEHDpOjK2bQTbrJmwfPlyOZdi7mRlhSfzVsLa2REZGtZCWHg4Ro4cmSTnOLXidaWvXNlyguHEzaim6tECczDFS0ExfTlUJ0t0PuZYSudIVUGNHjU9vAa42EyIdkBDDVgE4eDgw+ZPtHKlNsIIdae1dIo5SLgOHTok/Vboe2+LcIloXJ88AbdmTcXDTWsQ5u8vK/WoYM8V13pvof2YL8QH4f7D+wj19BLzsDtDJ0jH1ezNK79coVKjOCqtHorsPUxRkttH7mNRh83YMuogvD1etKqndqNqzzL4cGtLpM/jLFoNplhW9NyBJ9de5OfLtC6CHltawM7FVrw2lry/FYdnnBFiwf/X9IcaaPJcu3F8/nms6LUDvg/8UdqrOtIXdsTG/9YgyDdYPvfStltSfvvh5pZwzekoFTZzBo7HNr+L6P9ma1Tq8I4YlB3+4zQeXXqKZhNrIn12R+lSe+WbVZJuKfRla/lfD3+bh/CAQGTp3VGeM7yfoepbsM+eC6FePni2Zrukqawc7eXYa8QOsfXZYBUFe94wnM6/sSQYUU2V0xUESTQn9JgqElTZR9rHkxhx7GeUWyN5MHbs2GgddElQ+btUTTjoAc8JiA2gSDhUrk5hOoVhwORsfT5ixAjRt1y+eFFWLv43ruLZkf2ArQ38Dp1A6LOXnQWdrKzxhmtWbNy1DRVXfCqTLXuihAcFSeUHq0XuLNj3UoUK+63kbVNdSmMzNTGJRS9svCFRjH8mnYgQghLOmR3RbVUztP6jjnwmjbwWvLsRB6aejEihuGRxQp/dbVDpw2KS5jg49RSWdt8Wod0oVD2vEBdrGyt4nHqMwMXp4OTjitNZ9qPVtNqo0rOkEJSNw/7Bsdnn5P90Xd0MmQumQ9ATH8zu/w3WXz+KIc27oUjhIggOCMXfvXfI51Ooam1rBa//ruHGtK1wq14U6SvmF8LFbrPB918YqIV6eyE8KEDSM16bduHRrGUI9zelsTgYWhJ+++03Md0iaeXETl+GV4FaFa7c+X6KO6NWDLB1NWv3eV/yPjW6V5ojrqZenGzoBsu/sZSurAS/PytuLIEocYxSXeTKxSXHfN5jXHRqHUfyYMyYMSKCjgqSEP4uVRMOQ7/BMCVDbCpHOEg2OFhKOWUKKOUZXaGhV6NGjYDgEDxdtQW3PxmPh9MXSqrACFFXhROuXbkK37KZxLRL/DWWfYyi33SATQZnSTfcXbAPJ96fglszdyLY80UEwyiNLdi3EcovGox0ZfNK2erxuecwq8la/Dv/AkKCXgwMeSplQ/+D76Jks7wIDw3HkZlnMa/1Blz/517EIF29d3l0W9dMbM8fnvcUYnJy2SXZXxKXfgfa4Z229dD4nSYYMeRLHJpvCrdX61UGLSbXkM8h4dk+7ojsS6cljZGrfCaEPPPDvI+/w6KlC/HND1+jRss3EOhtior43PdD752txXuDrqgP1hxFsbHtYUV79nOX8fiPxXD7n8lzw+fcKQQ/eYz0zevI+/2PnoL7h3Vgn9UVu/fsgaWA7arZVXL06NE4fvy4kPgGDRrEOKmzaoT19z169JCmay1btpSNXicGaHrFDpTs9xMd4usgyvfS2I9dMaMb/FQFTcw4TkV1bFQNFN6zCoSLFdUJB9NsvN+ZZtNIevBYRxeh5/FPiFeOxRAOMlxL0W/QPjilwVUoL5rFixbB3tYWfkdP4f6306Q6xWf3YdSwdcW6DeuRtfGL8k5eYBkqFkDFRYNRYmIX2OfMgLDAEHj8fQgnuvyGG1O3IPBBZJ8Eu4zOKD6+I8r81Qd22TNI2eveif9ibov1uLDpRoRluY2dNeqOehPd1zeDQwY7+Dzwx5qBu7Fh2D/weWAK3bnmchH9R7Gm+RAaFIZd3x7D6v674fPQH07h6fBhx57YencDbt64hX9+PYF1Q/ZJRCVf9dzyucTZ1VexesAueb3tn/VQoFYO+V7r16zHf34HMKjLEFStVxF+TwKwovdOBPuFSFqHuPn7NjzefhrO7i8iaFkblkOxn7uJfoNdeTO+UxOwMwllbd1c4N6rrkQ9KOS1BEycOBE9e/ZE9+7dUbJkSWlfTdfUv/76K9r3//rrr+JKyR4+tPEeN26clARPmTIl4j3vv/++tMSmDXVUJNSunJM3j+2xY8eU10UYoEst91n1KAcXRqxYUdkEjISD5I3nnotOnVZJ+nJk3qccM2lox5+NjZrE+vXr49133029hMOS9Buc4Ek4zJ0qUxr0v2eTMu9nzyQCwuqUwudvAwGB+PfGeYT6RC8aS1ciN8rN7ItS0z6EU+HsCA8JxYP1x6XZ27Wf10sHWXM45nRDub/6oeTk7rByJqHww+YvDmBRp824deTFgJY+pwt672iD+t+ZGsJd2Xkbc1uuF+GoaDesrfDO6Gp4/+/GcnXyb1k+636xNB4630b6OiHovqGZpE6u770rYtNHF5/K5/bZ20bKae8ce4glXbaKBXqzn2qhSGNTXn1C90k45rUfQ/sNR4W3ysD7ni/+7r0TNvY2aDXjbXkPTct8L3mg1hcVhGRc+W41HDO7IF1ZdxHUPlm0Fnl++kLee3P6NriWyweXojlx+676/TS4kuXEbU4M6HXA53RzjA58PSqRYEQkpvebI7F6o5AYMVVJN1JLAdMq1EeoXt5rOHqqCi4uucjUOo7kwS+//CKLEs5lTJ3QBMzYuDhhqw6mZFMt4WA+mIOiod9QmXB4enrKiVLRnpk37eXLl0Vk2rt3b7GJ97v1CKd6/oHzny+E54GLER4a5nDOnxWlf+2OsrP6wrVCfvGjeLT9tNiZX/l2FfyuRQ7FswdL5RWfSmqGFS2PLz3Dyt47sWrAbhFrGiheryD67W+L3FWySiXKnh+OY3HnLbh/xmQP7ZbfFQMOvovclbKgZrVacA5wxbRJv0uJbfocLuh/sB1csjtKWoQN3s6tvQZ7FztJ3ThlthcRKj/P4/RjNBz7Fsp1KiJRk+8/mIQjnvvwxSdfonTFUvC84YVV/Xche/FMqNavtJw/6joK18qLoo3cEeofhMvfrESxcSZvDt9/jkkDOPuShRHqG4A78/bAvWddOS7JqduJD3j/kMBHJcR8HtOkEx2BftX7DSRmIzaj2Ru7hqpO6gwwpUpNCyvKVCccTKeprI3QOo7kA3ul0HqBFUG0OedzY2NqlfdzQqA84eAFxvwwLzKG1lQWjBqDs8pNkSj64TGcO3cuDh88JGFV71M3cXnsCpzo+hvuLt6P4KeR9RqEQ46MKPZ1B7EId6tRXHQMT/65IC3mL361DD4X7kZ6f4YKBVB57XA4Vskvz28d8sDCDpuwdfQheN83pVDo4dF6ah0x9LK2t8bjK8+kUmXnt0clJcKqk/emNEOv/j0xdepUnF5/UaIdtEhnGewH61ug4gclEBocJp+7fdxh0W98uLkV8lTNikCvYKzosV2s1Gt+XBHVBpRGaEgYfugxGYce7MHoL0ehROlieHjOE2sH70XFziWQo3Qm6dG2ZvAe1B1RVbw9fC/exe3Zu1BiRi+Jejz+axmydG0jJOPB2uOwdrBFxmpF4BvgH61gMq2BOqLE7vrKz6EpGHUklpJaoS8HCYfKpb0Mk7MqSOU+MByvzHUcbJankbSoVatWRJNIRulI9M23+ELdmfE5KBijWp0CLJZIqa7fUN0BlR05SYp4HKtUqSIEhBbmlStXlp4otP3+r/MUXJmwBj7nbr80WNplSofCw1ugwrKPkaWZqUrl2dGrOPfRHJz/bCG8Tt6I+BsKT4PP3EXpNoVQtnMRISnnN1yXipb9k19UtNDQq/+BdnhrSAV5fnrFFcxpsU40IMWfVMGjdHdQbWohuBVID3/PQKzqtwu7JhxDsH8I3upbFu+vbBzh+bG061Y8u+ODVr/VQZW+pYRg0Er9+NzzqNy1JOqPqoywsHD82HsK9t/dJSVexUoUw93jD0RP0vqPurBPb4tHFz2llJcVMtzv+38fRtC1R0K2wnz9cW/kT6YDYmON65M2Ik+32kJAeBxVXikyWhA1Z/8q516jp0Vs309cu3YtSbq+slKGqRVG6iwBPEa0D1e58Rhz9aqnVUg4jEmuUqVKMidoJC04LwwYMEBaiHDepbbDfEu1hIM5Z15kJBxJZaSVGGB9sre3t5wgVcGVIVdcXHlFBZ0dSRQmT5oEG1jhyd5zODdkHs70/wsPN/0n7eLNQd+KAr0bouLKT5G9vampmfepW7gwfCHOfTxXrMTZhyU8KARv9CqNWoMrisYi31vZERYchmNzzmFW07Wi3WBfFA58Fd8rKu/JUDAdAp4FIXSHC6wfOOCo7x7Y2tug87LGaPqTyVfk1NJLWNh+k6Rg3PK5SnqGfh6MkizqsAnX9t5FtR6l0eZ3U8nqvl/+w85vjqJYk4JoNPEtusNjYt+p2HdjB74ePxZFixXD9X13xVOk55ZW5BjicHro99PouKpBhB16nq415a7h98r9fg1YO9nB7/J9eJ+5hayNyiM0PAwzZ86EqmJG3ku0iTa/Jvg8plApXzd/P7F169Zo32+kD1hZkhRpRZIlClYvXrxoEakV7i/FoyT5KoMLEJVLj7k44mqbEW5ev5wTNJIWFImzpcO0adOkOeGMGTNE08G0MaPjqZJwcALn4MJBhoQjY0aT86WK4CqG+2eEoVSEMai8StRKVstV5LMnnkKe/K8/xPVfN+K/jpNw849tL4lFWVKb9/23UGnNMOTqa+oK63vpnnSP9Vh6AHmrZZeyVoIai+a/1JaoQYa86RDkHSzaDVa0XNxiCj3zPV2WNkH3xa2kkmLyr1Mwu81qHJx+CiGBoShQKw/6/tMWjpkc4HXPVyIa/B07wvbd0xaF6uZGkF8I1g7egwO/nUTOCtlMUQpGTlZewepBe5C3Ug60nWna118GTcfuy9vw9YRxosq+tPmmpHT67m0rvz826xwe/OuJit2KISw4FJfH/Y1yc/rL7+4tP4RSv3aTn2/N3IFsTSuKlfyHH34ok42VtY1y9ucsif3zzz8xZ84cSXswT8uyVh5rokuXLvj8888j3j948GBs2rQJP/30kzhospkdV5i8TgywtJKNFaXnzPNIH1NLSbFq5uqKqRV+vsqpCgMk9zQBo3Bb5QgCrwFVXUe5GOHYyjlAE47k68zONHabNm0k5cb2Dl9++SXGjx+PBQsWxPtzrcIVvmup36BQhWpvrqqYw1O1hwoHQJKNUqVMbeFVBKMYFI+yvDEu4CQ0b948EYEybUDxKJ1IM1QpJBO9Oe4uOYA7s3fBShr5WonvRgb3dKjasxSKNsgn5bEGaL616P3NCPYJkbRF1uJuqPFJBfHtKPKkIhxDnDF57q84ufCSVKW45nRBnS+rIG81Uzj/5OoL2DXmX/ld1mJuaPDNm8hUwBW3D3vg7z4mNXvuytnQaEJ12DvZYnqtFQgPBTLmT4+Wk2vJALu47TZ5X79ve+Dtkg0wYuiXQnIrvF8Mpd4tgPnNNknlTKvptbFl1AH43A9ElnfKAvbWeLThhFSp2GVJh8fbTiNzndJwyJ4BdxftF4GpgJ3toxHjRgdOShxU6TnBvKmxUb9EQTLBgZcrDm5c+XFjaaORi48NWNL6ww8/CCHgPTVp0iQxACMozKMp2OzZsyMZf3GwuX79ujRY+/7776WhlgE+Hz58+Ev/h14fJCiJDRLibdu2SSRFdaEusXfvXnEgJVFSFbt375YqtqTo/5QYIDnmvcDwPs87F6MpubhjhI33XKEvxsMmEdL8oQEBuDL+C4ni8H5OaXCeOHv2rJSl85qguR+lDUyX0vwvvr441paQTmE5H3NKKqdUVK+gYeicEY74eIQwhEZeum/PXpngvE7cxKUxy3Gi61TcW3oAwU9NIlBGAB6uPYqSLQpgwOH2aDG5lhh5sWJk66hDot04tfyyRCoM7Ubf3W3Rft47QlBYxfJ3zx34Z+QZ5PIuiCtuJ1H700rSsM0xoz28PfxEv7Hx8/3wfeSPsi2KofduNnqzkb+lKPXE4ovIXTk7Wv9pimDc/fehpF4eXngqHh9OmR3w9IY3FnXagvAAa3RabUqXTP18Jrad2CjmYIx0/DvvAi5vuI0mP5tSB+s+3ouWv/Ezw/Fo8wmkL5pbCJjX8WtIVyy3EIzH207BpVguaV8vhINbWLi4cEYHEh7ewLSo37x5s0QSKIjjtcRJlTc9b/bChQvLZECQDBgaHA7AJA0kkuvXr5fUB828SNBf1Xqc0QmG+Ulw+L8NskGw7NCcbBBsYMcKEb6fhl/mZIPVKCTZFB3yGjHfkoJsECRWRmdWSxCQ8p5TWSNhXgmiKjj2k4zzXmBq8MyZMym9S6kaBQsWlLHJ0E4tXbo0IvKRkEyD0hGOzp07y4qKYV86nNF0REVw4mCZKQdiVVMqJBtU+HPyS4weLyxTlIoMKyvp3pqpZgk45HLD3fn70GlpQ2Qu/OKiZHO1lf12IsQ/VCIZTm4OqNS9BMq0KQw7J9OqnJfhxU3XsXnEIXw85GOZMHfc2oBqfcsgXVZT87nrR+5gTe+98v+o6ag+qBzKtC0kvVv+mXICx/46J+/LVTErfO/7InPGcNjYhOHyaZM4ldGTch2KYNWgXbh98AGsra3Q8LvqyFUhK/6ss1Le03NkV7xTqQlGDDNFOmp+WgFPbnnhzPKrSJ/dGS1+q4V5rTbAys4Gxb/vJHoVK3tb5B/eEte+WQHH3JlkEgy644k8H7yN+ysPi0urcZuROFPrwAmIqySGs5m6YqqAg2pM1w+PB83cYrrGeA1ydcT0Bj+bKxBOIpzsSFqS4rpMzNLXuILHmCkcjg/RaZJUAs8Fywzp/hvbKFRyg9cMyWR05m0qgPcNo1pNmjRB3bp1xWyO7rcphdQe4fj5558lLTxo0CA57s2aNZMxjOMQfTqYak11hIOhf4Z+ueLkiWBVhYpgm2cOviwlUhVs7cxTTT+TxASdKKkLCCOHCQ2DraMNag2rhGIN80a0rjfw+PJT/N1nB/yfmPq1UK9RsUtxlGtfBA7p7eU9LgEZUPFePfTt3RePPR8LKajYtTgqdikBh3R2CAsNw7pP9uL6HpMtOtMwdb+sIm3t6R46s8EqUzYjDOg0OCveG5QVu9d64oePTO8vUt8ddUdXxakVl/DPLyeFANUYUgElWxbE7zVXyHs+GN4Zjd5shhHDRgrpqDuqKv5bch5PLnsjR5nMKFw/D/ZOPAmHbBng9nYJeCw5KOZfgQ+fIeSRD/J0r43bs3bBJp0jcrSuirvz9uLjjz9G27ZtxfqeEQqmAvjI1Vps8DrCERXMyXMSYYkqw88kHVy1JNZglpJkwwAjOcYkycFRZTD6xPFM1RQQr6+NGzfKoo6l8qqBYxcjgIzGffPNN0KwqTFIKaR2whEVjIgy48AIE1Na8YWyhIODJE8oBxUOmvyZxENFqK7f4CmmBoZkI6lcUDmRMszt+cxTJnt7F1uUal0IZdoWRkb3yH1lWLa6st8OeN1iy3fA1sEG5d4rigqdiuHNkHfga+eF8y7HsGnEflzdfkfcQ+3T2Uu0o3TrQqIDYUpldrO14rtB+3SSFv7ePp0dNgzfiyvb7wqZ+F9jVwz4OqeQkPcqX5DojmtuFzT9uQaCfYKwtJupAqNMu8J4a1A5TK9hIh1dh3RCkxrN8eXwkbh46SIafVcdW8cckihN8Sb58fCiJx5f9oLbW8Xw7Pg1hPkGSpTnyZ5z0jQPtlZAYCje7v8umhWuhkwZ3WSw5Go8PgN6XAlHpOP97JkQBN5HPP+c+BLS60cFsmFc19QesGEhIx0qgykApqQogFcVqus42NeHETu63HKhw3RgSiGtEY7EgrIaDk7irA/nBWYJFSoq6zd4c1AHk5T7SDEvw/mnT5qaegX5huC/hRelAoVOnixTZXSCyJA7Hbqtbi49TLIUyyhOo8fnnMfhT67AxcsNpwOPScqE7emp0XArmB6BXkHYPeEY5rVeL63oWflCTUbtUZWFWJxcelks0i9tvYXGE2pE9FbZv9kLvetfxsWT/lh7qSSy5rSB111fLO60BV73/NBrl6klPbUlqwfshkM6U1Rmzs8LsGbHSlP1SpGi2PTFATT61lSSe37ddRStn1eIkOfe83DIYpq8hWwQ4WEonCc/xo4Zgw+qNcUxj0vo1auXrMhSYvXIgZEpMK5eKTalToP3V3yqElQhGwTJI23PL126pHQDMnM/E0XXdxah4zCvVGGK/VU6JQ01Ya3yioBqWF5UKgtGuX8MX6tMiBhap04gOcLOrVu3Fl2HQy53uJQxreZuHb4vZaqzm66TFvL+TwMjWtN3XNhQSEXuqlnRru27+HvFSvzZbDm2jT0sVSxMtXRe2gQ9NreAg6udlMKyFT17pVAQWqZZIfQ/1A6ZirjK5276bL8IS+k+OvBYe9hntIeXZyhGd7+JqaPuYdrmImjf3w2hgaHY9PkBHJx2SspsaWd+78QjBPqEYMr6QuChWvDbYqza8jfGfTtWWtszlZOtuMn05sBvp1BvVFX52f/GI+SskEW0JblKZUP3rt3w9ddfw8PvDvr07oOFP06XCXHy5MlISVBoyijX22+/bdLI7NghodLYToIqkQ0DvK45NqjeKM0wSyIpV31CV3n/GAFgNItkU/VzrmFBhIO5c4boKbhinpsrMxXBG5SrVlX3L7kdUC9evCTVGRmrvoWcLd+DbUY3hOfLI2kG9j35Z/IJzHxnlRhsGX1TSCq6/NIaJcuUwPmgk1JKy94oc1utx6bP94v2wyWrE3rvaoP3lzeGla2phf3yHtux9qM9eHbbF50WNUK3tc3kir599IFYoO/67iiCngbjjfomncTmxZ7o1+gyqtTKgD925pXXTi69hBW9dqDr6qbSg8XaBhjR5Tp+WlEQtnbAot+XYuWmFRj3zVgUKVQED855ovH7LpIK2j7uCN7oX0KIhtcdX5SuUBIj+o9G+Wpl8enQTzFvznwho3RyzVU+i0RE2FU1pcHqF+qhuFKkt8bBgwdfG+1QkWwYYF6ZJbsq99hgu4PY9KBJ6Qmd0VBVjyOvW84HJBs855wjNCwLShMOajY4YPNCUxWqp3tYOslVQXJ0sDV1EQyHlY0N0pcqC/9rlxHy1BPZ2zdFvj/GI9eE4bDLn1d0Fxc23pC+KYs6bsbZNVeR+2lheKS7jtojy0vEolxHkxU60ycL3t2EtR/vxf2zT6Sp28DD7SMcR6//cw8L2m3Ajq+PwMbeGv3+aQdrh3D5H6eWXUFYaDgav5cTay6VRKYcNnh4Nxiftr2GHSv88PfZEnBOZyIvLJ1t8HV15KyUFd5PQzH03Wv4bLI7nFyAJTOXY/m6ZRj79RgUL14Uu1b5o+OgLEKMTiy4gsyFM6Be9Xfw5bBR2LJ5C4b0+wSPAx7C28MXuatkF0JiZWsNazsbae/O46NCCo4klNEOkmVWUVCHY2lkw4hysPrj7t3I/XxUg+oW4s7OznIcVXVxpQcHyRC1MJwbNOGwPChPOMhoeaGpCk7mqqZ7CA5wDOcmRwSGbnQms69QXJ/yAx5sWg3brJngUNhUtmiXNRNyjeyPvL9/A5c2Jo3Fw4tPcXjieWT1yos1K9eIoJSN2dhsbcCRd/HmQJMQl7bjSzpvwcq+O3Hn2AMUqJlHUiZvDSojNuVnVl/F7GbrsGbQboT6AZPWFkSGTFYSsRjV7QYmfnoHv6wsjM+n5xIB6ZLfHuGTNlfx0/KCqNHIGYG+IVjVdxdYbhMWCgQHhWNc71t4/+Ps8jnL5/2NZWuWYvTYMcibuzDWzfNEpZpOCAsAurXpgebNmmPEFyNw1u8YwuiY6mgnhOnevw+EmNw5+kB6tAjCwvD4eflqSoPRQwoZKXimCI/kwjzFojrZILjiZQUO29errJGgzonp4fiaJiXHceRYxjFNRTAlzGgyj58mHEkPpl1ZgUkPnsRKBVqr+kU50BmEQ0c44o/XNdpKTLBc6ulTT1SvXh2hXk8R9Og+Qh4+wb2vfoXXlr0IeWpaOVnZ2SJzw7fgPv1rWNnboU6dOnJRb5m2V8zBVg/cjev/3JUBsHKX0kIsGowzmVMxXbKi5w4s7bYVN/bfQ4XOJYSYFK6fW3QZbMJGXPjPH3MPlMA3i3LL8z3rnqFnnUt4dj8cK8+VgJOLFW5cDMTAJldQtFw6/LjQpMz3+Nf092Pm5hLC8PtYD/yvUQZky2WDvxeuwtJVSzD6q6+QK3shPLhlj2/Hj0PWjNnw0/zvpKnYpW234ZDeTszOshR3E3KTLq+jKcrB4hL6lrCKJTw8zo6vSQlWz/C8cRA3SqgtgWwYoCMixwqVNQisLmJkK2ozPJWguo7DSKtowpF01aHsn0KLB1bL0GiQ4xTJMseInj17itFgqiIcdDhjaI+Nj1QmHKoLRmmOZPg+JBe4Qvrnn3/kf584/q/87+Db9+C5ZD3ufDIe93/4Ez7/HEOYfyD8jp1GeEAQmnZui4ulSELKySTP9vNrBlJkula6vLJCpWjD/Oh3sB1ga1rB3j/zRN6z6L3NuLrrDhp+/ZaU1jI6Qfw28h56178En8fWWHelJCrVdoa/bximfHkPw969hu8WF0D34VkREgLM+OY+Zk98jD+2F5ambYyKTBr6AN8tyi+ftW6+J9wLOiJvIVusWrIai5YvwsgvR+PzT7+Fl/dTfPXVlzi785K8N8JULRx4dN5TSnZ9bgbIo9+9QCEa4SGmnXzqpdZKkqSiZs2aUqnAtgK0NrYEskFwvGA5p+qN0pj+UblRmiYcaRcTJ04UgjFr1izxtlm1apVUs/E4sxSZrQrogEzzyIYNG0p1WKogHPyCFAVRaKUy4VBdMGqEbhPiuZDQiAfTBpxsFy9aBBdnZwRcuILHM5fi1uAxeLp0vYTynW0dcMnRGwUGNkLlDZ8h39i2gIONWJnv+/U/zHhnNbaOPoRjf51FeCAwfWth/Lg8l4g6H19+Ju3n2c7+xKKLeLdvFiz5rzhc0lvh/u1gfNP3Fj5pcw3v9smOZSeKw84euHI2AIObXcVjjzAsOFwMNnbAuWN+GNTsCj6akBv5itnD82EIRrx/HX3H5GQHehzf6wOqPguXtsfOLbtEG0PWv2zJSmTN/eI2ypHXBoHewXDOZS89WBwzOIjAFDb8cyt5lJ401lawtoZoKFTL43Pi5rVNF9SEtKJObnAFRq8RDoqqgseTx1bV1I/qwlGm17nII+GgZkfV9JQl4siRI7LQOHz4MEaOHIkGDRpIpSjnYvZR+eCDD4SMcExv2bKl9AhKNYSDFxTFQbzwVdVwMPykskkLBzZGHBLDyjyhaN++vQwObGTGRl92VtYI9fGVdMqOjVtxdeomeJ+9Le/NWrEwqqwahvKLBsO5dB5pZ39+w3Uc+tPUP+HSSX8ULO6K1RdKYcbOwnB0hlSJEOvmPcHedc+w4HBxzN5bVKIVl075Y2i7a5g49A5+21AYQyeajMBWz36M/o2vYPgv7qj/risC/MJF65EjjwN6fpkdoSHAtNH3ULN5BqR3s8aty4F4+sAG34wfjYsXL2DBwln48suRcLbJhwIlTOY/HjdCYG3FaEYQbBysJTpjbQtYsb1KWDjAcZyPYSZhKz0xVALTKEwN0aSMAzt7u1gKOFlyrFBZPMr7kZFRVTuzknByocdzr3KEg6kpnu/4rLJTC/bs2SOW43Sv5RjPiERM6NOnj7znl19+ifE9ixYtipV5JRfY/DwSkFRFOHhhMYKgqm2xytEXlfUl3333nfhShAWHiG5g3+49eLDxP5z/ZB5Odp2K23N3w//WY9hldEap799H5fWfIc/gppKmYGnpT5/cwftvXMCsCfcpicCK06Uw71BROKe3gt/ztEm3/13E3g3PsOxECYxbYNJxHN7ujd7vXMbpIwHyfvfCdnj2JATj+9/Cw7thmLy+kHzeoe3eWDTpEYZPMuk6dq1+Blc3OxQu7YD3O/aBn08w1u34DatXr8fipQswatRoOITnRXZTpS1s6DIaDnElJckICxYvMBOecz9qOuTR2kqsmjkR0SeDK/SUgrlmg7ofnhs6/bLk1BLAAZWDrwpi3JjAsYwRR1XTFjyGxqSuIrhvUmoeHp7m0yq+vr7iq2OqDowZK1eulNL3hNjqM+pFQsPxISFQlnDQ3EX1CV31/VO9gobKZ+4ftQLPnnhK/jDooRfuLTmA073+wOn+M+HB5mdPfZGjfmlU2fg5yszqBysXe/h4heHvGY/wQa1L+KrHDVw7F4gl/5bAkn+LI1N2Gzx9HIqZ4++jS/ULOH8kWNIs3T/LLhP/xkWe6FHrEmo0zog/thcQEvPfPh8MaXUVXT7JhjJvOMH7WSgmDLqNBu0zwjWjNe5cC0T54k1RvnxJIUxnj/oKAVm3dgMWLVqAkSNHI6NzUbi6ASHB4RLVMMiFcZcJyQg3WtabQuokJGz9zhuaET2modjcLbkRnUCUq136dbBficoOlOYgUaJGQtWUAKFyJQihMuHgNUmw2ietE45GjRqJwWCrVq1ifA8XDAMHDsSCBQvi1BLh3XffxZQpU+RnRuMqV64sr3F8WrHC1P4h1RAOHiQKRvlFVWwkZEBljxCuADioqRjhMMCVKEWl0t/E1VXEwtzvwwcPyaDsf/UBbv25HSc6T8b5zxfi0daTsE3niPSFcyBH2Swo2bawTODH9vhI6euHtS9h6zJPTN1UBCvOlECewnbw9QrD/IkP0LX6BXg9CRXNxv8ap0NQQDgW/voQn7S5if7jcqJ1LzcphZ3z0wM8vBeKj34w+WRsXfYU9o42aN/9DbRq2RajR32Dkm/6S0rm4olAuBe2wbr1JtIxauRo5MhaVFxKhViEPycZYaZHg2TI755HN6LC09MT+fLnT1bb5ldVozB0Xbp0acnvkhCpDl5HLPVVmSBZgjBT1ZQKxwrOCZwbqDXiXKERPSjcZ1fdoUOHxrnPF9M1JpsDU4SE4zKv2UmTJgnJSVWEgzlYhn8ozGOYWUVwBUWWrbK+JCUFowlxQOWqWiYMhh6eT9zeJ2/i2sT1ON7+F3iduIl02ZxQa0hFDDreAS1n1RbTL4pEGdVgumX6V/cwdKI7Vp0vgRKVHEWfsfz3R5Jqcctsj1l7i8C9iJ2QkCkj7uGfjb74Yqo7XN2s4XEzCD9/8gh1WmVAdndb+D6zwdtVe+DAfwuFFO3fFITCZUzX5Y0LociaA1i/fgMWLJwv6ZUC+U3VMhSFkmTY2L6IaBiQr0YtB3+2tY58J4aHY9iwYUgOxKb0lZEnEg/2r1BV7Gg+IalusGUQDlWPJcc0VSMcBOcEzg2cI1TW68QHXl5ekbaEkPwJEyZI9RZbzMcVXKwa4wG79LZp00aiS02aNEmQbkY5wsELnRubtqlMOLgCYD5W1f1TSTAaHXiOSdhYJhgd2M6d+Y8cVRrJ81ztu8M+Vx4gJEyszS9vu4UZ9VZi57dHYRNqi34H2qHPvjbIWT6LRCp2/P0Ug5pdxbD219G4Y2ZxFX2jvov8bu28J+hR+xJKVHDBbxsLIV0GKyEZ4/vdQu4CDvhorCm6sWvNMzx7HIZR43rKBDblh3XIW8QBtrbA1bMBcHVj6QnwyANwcAE2bNiIBQvmS/kYw71hz3UbFJ+aQwhImNnPIWESBRE8j3r8/vvvSGrExWeDodTHjx9bxABvEA5VJ3RGYahh4vimIlROqZgTDs4R9+7dQ2qCu7u7jNvG9u2338brc9hKnh11Z8+eHa85gPvBUljOcyQcLIU1IrAJmfOeWx+qA15ADIlyACS7U3VCN/Qbqk7oqus3OCFw1UwGHh1Wr14tj54Xj8qjc5HiyF+itEwi91cthte/R6T89PTfV3Bq2WWkz+GM4k3zo86XVeGWPz3ObrqB7V8exOVT/vhxyB2kG+OBxh3d0GtvLvw98wHWzn6GrcufYsvSp6jZLAPebuWIcR/eF8Owc8f8Ub1heng/C0G4dyHky1kdv0wfDgfncNy+GijCUrds1vC8Hyo/M1oRxKKDcBPp4DxH0jFmzJiXcsysmokgINYvkxEDSV3FEFdTLyrTSTpoCsZyYN6jqoLlvCyNVTWlyGveEI6qmDLmuEZCxE3F88w5gXNDaiQct27dilT5GF/LBZasUstEQzzzqPwnn3wilSqvE4J/9NFH6NSpk1wLLDevXbt2RKqFpbKpJsLBC4grFE7kZLGqelyQ+amaTlG5QiW2Dqjz5883DSxeplz8lfFf4M7Cv/Ds+CH4Xb+CdDWrIO+Mb+E6sCtgZ/LsOPrXOWnaRjOwoMeB6LGpBXpsawXnbI7weRaK5X88wgc1L+H+rTB8PScfug7NKuRg3/pn+Kr7fVSpkx69n0c3Dm31xtnDARg0pAdWrFiKI/tuIsAPKFrOVkjC43thyJDVFKngcxIPkgli48aNsv9GpMMAf28Yk8l7jaiGISgld32eZsHzKpakQHwdRHPnzi3XlOpCPUYeGTmzhLSKiqC4kOOuqjoO7psR4eA4Qq1CaoGrq2ukLb7zH7UbXBzQuMvYmIKinmPz5s2v/ft+/fpJhOOvv/7Cvn37pFSaYAuBhGg4lIxw8ELiRaRyhIMrUEMxrRpUF4zy3LJChSvmmEDHSx5jiid79+6NxYsXw/fiWfiePy2/99nzBDaZ3eBcrgQyTP8GCA3D08174LViEx5deoq9P/8rW54q2fHWgHI4tfQSPE6b+gEc2+UtJbI58tqh55c54OAUjikj7uPIDm8c3OqNCv9zQQ53O3jdLAWbcFds3roBFWs74Oj2QFz4LwRuWW2lnPbpQ5NOg+MdiQvJBIkHfybpIIxIx+XLF02/F+1GZOIhfx9F44HQcFGXJ3ZL+4TaldPmmAMQBx5Vr3+C0TOVV7+8N1W2OOe4y/tPReM37htX75wnGMmi3ium1Gxqho+Pj3jmGKC+jMSC9zUjG4z0RSWSXOSxC3tMoFC0RYsWsrEyhZs5qOFICKxVFYwaYhlVCYfK0Rcx2AoPV7aChoJWo97/deBNQpZNvQebwjFyYBCpZ6u3Sp+W20O+wZOFa+CQJwdsMmVAlnplkPHtkpLiYNO0raMOCdlwcLLC6D/z4tf1eWDvCHjcDMaMbzzw+9gHaNDBDb2eRzdOHPDFlqXe6PZBZ+zavxzezwJxbEcgMma2gYurFZ4+DhHC4JLeRBYIEYmaWqREwDzSUbiwyYTM0G4Y0RAhHjFIDViWlpiVIYnRG4XHnoMWe9+oDNWFmaqXxho6CZX3jekonmdL0BUlBY4ePYoKFSrIRgwZMkR+HjVqVLw/k71SGNlgQ0cuLmjSyFYViXUfKRvh4AXF/KERylENKgtajXJiVY+dke6Jj/6FeUVuBNm9oZr22XsYPrsOyuueBy7BvcfbyNejLqxtrXF+5BL4X/RAcHA4xvS8CZf01qjf1g01mmTAwkkeOHkgANuWeSJ0MVCsghMq17bDrePlERpshQWzNqNACQd4PgzG00emsES6jIDPU8DPh+F75kZfPEbFS5GOK6ZIhxHhIAwiIrd0lPuaUYTE8JRIzEZsxYsXl3b2fFRRg0AwHM3Vr6qRSO6T4aSsorGhJRAOwtBxlC9fHmkNtWvXjhMRiI2BX5cuXWTjtbl9+3bR0rVr106uU461zZs3F8vz+N731qoSDpXTKYTK+6cyGUpMQSs9/rnSlvSbn7/cGCRZoX6BuP7rRpzoNBkXvlgMt6pFUHJyd5T+qz9sXJ3g6x2GTYs88dl713H3eig6DMiCXiOySLrj0gl/LPjZCy2aN8WFW5vEk5xdZZ8+CpMUDKtK/ExNb2Fr/4Jk8DE6/sTXIkU6ChWNFOEgSD5k3Ihm7EiM/HRid31lZIohbH6uqlDd0dOIjqrqbWIIM1XdN06AJJSpUTiqyvXZuHFjqZZjBGnNmjVyrNljhamapk2bSuTD4gkHc3M0g+LFrmrKgqxS5Uld5X1LKkEro2FLly6VgYj9WlgSxlWk35X7uLtwH84OnIWzg2Yh01vF4FIspxAEazsrPLoXjKXTHmHa2EfIX8wRnT7OhnIVCyN37rz445fNkaIR9PmgQNTm+WUZEvTi/4s2w9B7Pr+ruHDla+xGH1VIah7hSCgY6aHmJbq20UnVYp4aDjqiqizYU1mYSWJsiB9VhMoRDqZZjaICzhUqa2FSC9544w1pwcDeStzq1q0bL6KnHOGg2QnDoRQLxsWKNTnBfeNAqyohUplw8LjxHCe1oJVmN0Y6w6pwPnkMeeqHh1tOwv+KqXoh7xs58PYXlVGpR0m5E66dDxBX0qqV3sbZiwdRoLTps4zKXfdctrCzBYKfj8MGaRBiYfhqMLUSZiIdQmqsAXajj450xBYLFy585e9ZpsYyuKidZ5OKbBBGSbOuBEmdk7rKZIhkg3MDIxycKwyTQ42k0wSam5GxLJ4+SW3btrV8wsEvx1AoLyYVc5sEb0Tum6qESOV0j2EolByC1rFjx8qj1Z0H8lj0mw4oOrkL7LKb0jk39nuIcdiRP84iS6GMqPJBSeR+IxuqVauGtSt34vQhf9jZW6FQWSuJYNy6EyLkwd7uRZsUpkyMtArJRUSKxRCTPn/k3/H3kUhHsdiRjs8++yzS844dO0Z0ahwxYkTExGCex05KsmEM+iyTVTmcbQgzVRWOqp62UHXfCI6/nCM4V6hsUmapuHbtmmg2aP3A+4jVStxI4hNSuaScaJRslZMRL6aYTKFSGipP6KpX0HAC4KokOQzTNmzYIANSkK+fPL84YjGs7GyQrkRuZH67DFyK5MCl79cAvoFSSvv4yjMULFAQTs5OCMrjA4fr9gj0DMLlk6YIhnN6a4QEhyEowBT1CAl5kUYxymPNYbzHEJQav48Qko6K3hwsKsz7RXCSf/jwofy8bds2MQoysP/goWQhGwZYrcIulIxaqShQ5kBpOHqqKG5VOYpgEA6SNRXNDTk3cI7gXKFy3xxLRefOneXcs0LQ6HeVGLBVNcLBXLyqEQSVyZDqKZXkHPyp6zBWaZyE2VXxzJkz8D51E96nb70w2QJQqXsJhISEo2R4BRw/dhxnN15FeIjp90XLOuHSaX/4eYeJaJQgkSCikglJpbBZm9WL95gXmRjvj1q9EhPp4OeY6yTMV3PmZIMIDw2JF9n44osvpAMuB5ipU6eib9++sfo7rnRINOipwhSLiqtgXgOqEg6VUyrG+MaxTsVxmPvHOUJHOJIG7JtEe/RXeXbEB9YqRjiMlIqqk7rK+6YFrTGLHHkT8dyxadozz6citDRW5sfnnseJeedRvkx5XLhzFsUb5YdDRtM5vnDCH6HPm7famgWOWGliTvwNsiG/MxOOmj83Jx+x0XTEJRvABkuMOLD3QUxkg+9hhQkFn3zkyuXb7741rWStrcRsLLbg3/IzKPRWFSpP6pZCOFSEEeHgXKE1HIkPNtCMuqBJDCg1axr+/QyTsVGUqpO6yoSD+8YVscqEQwUHVKZ1du/eHWm/mjVrhgIFCkiFi8eDewh7HuFwzZMegT5B8H8ciEDfFxblsj2PQpB3GGTDSKWYE4yYijliG+kgIWEPhJjQqFEjtG7dWj6DZWxRHUorVaqE48ePRzwvUDDfi0qZ56SGOpUihYsgLiCxUdl4SeVJXWWdBMmkoZNQEeYpFU04Eh8zZsxAnz59JJ1bunTpl6Jcr3KJfhWUmjWN0JiOcMQfNDriQKHq/qmqf2FtefYcOeTcsvLCyckZjhkcRZX99IY3rG2tJJ3CsljzklbjtXCzKEdcx+jYkI5Xlf6RbDDnavwty2T79+8v+VcOFD6+3hFVNAYiWauHmu45NmaKq4ESdRJnz55VNtev8qSusobDfFJXPcKhUyqJD+rErly5gu7du0e8xvvbuM/ja0Zoq6LlNf0TVJ7UVa6gMfxLVBz8CVXTPX4BAShUsCCu3bktESI2rvIP9JMoh5WtFcLCWY4S/hLRMO/2yrSJeQbEPNLxOsQ20vE6smEYohl41YTGa5iRkNhqNl7l6EnreRWbGVpChENV0a0lRDh0SiVpwCo42qQvWrQoUUWjsb7Kp0+fHhF5MEBmyRWU0brWwK5du2QHyZDi2/JdZcJBdqfqvqnaUtpcX6JkBY2VFfLkyYMbV6/JU7e3ikakVLIWdTPlS6ytIly9oraVJwFh2sQ8dRLXasy4+nRERzbiAjbEM8hGfCdlTkoqh7VVjiIY9yl9fVSEIcxUPaWSGBGObt26ybwTdWvYsCHSIm7cuIEJEyaI4Vf+/PmlRb35luSEg6ZCPLFsGGOAZkMsjTt06FCkm5p9FtitrlChQvFe/fJCV5H1EyqTIU7qKh83nlcVIxwfdO0qhjaPnwsgPQ9ekjQK8eCsqcssq1qsraLkJqxNHh1RCQhTFfEZq2MkHVaJSzYIWsFzULW1t4azi1OkyEhqiiKoum/GfaqqT4jKKRUSXY4lrD5iGjkxQHJBXxnzjSv8tIg6deqIyD6xEetZk+Ux9FJn9ILGSAR/ZhvbHTt2iDreiHTw9aiuh7EBQ4vmqQpV0wIqkyFVc+nmKzkVy+xmzpwpvQHc3d2xfPlyeY0T1fjx44UAUDzF6FFYyPPqFGsrhAazJ314tM1eo54C8wqWeKVXwhNONqLzCiH4PXjbxbc3iso6CUYRVI0gGPepqoTDmNRVBsfhxDp+jIZxAa0BEdDTTZQ25nQyjjpms4lbfBCnZTpJBKMXhvMhfx42bJhclPyZhINskxEPwwkxLjDPZao8cRKq7huPoar7ZpxTS9GX8Ge6lRqOpQaWLFmCDh06xPg5vDejLgxjSzZiIh23n5eo1a9fH+3bt48z2eAhf9W4zHllwYL5SG1RBEPopiJUJxwqwzivnC9U7udjqejTp488Rh37iISIRq3jSji4CmSYjTnbf//9F7Vq1RI/A0Y1iAMHDshqJ74RDksgHKrvm8rRF1X3jYht/x5O+PT1iHoNWNtayxZs5kCaEJinVwo9T3eQ6MQnjcL9iW6f+Pk8L9xomR4f8JipHEVQeUJXecJU+dgZ915iHr9169aJJsR8Y4QzLSIsLCzGLSFRrzhFOBjBoHqfXSk9PT0lx8y8N0kHy2e4yiHx4GBMDUd8CQcHL17oJDYqDmTGgVdx34ycq4r7xpQEBwoV943gNcebKTb7d/78eXnMmi07ggIDIms6rMIRnkiRaN5PnNC/+uoreT5x4kQx5Eks50yWAyf0fBiDkIrnVeV7lTDuBxX3T/UxmNecsSUGuEieNm1apNeSsjVAWoRVeBwpLHPcVLaTcJB80AqZKFKkCH7//XdZjRUvXhx//vlnnHeG0RN2oGNFjIaGhoaGxqtAz5wBAwYkmBSxSoWdhVetWhWr99Ofhx407r+NgbVTwkXwYf4BuNV/dESvqZQAq9ZelSo2Bxc9dCt+66234vQ/bOPDArnqIuEYOnRoxOtMqzAEfPjw4XjX9TO6QWV048aNsX37dnFHVMGVMiqYSuLFxkiOauBFQJMoWtOqBlY57du3T9lSs/hec3TFZcUHIxFcbRlCRUYhzN1M4wNDs/Hzzz/jyy+/FL+Lb7/9Vsy9EgPikmoDVK/2P6xfvz5en8Hydw7ArNtXDZxE2BOibt26UBG0oa9Ro4aSHiaMZNODIT7R6qQGrzmm9RllV9UTydIwbdo0SdcyW0HRaIkSJSL9nmSIQQGmYbdu3SpC+7giXoSDLoYcUJlKMcCfyTQZNo+PfsM8H8eB27DWVbGigfvF/VNx30jYGLRScd84Eau6bwT3Kz77R2U7S8Sjg5WtdURFa7iZcVhswGoUQyBq9DXgKoSi7YSUw0bsmzUrbqwQ6hculWbxPS+8Z6nwV/G8ckzhpuK+GceO94Wq+8fxROXzyrE4sXRh1B4yYhL1+6vYmDApwMXRmjVrxAzw888/FxJMwklROAMMPDY8FowGnT59Wn6XLISDlShMm5j/QxIOMk6jfDY+MBcAqSxYIlTdt8QsE0tsGOdUVdFtUlRbBPiaPAKiMzuztrFFuLlPOmIufTU0G1xZkOzH1ZE0OtjaUOsTHnHdsHFb1B4ssQGPmYordELVa40w7lNV909lGOc1MV1aGW2KOndxPjP0WmkBzZs3l+3Ro0cSjaYBGOd7Eg1GMLkl5HjHmXDQdSy6CY3uYwmd6PhFzAVAqk6cZNVaWR53GCslTpgquqEmhStlTK6qTMHElmwklg06I8/m+jrz0l2ekylTpuD36VMQEmqqaOE5ql69OlasWPFK8RyPmariOkZcVVyhWwLh4FiseroisWwAZs+eLZuGCSQYLVu2RGLDWtUVpsqTusoOfAbrV/W48byq6tmQnH4SzI9Hh9iaesXVBp0wJxs0yjXnpVy0cDMv6eVkTb1WliyZYWNn8k+hxsVS+uOovm/m0VwVobKjskGGuPpOrIotjaSHUoTD8MUn81d5Ule5qRFXpZwoVAQHVpVdKdkriOLH5AA7rEZFXB1E40M6DJhzUgYAovaB4RxozDUkIHRYJf7979+XBn7eszx2KkLV7sSEcZ+qGoFRuUmlQYaM/lsalgGlCAcHLZINKvFVJhwqNzViCJ+DrKppFZVdKVmdQiV2chw7dkSOyIVaxd+uPC6kw3zuMMgFiUWkisLni20eAuP2i1iAW1shPCzysSFB4/3A76MiVI5wGI0MVTXDU7lJpUE4qBtUlexqvAylrnSDqfIiUp1wqLpvDC9yoFB1/1Tu3smBy2hNnxxg+Tcnm0YNE9aILbakw+BR5nPIS9F8s/fYPX+f0cSOHxBVsU+CRqKmalpA2e7EikdfVE+pmBMOHeGwHFirlg7gxjCZypO66vvGSUzVSV3lCAePG/1Vnjx53h02ibF27VpcunRJyswSWnHyKtJhLKCNqIZx6bJKxXjNmFeoymeEh9Ur9eo3MvVNCA6XZnUkIxSWmoPHSkWvHEuKcKjsuqs64VA5nafxMpS7mnjx6AhHwnUSHMxUvBG5bzRjUhXZsmUT47TkMDtid1a2gB45cmSCPTVeVb0Sk4aY1SgE5xTjcr548YJcQ25ubrh9+3ZEqoTmWSQXNCIzn5QePHiAypUrQ1WoTjhU3TdjfFOdcOiUSuJhyJAhsX4vWyzEB8pdTQyP8SJimZ2qk7rKhEP1KAL3jcpyVUETL7oYJmZ9f0xk49y5c2LidTGRXENfRTqMklija6zRqp6vG5eyeft6Gv24urrI3yxfvhxt2rR56X/xPTxOqpbEcoVOYaaqk7omHAkXtOqUSuI6aJvj+PHjcpwZ9SQ4lvCYR1epFlsodzWRrTJMxpUmxaMqQmUdAqFyJQhTFhQaqmrIxP3jIEvjG16DSUk23nzzzUSJbMSGdBgaZ5INplIY3eDhN143JxsGjN+xvxEjMWXLlo30ezoP0vxPVdEj9SVM0ao6qfMeVTUdZaR7VLxHCZ1SSXzs3LkzUgSDx3XOnDkS7TQWGLQ9pxV/fGGtaoRD5UoQDmCqdsdUnRAZqxEOFCqCAyzdBu/cuZPkZMNYOSQFXqXpMFIphoiU4tAIsvGcPDDyYb64vXfvXqTPIGHkMYqvq3ByEQ4SSFUnTZU1HCrvG2HoS3SEI2nw008/Sc8mg2wQ/Pnrr7+W36UawsFOeVwBszZd1Qmd+8ZVnapRBJVTKjxuPMcq6zio3+BkmtjXnznZ+OuvvySKwlLTiFKReEQKYvoTEgZz0lG8eNHIpbHP/yWf0+wrAmFhkvK6evUGrKzsIq6nBg0aRPp87jtXmUxBqQpeY6pGEFRPqahcQWMSNQcL4eBcoSMciQ8e14cPH770Ol8jyUs1hMMQ7Rl+EqoLM1WEyvtGcBJQmXBw/ziIsfNuUpANah4+/3yEiWxw5meogaQjFg6x1lF8mGL6EyM4aJCOkSNNpIOvM6XCihN+VtQgInfD3d1dSBf1Dxzco9Pc8PvwPaqmU1QnHNS+qDypq0yGSDZ4XXL/OFfEp4mYxqvRqlUrSZ/8/fffIh7nxhYHPXr0QOvWrRFfKDdaMETL8K3KaQFC5f1TnXAwzM1wt8ooVKiQTKqJYRMflWwQpUqVAGiiZXy+QTqed3GNCbHJDthE+fuopIMpFUY2zFu5WJu5ikrk5RVgOozVKQULFoTKIXeuxFQlHMZiStW0hcopFe4bxYuMcHCuUDmtZ6mYPn26mBF27NhR+qRx488NGzbE1KlTUx/h4KTJFZaqfUFUntRp/sVVqarHzohwqOqGSuTKlUsiWQmNckRHNoj//vtPVmpW5uzi+fGwtjKFMWyikXSHhsDU18TGRCwYYIiqtwg1cxE1EF2kw/z3md2yRvwRVzavArtn5smTR+keFoYDqqr7SEE8J3RVrcNVjnCY75smHEkDlsOTWDx+/FiqV7ixLJ6vJaQztLWKA/3du3cj2LWqk7rKlSAUUXGyVFWYaVjYq7p/BFMFJUqUwIULF+JdAh0T2TDACfHJk8cv5UqpcTHIRVSQn9CIKzzURCzIKUkeou4i0yYGnzPSMOakg0JSCapYv/DT4GN4WJjoS2ICiSKrU4oXLw6VYaRTVBWMGoJWVWEJhIOLKp5nzhlpEXv27EGzZs0iFkerVq2K+B0XM8OHD0eZMmWEIPA9Xbp0kbk1LiCh41akSBH5nAR3hIeiEQ4O+CqnLbhyUrVslxcfBzNVdRI8t5yAXxe6T2nwJuU1eO3atUQnGwY4KZJ4Wdm8mBgjzpsVpOa9adOmyJw5s7wU/pqglRHpMCpRoqZOolavvO7zooLfKX/+/MpGDgzw2lLVH0R1fQnBcVfVc2wQDs4TJO1R7fbTCnx9fVGuXDn89ttvL/2OcxN9NGgqyEdqMbh4at68eaw+m5GNunXryhjBFgxGlRo1HJ988knqIhxcQRmiIFWjCGR7ydVzIzUKMyn04nlWGSRupUuXlhs1Luc6tmTDAP9HeGh4RHQj3GhoAiscPXpULNArVqz4ys8wohgRkY7nxS+MfkTVdW7eHJl0xNbciZU7vKbi2pk2JfQbjNjoCpr4gatjjrsJCZ0nJQyxLSdBlX1gkhqNGjWSMlUKPKOCC86tW7fi3XfflfL7atWqSVsCOgbHJk388ccfSzUm32vemLF9+/bYtGlTvPdZScJB7QbzRSpHOJi24MpUVR2C6sJMTgZchapa+myAqydWbVBzEZtzHVeyQRhkhv1KDh06BOvneX17s7bldPuMCdR6mEcxhD+EP3cUNeuXYog2+Nw80lG4SKFYDfInT54U8y+aaakMrs5IolRNWTBFp7KgleOa0ddKZUFratRveHl5RdoSc8HN+YCLqNhcd1u2bMGECRNEq2UOplZu3LiReggHJ3JuhnBUVcJB9s+VlKr7l5yt1uMDnmMy5+hqvVVDyZIlhRRcv3490cnG+++/H/EzW79TGxEaHCIr9OgGmypVqsijoTVlKsZc60HyEWFVbpZOkQrc8HBpFmdcvyQdixYtwNfjvnltwzqSDaZ1LCFfzsgZCa2q+g1OJCo7oJJwqGymZZ5SSW2Ew93dXYiysdF8K7GOGTUd7733XoRG7FXgeGce2TBgBAJSDeEwF46qTDioLucJUTWtYpjhJMSkJanBSUH1tArB0GKFChVw5syZGNNU8SEbxP79+00mXDbWIvAykDXr86qRKNi2bRusrK1N2gsrq4hUDGFj+4J8iK1HqFkE5HnVLfPyhmCXj2vXrpd0zYEDB2IkHSRajEYxX6zqJG6A38kgHKpCdUErxzRLIBycIyyBAMcFt27dkoWisX3++ecJ/kxGkZla4b0xbdq0WP0N7cvnzp0b8ZzXKqsev//+e7z99tupi3Dkzp1bDrxR3qkquEpUtdJCdeEowUmBxj2qRmHMQQJA7cLhw4dfIsHxJRsEe5Rkz5YdGdO7il4jNggLDZV7xMoqPJLYNDTkxXGMOKSsagl58VrUEClBPw1W5ERHOkg0Tp8+japVqyrryxA1esCUrMpCQpX1GwTHNFX1G4YRHecGmlHxPkhNcHV1jbQl9J4zyAbTINR0xCa6QZBY/PHHH6IT4f00bNgw0ZqxMoapllRFODiwM/Rr6CRUher7p7qOw5icXxfOVwXMX3Kfjxw5EtHnJyFkw7iGuCJnY6S45Mx///13IRDmEQ7CXAAqaRezKhQnF2uJcpQqVSpWpIMrXX5XDjRGlYzq4LGkW7Gq/haWUBKrckrFqAxkdJlNCVUXMKckgp+TDc6ljIzG5R7mPc/j+9Zbb6FFixYyFtBhlH4cNEVMNd1iCV5E+/btk4uebJaDu4oDCPePuXZVwVVUQgQ+yRGFocqcoVFLmNC4v0yt8Nqk2pv7TBOs+JKNhKBJkyaYPGkyBg4caHrBxhrFixSVErj06Z2lOsUoeeUqUHrDBIULSblw8ayIYMuXLx/pMw3nUJIOluMyssG/ZRmsJYCrX15LCRkQ07oDqpFuU5VwGNEX3otpnXD4+Pjg8uXLEc9Zvs/7mmMRtS3s8szxYN26dXLdGelr/j42ixuS4i+//DJR91nZCAcvJsOJT2WdBEO4qkJ14SjBfhxMn6naGTgqeD2SYDAiQU0Hy81Syu9hwIABWLx4sfzsYGsn0QiGmsPCImsDGHpmPX7I85QLUyyVK1eO9jNJOgoXLizVMhzYzXUlqoOpCo4VKuf1eT9SE6SqxwUjCMzVq5pSMcgQU30834w6plUcPXpUFkDciCFDhsjPo0aNkgXGmjVr5N7nwoIExNhENxYL7N27F507d0b16tUjumfPmzdPFlypjnCQufHCVzltwQmdERhVvUKMVYrKwlFGCci2o7Y/Vxm8iRmu5KRx5cqVFCVLrIsnoaSuxDjfc+bMEaGoYU9Qr149jB07Frbyoum16LQcxoTD78drm+WlJFaWAkbz+L1i6yuSEuDxVFkwykmceX4VI8oECSXJEBekJJaqRmKSA7Vr1za5A0fZZs+eLVHJ6H7HjX/3OrBRGztEc4xjlMSY40iYx48fn7oIR4ECBaRWnStflQkHVyq8+FUVZtIQh2JHCjNVBQdeNgZSOfVjDkOzQdZfq1YtmejJ+FUSN7PUllEM+m1Qx7F9+3Z5nfdRrhy50LNnz2hLfKndoCiMgsuaNWtKOfCrqldUAscLEiVeSyqDKVhqTFSFJQhaOSek9XRKUoOGYmzg9ueff8o8Z4CaDhKQVEU4+AUZ2uVFpTLhILSjZ+KkVTipqZyeik4gysgMb0Cm1jhRqxQNoNCLoI7DWAUyRcnQKNXnUUHCx1ArXQlp7kUi+KrqFdVAR0R+T5UnS0bFmApQuZ26JhwaBN2VueiIioRWPipJOMx1HLy4VNVwWEIlCEtPORGqmvYxJkKGwjmhq4qYqlEYembelLqHf/75RxThKmhm2MipX79++OGHH16ZUmPJG1cs1KO88cYbEl00D/dbAung8eb5oVhU1VQFQZM7VleomgbgcVS5goapS0YSNeFInnnDXJBqgNFcQ1yeKgmHyl4XlhDhoEEOBxCV0yoEL2KGxDkBqobXlb5ykuNkxzQLIwUUW6mgm2FTp08//TTG3zPytXPnTiGjNPOJyWxMddLBNAVTKiqLRQnVDcmo3+FxjK1XQ3KDC08SfC5QNOFIWjDtOnjwYBGPc3xj9deCBQtkPOnbt2+8P1dZdRUvppUrVwqb5STEQVFF4yFz4aiK+2fu6MnUhaogKXJzc5PSLob1VUFcfDb4e07cfP/u3btloqaK3jwHqgJI4LmPnKhZb8/r4nWRAfOS2ZQoA34VuBKjSE5VoSNBATxJPw3UVIXqglEjncJIDM+5JhxJh88++0yuWXaMJRFleoXzGwlHRCl+aopw0Jzo1KlTMlgzDKlq2kJ14ahBODi5qF56SqLBgUSVKEd8TL04WHMSp7aDqSy6+zHNosKxp8CVzqaMavC6rVOnjogsY5uGUDHSweuaY4PK3huEoe9RiahZmn6D+8eFiZG2TEhoX+PV4JgwYsQIuc/px3Pw4EFJCY4bN+7/7d0JtGVVdT38k+CIKFDBGKPG4KchBEYSiEFUEgKETvquir6zaAoo+r6XRnpC3/cV2lBQQNF3BdIIYYA6sCDmr5JEOmMCDJDGYeLfz2/8dr5d3nq8V/Wa2+x975pjnHHfe1X16txzz9l7rrnmWquZCIolHPLionLlkqWnLbj6mcFKhaiFwbHkc8zX0YJMLu01JtpBlFojxaLfBaMm4qFJWC+qWWzIOgQ6B0qcsji1+ePpBVES6bDpfP/73y9SRRoKaxmzaMkeE+tDDS3hNd0z16f0z7wf8Du/8zvJFK9/Rzu8R8USDm9OxOvmKt2YqZdEyZu5Ra6WQWlKMaVVcgvjGslG63VXAql81oC0rHjIiyr57qSSI9+tR4jUDk+Jc3EeJP082G+8KIV0yCsjUDVEuqX7N1TQ2NBL7fjbami1J+iEG+gceHk0C3S9pSsdufOoe6XvPBzgpnJzWSRL7tMgKuD090GUyrotdqLcXPJYKtzUzH/KsnIHvRrJxnDEw4FIIRvIgM/D/yHyFbk5xnP/5MZfFmQEwOYm3+2+lDLRnrzd92WvPR3yyz6n5ZZbrljPQYbPwudecv8NTd6khkvtgEoZtL5mwqHXTKBz4NO47bbb0hA3z3d+1o8//vh0r4x26mx1hEO+2ULsgRURjmXAVbfgIfWwWuxLrbG3+WCtNqWS87RgE3nkkUdSXr6bjvlOkI2h4Eei3DksosgBHwJVx/fuIwqE6qJ86Jxpg81Rva8RDId/o3+JSN+/89n63Ta3TpPfXpIOAQgit9RSSzWlw2fs+Su5A6pNpPR0ivvbZy64O/fcc3t9Sn2NG2+8MY1NMC02Q7Dqedt22237l3CceeaZiWRk4+hIpXul+DhKJRy6jtqEsiemZNh0ReY2f70h+oVsDEdU9b1wANJgYRURIxPSIjYCRDGbTnUI5RbPZCQTDJFfLza0XpAO14MCZgF0X5cOz9xIreRLgbWrZONtDpSyqXy4iceB9sEaM9zQRmvVRIL+ogkHSd3DKkLIHc5KJRxynyU3rgLsVJUCBaHktAooedOSWylhp0lcL8jGSA+59zrc+yUn33vvvcmIWlrartukA9kQgDCylQ79WKxbJZfDlu7fAOfnuXjmmWcS0SzlGfjEJ3/WLLLYLyb8e371/n83rzTlwGBIFSkzZsyY1+5BQHTyySenP+tLwkFCs/GQ0HRyLL1SpXQfR84h28RLNrCB6F15qXHLyjc7dU1LIRu1o1ukQ9pS+klfgNJJc079IEal9uipwb/Bo2Ttz0UEYRjtPPjLBHyUORVBIFilLunNMXny5Hl/l9ejLwhHq3FUeaF5CaXCw4ogyccz6ZUI8rMmTxbB0gkHOFeeBXXgnTCQBtmoi3RIK1kIBSGldsMcer4MwtaukiEAKdnQKr3Yahjdbrvten1KfY8ll1yymTJlynw/a4dfqnjC4WFlIDz88MNTTtvNJ/otEbn0tFTCAbwRc+bMKfo6Zohg9Yvw+atcaWdqJchGfaRDHxM+FWpnDbAWUOZKNmNSD5xnLyrCxqLAZIKJcJx99tm9PqW+x4wZMzrye4t3XJFO9RFQ+obhuvlKBcIhWsgVBSVC7tsCWHKZ8VDlKKdWJlL/3YogG51FJ/p05FSKjbEGoyh4xkbTNr7XZkwm3JL9G7mCxhrgWi6//PK9PqWBw2OPPZY8ZBOdiF38kyvCxcLlj0rv6Km7pAei1x0YFwbuY4thycSoFRZtEY7UykQRZKM+0pFTKXL4NaRSslnURlny/CKgbkinlNzLJHdAffTRR1MAWvK51o7TTz89NfzKsPeut956aUbURhttlJ5pk6X7lnC4udxkbrbSCUfu6Fn6ZFYmNueqAqgG5NQKP8dEzjnIRp2kQ/tyqZSSyzaHu9ekVktPW5beAVXqV5k4BcYeoC1/oHOYOXNmUpQzZs2a1Tz++OMpy2DvZXE44YQT+pdwgJvMzeamyz0KSoWHt/SN3Aaunrr0Mt6hqRVyukogja7GiiAbdZIORnHGS+bxWlIpnPzOufSW67lpXKm9g8AmJ5Xus7fxBeHoLKQtlR1nSKNsscUWaRildVNrc8/yeFHFE+wmc7O56dx8Jasc+oR4kEmqJYN5VP625FLjoWAcFeWaRTKWOSRBNuokHf7u3LlzU1TVjsFR3QKSZJ0qvcEedcPzUGL35qHplOzfyCWagc6An6e1hNszq/dP6xo8kf23CsIx1MdRsnGU9It0kP9LBve8MiczPWpC7qr57LPPjsqDEmSjTtKBtGvy5N+UXLI5FO5J91zp6gZYo0pOp0D4N7oLAZ3gPhNnk7td94xXX311QgbjKghHTT4O0CzFB4MklQyLokVHuXEtEOWYvErhWJiJNMhGnaRDlEXFshnWsHG34rXXXkuvpXdBRegEbiWX8DtHa1P4N7qHvffeO3US3XXXXdMcFWunCd4ZWhRMpIS6CsIBXLIGudXi4/CwSFmUDI3KLDj6G9QEKpIZKxZ3s0WGQ5CNOkkHkk4+F2SUPtl4uGoaz5LRAaX7TTw71tJSu4sCQkTNdA+Iuu0Bgc5i2rRpzfnnn5+eTUH+rbfeOt+fC1B32WWXcf/+sp+KYXwcbj650ddff70peUOU66JylA6Lo5uodHI0XD+RL33pS0nl0N21FUE26iUd5qT4mdkjpW/aQ6HUHFGqYYKttan087TGS08joO6FVjNjoHNAKG6//fY0EXZoyu3iiy9uNt9883H/7mqeaGYh5iaLFFc1w1PJqCWtYuPWl8MGXRuk1/h75Ppzmi3IRr2k40c/+lFyya+88spFzx4ZDprSIUveU+mqjMoUpvaS0z65A6q1XqWE+R3h36gf1RAON5vGI3fddVdiXaLaPLK7ROR2xiUrMRlmU5AvS/fGjETsdB6U83/++eeDbFRKOnx2CAdHfC3NvVrBfK2SpnQTJgiEnGepQyZBR0ukw3Nszd9kk016fUqBQSIcsPHGGzd33nlnyutJW5RcrUIC5I+oIa0imjSfQoOl0hWZkUp8VTJQNxicgmzURTrI5j67P//zP0/Pdm0wtvvFF19M917p6obn25qEqJeMrG541WV2gw026PUpBQaNcHz1q19NkqtIKA9KKxlypPwRXPc1lEP9/Oc/L/6aDgebFcUrk6YalZpBhWfZ5+X+48cpfSzAcFA6SNEseR5JhiDNelRys6/WDqh33313UixLHoAX6FPCQbJcc80156VV3JQlR+SiNedcg8pBMZJaqU3laPVsiJClV55++uni28sPOtxjKjooA9Io2im3e+BbN4Ckq5RqLR0sGc7VfJeSDblKYVUiUi0p2pTtQH+g+PH0QyGXd9NNNzUHHHBA6sXAAFWqDEteZcj0kJP9S5dbnatctIYvzrd0DGcQzYupxmA2AS3cS7/ugwbeK038+Ju0TM6ejU6Otu8U3H9SpzX4TqR+jF0ovZ+FQJKiYX2fM2dOc+aZZ/b6lAYCkydPHvXfve2228b1f5RLc0cA4+iTTz6ZWnJjwKWnACxGGHsNLcRt1KJMbvuSDbkLq0aRnxY1k7ptbLVMxR0E6J/j+RXBrr766h/YqDsx2r5TUEouZaq0vAYIJDwr+u/UkE5BNqSldRcOdB4C93x4Lh9++OHm29/+9rw//853vpN+NpEAvzrC4QZUj33fffdV4ePgBLcB8p7UAARJ+TGpu1SMpvTVz21oiJ4NTnQX6H3lwWOPPZbSjJSNkSap1kA6pIR4TqiCSstLh/OltDrf0suL+Uys7dIpFO1QKLuDGTNmzDt4fLbaaqu0b1EzHNbdbbbZZkJ+muoIR2u1iosiytDVs2SQ9XX2q2HTywOSmPnGM5W10xhLnw1dFP/2b/82vdroamtu1k/gY0L8mEO1Rl5YT4XSSYcmX5TLWtQNniZKX8m9N0AASYFBRhlGw7/RG1x99dXNIYccMt9z6uuDDjoo/dlAEY7NNtssNYPhtsa2SjdlkqdsjhapGvCxj30sLfhGwZeUjhhPUy9mWKPNeVKeeOKJ4u+VfoP755//+Z9TaktnWJVEo41YSyUdjKLek6ZzJfeyGPrsUDdKNouC55PK+q1vfSuldSlhgeGh8zZCpqu1Z2r27NkfULWOPfbYRDIFXWuvvXYKJEcDe+twIy/8bCJ7Qtl33wjwoEutUDlyR8/SYfEkT5W0gS8I8qbOdbQ3aKcxkQ6iHkbvB/HQYIqhtAa1qXZQlChLSpbNZRhPKWZppMMiri+ETbGWKba6ikpTlJ5O8UwyElvTr7/++iTp10LoeoH3338/qdEXXXTRsH9+xhlnpLkol156aWqMuNhiizXrrrvuqOaQ7bzzzmmA29lnn53In+Oss85qdtttt/RnA1OlkjeQHXbYobnhhhuaLbbYopk7d26S/0t2istJioqQI5UUpYN8Rvomgzv3XlYCtatdOabv34u2TT30sIoOAu0FosqwywdE0VBuPZHIuqTqFT4IC71ZL7VA0CBAK71dvLSzz9bac8sttzT33HNPr0+paKy//vrpGIkYn3vuuc0xxxzTbLrppuln1157bSL9lBBejAVBZZB1H8lQ2ZTXz0MPPbQ5+OCDB0vhgO2226558MEHkynQhSld5UCSlllmmfTw19LnIqdWRHS9UmbaPRvFokva168D8eDCDrWjvaoGqdcixT/TrsmpJSgdUin61NSUSnHONnLEr3TkDqjS5dYez/yg4Z133pnvGO/aRE3nh5FGyRA0mrLtGVoYPLOHHXZYunfssQ5f+9lEZtpUSzgYMUUZN998czWD0kQZcmOZMdaAXqZWOjWIDflzzxh37b1RO5Q3ln7/lAzXUTk1n4woSoWQqc7tRC9JR42pFKAyiUxVBpUMZdLIKsWRcr399tsPZHXKUkstNV956qmnnjqu35OrN4emMccz+FTmoF3Zg2oJB0iryPVZABiMSp6tklmjSKMmlQObXXHFFdM5d7PKoxtTXznhW9UO6aMSfAI1Ic/mUJ+PtFE1kIJOmRN7RTpyKkU321ogOtZ7g7JaOtxD1nGKjOoUhGMQ8corr6R1Nh9HHnlkz6qadtxxx0QAGe/tA63HQHk4Mrbccstmv/32S/JRHpRWes991RLy28xRtURKIlXljCI85r9OO927OWI+qx2Yv2jwqaeeSp+LTa30Bkm9JhrMoD4nHSEpYbxJ3YhKu+3pQDT4ryiqtaRSQNdg811K7cQ8lLTqDHzrrbemNve1lBu3G5PapCbkqcWIQ2sptO+lBBeGqVOnJrL69a9/Pf37dj3XVRMODxPTDAlun332STM0RKsTYWCdBrZowaQY1EI4gPFPKghZ6uRi0E2y0QobCZIhVSc18OijjyYi4r0qKQv8BpQFn5EIzH3hmnX7mesW6bAZPvfcc0nqrul51UBLILbyyis3NTSEo8Yg/RRrynVgYvBMIh2Ux0wweEJUq0yfPn2h/15VivToaMjJwKRUWtMqonAdMmsY2uVm8JDVJN/n1AoVQGTbT2RjaJpF9Qp/hzSdB1ZHSVLvoMP9+swzzyQVyOezzjrrpBRhrwh+N9Ir+g5oLFjLcLbWZ0mkXMMEW+oG6V5Kzka3sAqKwG98L8iwAxBMX1MmKBLmjZ100kmpfYR2ADvttFO6zvpYLQwIdifS/tUTDrNVkAzMjaQr11o6ECMpitomsyJ1NmOVHW72fiMbrWCyW2mllZInAdlAPGy2fEI1fWbtMIPaEFSe2NhzAyEbfQnphU6SDq589yVnfwnvdbSQ4hIY1JCWYKLnW5Bqvu6665q11lprXjogsGBYh7UucIAuoL7W7AtUlOy7777N7rvvnrxq1uz7779/xJECrVBSe8QRR7R9P606pQIWQOaWyy67LDU4IYe7sKW7skWGPkxqwXgaIvUKmG+W5vg52rEQl0Y2hpIsuXukQwThfbvnkFvXAnnsR/At6IwrWpIGpMp5zyVuvJ1IrygD5FmyUNfm5ZGudQ0+8YlPNKUDqTOLhs/kiiuuiMmwY4CpvwsKfqgc3/jGN9IxVmy99dZpzRMY+3yGPvfjJffVEw7YY489UhRyzjnnJHZsoSzdTe4DlP+mcsgN11QCRl7WvRDDliOeyLmXTDZa4aFzTzFHkn6RRZ8diZKpyuJe4mY8FkgdUAttAhYURFgazXsr/f5sJ+nQiRGx9FnXFAzkzxAxpszVgDxQ7qGHHkrX3bC2QO9B4egE+oJwMIpaGEly2267bdoIyYklm0fBg8ZJTrIWLdcCm4824WR27n2u8n4mG60Q7Yv0HZQecrD3YHSzCimE11GD0VR05D2oy3cwgWq4hED5fEcjvfYb6eDbkTrzWdbQLGs4z4n7r909UDoBKpLAhTlbOkDb7NpJe7/ga1/7Wkd+b18QjqxyaJKiWoXMLQotfRNHiBAji4RIuXSC1AoLA1UJ6WBOG2u79hrJxlB431QPhzSeTZs6wKDlzyz8THsW/xIWUgRDFGmhV5btfOX7KWxSJqL50ttfd5J0uD76sXjlzi9d1RkK5FHwsuaaazY1gBKDbEgra2Peqag6MDq0jgdZ2KTw8Zbu9g3h0JPjwAMPTMOiLJ5u5tIJBzhHBi9poLxY1oJsrBQR+nq0i3s/kI2h8P5FxA6buNSEgweCzC0lg3g45KtzVVWnYNP0/yIXlIv8qvyQJwERYgAWyddEdDtJOtyXNj9dUmu8JgIX5ktDukqHZwQ5cq35NgwVc+6B3oG6qfWBAMT6NBzhtq74OSVwoAkH+XfatGnNBRdc0MycOTPl15Weuoglw4fHE8Gghu3XZkLMTbKQDovHwlIJ/Ug2hsJniEhmwmuTz5u+e1LemiHLtXLf5oO60Po9VcT9odEaN3/+Xb5WPWLRplg4/Dx/7UA2/DlyYfGgXvAkiEykhfodYyUduYnZ3/zN31SRDhuKN954I72H1tkZJUOAZW12zzP8S4cHegsjHvJz4utOKHy/9es+qvFzE2vjSzGwuFuYeTtKh49A0zJRsKizNuTmSDZVZrWRNrRBIBujBTJAthyJMDgyyRgJFutWktL6tU0T2RgEcrEgjOae4yPQ5IgXrAZVdCiQT43qnHsNbcytF3PmzEmpyG9+85upisJn1OkOxu2EZ5dSueKsg5pFFpt4GvJX7/93890tzk5raC+nnssMyBB0Cn21GpHkNtxww+aSSy5pjjrqqPQQUg9KN79hkhY75+s91GD4Gnr+K6ywQoomuftVrgyVpINsfFAFGU0bfouzAyExHXm99dZL/7Y2f0GpSofyX43MGLhrJBt5k3CPKGGsAWR7JInHiSK99957V0U2WvGlP3ip+fDiE/dn/fd7v2y+2/Qe7iF7kMaHvEBKbynv7UKdn/ICoNHJ5Zdfnm5g5XyqQGrxAPiw586dW2VjKQSDiVRu79lnn50vxxdkY/zIKZWsVPg6yEZ7moNJayEbDNv+vEZQwng3EP4aNm1rmz4h1jrrhCq3TlVEBMYOqRSfhzWbRQH5oJopyrjpppsm3Mm7/Dt0jMDMSEJXXnll6nMhX26uQA3wwVpAGA1rBM8BUiEaV5osigmyESiRdPC45EF9yrprJXE2bO+hhiZf2WtCVaIoqSrcc889ix8uN0j4u7/7u+b4449Paju/mf4oWk1Yww10Q84n0uOq7wiHhcNIX85nqoGb2aZXA0SxUisMr3L8NZMO0aOSWe8lyEagJNKBaPBsuCcpA7WSDZu39MR4++D0AoY/+hyoMg888ECqLAyUCVYEaZVjjjmmOeGEE9Jkdnuqz2686DvCAZtvvnkqDTPUjcqBcCzMgFcKctMejLJW8Bh85jOfmddIqjZPSqB/IUJD7CmJ5OJayQb1UPpV5VEtVTUiZgfCcfrpp88bJhYoC4JdwSKSIWNg/aZE+ewuvPDC5BkaL/qScMhlHn744emmFsV4IGtJU2QDqQ6WIpgageDJ0/J0SGcN9XQEAr2ANIpppFIQZGGVYTVNbG6F5wtqMYrmc5ZK0Rzv5ptvTsPFAmWBoiFI3GuvvVKZNe8GH6QZZWbdmFs21iaPfU84YPvtt0+y/uzZs+eVyooKagDZivSrN0ctykxGq2eDWqOvgWhSn44gHYFegW8A2VAZZKKmjbrTo+07BcqhzVvJfw1G0Vx6zHDoukt3T548uSqyNCh44oknUlNAxMPk3nXWWSeNOmgX6rhbxynrH3LIIcmY5IJ5MHW2qwVkR8oMD0QtGM4g6nNAOhAnEWVtBCpQP7SdRzYQYH1uchqlk6PtOwVBk0DEZl1TqhJBUnaMLF199dVp9HmgPOhfpcpTTygZAikviruRIbNmzUojESaCviUcYBiQZmCctlQON30tJacWRfMcpIJqSK0sqBolG0kzg6Y8BQLdgAVSPlovgeGqUWojHUyX1jDejVrgeZdG0fbfvBTRc40NDgcBiy22WOr1c9ppp6WeSvaeM844IxEQr/k5Gi9+u98v3v77759UDuyapO/GrwVSK7ntecnKwGhKXxn18p+bd/Pmm292/TwDgwObsvvSopkH7I1kEK2FdFAHpIalhGpJpWSSRGW2hl188cWpijBQzx5qzXbwdljHJ1LQUM9dO06QgmzYohxRgYtVi5cD9BQpObUylj4bFkmRjQm5FnfqUyDQbni+TX210bkvRzMUrHTS4T1997vfTSpBTakU3g0GeM/8Oeeck8iS8QeBMuE+47ejZqy//vrpXpMSRxSlJC+66KIJtZnoq9bmwwEr44ZWtWIx4bjVDKyWyayiMg+pRiwGcDlKwXibeiFR1BvNwURtJLqaIrZAudB0TlWUaHq11VZLUnA3Rtt3GjmqVOZfE5y3qgam3bPPPjv13giUCwTDZ4VcKIlFEjUDa5fBdyBW+QMOOCB5Ie64444UxYh8Sk5RDCdraVAkwlHaVwIm2kFUZ0QbghyhBb7WRmeBcoC8StcZYieKHgvZKFnpUN2h98FKK61UFTHXt0FpJWX55JNPTt4N0XKgXPz93/99WtdZD/Sx2nXXXdtaTVTP3TvBDfvYY49NA92Uxfm+lhkrGTwo1I3vfOc7PTe+tqtduc9h1VVXTXlBKS8TGAOB8eAnP/lJMiRLn9iYJzIltyTSIcAQaAg4TP+tBdYoaWDX0mejh8Mpp5zS69MKLAT6bnRSRRsIwpErVjShuvbaa5MRk/mK/FoTLDrOWROWXqHds1FUsHz5y19OnUltGD/96U/bcp6BwYCNTatlPq0vfvGLKZpuR/fQEkiH94ZsCDQm0mypV9VBFCfVgYK9rbfeekIzOAL9gYEhHDa2k046qTnuuOOS1Kq5idRKTRC1id6QpYnWQ48HnRrEZoOwuCsD5uswkCqahAVGE/2rQmFKpJS1s0FRCaRDYKFpnkCjJmR1Q6Ts9dZbb01tsgOBgSEcsNVWW6W2xvrBW0iYR2vrCWEYHZOl1Eo3FZpuTH2lcmRfB5Nsr+XsQLkbGk/WN7/5zRRIrL766s2kSZM68n/1inQIKAQWE00P9QLy/9Ym5nAlsNOnTx9VpVCg/zFQhIPhSkMTfTksWrqo1TgkzcPLi5JHwHca3Rwxb+MQrfKsmOoZakdgOFVD5Kx6SxpFN9tOotukw3sUUEhB1Da63bNqrVAGq7vrk08+mbxzgcDAEQ7QG95ChXjwchjvXFsTKikI/SxEETbkfiEbrcSQHEvtEOlROzjeA4OLoaqGiod2p1BKIB02bH0Q+DYMOqsNVBmfj46UWhEceuihKTgKBAaScNisDQ86//zz02wVG5sxzzU1AwMPtWms3kOnGmj1gmwMVTuQDmqHSElUG2rH4KEXqkYvSAdS9dxzz6U1im+jHebXbkJ62vgI566kUnXKgQce2OvTChSEgSMcYNHaeeedm3333TfVGNvE+Dlqg7LSL33pS83zzz/fdpWm12RjOLVDTb8+C6F2DAZswAyhvVI1uk06qAP8S6q2FllkkaY2vPDCC8mH5ZnVbFGjL2tUIDDQhANUrMiT3nnnnYmR21w5wmsDuVKulwzbLgNsKWRjOLXDgkbtkEpS5hzoT+h26J72OfdS1egW6VAOriqFarnooos2tUFzMmRJmloZrJTvlClTen1agcIwsIRDy3Pjd3Uh1WZb58tS55UsDNzgDLAW6Il2UC2RbGSInPRZQDyoHHPmzEkN3CLN0j9A+qU4H3nkkUQwSlA1Ok06zBsR/CBWNc1JyfD8UVkZRfVEufLKK5sLLrigupRQoPMYWMIBU6dOTYuZDnhKTeUcazOQZiy//PJJdrZwjdePUjLZGKp2rLLKKs2KK66YjIQPP/xweu11B9bA+EGtcu8hkTwbSl1twKWoGp0iHQjW008/nX4X9a5GSAUp3WVy3XvvvZv99tsvBQaBwFAMNOEQMZuCJ9eodrxWA2l+L/wcpGjvYaybby1kI0P0xMlvsJBFnxwt16/qKIhHXdExlQrRQPbN2pBW6FRfjZJIB5KFbHjeqAM1YqhRlIH9mGOO6fVpBQrFQBMOECVTOrByi4cF0KCkGiEaRBiYK0mb/Uo2hhIPVSxrrbVWirC4/NX/16pUDVqZa1anPIdUq9ruv/GSjlz+atAcJafW9EOrUVQJrOBNijoQGA51tbDroIGUunHXXXelKZNK8IznrdFh/ZGPfCQRB3NJLGZ55HY/ko1WWPC8V+RDxGzxZ6hlYqslWh4UosFgmEucbdR6NtS64Y5ntH2ekcJvhWTVNAG2FVRhxJ7PRlWKtO4WW2zR69MKFIw67/Q2w+JgLO8+++yTfBA2LZFyrdK8qZIrr7xyWtQtCv1ONlrh8yNPa/CGMCqjJVtTfWr9PPsByAW5XRM3g9Z0y7VRedZqJxtjUTrcgwyWJiN7RmtrW56h6aDUrVSKz9M0WCMj+uWzrOF5+vrXv54KBgSZ2juceOKJxa9xdd7tHYC0ysyZM1Ojmssvvzz5AfTm8IHWCASCp+PZZ59NqRZVOP1ONlpB3RFx/cmf/En6HJlpXYesgtS60NcGBlDX35EVN4pGv17/hSkdBkbyGWnf73rUCJva9773vaQgen/SmUpha/Wh1IjTTz+9ueSSS5prrrkmtUUw5kJvKa3w2QNKRX8+9eMAZo6lq1YhC2q+I7Vi2FuNqRVgqhSBeB8WPxNyB4FstAL7F3VKmenKmt+7cd+ibGpQoP0bkp4MFA2bK7Krj4bXQYiARyIdUn0OaVsTq2tFruajUDGI2uQOOeSQXp/WQOGpp55qNt1002bDDTdM3/Ov/eM//mPyBZWMIBwtEPkyPe2+++7JDOV7cqE8a60LpY1V1Y20gsXv7bffHhiy0QqdGxEM18NimeV9fQ/8XB+Tfo26uwUlngygDhUYrvUaa6wxkCbCoaTDc6eSytc1e4pynxSBDB/KRRddlKLreHbag3feeWe+76lgwylhqrko8RQzwRTFiVne/lUy4i4Zgl122aWZNWtWSq1oYCO1omplYebLkoH9ijp16ESc3KyDRDZa4f2Tgh1SLlpn6yMgr85try+LP6uxtXQv8D//8z/JBCrq9eraUZRcx1rNkO1CXjNanzsNB2uFNQTZyKkUCsdxxx2XjNmB9mCppZaa73vX9/jjj//A3zviiCMSOZHGslbxdJx88snN9ttv35SMIBwLSK1sueWW81Ir0hO1plagdDNRL8DTwWxlY9C5VMpFpGATlUpTqeRzrzXX3im89957qRW3gzlSxO5aeWZqfkYCo69KOfroo5M6ePDBB/f6tPoKr7zyynwK2Ehrz80339zccMMNzY033pg8HIocdM2m1H7ta19rSkUQjmHA1EaamjZtWprlUHtqJfsWnP/PfvazJPNyyGdPx6DDZypic1A9RA42U8qWB1lUmskHz0eN98BEICWHkLkmPBmMoKJcihBvBp9M4IPg15BG8dxJqYymZLbkVAoVUCqFAZthMVIp7cekSZNGlXLT84TKsc0226TvrVvSxKeeemoQjhrB8Su1gjVeddVVKd8vX1Zby96hBlGHDdPiR70RyQd+A9eGCc7hs7bQ2milCzRTs7kiH66bCK/k1tsTUcOQikwyvPfc2ZV87r3HRrPg62etQDg8dwhrJhk1kg7vB8lg+m1NpUidBXrX4fW3h6QspVZK75Idq8YIsMAy5WCOt99+e+rrwJRDFRDd1YCRqlF4OtycHM1f+MIXkqITGB4md7peDo2aXn/99bQBS7146FUbIB4IitfaSEgmFyJwBwXMK9MnNQe5oIbZNAdN2RkPcp8NnhbKhvtiPM3BSgLy5B4RoOy///7pvCOV0ltsvPHGybPBmC2lQoGnyvMglowgHAuAjfjqq69OagdHtugO0ze/o/S8/sJKX6WJbIz6dGjiw8sQWDBE9cyQeXopr0frRk3SREKoIJl8ZDLiWvd6w7YZOr9MKvJ5Z3LhXKkYlB3nHMbZsYFxz8LvuuqzMZyfpTbSwbNhVopS3jvuuCOVXnqPcW/0FhdccEFq/LXXXnulpoa8G3vssUfqh1IyfuvX4SZcKDRSsUBQOES2ZCsDpnq9gYyEsfTZYPpjilUaSiIt9T3VAiRk6IZuoB75k1qSD4S19fv8s5GICVJw7733NhtssEHqptoK9yPS6JACysdw34MccVZkcvooNpCJweeDvHulCC0sIKmhF477RSp5mWWWSd+bdyMAmzx5cjPo4PPy3Ozx+JTmw4vP/zyOB//93i+by1a7Na0XNZdNLwxBOEb54ClpMzJbhzelsiIVXSxLw3gWsnfffTcRKjnav/zLvxz4csZ2wya0ICKQDxGya49QIB0O32cCojpE1OyRdSAaXpEcQFaGEpnhiE2Qi/bC5+n5cf119x1KCGskHe4rgYj7z5pAsRFkiawDQTjGi0ipjAIW7Ztuuik58qVTyIs6vWUTZikY7wJGTregaA7G1+F9jnbRDCwcrqVjYV1NeUQQDwRlKKnwM1UB8rVDCUkmGkEkug8k0HNDLaIAjIWsl5xeYXi1qVrvjjzyyHT/mTcVCEwEQThGCbLiZZddlvwcSiU1XLEBeCBLMAlONFriO0CkyMImzYpmoqdC9z0iI3XltOADw3KQwTIgd24NkI7k7xpPOrJE0qE6SUUWVffBBx9MfYm8T+pYYH6s/bv/3Hx0iYkT/Z8v8qvmsqb/Edr5GLDtttum/KVXiwzpi4Gq11mpdkmzNjL5Z6mVxx9/PFVkBAKB+eF5pwBQA1WxUZ0m4n0azZTZbkF6DrlgHGYw1tPh0ksvTe2zA4GJIgjHGHHeeeclM6A6dBIq2VFzn16h3XlgkrBFVMQmh6v5VSAQmL8SReWGstehrahrJh3SdxRO3gRl4AKrzTffvNluu+16cj6B/kOkVMYIfRe0laUE8DrozyEFIT+v82I30UnTGQWHvC+KQ6qQkDCTBgYZ/DWeBwoHA3m7O6z2Or1iYCWFQzr1oIMOSgbG888/v6vnEOhvxA4yDoj+r7vuumbq1KlJAUA8cv19t9ANh7smZxZWOV0mWc1/AoFBBNXhscceS74mXqdOtXPvldLx4x//OM1KQTZmzJiRZnTouyHACgTahSAc48Smm26aetlvsskmKfKX4xT9iII6jW6W01lwLLBe1eTrshkIDAqoGdInCLcyeGnUTlcDdZt0vPHGG0ndUNKrsaFxDsY6fP7zn+/4/x0YLAThmACOOuqotOlvscUWKQVh85cD7WQ/+17U7quesNAyx3l/BtqV3rM/EGhHfw0lr6J/fg3deLvVGK9bpIMx1DNt0q8GdVOmTGnOOuusVH0XCLQbQTgmAIuPznse1H333Tc1yGEq0420E5UrvW4UpG+/FItyQF1XLVaBQD9C1K/BH7Jt8zVLptvoNOnQ94UxnPdMZRrVVvC05557tv3/CgQgCMcEIdUwe/bs5s4770zD3uRApR2Qg34iGxnMsauttlpyskuxGFIVCPQLBAp6UFA29NpZaaWVetr3pFOkw/s0H0oPIZ405a9IlSq8QKBTiCqVNkBpnImya6+9dlocTFWU82UsM1SnX8hGhhw2NUcTKmZZI8xVsURDqkDN0OLf/azJms67rZNee4l2V68gGzwbqs8ED6ecckoiHzxo8QwHOolQONoEC8GFF17YbLnllinloHLFQ0ya7Sey0QpS7Jprrply3Y888kgYSgNVG0NVoajMkkIphWx0QunwXlWkWFMESmeeeWZSaAUQgUAnEYSjjdD2fPr06c26666bTJWifjlS9ez9RjYyqDh6kuRW70hWbsMdCNSgauij89JLL6VW3ozRpc6kaQfp8D4RDmuK37PLLrs0M2fOTKbRQKDTCMLRZpx44ompGdh6662XWp+bweLBZiztN7LRap5VpRNqR6AmVePFF19Mqobna4011ij+OZso6ZD6fP7551PKV2t2FSnalq+//vodO99AoBVBODqw+XqILQx6dPzRH/1R8nFYIGzG/UY2FqR2qOnvRl+SQGAs0KDPrCDlrp4x0X2pqka7SIe/55lU3k5xRTKOPfbYZscdd+z4+QYCGUE4OgCldMbZg3kEFgc5Yc73haUbaiUbw6kd0koPP/xwiqaib0eg19C2W8m6ku4/+IM/SF4Nno0aMRbSwRxq7ZEu0qRQynennXZqDj744K6dbyAAQTg6GO0zYtls99prr+av/uqvEhFZUGOw2snG0Pevc6FDJEm6nqiBNhAYb/qEdwH51TsG0bBZex5rxmhIh3EE/tzfRa4oG5qYnX766V0/30AgCEcHoa79gQceaB588MHmhBNOSLnTPP55KOnoJ7LRCpGk/LjUkigr0iyBbqdPmEJ/+MMfNl/4whdSys9Qwn7BgkgHsvHkk082n/rUp9L0180226z59Kc/3Vx11VUxiDHQE9RN8SuA0lGkwzwS3fx08bMI2HiVznrw+5VsZHiPzLNIh7boIk1zKbSKrj3KDJQJSoYGXhrTudfcfzX5NCbapwOp1wvI1xp7GTHPuH7XXXdFr41AzxCrfRfARHnvvfem6hWd/ZTPWgyUkFJBLIz9SjaGpll0bnzzzTcT8TBp19A70VdEXIF2gDFb2ac0nmieumbCa7+jlXQIZL7//e83Sy65ZLPCCiukLqICGp2BB+FaBMpFEI4uQTrlvvvuS+WyonrucLMaRGByqv1ONlohl6yTozI9CyGfC1mYGtSt4ViB/oK5IO4jpa75/iqteVc3SEeej0JN1Q1Ynw3dU6010dgr0GsE4egiNBa65557mg022CDlW0mdon6RPqVjkKJ8xEIEKr/8yiuvpIhMZOqa8H0E8QiMBoYlMoTyaJhrZJbRoG6s0iivvvpqIloM2pQNqVvKxic/+clen14gEISj2xB5yaNutNFGzamnntrsvvvuKb3S6ukYJCAWptBSNxAvaSYkTM5d/5IgHoHhoLwc0aBoSFOK5pHXQb1fGEStIzmNssMOOyRzOsOs6xIIlIAgHD2Asry777672XjjjZtFF1001cRbLJTM8jj0q7ltQfCemfv4OV5++eXk8ZBuQTwMxxs0IhYY2aPBZI2cqjYZdKLRWo0iLYts7Lrrrs1zzz2Xmpu1Y3hkINAuBOHoIelgJN1www1T3tUiwfCldJTfY1Cd5PwtctGIB3lYmoWpFhnRUCyqWgZ3U6VmUDVsrJ4RXo1BJhp5Fox1QxpSYy9pFJ4NaRQpy0CgJMTq3eP0yv3335+a8ci/7rvvvmlEtGhFvwDqx6CCoiHVQt34j//4j0Q8fvCDH6Sfff7znw+3/YA07OJ1oma4BygZysulDQL/265cgOJ5cGy//fbJC8UgGp6NQIkIwlGAkXTOnDnJSGqs/UknnZQiFO2XlcoO+sYqgiULi9YssOR0w+G48C2yYTDtP1D8jE9HNPSOoGwpb+2nhl0TheGIUrBM1p4FnjAzUpAN3wcCJSIIRwHQ/hvBMOPAQnLZZZelNALDF6UjIrr/JR4kdAd5XZ8FxIz3w4ZE+RhkRagfYOaHz1XVkooThFKzuEijzQ8ep7lz584blyA9qzIH2QhSFigZ8SQXgmWXXTYZR/XpmDx5chr+ZgOVXpGvjqjlN1DFom+Ha6aXh00KQaN22KBI77FJ1QGpRGoGksGPoFqJsqdMPJSrD6aY+FiUACv/db1WX3319PWMGTNStU4gUDJiVS4IUgec5cba60qqkmX55ZdPjXxEMxbjwPw+D9fMoZU1k6nFmENfCob/Q+QXFS7llbTyZPi89IugWlEzfI6DapYeDdlQueWaaRQo3cT7ZRr1WWedFfd4oArEXboAvP7668306dOTXP/hD384Rc7SHlSHbbbZJqkRrWAAFZUdf/zx8/3c937HaCB9YvYK0xeDnN+nVFb6QHRj4Ql8ECR4bdLl+plxfV6umcF5zz//fNrYRprSG+iOL0NXXb0h3N+6glLtEGsbqLRYkI2Rr53rhqRZE9zX0igHHXRQc/bZZ4+LbCxobQNVYtaeocdpp53WgXcYGBSEwrEATJkyJU13veaaa1KpJn+FwWNmgdjYDjnkkLQYZPleDlVUrSStFX7u748lZTBr1qw01p6p1AJtUVbBwhhm6uUg9uoYDSyKOi06lAkiGqJCBjtkDZGzuEq/xAbXWfDaSHk5fA5IIeVptdVWayZNmtTr06vmGlI4Pe+um6aBSl8vuuiiZurUqR1Z2zK+8Y1vNNOmTZvv3y2xxBITej+BwUYQjoWMtUYe5ElBFMZPAaT79957L0UejJ3g7x5xxBHNwQcfnHLTPBheLRgGto0FFphLL700qSPIBk+H80A6GEydB2ISWDD5EEU7kI233norbX7Ka3V2lW5BPpAQm2F4BiYG19hzY/NynZlA9cxwjaUGw9A4NqjK8rzn63fGGWc0p5xySnPzzTen/j2dWttayUV0KS0Xr732WnP44YenGV1SynoV8fJQxEtFEI4RYHF0zJ49OxEKsmMryPdyztQLf87ApS0338UFF1yQmvFQNRhBdUcci8KRYQM84YQT0v8lIhFx7Lfffs33vve95PWwQDDXBUZ3LW1+eVy3ckubIpn6hRdeSJ8vApKPICCjIxgUN+qFI0fH1KOll146EbkwMo4PGpxJBbpXXUetyq0liAKFs5NrW6B8vPXWWykQta8gHIIqvYpK3w9+69dhChgRt956a5IUyZorrrhiigZ4N7QPBouAXKiUh66hhx56aDJ27bHHHikyQBaOPfbY5vrrr0/9IyYCKYHNNtss5bwvueSSxG5VZmjtLI0TGD+kxTzAedMUWVKnmBmRD74a0V4vjXmMlu4x/Vp6lQpynRCM1msFrlG+VlJZQdTGDz4ja4iqHeXyghXPvfvxtttuS2SuG2sbDwcyPvRes7nxSA06qHfu9Vu+t1zz0SUmnt7++bu/arb8y/+Tnq/RpBsp6fw2CGhNCMKxEEiJ+FB19POwkTivvPLKlD/1esABB6QF+Oijj05Rs9zqjTfemHppPPbYYynvah7IVVddNeFzYbrbfPPN08Zn8fEqpWNxEAnFQt8ZAkKC9phkbwgC0m0S0m3CkcmF9+7wNRVPNCyKCoLRfvBUeJ6tOUpd9drwvGvqdfHFF7ddLVrQ2mZNEVAN9YmolItUbucIxyuvvDIf4fC8DadAWe+ZfPnT7DM+F56/oZ6b0hCEY4zYbbfdmoceeihJnpz28maY5v77758Ujq222iqpDyRlBIFJ7uqrr05th9u1SJgwq9smSVQvCh4RHUlFKiGPth8eEX6doRuwaBTpIE+7/lmqdrSbFHSCcHhf7idE2ftz+Bqx8OpeyuTKYYGNzaYzcD9RMd07pkYLWmwgqkL22WefrpC61rUN4RBMOQLdIxxDcdxxx32g6hFyk0OVSltuuWW6d+xBfH9MxaUiPBxjBGZpowekQjrjzjvvTL0fsgEL23Sojxe1jMe/MRLcaJzlfrfSOBEJf0ce2GSxEnkG2geLPWLh0Fgsb9Y2ZQtP3rApIr4mg4tGbR4+r9bDJp6/Rhw6tZE4P+eBUOTX1oOU7px/9atfJb9KJkxywTYbi2l0bu08fE56apiBQglVMUIuZ/674447mrXXXrsna1ugN3hlGIVjOAh2mEOZiEGfJl60IByVgpSOOe6yyy4pr2mzIXdyim+66abz/h4yQe6kdLQOTEI+mEezubSdsEkpybVAbLfddkkKPfXUU5OyQh61cPl/Q+ruHFzbrGYMp0ZktcDGbsMXwareyBu+jd7vUFI99FChlF/zZ5iFSIuKn/neoiP1MdIBSM1QwoOQUiqyMhMl1r2B+0SgIH3HvOkz08yLMuqZtqb0cm2jdDFWtwI5jZLmzmHSpEmjur6Uc+t/K3Rf5s0pGUE4RoDFWB71nHPOSakTiwM1Q47sqKOOmo9wXHvttUltaAXCIUpBCDoF8jopbeutt04NgWbOnJleLR6ibWpHRKndh02ez2FBjnH3E/VrQYQBochEA0HJvzsThExMRjqQiyATZYIxWWm2dcbaoeqMZ4Ip/Pbbb+9ov4vRrm0M745WMMSLogO9xSqrrJLK+1uhVYPy5pIRHo4+gAiafwTxueKKK5KrneFMBQ1fR7uc7YFmoKtUAhOH5dYmr8JsueWWSxuEHP15552XFFEmzVAmy0evq1SeffbZ1BRSJSTfIEUMYbz88svb5hfsBELh6AOIZM8///yktpBJGUp5PEjnbkR5YYtbzFsIBHobGEih2KxsFlJua665ZkqpMH7rjBuoC2t/5H+aSR+ZOOF45//+r4I5WiiZpoQdeeSRqT+TWUTnnntu0WQDYgfqIyihs6A5TNzkH1CWKw+r/M1CFwgEug/PoCaBSL8Uiso2DbwEAoKCIBuBsUK5tOZwPGH/8i//UnxJLATh6DOoMEAu1GhjwVznSAe1Q55YN7oYYhYIdAd8OrwaDiY/jfpEpSJRKRQpUEbMQGAQECmVPoQcP8e5FMtOO+2UynZV0nA2Uz+44Hk7YhBTINBZVUO5vB4mUieiUFEpQy8CoposEBgkhMLRx1Bip00ykGznzJmT5Fxqh+501I7wDAcC7Vc1zFXKqoYeCRp4qSCbPHnyvNL1QGDQEApHn0OFyi233JImTOpc6Gvt16kdFkXzEiyIoXYEAu1RNQxXVGlA1VC6uMkmmyRiz7fhWQsEBhWhcAwAlNnp1UHt4N+gdjz88MMp5WJ6KrVDDXfu9RAIBMYGxr3s1WAElbKkaqhG0UxLGWOQjcCgIxSOAYJOqLNmzUoNwqZPnz5P7dAJVd+Ol19+uVl++eXn65gaCARGBgKvNbm+GtTErGogGf4sVI1A4DcIhWMA1Q5jqKkdullSO+6+++5UyaJfhy6lyvR+/vOf9/pUA4GioUU4dfDHP/5xqgjj1zjppJOSqiGN4lkKshEI/AZBOAYUVAx99ykc2hlrxW52gmFRqlw0DxOpRZolEBg+ffJP//RPaZgfI/a3vvWtRDg8N1QNzZjaPU4+EKgdQTgGXO0wxIkcrDe/AVKHHXZY6lonSmMo1azI0LFAYNAhRaItOf+Tr9daa61kBt1www3TjBEtyiOFEgiMjCAcgTTMicFNjw5jspdddtl5aZall146RXNaL0en0sAgAqlAuh999NEPpE90CzXVlel65513jvEBgcACEE9HYB646x988MGUZjn66KMT4UAyRHLGmctXK6UNf0dgkKa6Ui3c9wat5fSJUeDUP3924YUXLnAycCAQ+F8E4Qh8IM2yxRZbpK6Iq666aprJcuCBB85z4Iv25KlfeOGF1OAoEOhHINpUvaeeeqr5+Mc/nrxNfqaZ3p577pk8GohHpE8CgdEjCEdgxDTLqaeemlozk5PJxr73iogwmD700EPJWKraJRDoBxh4KLVIzaPqZRO1EQF8TlIo7nlj5CN9EgiMDfHEBBaIP/3TP03VLIxy5GOls1deeWWK7L7yla8kMqJlul4EMRQuUPPoeKqd+1xlFjWPqnfwwQen3jSLLbZY8mmYURTpk0BgfAjCERgVkAuplBtuuKG57rrrEhG56667UjXLCius0Pzbv/1bUjy4+EPxCNSkaBjx7d6l2pl3Ys5JVvNUavFvINlKYAOBwPgRhCMwJn/HeuutlxZgVS0nnnhiGretUZg26SLBV199NRlPldqGxyNQKpALqRPqHNKBaFDtrr766lSZxZ/hz2677bZkEA0EAhNHEI7AmCF3vd122yVSoUW6HgRmRzz++OMpz73SSiulLoyIB5nagh4IlIC33347zTVR4gqqTlRnXXbZZc3nPve55tprr00KngoUfWkCgUD7EIQjMG7opLjPPvuk3gTTpk1rjjjiiLR4z549O5EO5OP9999PkSLz6XvvvdfrUw4MIFRWvfHGG6nihHKx6KKLJjOoFMnpp5/efPazn23uvPPOlDaheqhEoeYFAoH2IghHYMLg5t97772bH/3oR81xxx3XnHfeealbKXlagyRt0xlKRY1PP/10MpraBAKBToKX6KWXXkoVJ9J+zJ7rrLNO87u/+7vN4YcfnvpqmHeCbCAiG220URCNQKCDCMIRaBuUD+64447JhHfJJZc0N998c1rUzzrrrPQqqlxyySVTFKkagMH0l7/8Za9PO9BnoKoZTiilx8wsVfLVr341/Zn0H8PzT3/600Qy7r///tTgLohGINB5BOEIdMTjYTw3NWPWrFlJyiZb77///slIavGXennttdeaBx54IBGQt956K1SPwLhBQVNRYqCaairdcL/85S8nMqGJnfuRKfRDH/pQM3fu3ESG+Y4CgUD38KEu/l+BAYOoUT8DBw+HlumMeGZR7LvvvmkTsDHwgCAleh1QQj7zmc/EpM3AqNWMV155JaVO3G/uH825ENsZM2ake453iLJxxRVXNH/4h3/Y61MOBAYWv/XrCCsDXZ5NwdthI9BsabfddkuHjUBJ7csvv9z87Gc/S02XllpqqeaTn/xks8giizSDDqmne++9t9lggw1S6mqQ4b6hjrlfVJ24RxAN94xBg5deemlz0003pZJtxHbKlClBYANthTb3vEBv/fCPm0lLTHx9eufdXzUf+9N/S2vfpEmTmn5FKByBruL3fu/3mkMOOSTNZ5FjtzlosCTNIgrV58OGYjMxuVa6BRlRUfD7v//7kWsfYAMo34X74r/+67+SARQhpZgpu545c2a6lxiX+YgoZghHIBAoB0E4Aj0B1UL5oYMkftVVVzV77bVX84tf/KLZZpttmu233z6lYjB+f66agDcE8XCIAoJ89L8vQzkrkvGTn/wkVUMhGTrb8mLcd999zWGHHZY63v7FX/xFGqq27bbbNksssUSvTz0QCAyDSKkEitpgNA/TPv2WW25Jigbi4aCCvP7662nzYQ4kkX/qU59Kh7/X74O0BiWlwntBwaBmKJ9GTDPJRCSYQq+//vpk+iRp5/sjuoEGuolIqYwPQTgCRYLScc899yTy4ZU8vsMOOzRbb711IhgiX5uSg9wuf498yOf3Y76+nwkH42f+LHWoRSwymVRGrcrEfeCw0LsH3Avm+ITKFegFgnCMD0E4AlUYTZXX2nDk5m00m2yySTooHx7SvGFZCPhEEI9PfOITaVHoh02pnwiHaaw+U0oGFUMVCRKZScaHP/zh1KhLQy7pkhdffDF91kgGj08/EspAXQjCMT4E4QhUBX6Ou+++O21G+i3oaGoz2njjjZu//uu/ThtzluNFy8jGxz/+8bShOWr1ftRMODLB8HlQpvRcQRp8Hp/+9KcTMZRKMbHV5+rzpVptuOGG6XNFMvp5EQ7UhyAc40MQjkDVEz/zJiXt4lbOm5QW1qR5D3De6GomIDURDgQDqXDNhxIMh+uv5wo/jvfk89N5VnO4rFxRsRhDA4ESEYRjfAjCEegL2OR0NiXB28B+8IMfpE6SpoE6jB/PBCSTD4fb38LBK5Bf/b3SSEiphMN1d031w8iviKC0yFCCoXeGuSZm6pjWquEbYoEgIhnLLrtsr99OIDAqBOEYH4JwBPoSeXOzsTnMbWklIKuuumqz+FWdJzoAAAXtSURBVOKLJ/+ATTJvmA6wmLQSEX+3lw3ISiAc0h5Drxdy4XxaCZtDCatS1nz9Hf/+7//efPGLX5z3GZgm3M+La6B/EYRjfAjCERhIAmKolxbYK620UtoEHXo52Dxtojlad1hceApsooiHaN1rPvy802W53SIcFAtVI4hFPvL3CAflopVYOIx7d800adPp08H06Rq3EgwqUz8vpoHBQRCO8SEIR2BgCcgTTzwxb4P87ne/mzpWLr/88mmTpIZ49T3/ge6nrZtv62YMSAjiYfN12Jjz1/mYiEIyUcLhMUealBvnw3tq/d5cG9fAebYSqlaC5f+2KLpe+bp51eFTR9hM3szLCQUj0K8ojXCcdtppzZFHHpkGZJ577rlNqQjCEQj8/xuytEsmIHkzRSiMMx/uUF3h39mkkQ+vw23kvvf3mCAREZu2r1sPm3zr9xQTPpJ8UB4oCFQZf9fvc/g5IpGPod87kBXn4M/826FkKH//0Y9+NJEK3/vdKoJ++MMfznfwxkiNaMSVyUU+lCIHAoOAkgjHs88+22y11Vbp362xxhpBOAKBGuHRkBbQeGroxkshseBk8rHMMsukTViZZz4QkkwOpCMy+RhKCIYjDF7zOTh0YbUYmSHSSkQyURlKWIYemVz42r9zPsqHdW3ltfBqcB6lwvvz6jyUHbeSLO9Ta3GN1gKBQUUphOO9995LauzFF1/cnHTSSSkgKZlwRN1ZIDACbMxLL710OoZ70DWkygTEBi1FY+N2KAVFAkT9rSTE96pgKAleW79u/RmVwb+ndDgQEKW/UhV+joD4GVWFf2Lo4fzy1xbHTC4ywcglwoiDVIhzQ5hUjUydOjWRC2QjmmwFAuVi7733Tq0A1l577UQ4SkcQjkBgHEAORBOO4UDNsMln9SAffoaotJKCVnLg67ECIclEZTgCI2JCHpCJTC4cyEb0uggExo933v1/2/p73nnnnfl+LvBwDIebbroppX2lVGpBrDaBQAcgffG5z30uHWMB5YJ5U+rF1/mgZmS1Ix8UCr4L/1dpfUMCgX5GHh75/3zxx237nYsvvniahtyK4447rjn++OM/8Hf5qxhENT70/NeC8HAEAoFAIDBGUDF5odqFX//61x8IHEZSOGbPnt1svvnm81W+CUr8e8GIgKWXfYNGQhCOQCAQCAQqwrvvvtu89NJL8/1s5513bpZbbrnm8MMPTz2FSkSkVAKBQCAQqAhLLLHEB0iFfjnGCJRKNqCz7REDgUAgEAgEIqUSCAQCgUCgGwiFIxAIBAKBQMcRhCMQCAQCgUDHEYQjEAgEAoFAxxGEIxAIBAKBQMcRhCMQCAQCgUDHEYQjEAgEAoFAxxGEIxAIBAKBQMcRhCMQKBivv/56M3369Oazn/1smqlgYNS6667bPPnkk70+tUAgEBgTorV5IFAwpkyZkgZEXXPNNc0f//EfN//5n//ZPPzww82bb77Z61MLBAKBMSE6jQYCheLtt99uPvaxjzWPPvpos/rqq/f6dAKBQGBCiJRKIFAoFl988XQYRW3cdCAQCNSMIByBQKH40Ic+1PzDP/xDSqcsueSSzSqrrNIcddRRzdy5c3t9aoFAIDBmREolECgcv/jFL5onnniiefrpp5v77ruveeaZZ5orr7yymTp1aq9PLRAIBEaNIByBQGXYbbfdmoceeqh56aWXen0qgUAgMGpESiUQqAx/9md/1rz//vu9Po1AIBAYE6IsNhAoFEpft9xyy2aXXXZpVlhhhWaJJZZovv3tbzdnnHFGs+mmm/b69AKBQGBMCMIRCBQKFSpf+cpXmnPOOaf513/91+aXv/xls9RSSzXTpk1L5tFAIBCoCeHhCAQCgUAg0HGEhyMQCAQCgUDHEYQjEAgEAoFAxxGEIxAIBAKBQMcRhCMQCAQCgUDHEYQjEAgEAoFAxxGEIxAIBAKBQMcRhCMQCAQCgUDHEYQjEAgEAoFAxxGEIxAIBAKBQMcRhCMQCAQCgUDHEYQjEAgEAoFAxxGEIxAIBAKBQMfx/wHKagh0M64MyQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "time_series = TimeSeries(\n", + " wind_directions=hybrid_plant.wind._system_model.wind_dirs[0:8760],\n", + " wind_speeds=hybrid_plant.wind._system_model.speeds[0:8760],\n", + " turbulence_intensities=hybrid_plant.wind._system_model.fi.core.flow_field.turbulence_intensities[0]\n", + ")\n", + "\n", + "wind_rose = time_series.to_WindRose(wd_edges=np.arange(0, 360, 3.0), ws_edges=np.arange(2.0, 24.0, 2.0))\n", + "fig, ax = plt.subplots(subplot_kw={\"polar\": True})\n", + "\n", + "hub_ht = int(hybrid_plant.site.wind_resource.hub_height_meters)\n", + "wind_rose.plot(ax=ax,legend_kwargs={\"label\": f\"Wind Speed (m/s) at {hub_ht} m\"})" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Wind Farm Layout Plot\n", + "This plot shows where in space your wind turbines are located in relation to each other. The x- and y-axis are distance measured in meters." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGdCAYAAADnrPLBAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAK5hJREFUeJzt3Q1wVNX9//FvdgPhySRCJZESCDbRgKIgVkGtrZoSKdpaqK0ORTSpjhRUHqRIy0Or1SBarM4IqJMEZiqiztQHUMCIz4qAIIqkhqQQiGKSVs0GrEAg9z/f8+9usxAw+mNz7sm+XzOXm73nZvebS7L72XPPuZvgeZ4nAAAAjgrYLgAAAOD/gjADAACcRpgBAABOI8wAAACnEWYAAIDTCDMAAMBphBkAAOA0wgwAAHBaosSBpqYm2b17t5xwwgmSkJBguxwAANAKel3fPXv2SK9evSQQCMR3mNEgk5GRYbsMAADwLVRXV0vv3r3jO8xoj0z4YCQnJ9suBwAAtEJDQ4PpjAi/jsd1mAmfWtIgQ5gBAMAtXzdEhAHAAADAaYQZAADgNMIMAABwGmEGAAA4jTADAACcRpgBAABOI8wAAACnEWYAAIDTCDMAAMBpcXEFYPhXRUWFFBcXS1VVlWRmZkp+fr5kZ2eLK6jfLuq3i/rhG14cCIVCnv6ouoZ/FBcXe4FAwAsGg1HrkpISzwXUbxf120X98NPrd4L+I3HwQVUpKSkSCoX4bCYfvSPKycmRpqamI9r0Y97Ly8slKytL/Ir67aJ+u6gffnv9ZswMrNCu3aN9cJhuLyoqEj+jfruo3y7qh98QZmCFnqM+Wqegbtd2P6N+u6jfLuqH3xBmYIUOtjvWOyNt9zPqt4v67aJ++A1jZmCF6+esqd8u6reL+tFWGDMDX9Ppj3peWp84gsFg1Fq3+/2JhPrton67qB9+Q88MrKqsrDRPHuHrPBQUFDj1REL9dlG/XdQPv7x+E2YAAIAvcZoJAADEBcIMAABwGmEGAAA4jTADAACcRpgBAABOI8wAAACnEWYAAIDTCDMAAMBphBkAAOA0wgwAAHAaYQYAADgt5mHmk08+kV//+tfSo0cP6dy5swwcOFDefffdSLt+NNTs2bPl5JNPNu25ubnm49mb+/zzz2XMmDHmcxlSU1PNh4Ht3bs31qUDAIB4DzNffPGFXHDBBdKhQwdZuXKllJWVyV/+8hc58cQTI/vMmzdPHnzwQVm0aJGsW7dOunbtKnl5ebJv377IPhpktm7dKqWlpbJixQp5/fXX5cYbb4xl6QAAwBEx/dTs22+/Xd566y154403WmzXh+7Vq5dMnTpVbrvtNrNNPxkzLS1NFi9eLFdffbX84x//kAEDBsiGDRvknHPOMfusWrVKfvKTn8jHH39svv/r8KnZAAC4xxefmv3cc8+ZAHLVVVdJz549ZfDgwfLoo49G2nfs2CE1NTXm1FKYFn3eeefJ2rVrzW1d66mlcJBRun8gEDA9OS3Zv3+/OQDNFwAA0D7FNMxs375dFi5cKNnZ2bJ69WoZP3683HLLLbJkyRLTrkFGaU9Mc3o73KZrDULNJSYmSvfu3SP7HK6wsNCEovCSkZERo58QAAC06zDT1NQkZ599ttx9992mV0bHudxwww1mfEwszZgxw3RJhZfq6uqYPh4AAGinYUZnKOl4l+b69+8vu3btMl+np6ebdW1tbdQ+ejvcpuu6urqo9oMHD5oZTuF9DpeUlGTOrTVfAABA+xTTMKMzmcrLy6O2bdu2Tfr27Wu+7tevnwkka9asibTr+BYdCzNs2DBzW9f19fWycePGyD4vv/yy6fXRsTUAACC+JcbyzidPniznn3++Oc30y1/+UtavXy+PPPKIWVRCQoJMmjRJ/vznP5txNRpuZs2aZWYoXXnllZGenMsuuyxyeqqxsVEmTpxoZjq1ZiYTAABo32I6NVvpdWF0DIteCE/DypQpU0wwCdOHnzNnjgk42gNz4YUXyoIFC+TUU0+N7KOnlDTALF++3MxiGj16tLk2Tbdu3VpVA1OzAQBwT2tfv2MeZvyAMAMAgHt8cZ0ZAACAWCPMAAAApxFmAACA0wgzAADAaYQZAADgNMIMAABwGmEGAAA4jTADAACcRpgBAABOI8wAAACnEWYAAIDTCDMAAMBphBkAAOA0wgwAAHAaYQYAADiNMAMAAJyWaLsAxLeKigopLi6WqqoqyczMlPz8fMnOzhZXUL9d1G8X9cM3vDgQCoU8/VF1Df8oLi72AoGAFwwGo9YlJSWeC6jfLuq3i/rhp9fvBP1H2rmGhgZJSUmRUCgkycnJtsvBf98R5eTkSFNT0xFtgUBAysvLJSsrS/yK+u2ifruoH357/WbMDKzQrt2EhIQW23R7UVGR+Bn120X9dlE//IYwAyv0HPXROgV1u7b7GfXbRf12UT/8hjADK3Sw3bHeGWm7n1G/XdRvF/XDbxgzAytcP2dN/XZRv13Uj7bCmBn4mk5/1PPS+sQRDAaj1rrd708k1G8X9dtF/fAbemZgVWVlpXnyCF/noaCgwKknEuq3i/rton745fWbMAMAAHyJ00wAACAuEGYAAIDTCDMAAMBphBkAAOA0wgwAAHAaYQYAADiNMAMAAJwW0zDzxz/+0XzORfNFLyEdtm/fPpkwYYL06NFDunXrJqNHj5ba2tqo+9i1a5eMHDlSunTpIj179pRp06bJwYMHY1k2AABwSGKsH+D000+Xl1566X8PmPi/h5w8ebI8//zz8tRTT5mL4kycOFFGjRolb731lmk/dOiQCTLp6eny9ttvy6effirXXnutdOjQQe6+++5Ylw4AABwQ8zCj4UXDyOH0an56GemlS5fKJZdcYraVlJRI//795Z133pGhQ4fKiy++KGVlZSYMpaWlyaBBg+TOO++U6dOnm16fjh07xrp8AAAQ72Nm9NNJe/XqJaeccoqMGTPGnDZSGzdulMbGRsnNzY3sq6eg+vTpI2vXrjW3dT1w4EATZMLy8vLM5Y23bt161Mfcv3+/2af5AgAA2qeYhpnzzjtPFi9eLKtWrZKFCxfKjh075Ac/+IHs2bNHampqTM9Kampq1PdocNE2pevmQSbcHm47msLCQnPaKrxkZGTE5OcDAADt/DTTiBEjIl+feeaZJtz07dtXnnzySencuXPMHnfGjBkyZcqUyG3tmSHQAADQPrXp1GzthTn11FPNx67rOJoDBw5IfX191D46myk8xkbXh89uCt9uaRxOWFJSkvl0zeYLAABon9o0zOzdu1f++c9/ysknnyxDhgwxs5LWrFkTaS8vLzdjaoYNG2Zu63rLli1SV1cX2ae0tNSEkwEDBrRl6QAAIB5PM912221yxRVXmFNLu3fvljlz5kgwGJRrrrnGjGUpKCgwp4O6d+9uAsrNN99sAozOZFLDhw83oWXs2LEyb948M05m5syZ5to02vsCAAAQ0zDz8ccfm+Dy2WefyUknnSQXXnihmXatX6v7779fAoGAuViezkDSmUoLFiyIfL8GnxUrVsj48eNNyOnatauMGzdO7rjjjliWDQAAHJLgeZ4n7ZwOANaeIL22DeNnAABoX6/ffDYTAABwGmEGAAA4jTADAACcRpgBAABOI8wAAACnEWYAAIDTCDMAAMBphBkAAOA0wgwAAHAaYQYAADiNMAMAAJxGmAEAAE4jzAAAAKcRZgAAgNMIMwAAwGmEGQAA4DTCDAAAcBphBgAAOI0wAwAAnEaYAQAATku0XQDiW0VFhRQXF0tVVZVkZmZKfn6+ZGdniyuo3y7qt4v64RteHAiFQp7+qLqGfxQXF3uBQMALBoNR65KSEs8F1G8X9dtF/fDT63eC/iPtXENDg6SkpEgoFJLk5GTb5eC/74hycnKkqanpiLZAICDl5eWSlZUlfkX9dlG/XdQPv71+M2YGVmjXbkJCQottur2oqEj8jPrton67qB9+Q5iBFXqO+midgrpd2/2M+u2ifruoH35DmIEVOtjuWO+MtN3PqN8u6reL+uE3jJmBFa6fs6Z+u6jfLupHW2HMDHxNpz/qeWl94ggGg1Fr3e73JxLqt4v67aJ++A09M7CqsrLSPHmEr/NQUFDg1BMJ9dtF/XZRP/zy+k2YAQAAvsRpJgAAEBcIMwAAwGltFmbmzp1rprxNmjQpsm3fvn0yYcIE6dGjh3Tr1k1Gjx4ttbW1Ud+3a9cuGTlypHTp0kV69uwp06ZNk4MHD7ZV2QAAwOfaJMxs2LBBHn74YTnzzDOjtk+ePFmWL18uTz31lLz22muye/duGTVqVKT90KFDJsgcOHBA3n77bVmyZIksXrxYZs+e3RZlAwAAB8Q8zOzdu1fGjBkjjz76qJx44omR7TqYR0eRz58/Xy655BIZMmSIlJSUmNDyzjvvmH1efPFFKSsrk7/97W8yaNAgGTFihNx5553y0EMPmYADAAAQ8zCjp5G0dyU3Nzdq+8aNG6WxsTFqu17EqE+fPrJ27VpzW9cDBw6UtLS0yD55eXlmdPPWrVuP+pj79+83+zRfAABA+5QYyztftmyZbNq0yZxmOlxNTY107NhRUlNTo7ZrcNG28D7Ng0y4Pdx2NIWFhfKnP/3pOP0UAAAgLntmqqur5dZbb5XHHntMOnXqJG1pxowZ5jRWeNFaAABA+xSzMKOnkerq6uTss8+WxMREs+gg3wcffNB8rT0sOu6lvr4+6vt0NlN6err5WteHz24K3w7v05KkpCRzcZ3mCwAAaJ9iFmYuvfRS2bJli2zevDmynHPOOWYwcPjrDh06yJo1ayLfox/upVOxhw0bZm7rWu9DQ1FYaWmpCScDBgyIVekAAMAhMRszc8IJJ8gZZ5wRta1r167mmjLh7fo5GFOmTJHu3bubgHLzzTebADN06FDTPnz4cBNaxo4dK/PmzTPjZGbOnGkGFWvvCwAAQEwHAH+d+++/33xKqV4sT2cg6UylBQsWRNr1U0xXrFgh48ePNyFHw9C4cePkjjvusFk2AADwET5oEgAA+BIfNAkAAOICYQYAADiNMAMAAJxGmAEAAE4jzAAAAKcRZgAAgNMIMwAAwGmEGQAA4DTCDAAAcBphBgAAOI0wAwAAnEaYAQAATiPMAAAApxFmAACA0wgzAADAaYQZAADgNMIMAABwGmEGAAA4jTADAACcRpgBAABOI8wAAACnEWYAAIDTCDMAAMBphBkAAOA0wgwAAHBaou0CEN8qKiqkuLhYqqqqJDMzU/Lz8yU7O1tcQf12Ub9d1A/f8OJAKBTy9EfVNfyjuLjYCwQCXjAYjFqXlJR4LqB+u6jfLuqHn16/E/QfaecaGhokJSVFQqGQJCcn2y4H/31HlJOTI01NTUe0BQIBKS8vl6ysLPEr6reL+u2ifvjt9ZsxM7BCu3YTEhJabNPtRUVF4mfUbxf120X98BvCDKzQc9RH6xTU7druZ9RvF/XbRf3wG8IMrNDBdsd6Z6Ttfkb9dlG/XdQPv2HMDKxw/Zw19dtF/XZRP9oKY2bgazr9Uc9L6xNHMBiMWut2vz+RUL9d1G8X9SOuemYWLlxolvD5x9NPP11mz54tI0aMMLf37dsnU6dOlWXLlsn+/fslLy9PFixYIGlpaZH72LVrl4wfP15eeeUV6datm4wbN04KCwslMbH1l8ihZ8a/KisrzZNH+DoPBQUFTj2RUL9d1G8X9SPWWvv6HdMws3z5cpN2NQXrwyxZskTuvfdeee+990yw0ZDy/PPPy+LFi02xEydONMn4rbfeMt9/6NAhGTRokKSnp5vv+/TTT+Xaa6+VG264Qe6+++5W10GYAQDAPb4IMy3p3r27CSa/+MUv5KSTTpKlS5ear9VHH30k/fv3l7Vr18rQoUNl5cqVcvnll8vu3bsjvTWLFi2S6dOny7/+9S/p2LFjqx6TMAMAgHt8N2ZGe1n0dNKXX34pw4YNk40bN0pjY6Pk5uZG9tEBWX369DFhRul64MCBUaed9FSU/nBbt2496mPpKSvdp/kCAADap5iHmS1btpixLklJSXLTTTfJ008/LQMGDJCamhrTs5Kamhq1vwYXbVO6bh5kwu3htqPRMTWa5MJLRkZGTH42AAAQB2HmtNNOk82bN8u6devMGBkdwFtWVhbTx5wxY4bpkgov1dXVMX08AADQjj81W3tfwqPDhwwZIhs2bJAHHnhAfvWrX8mBAwekvr4+qnemtrbWDPhVul6/fn3U/Wl7uO1otBdIFwAA0P61+XVm9CJFOqZFg02HDh1kzZo1kTa9UJFOxdYxNUrXepqqrq4usk9paakZBKSnqgAAABJjfbpHrymjg3r37NljZi69+uqrsnr1ajOWRef0T5kyxcxw0oBy8803mwCjM5nU8OHDTWgZO3aszJs3z4yTmTlzpkyYMIGeFwAAEPswoz0qel0YvT6MhpczzzzTBJkf//jHpv3+++8315UZPXp01EXzwvQaNStWrDBjbTTkdO3a1Yy5ueOOO2JZNgAAcAifzQQAAHzJd9eZAQAAiAXCDAAAcBphBgAAOI0wAwAAnEaYAQAATiPMAAAApxFmAACA0wgzAADAaYQZAADgNMIMAABwGmEGAAA4jTADAACcRpgBAABOI8wAAACnEWYAAIDTCDMAAMBphBkAAOA0wgwAAHAaYQYAADiNMAMAAJxGmAEAAE4jzAAAAKcRZgAAgNMIMwAAwGmEGQAA4DTCDAAAcBphBgAAOI0wAwAAnEaYAQAATku0XQDiW0VFhRQXF0tVVZVkZmZKfn6+ZGdniyuo3y7qt4v64RteHAiFQp7+qLqGfxQXF3uBQMALBoNR65KSEs8F1G8X9dtF/fDT63eC/iPtXENDg6SkpEgoFJLk5GTb5eC/74hycnKkqanpiLZAICDl5eWSlZUlfkX9dlG/XdQPv71+x3TMTGFhoXz/+9+XE044QXr27ClXXnml+SVpbt++fTJhwgTp0aOHdOvWTUaPHi21tbVR++zatUtGjhwpXbp0Mfczbdo0OXjwYCxLR4xp125CQkKLbbq9qKhI/Iz67aJ+u6gffhPTMPPaa6+ZoPLOO+9IaWmpNDY2yvDhw+XLL7+M7DN58mRZvny5PPXUU2b/3bt3y6hRoyLthw4dMkHmwIED8vbbb8uSJUtk8eLFMnv27FiWjhjTc9RH6xTU7druZ9RvF/XbRf2IqwHAq1atirqtIUR7VjZu3CgXXXSR6TbSBLx06VK55JJLzD4lJSXSv39/E4CGDh0qL774opSVlclLL70kaWlpMmjQILnzzjtl+vTp8sc//lE6duwYyx8BMaKD7Y71zkjb/Yz67aJ+u6gfvuO1oYqKCjOQZ8uWLeb2mjVrzO0vvvgiar8+ffp48+fPN1/PmjXLO+uss6Lat2/fbr5v06ZNLT7Ovn37zGCh8FJdXc0AYJ/Ztm2bGWyn/y+HL7pdf1f8jPrton67qB9+GwDcZteZ0YFWkyZNkgsuuEDOOOMMs62mpsb0rKSmpkbtqz0w2hbeR28f3h5uO9pYHR0wFF4yMjJi9FPh29Lpj9orp4PtgsFg1Fq3+33wHfXbRf12UT/8ps1mM40fP15Wrlwpb775pvTu3dts09NL119/vezfvz9q33PPPVcuvvhiueeee+TGG2+UnTt3yurVqyPt//nPf6Rr167ywgsvyIgRI454LL2/5vepo6E10DCbyX8qKyvNk0f4Og8FBQVOPZFQv13Ubxf1wy+zmdokzEycOFGeffZZef3116Vfv36R7S+//LJceuml8sUXX0T1zvTt29f04ujgYB3o+9xzz8nmzZsj7Tt27JBTTjlFNm3aJIMHD/7ax2dqNgAA7vHF1GzNSRpknn76aRNcmgcZNWTIEOnQoYOsWbMmsk2nbutU7GHDhpnbut6yZYvU1dVF9tGZUfpDDRgwIJblAwCAeJ/NpNOy9VSS9srotWbCY1w0ZXXu3NmstVtvypQp0r17dxNQbr75ZhNgdCaT0qncGlrGjh0r8+bNM/cxc+ZMc99JSUmxLB8AADggpqeZjjb1TadfX3fddZGL5k2dOlUef/xxM84lLy9PFixYIOnp6ZH9dcyMjrl59dVXzViZcePGydy5cyUxsXVZjNNMAAC4x1djZmwjzAAA4B5fjJkBAACINcIMAABwGmEGAAA4jTADAACcRpgBAABOI8wAAACnEWYAAIDTCDMAAMBphBkAAOA0wgwAAHAaYQYAADiNMAMAAJxGmAEAAE4jzAAAAKcRZgAAgNMIMwAAwGmEGQAA4DTCDAAAcBphBgAAOI0wAwAAnEaYAQAATiPMAAAApxFmAACA0wgzAADAaYQZAADgNMIMAABwGmEGAAA4jTADAACcRpgBAABOI8wAAACnEWYAAIDTCDMAAMBphBkAAOC0mIaZ119/Xa644grp1auXJCQkyDPPPBPV7nmezJ49W04++WTp3Lmz5ObmSkVFRdQ+n3/+uYwZM0aSk5MlNTVVCgoKZO/evbEsGwAAOCQxlnf+5ZdfyllnnSX5+fkyatSoI9rnzZsnDz74oCxZskT69esns2bNkry8PCkrK5NOnTqZfTTIfPrpp1JaWiqNjY1y/fXXy4033ihLly6NZeloIxpei4uLpaqqSjIzM83vSnZ2triC+u2ifruoH77htRF9qKeffjpyu6mpyUtPT/fuvffeyLb6+novKSnJe/zxx83tsrIy830bNmyI7LNy5UovISHB++STT1r92KFQyNyPruEfxcXFXiAQ8ILBYNS6pKTEcwH120X9dlE/2kJrX7+thZl//vOfZtt7770Xtd9FF13k3XLLLebroqIiLzU1Naq9sbHR/NL9/e9/P+pj7du3z/zg4aW6upow4zPbtm0zTxz6/3L4otsrKio8P6N+u6jfLuqH38KMtQHANTU1Zp2Wlha1XW+H23Tds2fPqPbExETp3r17ZJ+WFBYWSkpKSmTJyMiIyc+Ab0+7dnUcVUt0e1FRkfgZ9dtF/XZRP/ymXc5mmjFjhoRCochSXV1tuyQcRs9R//8OuyPpdm33M+q3i/rton74jbUwk56ebta1tbVR2/V2uE3XdXV1Ue0HDx40M5zC+7QkKSnJzH5qvsBfdLDdsd4ZabufUb9d1G8X9cN3bA8Avu+++yLb9JxYSwOA33333cg+q1evZgBwO+D6OWvqt4v67aJ+xNUA4D179pgBvrpoMfPnzzdf79y507TPnTvXDPB99tlnvQ8++MD72c9+5vXr18/76quvIvdx2WWXeYMHD/bWrVvnvfnmm152drZ3zTXXfKM6CDP+pLMGXJ5NQP12Ub9d1I+20NrX7wT9J1a9Pq+++qpcfPHFR2wfN26cLF682JybnDNnjjzyyCNSX18vF154oSxYsEBOPfXUyL56SmnixImyfPlyCQQCMnr0aHNtmm7durW6joaGBjMQWMfPcMrJXyorK81gu/B1HvSiiFlZWeIK6reL+u2ifsRaa1+/Yxpm/IIwAwBA+339bpezmQAAQPwgzAAAAKcRZgAAgNMIMwAAwGmEGQAA4DTCDAAAcBphBgAAOI0wAwAAnEaYAQAATiPMAAAApxFmAACA0wgzAADAaYQZAADgNMIMAABwGmEGAAA4jTADAACcRpgBAABOI8wAAACnEWYAAIDTCDMAAMBphBkAAOA0wgwAAHAaYQYAADiNMAMAAJxGmAEAAE4jzAAAAKcRZgAAgNMIMwAAwGmEGQAA4DTCDAAAcBphBgAAOI0wAwAAnOZMmHnooYckMzNTOnXqJOedd56sX7/edkkAAMAHnAgzTzzxhEyZMkXmzJkjmzZtkrPOOkvy8vKkrq7OdmkAAMAyJ8LM/Pnz5YYbbpDrr79eBgwYIIsWLZIuXbpIcXGx7dIAAIBlvg8zBw4ckI0bN0pubm5kWyAQMLfXrl3b4vfs379fGhoaohYAANA++T7M/Pvf/5ZDhw5JWlpa1Ha9XVNT0+L3FBYWSkpKSmTJyMhoo2oBAEBb832Y+TZmzJghoVAoslRXV9suCQAAxEii+Nx3vvMdCQaDUltbG7Vdb6enp7f4PUlJSWaB/1VUVJixT1VVVWa2Wn5+vmRnZ4srqN8u6reL+uEbngPOPfdcb+LEiZHbhw4d8r773e96hYWFrfr+UCjk6Y+qa/hHcXGxFwgEvGAwGLUuKSnxXED9dlG/XdSPttDa128nwsyyZcu8pKQkb/HixV5ZWZl34403eqmpqV5NTU2rvp8w4z/btm0zTxz6/3L4otsrKio8P6N+u6jfLupHW2nt67cTY2Z+9atfyX333SezZ8+WQYMGyebNm2XVqlVHDAqGO7RrNyEhocU23V5UVCR+Rv12Ub9d1A+/8f2YmbCJEyeaBe2DnqPWnsGW6HZt9zPqt4v67aJ++I0TPTNof3Sw3bHeGWm7n1G/XdRvF/XDbxL0XJO0c3rRPL3ejE7TTk5Otl0O/juLICcnR5qamo5o04silpeXS1ZWlvgV9dtF/XZRP/z2+k3PDKzQ6Y96XlqfOHTqffO1bvf7Ewn120X9dlE//IaeGVhVWVlpnjzC13koKChw6omE+u2ifruoH355/SbMAAAAX+I0EwAAiAuEGQAA4DTCDAAAcBphBgAAOI0wAwAAnEaYAQAATiPMAAAApxFmAACA0wgzAADAaYQZAADgNMIMAABwGmEGAAA4jTADAACcRpgBAABOI8wAAACnEWYAAIDTCDMAAMBphBkAAOA0wgwAAHAaYQYAADiNMAMAAJxGmAEAAE4jzAAAAKcRZgAAgNMIMwAAwGmEGQAA4DTCDAAAcBphBgAAOC1mYeauu+6S888/X7p06SKpqakt7rNr1y4ZOXKk2adnz54ybdo0OXjwYNQ+r776qpx99tmSlJQkWVlZsnjx4liVDAAAHBSzMHPgwAG56qqrZPz48S22Hzp0yAQZ3e/tt9+WJUuWmKAye/bsyD47duww+1x88cWyefNmmTRpkvzmN7+R1atXx6psAADgmATP87xYPoAGFA0h9fX1UdtXrlwpl19+uezevVvS0tLMtkWLFsn06dPlX//6l3Ts2NF8/fzzz8uHH34Y+b6rr77a3NeqVataXUNDQ4OkpKRIKBSS5OTk4/jTAQCAWGnt67e1MTNr166VgQMHRoKMysvLM4Vv3bo1sk9ubm7U9+k+uv1Y9u/fb+6n+QIAANona2GmpqYmKsio8G1tO9Y+Gk6++uqro953YWGhSXLhJSMjIyY/AwAAcCzM3H777ZKQkHDM5aOPPhLbZsyYYbqkwkt1dbXtkgAAQIwkfpOdp06dKtddd90x9znllFNadV/p6emyfv36qG21tbWRtvA6vK35PnrerHPnzke9b535pAsAAGj/vlGYOemkk8xyPAwbNsxM366rqzPTslVpaakJKgMGDIjs88ILL0R9n+6j2wEAAGI6ZkavIaPTqXWt07D1a1327t1r2ocPH25Cy9ixY+X99983061nzpwpEyZMiPSq3HTTTbJ9+3b53e9+Z05fLViwQJ588kmZPHky/3sAACC2U7P1dJReO+Zwr7zyivzoRz8yX+/cudNch0YvjNe1a1cZN26czJ07VxIT/9dhpG0aXsrKyqR3794ya9asrz3VdTimZgMA4J7Wvn7H/DozfkCY8a+KigopLi6WqqoqyczMlPz8fMnOzhZXUL9d1G8X9cM3r99eHAiFQhrYzBr+UVxc7AUCAS8YDEatS0pKPBdQv13Ubxf1w0+v3/TMwNo7opycHGlqajqiLRAISHl5ufksLr+ifruo3y7qR1vx/RWAEd+0a1evS9QS3V5UVCR+Rv12Ub9d1A+/IczACj1HfbROQd2u7X5G/XZRv13UD78hzMAKHWx3rHdG2u5n1G8X9dtF/fAbxszACtfPWVO/XdRvF/WjrTBmBr6m0x/1vLQ+cQSDwai1bvf7Ewn120X9dlE//IaeGVhVWVlpnjzC13koKChw6omE+u2ifruoH7HGRfOaIcwAAOAeTjMBAIC4QJgBAABOI8wAAACnEWYAAIDTCDMAAMBphBkAAOA0wgwAAHAaYQYAADiNMAMAAJxGmAEAAE5LtF1AWwh/YoNeFhkAALgh/Lr9dZ+8FBdhZs+ePWadkZFhuxQAAPAtXsf1M5ri+oMmm5qaZPfu3XLCCSdIQkJCzFOkhqbq6mo+1PI449jGDsc2dji2scOxbf/H1fM8E2R69eolgUAgvntm9AD07t27TR9TfwFs/xK0Vxzb2OHYxg7HNnY4tu37uB6rRyaMAcAAAMBphBkAAOA0wsxxlpSUJHPmzDFrHF8c29jh2MYOxzZ2OLaxkeTgcY2LAcAAAKD9omcGAAA4jTADAACcRpgBAABOI8wAAACnEWa+oblz55qrCE+aNCmybd++fTJhwgTp0aOHdOvWTUaPHi21tbVR37dr1y4ZOXKkdOnSRXr27CnTpk2TgwcPSrz75JNP5Ne//rU5dp07d5aBAwfKu+++G2nX8emzZ8+Wk08+2bTn5uZKRUVF1H18/vnnMmbMGHNxp9TUVCkoKJC9e/dKPDt06JDMmjVL+vXrZ47b9773PbnzzjujPt+EY9t6r7/+ulxxxRXmKqT69//MM89EtR+vY/nBBx/ID37wA+nUqZO5Auu8efMkno9tY2OjTJ8+3TwvdO3a1exz7bXXmiu6N8ex/ea/s83ddNNNZp+//vWv7h5Xnc2E1lm/fr2XmZnpnXnmmd6tt94a2X7TTTd5GRkZ3po1a7x3333XGzp0qHf++edH2g8ePOidccYZXm5urvfee+95L7zwgved73zHmzFjhhfPPv/8c69v377edddd561bt87bvn27t3r1aq+ysjKyz9y5c72UlBTvmWee8d5//33vpz/9qdevXz/vq6++iuxz2WWXeWeddZb3zjvveG+88YaXlZXlXXPNNV48u+uuu7wePXp4K1as8Hbs2OE99dRTXrdu3bwHHnggsg/HtvX0b/YPf/iD9/e//13ToPf0009HtR+PYxkKhby0tDRvzJgx3ocffug9/vjjXufOnb2HH37Yi9djW19fb543n3jiCe+jjz7y1q5d65177rnekCFDou6DY/vNf2fDtF2PXa9evbz777/f2eNKmGmlPXv2eNnZ2V5paan3wx/+MBJm9I+tQ4cO5sUi7B//+If55dE/vPAvVSAQ8GpqaiL7LFy40EtOTvb279/vxavp06d7F1544VHbm5qavPT0dO/ee++NbNPjnZSUZP5oVFlZmTnWGzZsiOyzcuVKLyEhwfvkk0+8eDVy5EgvPz8/atuoUaPMk47i2H57h78wHK9juWDBAu/EE0+Mek7Qv5HTTjvNixfHetFt/qZS99u5c6e5zbH9ekc7rh9//LH33e9+1wQRfWPZPMy4dlw5zdRKehpJTxNp93FzGzduNF2hzbfn5ORInz59ZO3atea2rrWbNC0tLbJPXl6e+TCvrVu3Srx67rnn5JxzzpGrrrrKnHobPHiwPProo5H2HTt2SE1NTdSx1c/oOO+886KOrXZ/6v2E6f76eVzr1q2TeHX++efLmjVrZNu2beb2+++/L2+++aaMGDHC3ObYHj/H61jqPhdddJF07Ngx6nmivLxcvvjiizb9mfwsFAqZUyJ6PBXH9tvRD2AeO3asGfJw+umnH9Hu2nGNiw+a/L9atmyZbNq0STZs2HBEmz6J6X9k+A8rTIOLtoX3aR5kwu3htni1fft2WbhwoUyZMkV+//vfm+N7yy23mOM5bty4yLFp6dg1P7YahJpLTEyU7t27x/Wxvf32201Y1mAdDAbNGJq77rrLnP9WHNvj53gdS13rGKfD7yPcduKJJ0q80/GJOobmmmuuiXwAIsf227nnnnvMcdLn3Ja4dlwJM19DPwL91ltvldLSUjPACcf3nYGm/rvvvtvc1p6ZDz/8UBYtWmTCDL69J598Uh577DFZunSpede1efNmM2hdBwNybOEi7QH/5S9/aQZb65sgfHsbN26UBx54wLxJ116u9oDTTK34T6+rq5Ozzz7bpFJdXnvtNXnwwQfN15pCDxw4IPX19VHfp7OZ0tPTzde6Pnx2U/h2eJ94pDM/BgwYELWtf//+ZuZX82PT0rFrfmz1/6c5nSWmo/Dj+dhq17H2zlx99dXmFKd2J0+ePFkKCwtNO8f2+Dlex5Lnia8PMjt37jRvLMO9Mopj+8298cYb5pjpcIjw65oe26lTp0pmZqaTx5Uw8zUuvfRS2bJli3lnG160N0G768Nfd+jQwYxPCNPzhfqCPGzYMHNb13ofzX8xwn+Qh7+Yx5MLLrjAHKvmdIxH3759zdfafal/EM2PrZ460fO1zY+tBkkNnWEvv/yy6fXRMQvx6j//+Y85t92cnm7S46I4tsfP8TqWuo9Op9UX7ubPE6eddlpcngY5PMjoVPeXXnrJXMahOY7tN6dvbnRKdfPXNe211TdBq1evdvO4tvmQ43ag+Wym8NTsPn36eC+//LKZmj1s2DCzHD41e/jw4d7mzZu9VatWeSeddFLcT83WWQmJiYlmGnFFRYX32GOPeV26dPH+9re/RU15TU1N9Z599lnvgw8+8H72s5+1OOV18ODBZnr3m2++aWadxeP04ebGjRtnZimEp2br9Eu9HMDvfve7yD4c2282m1Evq6CLPm3Onz/ffB2eUXM8jqXOgNJprmPHjjWzS5YtW2b+Htrz9OGvO7YHDhww09x79+5tnjs//fTTyNJ8Bg3H9pv/zh7u8NlMrh1XwsxxCDP6hPXb3/7WTFHT/8if//zn5o+tuaqqKm/EiBFmDr6+qEydOtVrbGz04t3y5ctN0NNprDk5Od4jjzwS1a7TXmfNmmX+YHSfSy+91CsvL4/a57PPPjN/YHodFZ3ufv3115s/5HjW0NBgfkc1ZHfq1Mk75ZRTzDUnmr8AcGxb75VXXjEvCIcvGhqP57HUa9To5Qr0PjSMakiK52OrQbylNl30+8I4tt/8d7Y1Ycal45qg/7RtXxAAAMDxw5gZAADgNMIMAABwGmEGAAA4jTADAACcRpgBAABOI8wAAACnEWYAAIDTCDMAAMBphBkAAOA0wgwAAHAaYQYAADiNMAMAAMRl/w+K6Xvp4bDa9wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,1)\n", + "plot_turbine_points(hybrid_plant.wind._system_model.fi,ax=ax)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.11.11 64-bit ('hopp_v4')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.11" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "c74bd93e7545c41009c08d5ed7affbf327c670204c2ba512a009929a96f58f07" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/examples/09-distributed-midsize-example.ipynb b/examples/09-distributed-midsize-example.ipynb new file mode 100644 index 000000000..affeee564 --- /dev/null +++ b/examples/09-distributed-midsize-example.ipynb @@ -0,0 +1,324 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Distributed Hybrid Plant - Midsize Example\n", + "\n", + "This example is an extension of [Example 08](./08-distributed-residential-example.ipynb). In this example, we consider another distributed wind-hybrid system to supply nearby electrical loads. It highlights various site definition features and their applications in a distributed energy setup. This notebook will guide you through setting up a simulation for a distributed hybrid energy system using HOPP and assess how well the plant design meets the load demand for varying wind and solar resource conditions.\n", + "\n", + "## Hybrid Plant Design\n", + "\n", + "The hybrid plant design in this example includes:\n", + "- 5850 kW-DC of rooftop solar-PV **located within the town**\n", + "- 25 Vestas V47 turbines **located outside of the town**\n", + " + We selected the \"VestasV47_660kW_47\" turbine from the turbines available in the [turbine-models library](https://github.com/NREL/turbine-models). The [Vestas V47](https://en.wind-turbine-models.com/turbines/13-vestas-v47) turbine has a rated power of 660 kW and is grouped in the \"onshore\" category of the turbine-models library. This turbine is used as the [representative technology](https://atb.nrel.gov/electricity/2024/distributed_wind#representative_technology) for the \"midsize\" scale distributed wind turbine in NREL's Annual Technology Baseline (ATB). \n", + "- A 1 MW battery with 4-hours of storage capacity\n", + " + This battery aligns with the [Commercial Battery Storage](https://atb.nrel.gov/electricity/2024/commercial_battery_storage) representative technology in NREL's ATB.\n", + "\n", + "This plant design is represented under the `technologies` section of the [HOPP config input file](./inputs/09-distributed-wind-solar-midsize.yaml)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Import required modules\n", + "\n", + "Start by importing the necessary modules and packaged and setting up our working environment." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/Users/egrant/Documents/projects/HOPP/examples/log/hybrid_systems_2025-03-20T10.59.37.239340.log\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "import os\n", + "import matplotlib.pyplot as plt\n", + "from floris import TimeSeries\n", + "from floris.layout_visualization import plot_turbine_points\n", + "from hopp import ROOT_DIR\n", + "from hopp.utilities.keys import set_nrel_key_dot_env\n", + "from hopp.simulation import HoppInterface\n", + "from hopp.utilities.utilities import load_yaml\n", + "from hopp.tools.dispatch.plot_tools import (\n", + " plot_battery_output, plot_battery_dispatch_error, plot_generation_profile\n", + ")\n", + "\n", + "\n", + "set_nrel_key_dot_env()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Load Inputs\n", + "\n", + "Load the configuration YAML file as `hopp_config`." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "example_dir = ROOT_DIR.parent / \"examples\"\n", + "input_filepath = os.path.join(str(example_dir),\"inputs\",\"09-distributed-wind-solar-midsize.yaml\")\n", + "hopp_config = load_yaml(input_filepath)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Wind and Solar Resource Data\n", + "\n", + "Wind resource data is downloaded from [WIND Toolkit](https://developer.nrel.gov/docs/wind/wind-toolkit/wtk-download/), a dataset within the [Wind Resource Database (or WRDB)](https://wrdb.nrel.gov/data-viewer). WIND Toolkit provides wind resource data for resource years 2007-2014.\n", + "\n", + "Solar resource data is downloaded from [National Solar Radiation Database (NSRDB)](https://nsrdb.nrel.gov) and is available for resource years 1998-2022.\n", + "\n", + "### Different Locations for wind and solar resource\n", + "\n", + "In this example, the wind system is not co-located with the rooftop PV system. Therefore, we need to specify different locations for the wind and solar resource. In the configuration input file, we can specify unique locations and resource years for wind and solar resource. \n", + "\n", + "Wind resource data will be downloaded at the location (`wind_lat`, `wind_lon`) for the resource year `wind_year`. In this example, the wind system is located at (37.7768, -106.033) which is specified in the configuration input file as:\n", + "\n", + "```yaml\n", + "site:\n", + " data:\n", + " wind_year: 2013\n", + " wind_lat: 37.7768 \n", + " wind_lon: -106.033 \n", + "```\n", + "\n", + "Solar resource data will be downloaded at the location (`solar_lat`, `solar_lon`) for the resource year `solar_year`. In this example, the rooftop PV system is located at (38.087, -106.1423) which is specified in the configuration input file as:\n", + "\n", + "```yaml\n", + "site:\n", + " data:\n", + " solar_year: 2018\n", + " solar_lat: 38.087 \n", + " solar_lon: -106.1423\n", + "```\n", + "\n", + "The `site_shape` can be set to values of \"hexagon\", \"circle\", \"square\", or \"rectangle\". The site area can be defined in either kilometers (with the variable `site_area_km2`) or meters (with the variable `site_area_m2`). The site is defined under the `site` section of the configuration input file as:\n", + "\n", + "```yaml\n", + "site:\n", + " data:\n", + " lat: 37.7768\n", + " lon: -106.033\n", + " solar_year: 2018\n", + " solar_lat: 38.087 #for rooftop - center of town\n", + " solar_lon: -106.1423 #for rooftop - center of town\n", + " wind_year: 2013\n", + " wind_lat: 37.7768 #outside of town\n", + " wind_lon: -106.033 #outside of town\n", + " site_details:\n", + " site_shape: \"rectangle\"\n", + " site_area_km2: 0.80\n", + " aspect_ratio: 3.65\n", + " hub_height: 65 \n", + "```\n", + "\n", + "Note that the `hub_height` entry is set to 65 meters because this is one of the hub-heights available for the Vestas V47 wind turbine." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Run Simulation Across Resource Years\n", + "\n", + "Often resource data can be impactful on simulation results. This example shows how to analyze how different resource data may impact meeting the load. We can simulate the hybrid plant performance by looping through wind and solar resource years and saving results for the percent of load that was missed for each simulation.\n", + "\n", + "Wind resource years must be between 2007 and 2014 for WIND toolkit data, we will simulate just a subset of these years for our analysis. We set the variable `wind_years` as `wind_years = np.arange(2010,2015,2)` which results in wind resource years of 2010, 2012, and 2014.\n", + "\n", + "Solar resource years must be between 1998 and 2022 for NSRDB data, we will simulate just a subset of these years for our analysis. We set the variable `solar_years` as `solar_years = np.arange(2000,2022,5)` which results in solar resource years of 2000, 2005, 2010, 2015, and 2020.\n", + "\n", + "**NOTE**: the below code block takes 3-4 minutes to run." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# set years of wind and solar resource years\n", + "wind_years = np.arange(2010,2015,2)\n", + "solar_years = np.arange(2000,2022,5)\n", + "\n", + "# initialize an array of zeros that is the shape (3,5)\n", + "missed_load_per_year = np.zeros((len(wind_years),len(solar_years)))\n", + "\n", + "# loop through wind years\n", + "for wi,wind_year in enumerate(wind_years):\n", + " # update the wind_year in the hopp_config\n", + " hopp_config[\"site\"][\"data\"][\"wind_year\"] = wind_year\n", + "\n", + " # loop through solar years\n", + " for si,solar_year in enumerate(solar_years):\n", + " # update the solar_year in the hopp_config\n", + " hopp_config[\"site\"][\"data\"][\"solar_year\"] = solar_year\n", + "\n", + " # initalize HOPP interface\n", + " hi = HoppInterface(hopp_config)\n", + " # simulate hybrid plant for 1-year\n", + " hi.simulate(project_life = 1)\n", + " #storage the results for the percent of load that was missed\n", + " missed_load_per_year[wi,si] = hi.system.grid.missed_load_percentage\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Visualize the Results\n", + "\n", + "Below is a visualization of the missed load results for each wind and solar resource year combination. In the plot, yellow shading indicates a higher percent of the load is missed and darker green or blue colors indicate that a lower percent of the load is missed. Some findings from these results are:\n", + "\n", + "- A wind resource year of 2014 (the bottom row in the figure below) results in about 5% less missed load than wind resource years of 2010 and 2012. \n", + "- The most missed load (65% missed load) occurs for a wind resource year of 2012 and a solar resource year of 2010. \n", + "- The least missed load (56% missed load) occurs for a wind resource year of 2014 and a solar resource year of 2020. \n", + "\n", + "From this analysis, we find that wind and solar resource years can change the annual missed load by up to 9% and should consider this uncertainity in future interations of this plant design." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGTCAYAAADOcdNFAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAASjlJREFUeJzt3Qm8zHX3wPFz7eu1766L7DslW2VfKpUIjyiKNkWolFZtpMVSikcLWqRUikqSkLJUsqSy7yQtuMh67/xf5/TM/O9cV2Yxy2/m835e3+fe+c1vZn4zyZzO93zPN8HlcrkEAAAgRmWJ9AUAAACEEsEOAACIaQQ7AAAgphHsAACAmEawAwAAYhrBDgAAiGkEOwAAIKYR7AAAgJhGsAMAAGIawQ4AAIhpBDsAAMBnu3fvll69ekmRIkUkd+7cUrt2bfn+++899/fp00cSEhK8RocOHSSSskX01QEAgGPs379fmjVrJi1btpQ5c+ZIsWLFZOPGjVKoUCGv8zS4mTx5sud2zpw5JZIIdgAAgE9GjRolSUlJXoFMhQoVTjtPg5uSJUtKtCDYAQDAgY4dOyYnTpwI+nlcLpdNNWUMVjLLxsyaNUvat28vXbt2lUWLFkmZMmWkf//+ctNNN3mdt3DhQilevLhlfFq1aiVPPPGETXtFSoJL3yUAAHBUoFMhOZ/s3Zca9HPly5dPDh8+7HXskUcekeHDh592bq5cueznkCFDLOD57rvv5M4775SJEydK79697b7p06dLnjx5LOOzefNmuf/+++01li5dKlmzZpVIINgBAMBhUlJSpECBArJ1RbIk5g98rVHKoTSpcP522blzpyQmJp41s5MjRw654IILZMmSJZ5jAwcOtKBHg5nMbNmyRc477zz54osvpHXr1hIJTGMBAOBQGugEE+y4aaCTPtg5k1KlSkmNGjW8jlWvXl3ef//9Mz6mYsWKUrRoUdm0aRPBDgAA8E+qK01SXcE93h+6Emv9+vVexzZs2CDJyclnfMyuXbvkzz//tEApUuizAwCAQ6WJK+jhj8GDB8uyZctkxIgRlqmZNm2aTJo0SW6//Xa7X2t/7rnnHjtn27ZtMn/+fLnqqqukUqVKVtgcKQQ7AADAJw0bNpSZM2fK22+/LbVq1ZLHH39cxo4dKz179rT7tQB5zZo1cuWVV0qVKlWkb9++cv7558vixYsj2muHAmUAABxaoLxnfdmgC5RLV90lBw8e9Klmx6mo2QEAwKFSXS4bwTw+HjCNBQAAYhqZHQAAHCqQIuP0gnmskxDsAADgUBqspBLsnBXBDgAADkVmxzfU7AAAgJhGZgcAAIdiNZZvCHYAAHAo3ewhLcjHxwOmsQAAQEwjswMAgEOlBrkaKzVOCpQJdgAAcCjd8Ty4Xc8lLjCNBQAAYhqZHQAAHIoCZd8Q7AAA4FBpkiCpkhDU4+MB01gAACCmkdkBAMCh0lz/jGAeHw8IdgAAcKjUIKexUuNkGotgBwAAhyLY8Q01OwAAIKaR2QEAwKHSXAk2gnl8PCDYAQDAoZjG8g3TWAAAIKaR2QEAwKFSJYuNwB8fHwh2AABwKFeQNTuuOKnZYRoLAADENDI7AAA4FAXKviHYAQDAoVJdWWwE/niJC0xjAQCAmEZmBwAAh0qTBEkLIm+RJvGR2iHYAQDAoajZ8Q3TWAAAOLxmJ5jhr927d0uvXr2kSJEikjt3bqldu7Z8//33mZ576623SkJCgowdO1YiicwOAADwyf79+6VZs2bSsmVLmTNnjhQrVkw2btwohQoVOu3cmTNnyrJly6R06dISaQQ7AAA4umYniI1Axb/Hjho1SpKSkmTy5MmeYxUqVMg0+zNgwACZO3euXH755RJpTGMBAOBQWpycGsRI+18YkJKS4jWOHz+e6evNmjVLLrjgAunatasUL15c6tevLy+//LL3NaWlyXXXXSf33HOP1KxZU6IBwQ4AAHEuKSlJChQo4BkjR47M9LwtW7bIhAkTpHLlypa1ue2222TgwIEydepUr+xPtmzZ7Hi0YBoLAIC4bSrosp87d+6UxMREz/GcOXNmer5mbTSzM2LECLutmZ21a9fKxIkTpXfv3rJixQoZN26c/PDDD1aYHC3I7AAA4FA6DRXsUBropB9nCnZKlSolNWrU8DpWvXp12bFjh/2+ePFi2bdvn5QrV86yOzq2b98ud911l5QvX14ihcwOAADwia7EWr9+vdexDRs2SHJysv2utTpt2rTxur99+/Z2/IYbbpBIIdgBAMChUl0JNoJ5vD8GDx4sTZs2tWmsbt26ybfffiuTJk2yobT3jo70smfPLiVLlpSqVatKpBDsAADgUO5VVYE/3uXX+Q0bNrT+OcOGDZPHHnvMlp1rw8CePXtKNCPYAQAAPuvYsaMNX23btk0ijWAHAACHSnNlsRH4410SDwh2AABwqHBPYzkVwQ4AAA6VFkCRccbHxwP67AAAgJhGZgcAAIdK3xgw0MfHA4IdAADidruILBIP4uNdAgCAuEVmBwAAh0qTBBvBPD4eEOwAAOBQTGP5Jj7eJQAAiFtkdgAAiNumglkkHhDsAADgUGmuBBvBPD4exEdIBwAA4haZHQAAHEqbAgYzFZUWJzkPgh0AAOJ21/MsEg8IdgAAcKhUSbARzOPjQXyEdAAAIG6R2fFBWlqa7NmzR/Lnzy8JCfERBQMAAuNyueTQoUNSunRpyZIltDkFprF8Q7DjAw10kpKSIn0ZAAAH2blzp5QtWzakr5Ea5FRUqsQHgh0faEZHPbGgkeTKx0fmrxLZUiJ9CY5WLttfkb4Ex9pxqnCkL8GxZv7RINKX4Fgnj5yQ2Z3e9nx3IPL45vaBe+pKA53cBDt+y5M9a6QvwdHyZYuPNHMo5DnFn71AZT+aI9KX4HjhKHtgGss3fHMDAOBQbATqm/h4lwAAIG6R2QEAwKFckiBpQRQou+Kkzw7BDgAADsU0lm/i410CAIC4RWYHAACHSnMl2Ajm8fGAYAcAAIdKDXLX89Q4meAh2AEAwKHI7PgmPkI6AAAQtwh2AABwqDTJEvTw1+7du6VXr15SpEgRyZ07t9SuXVu+//57z/3Dhw+XatWqSd68eaVQoULSpk0bWb58uUQS01gAADhUqivBRjCP98f+/fulWbNm0rJlS5kzZ44UK1ZMNm7caEGNW5UqVWT8+PFSsWJFOXr0qIwZM0batWsnmzZtsvMjgWAHAAD4ZNSoUZKUlCSTJ0/2HKtQoYLXOddee63X7dGjR8urr74qa9askdatW0skMI0FAIDDC5SDGSolJcVrHD9+XDIza9YsueCCC6Rr165SvHhxqV+/vrz88styJidOnJBJkyZJgQIFpG7duhIpBDsAADiU63+7ngc6XP/roKzZGg1I3GPkyJGZvt6WLVtkwoQJUrlyZZk7d67cdtttMnDgQJk6darXeR9//LHky5dPcuXKZdNY8+bNk6JFi0qkMI0FAECc27lzpyQmJnpu58yZM9Pz0tLSLLMzYsQIu62ZnbVr18rEiROld+/envO0pmfVqlXyxx9/WOanW7duVqSs2aBIILMDAIBDpUpC0ENpoJN+nCnYKVWqlNSoUcPrWPXq1WXHjh1ex3QlVqVKlaRx48ZWr5MtWzb7GSlkdgAAcKg0V3CNAdNc/p2vK7HWr1/vdWzDhg2SnJz876+TlnbGOqBwILMDAAB8MnjwYFm2bJlNY+lS8mnTplkB8u233273HzlyRO6//347Z/v27bJixQq58cYbrTePFjVHCpkdAAAcyl1oHMzj/dGwYUOZOXOmDBs2TB577DFbdj527Fjp2bOn3Z81a1ZZt26dFSxrvY42HtTHLF68WGrWrCmRQrADAIBDpUmCjWAe76+OHTvayIyuvvrggw8k2hDsAADgUOHuoOxU1OwAAICYRmYHAACHCnfNjlMR7AAA4OSanWCWngvTWAAAAI5HZgcAAIdyBbkayxUnmR2CHQAAHCr9zuWBPj4eMI0FAABiGpkdAAAcitVYviHYAQDAoZjG8k18hHQAACBukdkBAMChIrE3lhNFNLMzcuRI2w01f/78Urx4cenUqZOsX7/e65xjx47Z1vG6c2q+fPmkS5cu8ttvv3mdM3DgQDn//PMlZ86cUq9evUxfa82aNXLxxRfbJmVJSUny9NNPh/S9AQAQrmmsYEY8iGiws2jRIgtkli1bJvPmzZOTJ09Ku3bt5MiRI55zBg8eLLNnz5YZM2bY+Xv27JHOnTuf9lw33nijdO/ePdPXSUlJsedNTk6WFStWyDPPPCPDhw+XSZMmhfT9AQAQSgQ7DpjG+uyzz7xuT5kyxTI8GpBccsklcvDgQXn11Vdl2rRp0qpVKztn8uTJUr16dQuQGjdubMeef/55+/n7779bBiejt956S06cOCGvvfaa5MiRQ2rWrCmrVq2S0aNHy8033xyW9woAACIjqgqUNbhRhQsXtp8a9Gi2p02bNp5zqlWrJuXKlZOlS5f6/Lx6rgZPGui4tW/f3qbM9u/ff9r5x48ft2xQ+gEAQLQhs+OwYCctLU0GDRokzZo1k1q1atmxvXv3WoBSsGBBr3NLlChh9/lKz9XHZHwO932Z1RIVKFDAM7TGBwCAaEOw47BgR2t31q5dK9OnT4/0pciwYcMsy+QeO3fujPQlAQAAJy89v+OOO+Tjjz+Wr776SsqWLes5XrJkSau1OXDggFd2R1dj6X2+0nMzruBy387seXRVlw4AAKKZK8jl4y6JDxHN7LhcLgt0Zs6cKV9++aVUqFDB635dTp49e3aZP3++55jW2ezYsUOaNGni8+vouRpIaf2Pm67+qlq1qhQqVOgcvRsAAMKLaSwHBDs6dfXmm2/aaivttaP1MzqOHj1q92u9TN++fWXIkCGyYMECK1i+4YYbLHhxr8RSmzZtstVV7sfq7zo0K6SuvfZaq/3R5/rpp5/knXfekXHjxtnzAgCA2BbRaawJEybYzxYtWngd1+Xlffr0sd/HjBkjWbJksWaCukpKV1G99NJLXuf369fPevC41a9f335u3bpVypcvb0HT559/bsGVZouKFi0qDz/8MMvOAQCOxt5YDgh2dBrrbLTj8YsvvmjjTBYuXHjW56lTp44sXrzY72sEACBaEew4bDUWAABAzK7GAgAA/iOzE8bMji4NBwAA4eVyJQQ94oHfwc6oUaNsNZNbt27dbEfyMmXKyOrVq8/19QEAgDPQHjvBjnjgd7AzceJEz/YJ2qtGx5w5c+TSSy+Ve+65JxTXCAAAEL6aHe1l4w52tOuxZnbatWtnS7wbNWoU+JUAAAC/ULMTosyOdhx27xX12WefeXYk12Xkqamp/j4dAAAIEDU7IQp2OnfubB2J27ZtK3/++adNX6mVK1dKpUqV/H06AADgILt375ZevXpZvW7u3Lmldu3a8v3339t9ui3Tvffea8fy5s0rpUuXluuvv1727NnjrGks7Wise1jp/lRPP/205MuXz47/+uuv0r9//1BcIwAAiIJprP3790uzZs2kZcuWVq9brFgx2bhxo2efyb///lt++OEHeeihh6Ru3bp2/p133ilXXnmlJyCK+mBHI7ZbbrnF3kTGTTsHDx58rq8NAAD8i2Cnolx+PlZXZGvdrm7r5JY+HtDtmXThUnrjx4+XCy+80JIk5cqVk6ifxtIdyN9///3QXQ0AAAi7lJQUr6F7UWZm1qxZcsEFF0jXrl2lePHithflyy+//K/PffDgQUlISJCCBQuKY2p2OnXqJB9++GForgYAAPiVmUkLYrj+l9nRbI1mZdxj5MiRmb7eli1bbBPvypUry9y5c+W2226TgQMHytSpUzM9/9ixY1bD06NHD0lMTBTH1OzoG3zsscfkm2++sR3EtQApPX3TAAAg9HQ7bR/21D4j90N1lXX6YCRnzpyZnp+WlmaZnREjRthtzeysXbvWevD17t37tNIXbU+jq7U1QIokv4OdV1991VJRK1assJGepqkIdgAAcJbExESfMi+lSpWSGjVqeB2rXr36aSUu7kBn+/bt8uWXX0Y0qxNQsLN169bQXAkAAPCLbveg/wvm8f7QlVjr16/3OrZhwwZJTk4+LdDRVVoLFiywJeqRxq7nAAA4VLhXYw0ePFiaNm1q01ga0Hz77bcyadIkG+5A55prrrHl57rLgjYb1p0XVOHChSVHjhzimGBn165dVpGty8hOnDjhdd/o0aPP1bUBAIB/oUXGCWHss9OwYUOZOXOmDBs2zOp3ddn52LFjpWfPnp6GgxofqHr16nk9VrM8LVq0EEcEO/Pnz7fmQBUrVpR169ZJrVq1ZNu2bVaA1KBBg9BcJQAAiAodO3a0kRndJ1PjgWjjd7Cj0dzdd98tjz76qOTPn9+KknStvUZ1HTp0CM1VAgCA02hcEdRqLJdEHa0NXrx4sRU3a0dm7dKsq76aNGkiuXLlCk+w88svv8jbb7/9z4OzZZOjR4/alhGazrrqqqtszT0AAIi9mp1Qeuutt2TcuHG2rUSJEiVsXy3de+uvv/6SzZs3W6CjiRXt25O+IDokTQW1r467TkeXoOkFuP3xxx/+Ph0AAIhz9evXl+eff1769OljGR3db1Pb23z99dfy888/W1fnjz76yNPnZ8aMGaHN7DRu3NheXNfVX3bZZXLXXXfJjz/+KB988IHdBwAAwiNWMjtPPfWUtG/f/oz3a5NDLW7W8eSTT1qtcEiDHV1tdfjwYftd63b093feecc6K7MSCwCA2F2NFSr/FuhkpH17/O3d43ewo6uw0k9paYtoAACAc+2TTz6RhQsXWr8ebWjYpUuXgJ7H75oddeDAAXnllVdsZZYWDiltIKTr6wEAQHhXYwUzotVDDz0kQ4cOta2odDm7NjQcMGBAQM/ld2ZnzZo10qZNG9sVVefMbrrpJuuKqDU72mTw9ddfD+hCAACAf/4JWIKp2ZGooauwtPjYTUtkVq9ebSuylBYva83OCy+8EPrMzpAhQ+wFdc+L9OvdtVj5q6++8vsCAAAAbr31Vhk0aJD11nGXzTz33HO2F5cuhNKd06tUqRLQc/sd7Hz33Xdyyy23nHa8TJkynv0vAABA+FZjBTOixfLly62lje7GMHv2bHnttddk5cqVthfXxRdfbFtVTZs2LTzTWLr8S9e7Z6S7nmqXQwAAEB46CxXMTJRLokfWrFmtYWDXrl2tQbEugho/frw1FwyW35kd3RdLuyXrzqZKC4e0VkcvMNAqaQAAEN+ZHTedvpo7d65cffXVcskll8iLL74oYQt2Pv30U/up82faW0f3w9KtIpo3by6VKlWyfbK00Q8AAEAgK7119dUVV1whDz74oAU7OrWl5TPatFjrdgLl8zRW586d5frrr7fGgfPmzbMuyroySwMfnV/TFVoAACCMYmgeq3fv3hbw9OjRQ+bPn29TWW+88YZMmTLFbnfv3t0CoVGjRoUu2NHoSldh1alTx15YU0sXXXSR3y8IAADOkWCnolzRM4315ZdfWkGyzhZpWxv96da6dWvr56dlNIHwOdipW7eupZKeeOIJadeundx+++2WZtKCovQSExMlVmVPSJXsCdHzBwPxoUCWf+rj4L9cCXx2gcqf/VikL8GxTmT7Z7Ns+Ee3nZo0aZL069fPZpAy7myu7W5GjBghIS9QzpYtmwwfPlxmzZpl27AXLVpUChUqZKNgwYL2EwAAhEcsdVB+7bXXLLujO6DrEnPtq3Ou+L30XDsl6zyaTmM98MADFgABAIDwi5Vdz1W9evWsi3Io+BypaNFQ//795aOPPrI00p133hmSCwIAAPHF5XJZK5tQ8Xkaq0aNGrJlyxYrECLQAQAgCmhmJtgRBWrWrCnTp0+XEyf+vd5Jt6rS2aWnnnoqNJkdzeroLucZC5IBAEBkBFt344qSmh3d3FObE2us0bZtW9sQVDsna1Hy/v375eeff7aWNz/99JPccccdFvCEJNjRlVcAACCKxEifndatW1u9jgY0utv5W2+9Jdu3b7fmxboYSouWtddfz549A1oMRXUxAACICtq/LxQ9/Ah2AABwqFhajRVKBDsAADhZlExFRTO/dz1304rp9evXy6lTp87tFQEAAEQy2Pn777+lb9++kidPHlsqtmPHDjs+YMAAv5eCAQCA4KexghnxwO9gR5efr169WhYuXGhLwtx013OtoAYAAGFejRXMiAN+1+x8+OGHFtQ0btzYq9uhZnk2b958rq8PAADEuJSUFJ/PDWTDcb+Dnd9//12KFy9+2vEjR46EtNUzAADISL93g/nuTZBooJuJ+xpDpKamhn4aS7safvLJJ57b7ot75ZVXpEmTJn5fAAAAcM401u7du6VXr15SpEgRyZ07t9SuXdtrA0/dMLxdu3Z2v8YIq1atOutzLliwwHY816G7n2tSZejQoTJz5kwb+nuJEiXsvkD4ndnRTUAvvfRSa92sK7HGjRtnvy9ZskQWLVoU0EUAAIDot3//fmnWrJm0bNlS5syZI8WKFbP9qtJ3NdaZHm0M2K1bN7npppt8et7mzZt7fn/sscdk9OjR0qNHD8+xK6+80oKqSZMmSe/evUMf7Ogb0ChNV17pC3/++efSoEEDWbp0qd0GAACxuV3EqFGjJCkpSSZPnuw5VqFCBa9zrrvuOvu5bdu2gC5J44mJEydmOrPUr1+/8DUVPO+88+Tll18O6AUBAMA5EuzO5a6ETAuEc+bMaSOjWbNmSfv27aVr1642m1OmTBnbvNPXDI4vNJjSGOPpp5/2Oq7lMnpfWIKdTz/91HY+1zeb3ty5cyUtLc2muAAAgHN2PU/KEEQ88sgjMnz48NPO37Jli0yYMEGGDBki999/v3z33XcycOBAyZEjR0DTS5kZM2aMdOnSxabJGjVqZMe+/fZbmy57//33A3pOvwuU77vvvkwroV0ul90HAACcZefOnXLw4EHP0J56mdGkhpauaP2u7kR+8803W1Yns2mnQF122WUW2Gidzl9//WXjiiuukA0bNth9Ycns6AXUqFHjtOPVqlWTTZs2BXQRAAAgcjU7iYmJPvWvKVWq1GkxQPXq1QPOuJxJ2bJl5cknnzxnz+d3sFOgQAFLY5UvX97ruAY6efPmPWcXBgAAwlOz4ytdiaX7YqanGZfk5GQ513R7Kt2SSvfiTK9OnTqhD3auuuoqGTRokK1710Jld6Bz1113WcoJAADEpsGDB0vTpk1tGkuXlmstjS4H1+Gm004apOzZs8duu4OjkiVL2vClefENN9xgNTsRayqo1dGawdFpK11upkNTWNo86Nlnn/X7AgAAQGASXMEPfzRs2NCSHW+//bbUqlVLHn/8cRk7dqz07NnTa8WW1vNcfvnldvs///mP3fa1rkcTKgcOHJDly5db08LPPvtMpk6dKpUrV7bnDts0ljYQnDdvnm0IqheiKaVLLrkkoAsAAADO6LOjOnbsaONM+vTpYyNQ2kX5o48+sr46WbJksSmytm3bWk3RyJEjPUFUyIKdkydPWnCjTQW1FbQOAACAc0U7MLv34NTOzDqtVaVKFWtc/MMPPwT0nH5NY2XPnl3KlSsX0HwZAAAIUYFyMCPKVK1a1VPnU7duXfnvf/9r+3HpNJiuBguE3zU7DzzwgDUS0gIkAAAQXxuBhtqdd94pv/76q6e5oRYqa6Ll+eeft8LosNTsjB8/3lZflS5d2ubRMi43DzTFBAAA0KtXL8/v559/vmzfvl3WrVtnAU/RokXDE+x06tQpoBcCAADOL1AOJ92dQWuFtWtzMPwOdjSlBAAAokCMBjuvv/66PPPMM7Zrg9IC5Xvuucezo3pYdj0HAADx10E5HEaPHi0PPfSQ3HHHHdaxWX399ddy6623yh9//GGNDUMe7Oia94SEM384rNQCAACBeuGFF2xn9euvv95zTHdoqFmzpu3EHpZgRzsnZuy9s3LlSutu+Oijj/p9AQAAIDCBdEFOL5jHhoquxNItKTLSY+5VWmHZGyuja665xiKud955R/r27RvQhQAAAD/FYM1OpUqV5N1337U2N+lpjKFbRoSlz86ZNG7cWObPn+/XY7Tts+6zkT9/fuuWqCu9Mu6meuzYMbn99ttt7618+fJJly5d5LfffvM6Z+DAgbY8LWfOnFKvXr3TXmfhwoUWpGkzIl0qr+e89dZbAb5TAAAQKjpL9PDDD0uHDh1s7y0d+rsef+yxxyIX7Bw9etSa/ZQpU8avxy1atMgCmWXLltleWzolpltQaKtoN52bmz17tsyYMcPO111UO3fufNpz3XjjjdK9e/dMX0f38tL9u95//31Zs2aN7aaqc4Eff/xxAO8WAACEiiY1dBNQ7anz4Ycf2tDfdYf1q6++OjzTWLpPRfoCZV0Df+jQIcmTJ4+8+eabfj2X7mSa3pQpUyzDs2LFCttY9ODBg/Lqq6/KtGnTpFWrVnbO5MmTbZd1DZA0m6Q00FK6f4YGMxllTIVpd8bPP/9cPvjgg3/dzAwAgGim38ZB1exIdNLZmowxxb59+6yDcsbv9JAEO7qVe8bVWcWKFZNGjRpZIBQMDW5U4cKF7acGPZrtadOmjeecatWqWRfFpUuXeoKdQF9Lg6bMHD9+3IZbSkpKwK8DAACCp8XJuiQ9LMFO7969JRTS0tJk0KBBtqa+Vq1admzv3r2SI0cOKViwoNe5JUqUsPsCpYVP3333nW0udqZaIlaWAQCiXgz22QmFgJoKHjhwwKaXfvnlF7utK7G0ZqZAgQIBX4jW7qxdu9YaB4XSggULrGbn5ZdftuvOzLBhw2TIkCFemZ2kpKSQXhcAAH6LwdVYoeB3gfL3338v5513nowZM8Z2Pteh3Q71WKCbgGqXRC0W1kCkbNmynuMlS5aUEydOWHCVnq7G0vv8pQXOV1xxhV17+mZFGemqrsTERK8BAADiJLOjq6O0k6FmRrJl++fhp06dkn79+tk01FdffeXzc2lx84ABA6xRoS4Pr1ChwmkFStmzZ7cl7VqdrXRp+o4dO6RJkyZ+Xbc+vxYjjxo1Sm6++Wa/HgsAQFSKoczOkHQzKpnRRUhhC3Y0s5M+0LEnyZZNhg4dKhdccIHfU1e60uqjjz6yXjvuOhydDtNdTvWnNinUD0CLljXDosGRBjrpi5M3bdokhw8ftsfrMvhVq1bZ8Ro1aljNj2aMNNDRVVgaNLlfR+9zF0MDAOA0sdRBeeXKlWc9R1dqhyXY0YBDMyu6Kiq9nTt3WsDiD937QrVo0cLruC4v79Onj/2uU0664kuDFF0h1b59e3nppZe8zteskk5RudWvX99+bt26VcqXL29bWfz9999WeKzDrXnz5pbxAQDAkWIos7NgwYKQPbffwY427tNsy7PPPuvZu+Kbb76xrdd79Ojh13PpNNbZ5MqVS1588UUbZ3K2gEX79+gAAADxx+9gR4McbSqoBb5aq6O0rua2226Tp556KhTXCAAAYjyzE1XBjta5jBs3zqaDNm/ebMd0JZZ2UAYAAOETSzU7oRTw3lga3NSuXVuSk5Nt6wV3zx0AAABHBzvdunWT8ePH2++68klXYOkx90abAAAgzB2UgxlxwO9pLO2j88ADD9jv2h9Hi4y16Z+ueHriiSc8/XAAAECIxUjNzppMNvE+E02uhDzY0Q003b1pdNdyDW50Suvyyy+3FVkAAAD+qFevni1+0gSK/vw3qampEvJpLN0jSnccP3LkiAU77dq1s+P79++3ZeIAACC8BcrBjGigffG2bNliP7UkRndU0J562mhQh/6ui6ECLZfxO7OjW0L07NlT8uXLJ+XKlfM0BNTpLS1YBgAAYRIj01jJycme37t27SrPP/+8XHbZZV5TV5pseeihh6RTp05+P7/fwU7//v3lwgsvtI7Jbdu2te7GqmLFilazAwAAEKgff/zxtL0ylR77+eefw7f0XFdgaY3O7t27PY0F9XazZs0CuggAABCAYKewXP6/pH739+rVS4oUKWL7WOqsju6b6bkkl0sefvhhKVWqlN3fpk0b2bhxo8/PX716devld+LECc8x/V2P6X1hCXZ0jyndLkKLkmvWrGn7ZCndoJMOygAAhJHrHAw/aH2uJjZ054Q5c+ZYpuW5556TQoUKec55+umnbRpq4sSJsnz5csmbN6/ta3ns2DGfXkMfN3fuXClbtqwFSjr0dz2m9wXC72msYcOGyerVq20/qg4dOniO68UMHz5c7rvvvoAuBAAARHfNzqhRo6x2Rjfsdks/5aRZnbFjx8qDDz4oV111lR17/fXXpUSJEvLhhx/Kf/7zn7O+hpbKaLHyW2+9JevWrfPsy3nttdda4BSWYEcv9p133pHGjRt7LQ/TLI97+wgAAOAcKSkpXrdz5sxpI6NZs2ZZlkaLiBctWiRlypSxWt6bbrrJ7tfVVHv37rUEiFuBAgWkUaNGtpLbl2BHaVBz8803y7ni9zTW77//LsWLFz/tuC5FP9vaeAAAEH1Lz5OSkiwocQ+tj8mMZlwmTJgglStXtmkl3QR84MCB1lhYaaCjNJOTnt523+eLN954Qy666CIpXbq0bN++3Y6NGTNGPvroo/AEO1qc/Mknn3huuwOcV155RZo0aRLQRQAAgMjZuXOnNQ12Dy1ZyUxaWpo0aNBARowYIfXr17fsi2Z1Aq2lyYwGU0OGDJFLL73UaoTcTQS1LkinyMIyjaVvUC9Ai5J0JZbugK6/L1myxFJaAADAWRITE22cja6wqlGjhtcxXSHlbvZXsmRJ+/nbb7/ZuW56W7sk++KFF16Ql19+2frppF/4pMmWu+++W8KS2dG00qpVqyzQ0eVmuuO5TmvpXNz5558f0EUAAIDoX43VrFkzWb9+vdexDRs2eJoCarGyBjzz58/3qgfSVVm+zv5o3Y9mjTLSGiItmQlLZkdpy2aNujJ677335JprrgnoQgAAgH+C3fIhwc/HDh48WJo2bWqzPN26dZNvv/1WJk2aZMOeLyHBdlrQJsNa16PBj3Y91tobXzsf62M0qZK+q7LSLaoC7bPjV7Cj2RxdBpYjRw6pUqWK57gWDGkDIb2PYAcAgNjUsGFDmTlzptX0PPbYYxaYaB2NbiPlNnToUMvAaD3PgQMHbEZIAxVf98/Uep3bb7/d+vLoUnYNqN5++20rmtb64JAGO2vXrpWOHTtaEZPS9fNaRKSRnd6nBUrpC5cBAEAYhHl/q44dO9o4E83uaCCkIxD9+vWzzsvaq0cbGWt/Hc0MaY2wr0vXAw527r33XqlUqZKMHz/eIiwdv/zyi3VT1ohNLwwAAIRRjGwEmpFminRosHP48OFMW96EJNj57rvvrBhZq6kvvvhiC3buv/9+ue6664K6AAAAALejR4/a9JVuS6VD+/vpVJmuAmvXrp2EdDXWH3/8YWkkpQ2HtLuhdlEGAADObioYTbRMRreYUFrzo9tH6P5b7vKZkAY7Ogd36NAhW0KmDYf0tkZfejv9AAAAsbn0PBx++OEHm0Fyr/LWpezaRVkDIN1gNKTTWJpSSr8CS2+nXwevtzUAcnc6BAAAsbX0PBy0Tid//vz2u5bPdO7cWbJkyWKzSe6tI0IW7CxYsCCgFwAAAPCVLobSTcevvvpq239Le/uoffv2+dTlOahgp3nz5gG9AAAACJEYXI318MMP23JzDXJat27t6bysWZ7MOiuHrIMyAACIAjEY7FxzzTXWiPDXX3+VunXreo5r4KPZnkAQ7AAAgKiiRcnuTUV18dOXX34pVatWlWrVqoVnI1AAABAdYnHpebdu3ayBsdJV37rbuR6rU6eOZ3d1fxHsAADgVDG49Pyrr77yLD3Xfbh0tbf229Fl57rBaCAIdgAAQNTQXn6FCxe233U7qi5dulgn5csvv1w2btwYupodXePuqw8++EBi1Qf9W0u2bL7t2or/l5qH0rBgHC2aPdKX4Fh59p2I9CU4Vs4tv0f6EhzrVNrx8L1YDBYoJyUlydKlSy3g0WBn+vTpdnz//v0+75yekU/fQro9hJumkzStpMd0Hk2tWLHCUkz+BEUAACA4sdhUcNCgQbYJaL58+SQ5OVlatGjhmd6qXbt26IKdyZMne+1+roVCEydOlKxZs9ox7Zrcv3//gJv9AAAAKI0ndD+snTt3Stu2ba17sqpYsWLANTt+zy+89tpr8vXXX3sCHaW/DxkyRJo2bSrPPPNMQBcCAAD8FIPTWEpnjtyzR25asxMov4OdU6dOybp162y9e3p6LC0tLeALAQAA8TmNNWTIEHn88cclb9689vu/GT16dOiDnRtuuEH69u0rmzdvtjSTWr58uTz11FN2HwAACJMYyeysXLlSTp486fn9THTD8UD4Hew8++yz1tXwueees1bOqlSpUnLPPffIXXfdFdBFAACA+LUg3Wbjodh43O9gRwuFhg4dakNbOCsKkwEAiIAYyeyEWlANUAhyAACIHJ3USQjy8dHixhtv9HmhVMiDnd9++03uvvtumT9/vuzbt8/67qSny9ABAAD8MWXKFOurU79+/dNii2D5Hez06dNHduzYIQ899JDV6gRaLAQAAIIUQ9NYt912m7z99tuydetWW/DUq1cvz7YRYQ92tMfO4sWLpV69eufkAgAAQHwvPVcvvviiLSvXbad0qmrYsGHWW0dXgLdr1y6o5EqWQPasONfpJQAAgJw5c0qPHj1k3rx58vPPP0vNmjWto3L58uXl8OHD4Qt2xo4dK/fdd59s27Yt4BcFAADncBormBGldPW3ZnM0wRJsPbDf01jdu3eXv//+W8477zzbcj17du8dmf/666+gLggAAPghigMWfx0/ftwzjaVlMx07dpTx48dLhw4dPHtkhSXY0cwOAADAuaTTVdOnT7dyGV2GrsXKRYsWPSfP7Xew07t373PywgAAIDixVKA8ceJEKVeunO1uvmjRIhuZ0cxPSIId7ZTsbiDo7pp8JjQaBAAgTGJo6fn1118fsnY2PgU7hQoVsn2wihcvLgULFsz0YrSASI/TVBAAgNjM7AwfPlweffRRr2NVq1aVdevW2e+6Sbg2HtZ6G62/0VqbF154QUqUKOFTU8FQ8SnY+fLLLz2NffR3GgkCABCfatasKV988YXndrZs/4QSR44csX44devWtVhBaQPiK664QpYtWxZUgXFYgp3mzZtbR8MKFSpIixYtQn9VAAAgKqexsmXLJiVLljzt+DfffGNtaVauXOkpaZk6darNDmnw06ZNG4kUn8MsXWquwY5WSL/55puya9eu0F4ZAADwaRormOGux00/dArqTDZu3CilS5e2QuKePXvaFlJKH6MzP9oY0C1XrlyW0dFprUjyOdjRqExXYm3ZskVuuukm26yrcuXKcsstt9hSMd0gFAAAOE9SUpIUKFDAM0aOHJnpeY0aNbLams8++0wmTJhgsz4XX3yxHDp0SBo3bix58+aVe++91/rx6bSW1u9oLa/W/UaSz0vPdfrKPYV17NgxWbJkiSxcuNCGpqlOnjwp1apVk59++imU1wsAAM7xNNbOnTu9VlOnz86kd+mll3p+r1OnjgU/mvx49913bQ+rGTNm2Iaezz//vGV0dOuHBg0aRLReJ6A+O+60VKtWreSiiy6Sli1bypw5c+S///2vpxobAAA4J9hJTEwMqHWMrtCuUqWKbNq0yW5rgbKuyPrjjz+stkfv1/oenfKKJL9CrRMnTshXX31ly840yNE3ceutt8r+/futnbOmswAAQHw4fPiwBTelSpXyOq6djzVG0BKYffv2yZVXXimOyOxoJmf58uVWpKyrs7RWZ9q0aae9QQAAEJt9du6++25bSq5TV3v27JFHHnlEsmbNatNVavLkyVK9enUpVqyYLF26VO68804ZPHiw9eJxRLCzePFiC2w06NHaHQ14ihQpEtqrAwAAUbP0fNeuXRbY/PnnnxbQaDmL9tDR39X69etl2LBhtil4+fLl5YEHHrBgJ9J8DnYOHDhgAY8WJI8aNcrerM7TadDjDn7cbxYAAMSe6dOn/+v9Tz31lI1o43Owo8vJtO2zDqXLzHTd/IIFC+Tpp5+2tfa6FH3t2rWhvF4AAPA/CbpVkyvw1E5CEI91koBWY7mDH91CQod2R9Sq619++eXcXh0AAIiLjUCjIthJS0uT77//3qaxNJujbaG1YVCZMmVsZdaLL75oPwEAQGwWKMd8sKNLyDS40fXyGtSMGTPGanV0GwkAAADHBzvPPPOMBTlalAwAAKIA01jnNtjRvjoAACB6MI3lm8huVgEAABDLwY7uqtqwYUPJnz+/FC9eXDp16mQNidLTTUdvv/12a2CYL18+6dKly2k7rA8cOFDOP/9827isXr16//qaun+Hvp7WIAEAEBPTWMGMOBDRYGfRokUWyGj3xXnz5tnO6bqJmBZCu2nnxdmzZ9tOqnq+tqfu3Lnzac914403Svfu3f/19fT5tRmibkcPAECsTGMFM+JBwH12zoXPPvvM6/aUKVMsw7NixQq55JJL5ODBg/Lqq6/aHly6TUX6fTc0QGrcuLEd063k1e+//y5r1qw54+s9+OCDUq1aNWndurUsWbIkpO8NAABEh6iq2dHgRmmjQqVBj2Zj2rRp4zlHg5Vy5crZBmP+0J1XNTuk/YDO5vjx45KSkuI1AACIOkxjOSvY0aaFgwYNkmbNmkmtWrXs2N69eyVHjhyn1deUKFHC7vOVbljWp08fyxwlJib6VEtUoEABz0hKSgrgHQEAEHpMYTko2NHaHd1X62ybjAXipptukmuvvdamxnyhO7Zqlsk9du7cec6vCQAAxFGwc8cdd8jHH39s21CULVvWc1y7NZ84ccJ2XE9PV2Ppff5MYT377LO2f5eOvn37WhCjv7/22munna+rujQDlH4AABB1dCPPYEcciGiBssvlkgEDBsjMmTNtz60KFSp43a/LybNnzy7z58+3JedKl6bv2LFDmjRp4vPraH1Pamqq5/ZHH30ko0aNsiJl3dsLAAAnoqmgA4IdnbrSlVYafGjvG3cdjtbJ5M6d235qFmbIkCFWtKwZFg2ONNBxr8Ry9845fPiwPf7o0aOyatUqO16jRg2r+dHVW+nphqZZsmTx1AYBAOBIbBcR/cHOhAkT7KduKJqeLi/XgmKlG45qYKKZHV0l1b59e3nppZe8zu/Xr5/14HGrX7++/dy6dauUL18+DO8EAABEq4hPY51Nrly5bLn4vy0Z1ykwf2gg5Q6mAABwqoS0f0Ywj48HEQ12AABAEJjGcs5qLAAAgFAhswMAgEOxGss3BDsAADhVsL1yXPER7TCNBQAAYhqZHQAAHIppLN8Q7AAA4FSsxvIJ01gAACCmkdkBAMChmMbyDcEOAABOxWosnxDsAADgUGR2fEPNDgAAiGkEOwAAOH01VjDDD8OHD5eEhASvUa1aNc/9e/fuleuuu05KliwpefPmlQYNGsj7778vkcY0FgAADhWJaayaNWvKF1984bmdLdv/hxLXX3+9HDhwQGbNmiVFixaVadOmSbdu3eT777+X+vXrS6SQ2QEAAD7T4EYzN+6hQY3bkiVLZMCAAXLhhRdKxYoV5cEHH5SCBQvKihUrJJIIdgAAcKo0V/BDRFJSUrzG8ePHz/iSGzdulNKlS1sw07NnT9mxY4fnvqZNm8o777wjf/31l6Slpcn06dPl2LFj0qJFC4kkgh0AAOK8ZicpKUkKFCjgGSNHjsz05Ro1aiRTpkyRzz77TCZMmCBbt26Viy++WA4dOmT3v/vuu3Ly5EkpUqSI5MyZU2655RaZOXOmVKpUSSKJmh0AAOLczp07JTEx0XNbA5XMXHrppZ7f69SpY8FPcnKyBTl9+/aVhx56yGp2tKZHp7c+/PBDq9lZvHix1K5dWyKFYAcAAIdKCLJXTsL/fmqgkz7Y8ZXW41SpUkU2bdokmzdvlvHjx8vatWutiFnVrVvXAp0XX3xRJk6cKJHCNBYAAE7voBzMCMLhw4ctyClVqpT8/fffdixLFu/QImvWrFa/E0kEOwAAwCd33323LFq0SLZt22Yrr66++moLZnr06GH9drQ2R+t0vv32WwuCnnvuOZk3b5506tRJIolpLAAAHCrcfXZ27dplgc2ff/4pxYoVk4suukiWLVtmv6tPP/1U7rvvPrniiiss66PBz9SpU+Wyyy6TSCLYAQDAqQLoguzFz8fqUvJ/U7ly5ajomJwRwQ4AAA6V4HLZCObx8YCaHQAAENPI7AAA4FS6yCmYhU5pEhcIdgAAcCimsXzDNBYAAIhpZHYAAHCqMK/GciqCHQAAnCrYLsiu+Ih2mMYCAAAxjcwOAAAOFe4Oyk5FsOMD1//SfKdSj0f6Uhwp9RR/zIJx6mRqpC/BsU6dOhHpS3CsrGn8fReoU2knvL47QoppLJ/wLeSDQ4cO2c9vVjwb6UsBADjou6NAgQKRvgwQ7PimdOnSsnPnTsmfP78kJCRItElJSZGkpCS7xsTExEhfjqPw2QWHzy9wfHax+/lpRkcDHf3uCLWEtH9GMI+PBwQ7PsiSJYuULVtWop3+Cx9t/9I7BZ9dcPj8AsdnF5ufX9gyOkxj+YRgBwAAp6LPjk9Yeg4AAGIamZ0YkDNnTnnkkUfsJ/zDZxccPr/A8dkFh8/vH+yN5ZsEV1jWxgEAgHNZoK11QS3PHybZsuUK+HlOnTomC1aMlIMHD0Zl7dO5wjQWAACIaUxjAQDgVDo3E8zycZfEBYIdAAAcipod3zCNBQAAYhrBTpQYOXKkNGzY0Lo0Fy9eXDp16iTr16/3OufYsWNy++23S5EiRSRfvnzSpUsX+e2337zO2bFjh1x++eWSJ08ee5577rlHTp065XXOwoULpUGDBraKoVKlSjJlyhRxsnB9dvq5aQftjGPv3r0S75/dwIED5fzzz7c/U/Xq1cv0tdasWSMXX3yx5MqVyzrfPv300+J04fr8tm3blumfvWXLlkk8f3arV6+WHj162J+n3LlzS/Xq1WXcuHGnvVas/Z13ep8dVxBD4gLBTpRYtGiR/Uutf3nNmzdPTp48Ke3atZMjR454zhk8eLDMnj1bZsyYYefv2bNHOnfu7Lk/NTXVvqxPnDghS5YskalTp9q/1A8//LDnnK1bt9o5LVu2lFWrVsmgQYOkX79+MnfuXHGqcH12bvoX8q+//uoZ+hd1PH92bjfeeKN07979jCtH9HmTk5NlxYoV8swzz8jw4cNl0qRJ4mTh+vzcvvjiC68/exogxfNnp3+W9N+/N998U3766Sd54IEHZNiwYTJ+/PiY/jvPS1CBjituOijrHh6IQvv27bN4fdGiRXb7wIEDruzZs7tmzJjhOeeXX36xc5YuXWq3P/30U1eWLFlce/fu9ZwzYcIEV2Jiouv48eN2e+jQoa6aNWt6vVb37t1d7du3d8WKUH12CxYssMfs37/fFasC+ezSe+SRR1x169Y97fhLL73kKlSokOezVPfee6+ratWqrlgSqs9v69at9piVK1e6YlWwn51b//79XS1btvTcjtW/8w4ePGifRau697raNXg44NGq7r32PPp8sYzMTpTSngeqcOHCnv+C0f/yadOmjeecatWqSbly5WTp0qV2W3/Wrl1bSpQo4Tmnffv29l/V+l897nPSP4f7HPdzxIJQfXZuOs1QqlQpadu2rXzzzTcSSwL57Hyh515yySWSI0cOr89Xs2T79++XWBGqz8/tyiuvtEzGRRddJLNmzZJYcq4+O30e93PExd95aedgxAGCnSiUlpZmqdZmzZpJrVq17JjWhegXRcGCBb3O1S9nd82I/kz/Ze2+333fv52jX+pHjx4VpwvlZ6cBzsSJE+X999+3oXUCLVq0kB9++EFiQaCfnS98+XydLpSfn9arPPfcczad88knn1iwozUusRLwnKvPTqeg33nnHbn55ps9x2L97zz3aqxgRjxg6XkU0nnstWvXytdffx3pS3GcUH52VatWteHWtGlT2bx5s4wZM0beeOMNcTr+3EXv51e0aFEZMmSI57YW9mr9itY+abbH6c7FZ6ePv+qqq2wLCa39iRvseu4TMjtR5o477pCPP/5YFixYIGXLlvUcL1mypBXPHjhwwOt8XZmg97nPybjKw337bOdom3BdzeBkof7sMnPhhRfKpk2bxOmC+ex8Eejn6xSh/vwy06hRI/7s/c/PP/8srVu3tozOgw8+6HVfLP+dB98R7EQJ3aJM/6WfOXOmfPnll1KhQgWv+3XVRfbs2WX+/PmeY1rvoMulmzRpYrf1548//ij79u3znKOrHPRf6ho1anjOSf8c7nPcz+FE4frsMqOrO3R6K54/O1/ouV999ZXVYKT/fDVTVqhQIXGqcH1+meHP3j+0pk5XWvXu3VuefPLJ014nFv/O88JqLJ8wjRVFadxp06bJRx99ZH0n3HPSutGb/teH/uzbt6+lsrX4Tr+EBwwYYP/CNm7c2M7V1K1+MV933XXWw0SfQ/8rR5/bvTPwrbfeassyhw4daktd9S+Zd9991+oAnCpcn93YsWPtL+SaNWta/49XXnnFPr/PP/9c4vmzU5phOHz4sD1e6yD0i1jpZ6p1F9dee608+uij9lz33nuvTTloPxSdAnSycH1+2gpBf9avX9+Of/DBB/Laa6/Zn8F4/uz0z1GrVq2s4FjPcz9H1qxZpVixYjH7d54XprF8E+nlYPiHuzVUxjF58mTPOUePHrVllbqEN0+ePK6rr77a9euvv3o9z7Zt21yXXnqpK3fu3K6iRYu67rrrLtfJkye9ztEl1PXq1XPlyJHDVbFiRa/XcKJwfXajRo1ynXfeea5cuXK5Chcu7GrRooXryy+/dDnZufrsmjdvnunz6JJpt9WrV7suuugiV86cOV1lypRxPfXUUy6nC9fnN2XKFFf16tXt8doO4cILL/Rakh2vn50u1c/sOZKTk2P677z0S89bV7/L1b7W/QGP1tXvioul5wn6fz7GRQAAIAroajLNfrWuepdky/pP9jkQp1KPy/z1z9mSfc2enY02A9UsbXo6Hb1u3Trr9J1xOtJNs2ldu3aVSGEaCwAAh4rERqA1a9a0bt5u2bL9E0poOw7t7J2edknXVYOXXnqpRBLBDgAAcS4lJcXrttYquusVM9LgJrPVhForlfG4FqB369bNekVFEquxAACI89VYSUlJNi3mHrpR65ls3LhRSpcuLRUrVpSePXvaCrnMaBdsLbbXQvNII7MDAIBTpbl0Liq4x4vIzp07vWp2zpTV0f5Oukmy1unolJXW71x88cW2Mk5X1aX36quv2k702oA10gh2AACIc4mJiT4VKKevvalTp44FP8nJyVaAnD6Doy0UtLXAQw89JNGAYAcAAKeKcJ+dggULSpUqVU7r5v3ee+/J33//Lddff71EA2p2AABwrGDrdVxBvbo2w9Q9AjN289YpLN23zd3cMdLI7AAA4FRhzuzcfffdcsUVV9jUlW5Gqxuv6iqsHj16eM7RLI9uD/Ppp59KtCCzA4SJNuOqV69epC8DAAK2a9cuC2y0QFmXlBcpUkSWLVvmlcHRrUx0U9do2n2eYAfwwe+//y633XablCtXzlYpaC8J3Y/nm2++kWjQokULSUhIsJErVy6bQ9elo/HWIP2PP/6wfzYjRow47T79i1n3VEpNTY3ItQEhoaupgh1+mD59umV0jh8/boGP3j7vvPO8ztF//3Q5epYs0RNiMI0F+KBLly5y4sQJ25BRe0v89ttvtpPyn3/+Gdbr0F3DdSfozNx0003y2GOP2V9CutnhzTffbMWDGqRFq397P4EoWrSodWzVtvSaaq9du7YdnzFjhnz88ceycuVKS7mfSxo8aZAZTX+xI4640v4ZwTw+DvBvJ3AWBw4ckMWLF8uoUaOkZcuWNld94YUXyrBhw6wAz03/S+aqq66yTqG6hFMzCRoUncl3330nbdu2tS9obeLVvHlz+eGHH7zO0S/RCRMm2OvkzZtXnnzyyTM+X548eSyrodd3ww032LLQefPmee7XIEjn28uUKWPPpUtGFy5c6Ll/+/btFiAUKlTI7teW8Onn3BctWmTvWzNbWox43333yalTpzz3ly9f3naGT0+n7XT67mzvZ/bs2dKwYUPLSunncfXVV/t83Rnpc+su671797ZgSrNyusP2U089Zal33WW7QYMG9loauGqfkPTvY/To0RYk6Wtpo7X+/ftbEaab9hjRIHLWrFm2K7l+HvrPXq9JPx99nN7frFkz+0wBRB7BDnAWGrzo+PDDD+2LNzNpaWkW6Pz1118WFGiQsWXLFunevfsZn/fQoUP2hfz111/bnHflypXlsssus+PpabCgX/4//vij3HjjjWe9Xp260uBMN+bLkSOH5/gdd9whS5cutbTzmjVrLPvRoUMH64aqNCDQ96eFhfpaGty5W7zv3r3brk0DktWrV1vAoqstnnjiCZ8/xzO9n08++cRu6/Nr5kUzZho0+HrdmRk3bpxl3R5//HELVmrVqiUDBgywz0WXwt55553y888/y3//+18LXtIHkZqhef755+Wnn36yTJ5myYYOHer1/LqkVj+fV155xc4rXLiwdOrUyQJWvUa9Xs2saXAHOKGDcsyL9LbrgBO89957rkKFCrly5crlatq0qWvYsGGu1atXe+7//PPPXVmzZnXt2LHDc+ynn36ydZ3ffvut3X7kkUdcdevWPeNrpKamuvLnz++aPXu255g+ftCgQWe9vubNm7uyZ8/uyps3r/3Ux+m1fvPNN3b/9u3b7fp2797t9bjWrVvbe1G1a9d2DR8+PNPnv//++11Vq1Z1paWleY69+OKLrnz58tl1q+TkZNeYMWO8HqfvV9/3v72fJk2auHr27Jnp6/py3Wcyf/58e2xiYqJr27ZtnseNGDHC67w33njDVapUqTM+z4wZM1xFihTx3J48ebK9j1WrVnmO/fnnn3Zs4cKF/3pNwLly8OBB+zPXpsytrg5JdwY82pS51Z5Hny+WkdkBfKzZ0aI8nbrQrIJOWehUiGYF1C+//GJTHjrcdIpDpzP0vszoFJfW2WhGR6exdOpLp0sy7jNzwQUX+HSNukeN7kOjRdPa5fSBBx7wtGnXLIrWlmjhsjtTpUOzUNojQw0cONAyNTr9ostJNUPhpu+hSZMmXpkKPU+vV4sU/ZHx/eg1t27dOtNzfbnuM2nVqpUVJF933XU2tac0K6V1TemfS/8ZaNt7zdYo3c1Zr0enzbT9vT5es0Tu+5VmzHSa0E0zO3369LGidZ0K1MxSxt2fAUQOBcqAj7TGQ2tsdGgL9H79+llQoF9ygdApLP0S1S9G/TLW2g8NKLQQOj2tAfGFBkyVKlWy37V1u/6uX/Zt2rSxoEQLc3VjvowFuu6pKn0/+mWt00qff/65reZ67rnnbPrHFzr9k3H1l9bMZJTx/eTOnfuMz+nLdf8b3Z1ZR/rn0xqdzp07Z/rPd9u2bdKxY0cr6tapLQ1idJpR2+DrPxeti3Jfc8YpqsmTJ1vA+Nlnn8k777wjDz74oE1n6j8DIFY7KDsFmR0gQJq5OXLkiP2um93pRno63LQmRIub9bzMaAZGvxy1VkWLgTXY0aXT54IGAlqXooW9GoDUr1/fMiT79u2zICj90KJmN81M3XrrrfLBBx/IXXfdJS+//LLn/WkdSvpgRq9fMx/aT0Npn4302YyUlBTZunXrWa9VMyRap5MZX6/bV5qNW79+/WnPpUODNQ2qtP5KgzwNUjSjpBk9X+n1auH6kiVLrE5I9wYCQsomoYKp2ZG4QLADnIVmX3RK5M0337SpHf0C16XMTz/9tBUlK82e6AoenUrSFVXffvutFcJqweqZpqF0+uqNN96wKaLly5fbY/8ty+GvW265RTZs2CDvv/++fWnr8+s1aSCj70GvUbM3mslRgwYNkrlz59p9+h4WLFhgQY7SIl8N5DTLo4XPuqJJs1pDhgzxLLnWz0jfjxYB6/STZq58Weatz/P222/bT/0s3MXRypfr9sfDDz8sr7/+umV3tLBYX08LnzULozTo0WzUCy+8YAXm+n4mTpx41ufV69IgRwNCXYGlmTEtoHZ/fgAii2AH8CFLosudx4wZI5dccon9F7tOY2mtx/jx4+0cndLQAECXbes5GvzosmadzjgTXc20f/9+yzZoXYhmeYoXL37OrlunYDRI0NVPmq3QaRa9rRkbXYKtq4d0+bs2SlSaQdEVWfoFrXVJGmi89NJLdp/Wr+gydA006tata9kfndpxBwlKv+w1uNNpoMsvv9yeP2OzsTM1RNTgUeuhdKm6Bk36Om5nu25/6DSd9tvRYERXlmn2Rv+5umt69L3p0nMNtvSf81tvvWWB1dno9JYGgVrbpZ+brsTSz1IDTiCkWI3lkwStUvbtVAAAEA10mljr9NoU7yfZsvx/iwl/nUo7IV/se0UOHjxoiyRiFQXKAAA4FQXKPmEaCwAAxDQyOwAAOBWZHZ8Q7AAA4FS2a3kQAUtafAQ7TGMBAICYRmYHAACHcrnSbATz+HhAsAMAgFNpzU0wU1EuprEAAAAcj8wOAABOZZkZMjtnQ7ADAIBTpaWJJARRd+OKj5odprEAAEBMI7MDAIBTMY3lE4IdAAAcypWWJq4gprFccTKNRbADAIBTkdnxCTU7AAAgppHZAQDAqbShYAKZnbMh2AEAwKksWAlm6blL4gHTWAAAIKaR2QEAwKFcaS5xBTGN5YqTzA7BDgAATmVLx+mgfDZMYwEAAJ8MHz5cEhISvEa1atW8zlm6dKm0atVK8ubNK4mJiXLJJZfI0aNHJZLI7AAA4FCRmMaqWbOmfPHFF57b2bJl8wp0OnToIMOGDZMXXnjB7lu9erVkyRLZ3ArBDgAAThWBaaxs2bJJyZIlM71v8ODBMnDgQLnvvvs8x6pWrSqRxjQWAAAOdUpOyilXEENO2vOkpKR4jePHj5/xNTdu3CilS5eWihUrSs+ePWXHjh12fN++fbJ8+XIpXry4NG3aVEqUKCHNmzeXr7/+WiItwRUvpdgAAMSIY8eOSYUKFWTv3r1BP1e+fPnk8OHDXsceeeQRq8/JaM6cOXauZmt+/fVXefTRR2X37t2ydu1a+emnn6RJkyZSuHBhefbZZ6VevXry+uuvy0svvWT3V65cWSKFYAcAAIcGPCdOnAj6eVwulxUap5czZ04bZ3PgwAFJTk6W0aNHS/Xq1aVZs2ZWrzNixAjPOXXq1JHLL79cRo4cKZFCzQ4AAA6UK1cuG5FUsGBBqVKlimzatMlWYKkaNWp4naNBkHuqK1Ko2QEAAAHRKa3NmzdLqVKlpHz58lbLs379eq9zNmzYYNmfSCKzAwAAfHL33XfLFVdcYcHLnj17rLYna9as0qNHD5sKu+eee+xY3bp1rWZn6tSpsm7dOnnvvfckkgh2AACAT3bt2mWBzZ9//inFihWTiy66SJYtW2a/q0GDBlktkS5B/+uvvyzomTdvnpx33nkSSRQoAwCAmEbNDgAAiGkEOwAAIKYR7AAAgJhGsAMAAGIawQ4AAIhpBDsAACCmEewAAICYRrADAABiGsEOAACIaQQ7AAAgphHsAAAAiWX/BwQ0sSqqKfGrAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1, 1)\n", + "im = ax.imshow(\n", + " missed_load_per_year, \n", + " cmap = 'viridis',\n", + " vmin = np.floor(missed_load_per_year.min()),\n", + " vmax = np.ceil(missed_load_per_year.max()),\n", + ")\n", + "ax.set_xlabel(\"Solar Resource Years\")\n", + "ax.set_ylabel(\"Wind Resource Years\")\n", + "ax.set_xticks(np.arange(0,len(solar_years),1),solar_years)\n", + "ax.set_yticks(np.arange(0,len(wind_years),1),wind_years)\n", + "fig.colorbar(im, ax=ax, label = \"Missed Load (%)\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Wind Rose Plot Visualization Using FLORIS\n", + "\n", + "In [Example 08](./08-distributed-residential-example.ipynb) we made a wind rose plot using wind resource data for the *in-town site* and a resource year of 2013 and a hub-height of 24 meters.\n", + "\n", + "In this example, the wind rose plot is made using wind resource data for the *out-of-town site* and a resource year of 2014 (because that was the last wind year we simulated) and a hub-height of 65 meters.\n", + "\n", + "Take a moment to compare the wind rose below to the wind rose in [Example 08](./08-distributed-residential-example.ipynb).\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhwAAAHVCAYAAAC68SKdAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsXQd4FFUXPbub3guEBAi9d+lSFFAELIiCvXext1/BhgULig1U7AqKCgIiUqVXAem91yQkIb2XLf937jDJJiSQhITMwjtf5tvN1tndmffOu/fcc00Oh8MBBQUFBQUFBYUqhLkqX1xBQUFBQUFBgVCEQ0FBQUFBQaHKoQiHgoKCgoKCQpVDEQ4FBQUFBQWFKociHAoKCgoKCgpVDkU4FBQUFBQUFKocinAoKCgoKCgoVDkU4VBQUFBQUFCocijCoaCgoKCgoFDlUIRDQUFBQUFBocqhCIeCgkFx7733wmQy4f333y9y+8yZM+V2BQUFBVeCIhwKCgaGl5cXxowZg+Tk5OreFQUFBYVzgiIcCgoGxpVXXonw8HC899571b0rCgoKCucERTgUFAwMi8WCd999F+PHj0dUVFR1746CgoJChaEIh4KCwXHDDTegQ4cOGDVqVHXvioKCgkKFoQiHgoILgDqOiRMnYvfu3dW9KwoKCgoVgiIcCgougMsuuwwDBgzAyJEjq3tXFBQUFCoEt4o9TUFB4XyD5bFMrTRv3ry6d0VBQUGh3FARDgUFF0Hbtm1xxx13YNy4cdW9KwoKCgrlhiIcCgouhLfeegt2u726d0NBQUGh3DA5HA5H+Z+moKCgoKCgoFB2qAiHgoKCgoKCQpVDEQ4FBQUFBQWFKociHAoKCgoKCgpVDkU4FBQUFBQUFKocinAoKCgoKCgoVDkU4VBQUFBQUFCocijCoaCgoKCgoFDlUIRDQUFBQUFBocqhCIeCgoKCgoJClUMRDgUFBQUFBYUqhyIcCgoKCgoKLoT33nsPXbp0gb+/P8LCwjBkyBDs3bu34P6kpCQ8+eST0lna29sb9erVw1NPPYXU1NRq3W9FOBQUFBQUFFwIy5cvx+OPP461a9di4cKFyM/Px1VXXYXMzEy5PyYmRraxY8dix44d+OmnnzB//nw88MAD1brfqnmbgoKBwE6wHDRyc3Plur7FxcXBy8sLgYGBMJvNsFgscsnVCzeTyVTdu66gcFEhJycHeXl5lfZ6DofjtPPY09NTtrPh5MmTEukgEbnssstKfMwff/yBO++8U8YXNzc3VAeq510VFC6CwejEiROyyuClvnFgSE9Ply0jI6PIJTd9hVIekHj4+flJeJWbfl2/DAgIQK1atRAREYHatWvLJTfeVl0Dj4KCq5/fgd7ByENOpb2mn5+fjAXOGDVqFN54442zPldPlYSEhJzxMRwLqvOcVxEOBYUKgAPD/v37sW/fPtl4PTo6uoBYpKSkSBQiPDy8YILnxlUIT/ozEQRuXNXoUQxuVqsVc+fOxcCBA+V2Rj1sNhuys7NPIzDFr3OgYYRE3zeSoISEBFlN1axZs4CE1K1bF82aNSvYGjVqBA8Pj+r+qhUUDIe0tDSJNvbC1XCD+zm/nhX5WIW5OH78uIwP5YlwcCwYPHiwjDmrVq0q8TE83zt16iQRjnfeeQfVBbW8UVAoBeTihw4dwq5duwqIhb5x0uaAQ1EWJ+cmTZqgT58+RchFjRo1hBxUBkgOuPH13N0LBzgfHx+EhoaW+/UYCtZJiB6FOXbsmOSEJ02aJASKj2nYsGEREsKtbdu2Eh1RULjYQbLhZjp3woFTy36SDWfCURZQy0GdRmlkg+TommuuQatWrcoULalKKMKhoHBqlXDw4EFs3LixYNu0aROysrJkktWJxd13310w8ZJQuKp2gpGLyMhI2Ur7PqKiooqQrNmzZ4sSniSsTp06smJy3hjNUVBQOH944okn5LxcsWKFRCiLgxFORkUZNf3zzz+LLFaqA4pwKFyU4GTKFcGGDRuEXGzevFnSE+3atZPJ89Zbb8WHH36INm3alEm0daGBaRyW0nG78sori9zHFA2/L52U/frrr0JIGNXRyQdL9nr27ClRIAUFhcoFo68seyWJWLZsmUQiS4psDBgwQMavWbNmiei8uqEIh8JFAeoreGLq2+HDh9GhQweZGO+44w58/PHHaN26tdIslAEkEUwfcXNeSekkhNvkyZMlYtSxY8eCx/bq1UsREAWFSgDTKCT6f/31l0QvYmNj5XaeX6xaI9lgmSwjtL/88ov8z42gbquyUr3lhRKNKlwUBINpAK68nSe/8uZKqxOss6do9Oqrr672sGh5fgOW6Tn/BsUJiCv9BgoKxUWjfXB9pWg4rI58LMNfBZUkZ0Npqdwff/wR9957r5xvffv2LfExXGw1aNAA1QFFOBQuCLBi499//8Xff/8tG7UGrkwwLgTCURoBWbp0aUGU6dJLL8V1110nKnvqZFxVE6NwcaG6CYerQqVUFFwWDOP/888/kp/kZEzufO211+Ltt98W3YEK3xsLFJrefvvtshEsAZw3b578fq+//roIWEk8uFH/oTxCFBQuLKgzWsGlwEmKEQxOUlwp0yuCExTFU1wtV1duUqH8IMF4+OGHZaPh2aJFi+R3vfnmmyWiw2gOox9U2SvyqKDg+lC9VBQMDzYi+vrrr8WylwRj6tSpIohi7fnu3bsxZswYSZkosuG68PX1xfXXX4/vv/9ePEEYsWKFDKNV9Py46aabRCBXmVbSCgoK5xeKcCgY1jp42rRpuOGGG6Tc8ocffpBJRxeDPvfcc2jatGl176ZCFZXkdu/eHe+++66QSla/UN/xzDPPiNfHo48+KiXN9ApRUFBwHSjCoWAYcAJhmuTBBx+UiWXkyJFo3769TDrr1q2TunNagytcXGjZsiVGjx4tVS5Mp1FYymgIo12vvPKKOMEqKCgYH4pwKBhCl8EmRfXr18ctt9widt0LFiwQMyla8apIhgJBokEx6YQJEyTtMm7cOLFg183GmHajkFhBQcGYUIRDodrKWJmnp+CzcePG4lj55ZdfSsqEE0m3bt1UiaRCqaBBG48d6nloevTII4/gm2++kUZ0w4cPx5YtW6p7FxUUFIpBEQ6F84rExESxDGezs4ceegiXXHIJDhw4IKFyViS4qseEQvWBFSysdKHDKVNyrHBhJKRHjx7ixqiEpgoKxoAiHArnBVxxUpvBUsg5c+Zg7NixOHLkCN58802pRlBQqAx07twZ3333nXTAZXqOKTkeX0zZ8TYFBYXqgyIcClUGGnEtXrxYTLi44mTZKsWfrDIZOnSoimYoVGnU4+mnn8aePXvw008/SfSDItMHHnhAtEEKCgrnH4pwKFRJtcnMmTOltJGlrPTIOHbsmIj62rZtW927p3CRldjSOIwtvBll47HJjsA8LqkbUlBQOH9QhEOh0sDc+aRJk4RUsJshQ9okGgxrh4aGVvfuKVzkaNGihTS3YoSD4tLevXtL+272d1EtpRQUqh6KcCicM7Kzs/H5559L+SqdIWnQRM8EmnP5+flV9+4pKBQBNR2fffaZaIi6du0qnh5M+VG4rMzEFBSqDopwKFQYVP+PHz9eWh1TqEeLcebMWX3i6elZ3bunoHBG1KxZUwgyo3BDhgyR47Zjx44FjQAVFBQqF4pwKJQbXAVOnjxZQtRfffWV+B/QfpopFNXPRMHVwHbgL774okQ87rnnHtx9993o06cP1q5dW927pqBwQUERDoUyg6s+thPnKpC242wpvm3bNglJK5MuBVeHl5cXnn32WRw8eFAaBbK6ir182CBQQUHh3KEIh0KZwNVe3759ceedd8oKkMK7e++9V0U0FC7IklqmWmhIV6dOHSHYLKelBb+CgkLFoQiHwhmxd+9e3HjjjbLao6pfF4NyNaigcCGDDQQphmbzQAqj2bH2f//7H5KTk6t71xQUXBKKcCiUiIyMDIwYMUKsxznwcrXHVR9XfwoKFxPY64cW6atXr8bWrVuFeLC8VlW0KCiUD4pwKJym0/jjjz+kJTgH2H///VeaqpF0KChczCD5ZhdjGtjRW4altMo8TEGh7FCEQ6EAFMf1798fTz75JN59912sWLEC7du3r+7dUlAwDCiO1oWkV1xxhbjo0uROpVkUFM4ORTgUJH3y0ksviTiuTZs2otu46667VOWJgkIp8PHxwejRoyXFwqqWZs2a4YcfflBpFgWFM0ARjos8fTJ16lTx01izZo00Vvv000+VTkNBoYyguy5LxelFw87HPXr0EE8aBQWF06EIx0WKuLg4qT554okn8N5770n6hE2tFBQUzi3NQm3Ha6+9Jk68CgoKhVCE4yKMavz2229o1aoVPDw8sHPnTpU+UVCopDTLO++8I0Jrdqft3LmzEpUqKDhBEY6LLKoxbNgwPPXUU6K0nzJlivSTUFBQqDxQaM30JCOIFJXSkVdFOxQUFOG4aKIav//+O1q3bi3OoLt27RLioaCgUDVg9JCls9RGzZo1S0U7FBQAuFX3DihULeLj4zF8+HDRaEyYMAE33XRTde+SwqkGePn5+bBarUU2m80mt/OSj9G7lkZFRcklKyJIGpkC4yU3Nze3Ejd3d3eVKqtmdOjQAevXr5cyc0Y76FT6yiuvCCFRULjYoAjHBQy22Wb3S3a+pFYjLCysunfpogDD55mZmWKHzS03Nxc5OTmy6df1EDsJgU4QipMHs9ks93NLS0uTx/OSt5OIkJSURFh4qb+2p6enbLSid954m6+vr2yu1A/niy++wIcffojY2FhJXYwfPx5du3Yt9fE0saOAk51gWVEyZswYXH311XIfid2rr74q5wkt+1mdRQv/999/H7Vr1y54jaSkJPGm+fvvv+W7Hzp0KD777DP4+fmVK9rBJofsP8TXYcSRpbQKChcTTA59CaVwwYAD6csvvyyt4+kSSlGoQuWCEztJBT1MuDlfJ5ngJEMRofMEX3zC52N0UlGW35QTIydLRi7OBJ2MkNw4k53ipIf7zMd5e3vL5EnywUt94/4bKUJCzREbB/K47tatm5Rwk1DQN6YkMs10Bru+sgrr2muvFXtyEg6mNug3k5qaKqnFhx56SMgLzbuefvpp+U42bNhQ8DqDBg3CiRMnRPfE3+G+++5Dly5d5PXKCx4bPDdZRsvPcfvtt5/z96Jw/kHiT4LaB9fDzXTm87EssDrysQx/yTEZEBCACxWKcFxg4Eru1ltvlZU1PTbY90Hh3MAJiANMSkqKDAi81CMN+uTsPFnzemWHzMtDOMoKnvokHyWRJl5n5IODalBQUMElP191kRCSDE70bKhGMOUUGRkp0Qf2/SmOW265RT4HK0Z0dO/eXdIcnOxLwn///ScRk6NHj6JevXpS6sqKLt5OHQYxf/58+R2Y5nKOhJQH3CdGH1lOO27cOCF3Cq4DRTgqBpVSuYAwY8YMaaN922234aOPPpKVq0L5J+GsrCwkJCRIKJ0DAAcXpjj0iZeheV43WgSgvOC+6xGXGjVqFLmPk3l6enoByTp8+LBc8jk6+QgNDZWN0ZqqBiMDGzduxMiRIwtuI+FjCoRlqCWBt7OzsTMGDBiAmTNnlvo++mfk59Nfg9d1skHwPfnerEQhYagIGHHZsmWLRDhIorg4oKhbQeFChiIcpYC51okTJ0o41nn1xMGKgwwH4+DgYPz8888SUdDB6wz9coBu0KBBwe28ztQGO65WNhgepxiN+/Ldd9+pCpQKEgxuiYmJ8n3yt+Vkyjw7JxySN1cmF+UFJ1QSC2fXWZIQRj9IQph+2LNnj5wHXJGRsPD74mVVCCL52zDSVKtWrSK383/uR0mgzqOkx/P2ksDfnRb/JOz6KpOPLZ6uIfkMCQkp9XXKCkZnli5dKvoORm8Y6WC6pqqPs7ONbTwnli1bhr59+5b4fKaXVDNHDW5NG8HNUgmE25YL7McFD0U4zgCu/JjzfeSRR2QCcgZDy1z18MR0Jhz8nwMJL3liEyQfDNH269ev0vdx//79EjrmIMjcdKNGjSr9PS40MD3B6h36knAi0wkGJ0uG0Xmd36fC6SSEEzE3fk8EUzIkafweixMQTkokIXyeKxwTN998s0y2rOY6X+Bxxp4sl19+Oe68804sXrxY0j3+/v7VNrY5g/qY4iF+JT6vfrz33nsS0eY5x8UQLfX5ezqn0DmuPf/88yJQ5nnK6B41fcVJ+PmE8UeCagRDpxw0+eOWBK4ASCx0MN/LH5llqM638zrDzpdeemml7h9z+gzHsgpl1apVFzXZOHbsGNauXVvq/czls6R09erV0vuCAykHXebzmY/v3bs3WrZsKUZoimyUHTyuqWOgLT4J9cCBA2XQYzSCKRB+1xRgUu9wLuZXJDDUlJAkOoP/l7ba5u1lebxONrgoWLhwYZEJlo8lOXUGq4CYbqvMVT67NLMRHPeP0Y4DBw6gOsc2Z3LBxzlvrkAgL3QsX75cuhRzzOMxy2P4qquuknFOx7PPPisVURRW8/ExMTFiRledUEfOGcABjvXzLL3TfRCKEw5OXAwxEgyPstaeA68z4eDtJBuc4CoDXIWxNJCDJFdDH3/88UVZ18+T7LrrrpPfqX6Dhri0Rw8pm9S/I4b9aXK2ZMkSWTnqkw37XfA3ohiQA6oiGJVPQEjkuKLiyovRQE6gFFuS8JH4MY1VHvD47tSpk/yOzike/l8akeftzo8nODg7P14nG4wULlq0SCIyxV+DKSSSJx08nvjeJAaVCR6bCxYsEAJM4Sr3p7rGNgVjY/78+RJBp+6HFVY//fSTLLr045RapO+//17mBo51PHd+/PFHqdw608KsqqEIx1nAnCYHz1GjRp12H5s0cSDUyQUvGRrlj8sQM1MpBNllafnQ8oIRFJYG0geAr+ucznFFTJo0ScRz5QE1MlyFenh5idrf5O2L4B6XUwWJTz75RMKMnGh4crFahytuljZy8mvcuLFUkShUPahFYLie3YgZheOqmmSExI+T6cqVK+UcKWvkgwLQb7/9VvQHjCYyksgVHXUPBM8LZ1EpS1w5MFNAzWOCWglGW9iwUCcb1DvxtsmTJ0tUhroMbvo+MerFqA1LZ2ngRcLE5/O8q2iFytmIwNixY+U4pm8HdR1VVUh4prFNR926dYuUSitha9UiLS2tyMZUSFlAgkFQW0SQePD45jmng+chU6GliazPB9TSrgxgbows8YUXXihyO6sUmNIg0aDQjASA4k2umDm58XYOFmSelUE4GBLjIMGQJgdJVxZukXnTdImEwGQy4/jxY6hTp84Zn8PoBUsgZfg1meDXsi0CO3VHzabN0SEkAG1uuRH1I8Ll5GP0grlKVzK1utDB86Vhw4aycSCNjo7G8ePHsWPHDok0cXLjMV3ab0at0smTJ6U3CUkBJ0sSCj0nzfPMOdzPc5BeGTzO6H3B6iIKI+nBQfD9aTtO8LWcwagkSRJBMkKSwciYbvxFIlCVYMksiTLP923btsmxXxXVQKWNbTpICp31JJVVkq1QMqj/cwbJIInymcBo2zPPPCMLYP3Y5vnBxbBebVUW0fT5gCIcZQDNgxge5upJF4LqIJHgiptOnpw8O3bsKLcz0sFBiwcDB9pzDb9ydTVkyBDZD6ZRzkcpYlWAHgovvviifFceXoFo0OxyHNm3QFIjZ+s1wQoCErgaV16D4M7d0Da8FrqE+KOpnzeOZeVgzbbDeOPlkUL+aKykYFzw+KXmiBsrXzj5M2rBaBcjB/Xr15foSPGKDU78eoSiOJzTmDpo5V+anT8rx8oSPeCqsSImX+cKeobQ/4PnPckORYKVLdg809hGkBwWn7QUqg7Hjx8voiEqyzhPLQdJO3V8RociHGUE7Y65CipupEXCQZU5ByTqN/TVGU9kTnoc0PTUS0Xxyy+/4NFHH5WSWjJZVyzP5Pfz8MMPSwjcwzMATdtcjVp1OiErPRYxx/7Flq3bJA1V3A/CGSQSf/31F27s0xs9mzeB1eHA+oRU/LJ8FY6sWobM/XtI9yV3qQiH64Chep5XLEGmXoKDLsO+JOokBYx8XKwra352Rhnor8OqOEZkikdjqmpsUzj/CDhVBVZWkHwzrcxeWTxWdDBSyLQgzydnwngmkfX5gCIcZUTbtm1xxx13nBZKZdiWLJTiKzZl0kHRF9XtnCCd88rlAckKQ2p87enTp8tKxBVBBf6iRYvh7uGDJq2GIDyyC7LS47Br8y9Iit8FD79gOHJsQswowi3pe2Ao/cEHH5TvYMvuPfh1536s/2cBUrdugC0zAx4N6iLktuuQs/8IsjZsL7AXV3A9zQc3psQY9aBzLqOHDDUzGlLV5aJGBMsemdZh+oPVVL/99psYh1X12EZwDKNuzBkU1l6sBNAocDgckl7+888/JbLHSJQzqCPkb0QtG1OABMdWph0ru1qyPFCEoxx46623JH3iDFaeMPRJ/Yae8yVIQnj7mQx0zgSW3j322GNSVkihGgdgV8X27dvlsmPPp2HNz8HuLb8hMW4HPANqoH6/2xHc5BIcWvAT9u3fLeF1vSkWRXw8QdhYiwSCYXZGebbt2A7YHTD7+sC3Z0f49eoCj7oaa3evUwtZ67cKEXTuh6HgWqAOir83N1YbUVzKc4npDQp/mYt2xUhfRcHPSpOuJk2aiJaFmo6SUiCVObYRJUU9GH3i2KZQfXj88cclaswFLUm4rsugUR8JKi8ZFaPQmucMoyYkKCQb1fnbqV4qBgT1DbQ83rdvn4jiiguJXA0sI2QO2sevFrIy4iWiEd75KoQ06wSTWUtBZcYfw74Zn+KSSy4Ry2hOMCQaJG6cYCgoZbqKXgkNGjWCV6smCHvyHpjci3Jmh92OqOffhT01vcrU/dWBquil4mqg0JQRDx4bPC4oAqXe42LzhaA2jLoOCmGph7qYiJfReqlc2fTZSnEatdpysWj/J2XupVLab87SV52I6sZfjIg5G3+plIpCAZhzGzx4sKzumbvVy5xcGVTBU5uRkBCHWh37I7xTf5gtRQ8937B6qN28g5Td/fPPP3LSMa9cfCXLFS+nl9z9R4RcFD/tTGyo1qMj0hasFO8HrggVLgyQZHDFzd+UkS+KTLmReJCUXywVSbrhIEu9ubJl2e/FRroudjjKsJhi9J2RMN2byAhQR6mBwLJXik3JnGlQdCGQDR1MDcFkRn5mymlkI9DLDVfWd8cnb72Mho0aibU0c9Vk4iUxeTroOXLzkLmuZP8O30svEfFoZXmfKBgLJBbMWTNqRm8BRsJ4vtC8i5GgiwGMBNJnhk6StEQ/FxdXBYXzBUU4DAIKeqg7oBKdQqALrV01P1ed2hFI2rsB2UmaM6uvh0WIxmM9I+BIPIrXPvgQY778CnPmzjvjxEFjJPpwpC9aXSLT96gbAfeIMOWgeIGDq3pGNkgs6bZIx18aitHJlBHCCx0U0VLfxbGDIlL2sVFQMDIU4TAAWGvPCg3qNljSeaFabYuI02RC0paF6Fnbgid6hsMtLQYjRr+HyVEJcFx3C2oMHEwhhkR6zoT69eohPyoWeYeOl3i/b69O8l4sGVO4sMEoWEREhETF6IPDdAvV+by8kHQ8JYEpR6ZX6PfD1CWruRQUjApFOKoZDIvSfpZuiOxtcCELwNgY7ZGHH8KHrzyLCEsGRn/0CX46GA3LDbfDv1U70V/4Nm0Jj1oRWLtu/RlfS0zCzGakLy3Zpte3WwcmOqXcT+HiAM8dTsCsFqMlOVf+FFhS53AhEw9WKcyZM0fSTIz2FG9Yp6BgFCjCUY2gKJR9GlhfT0OvCxUc7GnmxFUnXR/Hff45Rn0wFrmDhsK/TQchGs6TRmifqyTKQVFcaaC+xd1iQea6rbBlnN4IzC0kCJ5NGyBNhZkvOvAYYqqFK34ah23evFlcGNnh9UIW1LJMkqklEi69oaSCgpGgCEc1gWFQljiypwhdRC/kqhsSK1YTcNXJSYAHnTU1GZn7dpX4HPZIcQsOlZLgM4EN7CgOzVxdst+Gb89OEuU4WwtuhQtXXEqdAyOIjK4xmsjIWHEjqwsFTMWyGSJNB0k6aJymoGAkKMJRTWSDIi+mUOieeSGCqvmtW7fKypKDPYkGV51cfbIvDPUVJxf8DUcxcR+jIbQoN5lNgNmEa665ptT3YLdQEoq0xWukRLY4fDu3BSxmvPnmm1XyGRVcA/QtYTULq1ooJmWkjcJS6h4uRJL1ww8/SEk5dVCKdCgYCYpwnGdwtc9GZex4ydXXhRbmJWGgORcH9aysrIJ8enEh7LChQ5GflIC0Lf8VPC9z/24c++ZTxEz+DuYgX1gC/DGX5bRnKQ+0JSQjZ/eB0+4z+3jDu31L5F4kpZIKZwYdGNndmRsNxOgOnJiYiAsNPP9YKktHSRJ9lV5RMAoU4TiPYAkbV+yffPKJOARyIqZN8IVCOvT0CcV6XGFxwNNtyovjjz/+kGhHwqK5yDywF8e/H4/on78FvMwIe/5B1Hp5OAKvu0IiGGzVXRrWrl2riUeXlCwe9bu0o6Rdbr311kr7nAquDXZcpbiSza54/m3cuPGCSbPQk4TpS1a9Mb3Cc5CRHSUkVTACFOE4T2AagZqNDz/8sCCNwgjHhUA6GKbetWtXkfQJyxTPVnFDa2ZbZiaiJ30NO/IR9uz9QjS8WzeV5/r16gSzv68MnKWBDdp8vLyQvWU3rEkpp93v3a45TJ4eQnAUFJw9POhQysmYqRXa71PY7MrVLDrZYL8Miqr19AqjgPyc7MasoFCdUITjPICDACsu2HjskUceKXKfq5MONtZiaJpdJZkzLil9UhpGjx5NKQcTzwh77n54t21ehKSY3N0ReLXWEO+FF14o9XVmzJghlxkrTi+l5Wv4dG0Hu8Oh3BgVSk2zMCLHrrRcGLhitKM42dBB0jFx4kQ5LxldzczMrNb9VLi4oQhHFYNul2yaw86vTz31VImPcUXSoUc1mCZiYzWSjbI0HSoO8fl32JE6d1mJ9/v16Q6Tt5f0iygN/H6ZeklfuhYOa6EI1ZqShtR5y5C75xDYdIUrPQWFksAmcEyzcIJmtIPnratEO0ojGzq4APjll18kvTls2LCLxv5dwXhQhKOKV//02eCEyPbPZ4IrkQ5qNfSoBt0d2VCrIs2jmF564oknpdV8+uLVsCYkn/YYs6cHAgZeJlUtYmleClj1Y0/PROamHcjavAvx435C9AvvIXXmP/BvUQtu/t5CkBQUzuRlQQt+Rju2b9/uEtGOs5EN58/Glgk0Qbv//vsvyAodBeNDtaevwhbz/fv3ly6p06ZNK3OaoawDSHWAh8q+ffukSRbz39wqQjRIquiNkJWVDTcfP1jzrYAtF77d2qPGQ6eLO22ZWYh+/l2YrLYz9siggRjb1Tvy8uHTOBw1B7ZDyOWthGwc/34pYmesx64dO4TYuRpUe/rzC7bzJukgqWZkjJoko6EiYwUJBwWlN954oxB+BddsT++qUBGOKoDVapWqCOoRfvvtt3L1RjFqpIMEisZJDDVXNKrB1SJJSo+evZCdm4eILgPR+rZX0LDfrZqB17+bkXf89BI+i68P/K/sKTqMn3/+udTX9/XxEbLReOQQtP78PoRd20nIBhHar7W8B/ddQaGs0Q46d9IsjOTDSA3hKrowYQfmBQsWiBD7TBFDBYWqgCIcVRAFoHMoB4RZs2aJKK28MBrp4CqPZmX8LJdffrkw+/KCwk4fH18cOHAAwY3bo9VtLyO8U3+Y3T0Q2KANTL4hUt6a/MfcEp8fcFVvMfG67777Sn0PVsnQLCxj9+lmRz4Nw+BVL/SC9F1QqDpQn0QvGR43LPnOyMio7l065yhokyZNMG/ePBGxn4nAKyhUNhThqGS89tprWLhwodhyBwcHV/h1jEA6mOfVlfutW7eWTpwV7WRL7xGHw466vYaiwZV3wcMvSG7PS0/CkUU/w5GZJBGInB37kLP74GnPtwT4wb9Pd9gcDlmhlQTm3qkHOblgK2w5pwvjalzRVrQgU6dOrdBnULg44evrK5Gx0NBQ0S4xylddqKyUK89lLgK4OCL5UFA4H1CEoxLx448/YsKECTIhcmV0rqhO0kGXUEYMGN1gVKNevXrn9Hp///03TCYzEvesFRtyW34uTvw3D7t+fx/pcQdRa8gtcG/cTItyTJ1TYoWAiEcBcWotDTQJs2fnIWnF7tPuC+nb+qxGYgoKJYHVK23btpWJetu2bdiyZct5T7FUtr6L3hz06bjlllskZaSgUNVQhKOSQH3DE088IQZT7NtQWagO0nHy5ElJoTB1wnJXtr8+VwQFBeGWW25GdkI0jq+cht1TxiBuy1IE9+yDhk+/jMCO3VDn2qES5cg7Go2sjdtL7ADLhmz5Nhs2bCi5YdtPP/0kUYz4Waff71kzAH6t6yInL/ecP4/CxQmKR5liSU9Px4oVK4SYnw9UlZicZIMeN9dff70yBlOocijCUQmgQyFV3x988IG4bFY2zhfpYFSBA9u6deskhULBHFd2lQVdQJu4ey3ca4Wh/pMvocaVV8Psqam8PUJrIrBrTyEMKX/MK+KpoUOMwByOM4o/Q0NCkHUwDpn7TpScVrE7xOVUQaEi8PHxkUoPTvznox9LVVeuvfrqq+jUqRNuuukm5dGhUKVQhOMcwRXOkCFDZIVAc6+qQlWTDuo12N2VZa89evRA/fr1URW44447WL8Ki38APEJCT7s/tM9VQiisJ5OQsVJr7OYM91o1xDk0Jy8Phw8fLvE9ODhTYBo/Z9Np9wX3ag6TxSzkUEGhomCFFgk5o5k8J9kMripwPsrk+VkYGaRv0NNPP10l76GgQCjCcY4RAVZNUFQ2fvz4s/YOMSrpoOcAHUNp6EW9RlUMbGyTzWZZtFmms2j6lg3IOnLotMe5+fkjtN8guZ7y5wLYc05PfwRe009SLxzwSwL7uZgdQOLSnbCmZxd9fX9vBHZtAhuU/YzCuaNhw4bSII2kgNqOyjTUOp+ePBzD/vrrL/EMog5NQaEqoAjHOeDdd9+V9MP06dOlidj5QGWTDhrNMCzMktdevXpVqIz3bOCqKTKyHqKjY+AXWFe7UXQWU+EoQXgX3OMy6a9iz8xG2sJVp93vUTcc3h1aIT0zs9TvYNSoUZKSSVi847T7Qq9oA9js4k6qcP5BO/sGDRrAy8sL3bp1kyqoM0HXRfHxFG7SAM0ZrLa46qqrpIqEpJ+CzuKg7oL3OW+s0KgM0NyPWiemVnheVkbPnuowAGRUk98lNR3UcCkoVDYU4agguBp4//335ZIr6vOJyiIdbFlNbwEO/szhVrTktTQw5cHBeNy4cfDyDoG7py+yMuPF8Itpk7yEeCSvXXna88wengi75kZ5TNqcpbClne59IK3r7XY0a9asxPd+/fXXwSAGxaPFK16CujSG2csdc+bMKfG5e/fuxcGDp5fmKpw7pkyZgueee04IIQ21GKWi9T+roUoTY99222144IEHsHnzZklfctuxo5BIsiEZyfKYMWPO+N4PPfQQTpw4UbBVZlpNL52lCyzFpOfSJK063Yb5PX722WfSc6W0lKWCQkWhrM0rAPbkYBiVZbBDhw6ttv04l4Hp2LFjEgKmbXNllPAWB1d5Xl4+cMABP/8IZKRFwz+yBepddhM8/IOlQiVm7d8wubmhwdMvwz1Q8+UgsqOO4uS8mcg5flSMvPz79UDI7YNPe4+4sd8iZ88h5GZnlxhhIhGk8r75e7choEODIvcd/mwuEhZuR05mlrhK0jvl3nvvRcyJU0JTkxlHDx8653Lg0sCSSqay6L6qb/r/vI+heZ6a3HidlUMECRyFvPoqnfl3TnJc/fNz8FLf+H9Vp/nKC0Y02J31888/l//52SIjI/Hkk09ixIgRJVZRcPKePXt2wW089+i58tVXXxV5LHUUTHGQmIgnS7EIB2/79NNPUZXg70UyxBQiz8vymuQZpbUBG00yyrF27VoRySoUhbI2rxgqd0l7kYhEb775ZimBrU6yoUc6CEY6yjNA0e2Tq3gO/lUVneEESaMvs8UN2TlJqN/vdgQ37VQwAQZEtkDMurniyUFyUfvWe2FNS8XJhbORvnUj3OtGIHDwFUidtRjpS/4Va3P3sNDTohw5uw6gcePGUimkW7DfeeedmPXXLFhtVk08OnvTaYQjtG9rJMzfKiW/+VarRFMI99AaMLm5I+9knLTzrqg/AUkDSyepi+GE6UwouOnVAMVJAlNajDQ5Ewpe8nE0nGJZJv93JiN8Lb4HQ/r6++hhfefX16/zM7NMmavy80lIuE8bN27EyJEjC27j52NfHR7DJYG3MyLiDEZEZs6cWe73nzx5snRNpb03vVxo0lfZkym/zzZt2sj3TB+brl27lvkcMwrZID7++GPpnkvi8d1331XrvihcOFCEowJ6BA7WZ+v+akTSwQmKzqGcuFjWx89RVWDUpGfPHlr7+u7XIKRZZ20fbDbEbVmC2E3/wM3fH9a0FGTs2obYmVOQvmMLTB5uCLn7Rvhd1kV0Hmn/bYcjLkEEpDUfub3Ie3g1bwSPxvUQdThKwr8MA2/evEWIjodnAMymHNiteUj+dx/yEtPhEVroJ+Lfph7g54H8jDxYAgLh5heAvMR45CcmwK1GCEwe7vJdlZVccMXD1QkJBjf+T+LAVRDbgnNjdKI4ASjrhM/26fzdGA0oS/O24hEU5+tMX3D/ONlz/3gccNP3tapICKNN3K9atWoVuZ3/79mzp9RmYyU9nreXB7fffrtoFPg9MrL30ksvCemmZqGywe+PPYP4+1LjVZYoopHIBsFjl2XsjAqReEh1mYLCOUIRjnLg119/lQGKorTK1jtUNengSpihZmo+mGvm6raqwRWem7s7Tqyfi6CGbWHNzsTRZb8jJylWDL9C+16F6JlTkb19E9I2rYNfn24IHjYIZp9C4WqtB25G7OjPkbVuK/IGXg6P+nVO67GSMGEyGjduohENr0Dk52ciLzcNnrXrIjctFcjKwMn5W1Hnjl4FzzOZTQi9oi0S/9oIW1oqzL6eCBjQCz6d2sK9bjgSvp2CrHVbZFXunK7h9+hMLHhdJxf6pM3Jhte5eq6ulAbTLnz/0lbw/Bx6BIYbJzx+Fu6v/jl0IlKVJOR84eGHHy64TuEpI0V02qRWhxGyqgDTcTx2aFLH44jpHlcgGzpYVcZyWZI1psFK00spKJQVxpk1DQ62ZKeqnWFZrjKNhjORDnav/e+//2SVS7LB1fX5wpLFi3F5n77Y/9cXyMtMgWfNcNR75Bl41daqVWpfcwMO7tgs1y2B/kXIBuHZKBJu7ZrDumO/NHar9cJDcrs9O0cqWNL/0USnJBu0Rc/LSYNfq7YI7tEH3vUaIH3nVpyYMlE8OWrf2kM8OHSED+gghANuFoS//iRsSSnI3LAd2T9MRd7RGHkMBYoM3zMqwFU1hbb6pMyNgzAn5+okFxWBHt3gpnuuOJMQkg9GjXjJlTrTENxYCVJRMzhdf8Lv0Bn8n69dEnh7eR5fVjCdqKcXq4pwENxP+tpQC8Hzj12WnY8To5INHazkotiWWhqOLedz7HAFZNUPgpv7uX8n1vwcYD8ueCjCUQZwoOAJ9+CDD56xj4cRSQfJBsO6TKcwjVKWcHxlguWCfftcjqVLl8KnaQvUue1+EYrqsPj4otaQWxH3529Inb0Uvpd2PE2rEXb79YgZ8YHoNbK27EZ+dCzS5i+HIy8PYVdfAq+6ITj6xT9StVJv+PPwiiiMgvi1aMN4BqzJmUhZdwDBPZoV6SBr8vWAIzMPMa9+BFtiCsxeHgjs2hjt7+6LiO0Z6NKpszTio+5BnzxINFyJXFSEhOhgCoSpEJItRsh4PIWFhcl3wdRGecrB+VhWQy1evFiInE5y+D81USWBxzHvf+aZZwpuo8CXt58L9NJZRjqqGjwPWf3Biht+n61atZLjx+hkQ8d7770n+/+///1P/IYUFCoKRTjKAJ5oXJmxDNbocCYdDIPSOZSDG5X91ZUGWrJkiXx/2YcPID81WSzMnRHQoTNOrloCe+JJJP38J8Kee6DIhE4C4tm7M3JXbUTChF/EOKzmwA6IuKUHPGr4w2F34Pik5bCn5yLr0P4ihMNksUjqJnH5P4j/e2MRwkHUubkHoiYuh8VhRZ8xj6Jj8zZoZgpBiMMLu4L3Y82i5SJavFiV+vzdSCy4tWvXTiIeJB9MRZCAcKLUyUdZeu7wu2TzvM6dO4ugklUjFLzSQI+4++67Re/ASU7XTNGM7qOPPhIR7++//y4pim+++abgNZkmZNVVTIwWlaI2g9CjMtxXpkOvvvpqidBQw/Hss88KGeZnOh9g5QEnbWqaSP4pDqZuxehkQyeKLGemFoV6DrZxUFCoCJQPx1nw559/YtKkSXLCnS9zr8ogHQz1k3RwRcXwcXVrTmSgtdsRO/1XuXQGyUXkLfdo7el37kf2ptPFmjWHDpJKEke+FZEPXoH6jw8QsiHPN5tQ/5H+cj2ZxIVVJ04I7Hyp9E9J23IEOdFOviUOoP0Vl+Lx4Y/h20++wAPNroC/2RMrLNH42GMTvj+yDPPmztUawikUpJJowsUy0/79+ws50Jv9LVq0SFbsZ/KgYKRw7Nix4pNCQSIjDYwg6cJQEgd6ZOhgRIlkgQSDnh10wmSKi5UgOmbNmiWTIQkJceutt8r/etksz1vuG83BuO/PP/+8VJixg/H5BLUwjDLyM1KQzEWA0cmGDupPWK1CPxTlz6FQUSgfjjOAVQEUmHGwY2MjVwHD3nrOmGWiHLSNMLCxsR1TKzX6X4uQ3qc3uUtYOAdJqxbDHOCPOu/9D2avovXtqbOXSLWKR80AtP3uUZjdC7UEDpsdG4d+BEeuFWGDb0IQSYYTDn/3OfKjDqPWkC5o9uBVaGurgQ72MAQ4PLBsyVKsWLQU2VfWR41Bhf4NeUkZ2HrHeIlunIuRU2WApa902OQq/Xynxcp6zFHnwnOGERDqNagNYcqCqRoFDUyj0MeHkSNqwdgk0ZXSc+wXxcgWBeGV2djRVX04elz5ZqVpONYsGnXB+3CokaAUkIdRLDV48GCXIxvUbHAQYyia+eLz2dr+bKkVTpYJi+ciN04Lfzsj5PL+gMUd9rQM8d8oDv/+vaRUNi8+DSfnaUJTHRSD1nv4SrmetGJREct0Xg9o0gwtmjXH7Y164+m8jmhpD8Vaywl85rEZ83EIu3bvxslFRT03PEL84NO41nlrQe7KYASNJadMkzCSQMLBiXXBggWymq9uwmYE6JoNLgAo3qY5GL8jV1rzMbXFsYSXCtWLFStWiKaQ5x3H++LeNBkZGaKNYrURU3icC4qb5Z1vKMJRCugiylxvVTsTViYowGNfCg5gehrlfLW2Lyt0I60Tf0yGo1jqw+zhgdq33qNZmv+zAnlRRb0WzJ4eCL1HM1uL/nklbFlFG7vVuLIt4GaGNSUZ6bu2wZaTg/R/VyDyv6UYefWVYvSUmpSMsRumY5LHLmy3JMBqsksHWb5nxq4o5J5MK/KaQZc2FbdTZXVedrCSgSk9GnpRq0HCRrJJIqwZwrnOBFtZKC4Q1dMrNKyjzspVwImLY+Obb76pdWVWqDZkZmZKmpG9iUrTSzFdSbM7/lYUXpOAMAVZXVCEowRwEKCojKmU4OBguAI4iLM3Bev9i2s2jEQ6WBZ4y003IS/+BBKXLzztfr9mreDegMJXE5ImzThtcvLt2Qnw9IAtMxexM4o2/TJ7uCHy/r4SBclduQhdju7Euzdfj2FDb8R/Hja8sPBP/EAiOWXxaR1kvRvXkuclLS86iAZ1ayr6D06ejB5ROEx/BYaT6aJ6vkSHrgiuuuiySfEyvz+KSlmeTb3H0aNHRV90MaC0ahSSDkY7SGarqr19VYD7PHz4cGkFwHNCoXowaNAgjB49GjfccEOJ97MqigJt6q3YL4teNCQoZ2uWWJVQhKOUVAp/RF2EZnTo/Rvon8BBraQcv5FIBysNuApm6oN9U4qj7tA7RUCae+AoMtdsKnKfyWxG2PA7JCJx4o+1yE8q2tgtclBn3HP33fjqs0/R8pL2+DU7Hh+YErHWD3Dr0k6el7U/FpkHikZPat/WU+5LXFw0rcKUiluQj0wI7h6eYstNQuoWUANmdw9sd2oiplA69JAu0y0UIHKSZXkrBYiV2dLdaDhb6Svz9Vwg8PzVq2xcAW+//bboDVRqpfK1IWlOG3V450IMGc1g6o5zBPVzjKbxHKwuKMJRDD/88IOE/V0plULzIr1ZFE2aSoORSIfW+8SE2GmTYc8v2s6bjdxqDrxerif//jdsmUU1FF5tmwM1gqX9fMxvq+U2N4cZPay18ZSpC5p2b48RL4/EO1+Ox15Pto/TYPb2hEePTlp/lTmbTusgS2QfOYnsYwlFVun+XbSIi7uPPzyDGQkxIy8lHjZbvpAUvQxT4exg5I2rLZZXMjrECZnpFn1QvJBQVp8NlurSn4QRSnqeuFpqhToUhcpBZGRkgRcON708vCKgZwpJPjUcrNQaOHCgpF9YDl5dUISj2CTIvNe3335bpX1GKhMMTZO1clAri125UUgHRYWPDX8U+cmJUp1SHEHdegHePrBn5SBl+oIi95EEhDPKYXcgccE2tE30xWN57dHMHoxp7vsxvcZxHD54CHmHjiN3X9ESvhpXXw7Y7EhcvAPWzJwi6Rj/rg1Fr5G0rOgAWqNHC6mhzc9MBbzc4BlRG2ZvHyp0C8owFcoH/oYUu5F40AqeK/zly5eX2qbe1VBeUy9W87AijjoXRg5cAfxsjz/+uEqtVPIclJqaWrA5NzqsCOFgtSKjHGyayGgUfy+WiFcXFOEolkqhqQ1LD10BLD9kNIaVAeVpg20U0kG27e/nh5S1K8Wwyxk07Iq88yFNzLlsLXIPa91gdXg1jETvm4Zg3Gfj0CUvDAvcjuAn9504ak6Dm58XQm/oLFbnLKV1hnvtWkBQgERHEhcVTYfUHqr5dSQs3l5kte2vd5qlNiQ2Bg5PE/yu6I6w/z0Ek6eHeEnQV0Jv2GU2W2AyW8RzQuHMYMksy2ep8aCnB0296NmSnJwMV0VFHUT5PfAY4nnpKlU9bGLJ0D+9VRTOHQEBAUW2M0WszwTaIbz88svS9ZeVLIwmUjCq++BUFxThOAWaO3GV9cknn8AVQL0GB+eOHTtWqMW8UUiHdP00mRE741epKnGGd2R9eLXrJMQh8afpBYZhzdx88FxAfdx/8234c8YMPP7go9h4YCezHgWIvLlngZFY3tHoIq9b4/bBYvoV9/eGosSCHWTpvxGfhsx9heZTFi93eEQECvkJuedGRLz2BIJvHADvlk1gaRgp5II5baa2TN6BCG7WCRYPr/NuLOXKoAiXky2JB4XaJB0UmLK0z5Vwrnbl/A4Y+eHKlN4rrpBa4dhJ4qGqVoyD/Px82Yp74PA8q07NlCIcp6yR9T4BrpBKYYtxhl5Z8cHBqaIwAulgKLZO7QhY0+mtUbSOnKhzzQ1CHPKPn0DQ5n14zL8u7vOrjc156Xgn/ShW5KXCbgKOf7+kCHlwD/JB8JXtT0U5lhZ5TZ9LWsllbnQy0rcXRk7oWBp83SWi8UhaWtTtNGLYpfJaObsPFLndr00z0YgENWqPdve/i1a3jUTt7tfBMygM2cUIlMLZwVwz887s5ErxM4VujCCdi3jufKEyeqMw1cTUCtOjXFC4gq6FjqmMDj/55JMusb8XCjIyMuTc0PsCUYDN63SyZXSEPkyc11gVxvtIDOmaXVpVy/mAIhwAXn31VSnd0xtKGRksJWRZEzUQTZo0OefXq07SMXv2bNQKCxfBoHhvbF6PjD1FJ3qLtw9qD7tDQoGvXDYQxzLT8VbqISzJSUI+HAgbNkg0GRnbjyNtU1G9Rr27ewlZydq4HfmxJ4uka7wGXaaJR2dvLPKc2oM6ahqPpTvFvVRHUNcm8lrZ2/YUMRXzbNYAsNuQGXcEx5ZPxc7Jo7Fj4uvIijsiKRhXWKUadeVM63NqPEg2KCw1chVHZTZiI+mgiJT+JTRNcwVQPMr0Lq3nFc4PNmzYIBb+3AjqD3md6V29GpDz2h133CEkniX977zzjnQ9ry5c9ISDYhoyv3HjxhneYpirh61bt8olB+PK2t/zTToY0qPQ7LrrBsNhdYOnW2HTr9iZv8OWWRhGj/DywCtDB6NHr94Y8fLL+PHrr5HNVvSnYPHzheeA3iL2PP7tYmnkpoMW6AGXNtaiHPOWFdmHGlddJsQiefXeIqW17CBLImJNy0batsKSXenb4m6BIzsXmRt3IH3pv4j/fBJOfqb1WaGgNDs7ET5t2iLiprsQdt0wISiqbPDcQK8KapS46uexzzSL0aIdVdH1ldEdlstytcrN6GBk+MMPP5RJz9XSYK6KPn36yFxQfNN7P7FxISuJuKCjpoPNAvn7VOc8d1ETDk58VO3yR2Du1OjgwEanRg7Ald3H4HyRDgrMGjVqjIkTJyLAsxbybBnw8A1C597Pw83dB/bsbMT9PY1NfnBlWBAeb1Ibu9Oy8Omuwzh88CCy/t2MnL2H5LUYaUhfvAb5qzeK2DP7aAISlxVdEdZ/sL9M/JmrN8GalFJwuyXQH5b6dUTLcXLB1iLPqXlLNy2tUrxa5fqOQmwSv/oVSb/OgiU3FeFDOsHspwm7Qq+8GkFde8BhtyEnWkvVsOJJ4dzAAZKlfYx2cEA1UrSjKlvMk2xxhUrH4+ouYy8L7rrrLhG+0oxKQaEkXNSEg0yQnSmp5jU6WC7IgY1kg+HmqsD5IB202j169Ai83QKRlhuHuo36oH334UhPjYbdYZPW86GZqXg8MgRtA/0w4WAM/ly1Bsd/+0F7AU74E6cje8c+nHjzMyT9+hdCejRBXXEYBaJ+XAZ7XmGJnlftYPi1ritlrWkLVhbZl9ChAyWVEz97U5H0ScSASyT6kbRid5HXqtmrlRAb91A/dJzyDFqOvQt17uyN0GsukfTJid9/xJHP3pOOuFlRBwA3i0usTl0FNIvjBMxoB3PVDClXZ7SjKsmGDgrCGQ5nGpWrVKMTQ1aeMVqsvGkUSsJFSzhYdvfSSy+JwRe7gRoZLJHj4Epb2qq2Wq9q0sGyY1pcZ1tT0azNUEQ27ot92//A3m2/I6RRW9z/7Cv44IMPsG7ZUny4eiM2TP4J0T9/C7faNRDx9nOSHrHGJiD+4+/h4e+GVp/di4bPXoPwG7sC7m7IT0g/zdSrwZMDhSikL1sLW3qmRDqS/5iLhK8my/1MqaT8V9grxTMsEGYfD9hz8pHqdLtv0wjt8YkZRTw8Qjo2EuJi9vNG2LP3o+74Uajz/ovwaFhP+RNUUbSDnYepZ6KotDqiHeeDbOigMyvD4yQdRreD5xj14IMPKgGpQokwX8xCUTaWMrpQlAMM89Z0oON2PlCVpINOk1RNm0xmHD+8AptWf4aE+F3oftNwvPXK/9C9Yzu88d5YTP75Zxz++mNk7N2B0PuGIez5B+BRpxbCnrxHeyGzCY1fGlxAAtgtttlrN8r1mMmrihAC7/o14dWgBpBvRdyH3yD6pTHIWLEWYVe3R+07egmJif+7qHi03oNXSFqF4lHnKhafVnXkujMR8WuuVQrZ0jJEnJr86yzEvPwh8vYfliiHQtVEOxjta9OmTUG0g32ELjSy4Vy5QriCqydLZKm3mT59enXvioLBcFESjs2bN4uYxhWEovoAw7Dq+URVkg56h4wa9TqysxKQb8vG/S9/gOdv7Y+DCVn4Zk00zG20VIcjPx+B1/aDX+8uBb+Td9vmsDSoKymMY18VdcwL6NQIbqG+sGXlIXbauqKf57lr5TI/KhZ17uiFDpMeR+QD/RA+tJtoPFjhknOi0GzKv0N9SaukrNsvjeJ01B7WXchOyrrC8lizpzvg4SavkzJ1DhyJsQjuUh81B3UArLYCEZdC1UY7qO2gxulCIhs6qNniAokpOqaBjS4gZZSSDTBdxcBM4fzgoiMcDPO98MILeOqppwwvFOXAwgGGeevKFolWN+kYNWoUGjVsgMcfeRC9moVh4voTWLI/GTYH4OEXjPr9bpfHpf61EPkni753OKMcJANr9wshcJ6Amr1xs5CV2OnrkOdUfcJICMkIdR60Mbf4aEJPi7cHAns0ExIRP2czUjcewoH3/sSORzSxp8NqR/Kawnx0wCUsg3UgbcsR2HMLS15D+rUQAWqdey9H68/uRf3HrkKt6zvLfTQFc4ZS8VdNtIPHKv1pSAqqIpxfXWRDB705WJ3GBRNLZo0uIKVzrKsYKSqcH1x0hIMdKnnCjhgxAkYGBxTuJ3OiZemR4mqkg+ZlbJRXt24knnvmaRw8UlRcGdy0E7xr1tcsyL+bUuAySrgFB8Bn6ACJchz5fAFsOYUTv2+TcHg3CxcRaMwvRUWiTUbcIKSAXWadxaCR9/UREnFy1n/Y9+oU4PgJ9HyiLfq+THt0ExKXFKZVLF4eMPt7wZFvQ9rWwrLZGr1aC5nJ2BlVcJtX3VCY3MwyUZEwkhCZ3NzgHxAgk6RC5YHfLSskSAbYW4gh/cp0VKxusqGDk7huAW/kLrt0uBwzZoyUyrpKQzqFqsdFRTh4gpJosCGOkR1FuZ/0B6GLKEPG1Y3KJh0U7LJRF8v++ve/EkmJCTi04EfY8nOLTCBNrnlQiEDu/iNIX7iqyGvUGNRH0hgUcJ6YuqbIfU1fpjupAyfnb0V2VGLB7f5tImH29YQ1NQsJiwrb0HuTGPh6wJ5vR9eHWuPOaQPR8a4WaHldQy2asfUI8pMLQ8Nht3QXfUcRHUfLOpowdfuxAi8Q6kro3SHw9YFX62bw73cpPOrVRq4yBKsSsPMqu2HS+n/NmjWVUsViFLKhg7oVppCMbiVOp8uePXvi3Xffre5dUTAILirCMXXqVMnxsomNkUGDFjpU6kIxI6CySEdUVJT0yWjcuLFoORgiHjniJeSmnsTxFdOKhMLdvHzR6OoH5XrytPnIi44ruM9kNiP8xUckfXJi6lrkOBELz1pBCLq8hUQnon4oavjVZKQmEj4xZU2RUtjGz14rotCj/54o0Iu4eVoQ1karCmKJrI6w3q0007B/9xXsr6RozCbRe+QcL9wXr8hQuQy5awjCnr4X/n26w1Kz+ietCxmsOuvVq5c0viKxPZfuq0YjG856DtpVx8UVnhNGBNurT5gwQbpaKyhcNISDEzgrU954440q87GoDCQmJsogV126jaoiHZyYKYBlqJufjbbs+sTOFVCrli2RvH8jEnevLfK8wHot4R/ZRohFwje/SYpFh2fDSLh30MS0TK04k5WGjw/UdB7/7kPG7sLmbQEdG0rUgQ3aklbuKbg9qHtTiUzE7UjCyX2F4tFeT3WQy8SlO4qUzZJcMLqSc6wwXBzYtbFcpu8s7M9S88p2kvpJnjwTx4a/iphXxiJ7w3bxG9F7IChUPlgNxUmZaZaVK1dWqHTWiGRDB0vLuSBh2vV8VedUBEwJDx06VDRbCgoXDeH47rvvxC74nntOlVUaEPRs4ADSokULGVCMiIqQDpI9eghw0Ge4u1atWqc9hj0jOElErZqBrIRCHQTR8Ko7RHvBBm6pc4q2mw9/8GYhFulbjyLZiUC4+Xuj5k09JPVx/LvCxm6SqnnpeiEBMb+tLrzdYkbo4K4wWUzY/kdhBUqdjmHy3pl7TxSpYgnp21qrVllfmFapOaCDvF/6jkLC4dNY+6wWTzPqP3olmr9/OxqNuF5ek/0nFKoO/K3Z4JB9SXhe0YyqrGJSI5MNHfXq1ZPUMHuYGBkUTU+ZMkW6cStc3LgoCAdLs1gbzpU0JzWjggMcw8BMNxgZ5SEd/O65wmTOmWSjNCLF7qAkXJwQDs//EdbcQldFi7snml2vpcFS/16M3COFhMTs440aj9wmgs2jX/5TpIS13p09tcZuu6KK6C2CLmVVCiQ64Xx75K3d4bA5sHv2EeRmaBoLplka96st5CJpeWFapda1HUWzwUoZHf50NCX5cerB4tOgplbia3cg7NpOCGhfH34tNC8PagwUqh4RERHo3bu3VHxRbHk2MzZXIBs6oWIEgWkVI5fK0riM3WRfeeWV6t4VhWrGRUE46CbK0KqRTb6YSmGek93+jO4NUlbSwdz5ihUrxJ6ZLazZerw4WCIaFhYmHgq+AextYkdeZgqOLf21yGrUN7wBglp15TCrpVacRJc+XdvD5O8Ha3o2oicXVqaw/LX2k/21xm6McuiaDRO0NvRmLcqhwz3YF+61AmDLs2HPnCMFt3d7uJ2QCwpN9X3ybaaZfTFdw/fVoyp8baZack+myW16+S0dUHUyJI3gLGYRzyqcH7BdNwkvRaQkeqV18XUVsqGD6WG9sZ2RUyskGzzHqd9SuHhxwRMODuo0oWFrXqNO5HoqhRM4KzdcBWciHawS0MWhHBBZJlccbEoVEhwiQl6/gDrITItGjTa9JCKQemQnTm5bXvDY3LRE5CXGibmWNS4RKTMWFNzH3zVi5HAhBXEzNyDrUKGQrvbATkIsKORMXLJDqkj2vvgLkmduksdn7okpkgJp/OL12r5NKRSE1mgWJEQiNzoJWYfjkbnvBKImLgcoseG+bjpc8HzvpuFymeH0miyjJfhc2V+LWUiHal1/fsHoIYkEiS+PzeITtKuRDR2sZGPLAyOnVphGZZNMV+hbpVB1uOAJx+effy5RA7byNXoqhRO4q6Ek0sFLDujMnzdr1qzU515+2eXIt1rh5VsDWVnxaND/HkT2uhGNBmmVKdFr/0bGicNIPrAFe6Z9hPzcdNQacqtM8mzEpneNJdxr1YBX365CLo6Mm19Ymmo2odmbN8v1o18swJ4XJ8MzPxPXftIbPZ5vK5EG5yiHlLeSqB5JR8zmQtfKtrc1ldfeN2Iydj39E5IXbEJd6jtYHru+UPNRe6hWMussHA3p01IIi044CK86rjOhXUigEJsmYaxk4TGql826KtlwpdQKnUe5sFq1qmiJu8LFA+MKGioB1A989tlnmDxZa9Jl5FQKCZFRIzBng06USDpowc5qFF4yd3smtO/QHstXrES+NQtNhzwFnxraZB9YvxVC2/VG4vZVODDnazisefBv0wFhg2+Cxcsb2akpSFu+AAnfTkHtt5+D2VtLW4TdOhjHlq1H5t4YJCzchpoD2muv17EhTH6esGfmosW1DdD/zW7yXdfLC8eaj7aLrXnmgVgxDePt4Q/1Rdz3y7Bt6gFNNAqg850tsP3X/bBn52HIl31Qt3MYrLk2fNV7uticM13DyAW9PjQRa6GRWXDnJkiYtxXZzoSjdjDSt6lOstUBRttYwaJPfowQHDhwwCXJhg4ayempFXqRlJS+rG5Q4PrYY49JqeycOXOqe3cUzgL28GJzRHYqL24y9/HHH6MiMF/olSnUblx11VUwIvgjMq3ASIArpVJKIx1sLsfPQ6JxNrJBsImbn68PbLlZyEsvmpKJ7H49PAJqwmG3wb1GGMKH3Slkg6h1+ZUwefvClpyK5KmzC55jcndH2HNadOT4t4thTSu0f271vlbpcmhpFPJOCULdPCzo+lAriUicmPpvwWNrD+oo4tEDi48jK1FrAucf7guTmwl2q0P8OcxuZnj4usPiYRZtRuY+rezSPUT7HekLoms7pFLFahdSo8MzPEjcU6uzvXpFwRbkDRo0kEmuW7duUoF0Jvzxxx9SeaVPinPnzi1y/4wZM+Qc5URJwldSuTCdaR9//HF5DM8VllqeiwcFSQd9YFi5Rt8bVrK4KtnQQeIUGBgon8fIUQ5qOUiMFIwLFljw3GbPMQqtSc717VzK+S9YwsH87NixY8VV1KiRAxr3kHQYvSqlLGAa5fjx42K7zM9V1pJZ6jfMZguOLPoZWSejihh71bv8JsBuQ35CPBKX/VPkvgaPPCOplYzl65G9rXCA9W7dFJbwmrBl5+H4j4WmX5z0PeoEIT/big0/FVabdLr3lInXyj0F5mG0L/dpWVtef+dfhWmbS59pI2Wze+cXVqF0ub/laeWx7uGBcqnbnOskJPvIyQLhqmdEsGhIaP/sSmB5I3Px9FXYtGmThPIHDBggq6CSQIHmbbfdhgceeEAGKwq3uTmXSDISSaOuM30XnKj+/vtvIS8082KJ9Y03at2BKwoep2lpaaIvYFm2K5K/krrKshqHGiojgt/1/fffL5o6BeOCmQG2nmCakQtDRjr0jYSxorhgCQfTKMzT3nDDDTAiuGLjSqQ0QaWrCXP1dApD1eXx6eCqd9eunbLaPzj3G+RlaANl8sGtODj3W3jU0FIaScv+QeaBwiZq7kEhCL7mRvHTSPh+KmwZhdGMiJce0apK5m8tYvrV4p3bWQSDzb/sRXqc9nh3bze0Hlpfi3L8UWg61vj56+Sx26buh/0USWhzbVOJfOybfxS2fO22Ftc2PK08tuZNXU/pODTCIYTXzSz9V3JPeXl4RmjW+r///nuR74NW0Aw989hlWJyrbiOJSxlKZYnjfffdJ7/3V199JfvKwam0gWvgwIH43//+J8cFPRkYWaC2yrnR1+uvv44rr7yy1Gqn77//Xt6bnWEZjeDKi2Rm7dqiRnFlha7Z6NGjh6zkGBng6xm50qMsYPSH0UZGGquigV1lgMcCo1pMYykYE5yTOBZV+uviAgQ9H7haeumllwzn1qmDOgeWg3JzZXAyILlgyFxPo5TXHIwppd9+nQxrThYOzPkG0Wtn48jCifBr0Rr1Hn0WQVddK8TixNRJyE8tXLnV6NoTbsEhsGdmIemXmQW3WwL94XPDwFMC0nmFUYVagfDv2EAEpeu+KlT093qqk0Q5WPaad6qcVUSdHhZkxmfj6GpNiOcV4AE3Hwty0/NxfL2WHgmoXRi9yEtI1/arU1NNx7HdyY+juVZGm3X4ZEFKhXC2fOaqj5Nealoacmx22CxuQua4ujcCOBmzx48zMeDAxP/5W5cE3l6cSDAiUtrjSwLfk6TL+XV4vNH4qjyvo6O4QJSEkCSITRLPVDLrKqBQmwsaRhyNCKbjbr75ZmnspmBMcMxh6rSycUESjpkzZ0qY9s4774RRhaIMCbMJkyuDHhocoGlTXjwtVF7Sceutt+KZp59CbnIs4rcsQegVgxB+050we3iiZs++8KwdCXteLk5MmQiHTbM3F+HnQ09LhCFr/VZk/rdNbmc7e/u+g3I7iUD87I0F79NkxBCJUuyadRiJh7QeG57+HmjUTxOsxv5ZqEdo9OJgSaFQPKrjspEdtLTK3EKiUKebRhp1EzESG4KaDb2FfTiNwixmZB44IdUq8liLSboCu7t7wGJxk/QfHyNGYXm5sOdoGpAjR44Iia5usOsn96O4Uyz/j40t1Kc4g7eX5/GlvQajPcUbLpb3dc5UjaILSRlx4zFrhO+7oqC5IccWpomMGrFhE81JkyZVyHJeoerxwgsviDMvx/XrrrtO0pfOW0VxwVWpMIxIFTS/MCMqtZ2Fokbu6XI2cBW4bt06WWWWVvrqXL1SlgqATz75BIsXLxY/AXt2doH2hpeR9w7HgfdfQ07UUSQsnI2aAzW/DDdfP9QYdhcSpv2MhB+nwRqXIPbnNOGKfPgKHP9mMaJ+XI7g3i3hEeKnWZ5f1wkJczdhzbituO7Ty+R1rnilKw4t+RPxszch4pYecA/0QUj3Zjhkc0hDt9ToDATW8UOLKxthyWsbcWBJFPplWyUl0+PRdvjjv8VIXncANQdpvVcs/l6wpecgY28MAtrVh0+jWhL1iJ26VjZOni2aNhf/hJphEXIZGOArl6G1IxAcEgwPswVmu0OEjQsWaL4jFFxycuR3wttZTs1J0nnTb2N4nY9RQJlKX/m9ss8PSTT1JkzdGFX/VRZ3VUbPmLZt164djIbWrVtLpIvnvIp0GA9PPfWU6DX69u1bIOauDFxwhINfEleEDz6oVSsYDdw3VxeKktRRucwQNPP4Z0J5SQfJGPPpyWuWwb1GTQR1vlRuN3t6ov5jz+Po+DFIXrMcXvUawr+VNpCGtLsEaSsXIy/+hBiC1bymIyLv7yMun8lr9yFjRxSOf7MIjUdoTrP1HuyHk39vxOEVMYjZchK1O9SEd7AnwjuEInZbEuJnbUCduy6TMtfgPi2RsmIPdsw4iJ5PtpcKFZ8wL2TF58jzmw2oh1ptQrQ29psPw55nFYfTsGE9cGLiUhGO1mnbBE0iGqPNrbfK7966U0t4m32RnJyExIQkiQClpKVL1QUniIxgP2T6eSMzIQnpazfJcyiYpEU8BwCmCXkMkfQxdK5v2dnZkoLR/+fqlr8RyY2+8butKAmpUaOGvHfx6hD+Hx6uGZ4VB28vz+NLew1+FgohnaMc5Xmdsvps6D4dFKbu37//jD4yriAgpeCPlXr83Y0GRvSYJmNTTSPu38WMiRMnYvr06bjmmmsq9XUvOMIxfvx4EbVxoDWio+i+fftE2e/KQlHqT5gKoFX0mZgvV+W0NC8v6WDKiav0+L+nwT04FL6NtUHfs2Yt1BhyKxJm/o7Y6b/Cs1YEPEJrIn37ZlhTkyQVQfg2DS+wFG/2+k3YNOxj6YPC5moBlzTQLM+fugonvliIVZ9swU0/XSmf4+oxvfDDgL8QO/M/hA/tJq9R/5GrkLxsN3ZMO4Buj7SRUtqBoy/Fn8OXYc/cI0I4zBYzvEM8kZ2UK06mjS5phU5X9EeNOj3QpEUzBOb5I8GUg53hsUKobH0TkRuUgRkfL8bR1fEUHRV+eDezlNBaAnzgyMuHPSdfjhW9Bw2jYmUlDCQd1NhwouZ3evDgQblNJyG0nGdagtGQsoARQ676GYXS2wSQ+PD/J57Qet0UB39v3v/MM88U3LZw4UK5vazge/Iz83VYDksw3MtqjLK8TnlNvXjsUUhKgkdL9PKQIyOBES6SDX52nodGA79jRjo4uXFFrWAc8DypikXxBUU4GEJkyJnKeCOCAz4He1cdwAgO8vyeSTbONPFxZcgVooeHJw4dOlgu0sEcNFevNcPCEPPbD6j3yLNCNoiQjl2RvXs7MvfvRvRvP8KrTiTSN/8Hny7t4HvpJTg5biKOTViIgA714VkrCBZfT9R9/mpEfTIPR8bPR5uvHhTCEVA/HDE2B2K3J0qkotHldeBX0xtBDfyRcjQd8XO3IGJYN7gH+cAS4I3ctGwcXHwczQc1EDMw6kCOrjmBnNRceAd4YdgrV8NtZzC6R/ZEaH4wDvunYvmW6Zgx608EvjMYVjdg0w9fw5aWDY/B/VCnUxga9A7H0RUn4NGgLoJvvVZ8RRK+m4KaAzugwdODkJ+SiS23jROSUBHoKRZnDQVLP0lAuPF3pB8CyQePSW4kNmcikSyJZcdl6h0YCWCfIuqlWLVC3H333VIazbQm8fTTT+Pyyy/HRx99JKslVuUwOvbNN98UvCYjPDyu9Hw+yQSh7xNXvyyr5XvzuCEJePLJJ+U4OttEWlEHUb4nHYopWGXjN76nK4Ln4aJFi0R/wwiV0cDfkY01SVhdcRGWUY9ePOeetrTlGUsz9MYbb0jpO6vBWIVWWXC9X/gMYIkeBzXqCowGDvScgJmCcNW8MCcGrtA52ZzJqIylhvysNSM6IC8/H/Xq1RfPhpKEpOxz06HDJQWTjA4OjosWLoTDakX0pK9hzcwouK/2LffA5OGJ/PhYpG/ZgJB7h6LGo7fDp0MreLZtDrvVhkNjZxfYm4df0Q5mbw8pSY3+ZSUOjZ2FPc9Pgn8dX7E+X/XpFtitWiXL9eMvF4Ow2GlrJT1CNHtjmDxu6xSt9JXXw1vXQI/uPdDoUEf0ih6Ca5vcDF8fH0z8+Wd85L4BUz32Yc7C+di1bSeOTV+DY98sgs3NIRbnCfu1SpsaDYMZw4dno0h4NWsIj0b1ROehG4aZ3bX1wNm6m5YHXL2TgFBDRNJIwy2ugpmKYaM9Tk7U0HCCKqms8pZbbhF/G5axdujQQUyA5s+fX0BqSByc7bV5LPz6669CMBjZmzZtmoi6nQXTs2bNksldD99SQMz/eT7rYK7/2muvlQgH95tEhKWVZ8K52pWTOHGVR62SUcWXZfm9KepmVNKIZbLDhg0T8svjTsE4GDduHObNmyfnNVNzrOJy3nCxRzi4Cvz222/FGMiIYCqFkygFOK4I6gPoKEnCcKZS3ptuukkIRUS97mjc4jrk5aQiNfkwOnXugsWLFoqPAsHH0PxpxIiRVIWgZctWWL16VUGInFUCEqZns7b0NMRM/h5173sMZnd3mNzc0ODx/+HwR29JGsVksRSQuFpP3I1jw1+V5mlxszYgfEgXua/1uPuw/YGvEDdjnVSl9HulM1oNaYQJvaZLRGP37MNoPaSxCEM1jUaWlMlSBGrNyBXyErstEfkHzGgV0gHjRt+A+OiT2LFrGzKGxSLNIxFffPm7eHe0ubkZvCNDEXZdJ5ycuR7RPy2Hf20/BHhbkJ5mwsl9GuEIrOsn6RRW1RAWfy0NmJ+cKZcmd62kuyorJhgBIeHgxvehERsrP2hrzEgTbyeBd0678HcpLYVCzUBJxwS30nDvvffKdrb9ZJleWUv1Kqs3CokZzcH4ffC1XHEVTtJEkzP+rhSTGo0QPfLII5IKN6oj9MWIIVXUWf2CIRwkGpwIjdikjSFnikUZWnZFcCLiKo9s90wN5hiCmzZtOkLDWqNxy8E4sPNPpKYcRe3u1yJu02JccWV/TJ/2h5RVsZcCrdDbtGyPHbu3wAEHevbshW3btkoYmKtLrrLZRTYjLRo50ccQN/N3sTiXCo3AIETc+RBO/PItEidOh0f9OvCoGw6TuxsiRj2NE6M+RdT3SxHYqZFM/uxdEti7OdLW7EN421C0GdpE9vmWif3x623z8e8X29FsQH2pOrnhy76YPGyedISN/+s/5EWnSFidK+yG5oZIdERje/hKvH3D5xKxuL//YPiF+aD10MbYMe2QNHPje9bo1wbxM9YjokMN3PTDleJyOqHnNJzcrZl/+dbQqpRYWUOYPLWqqvzUrCKEozIjHGcCBZN6GoOVDYxU6JUOvI0Tl+5bYWRUZiM23aODeg4SZCNWfJwNJI48pxjl4DlsNNJEwkEPHx5rJLgK1Q+O5VUBYx1554Cvv/4ajz76qCEHQw7YnEBdMQ/MMCxLBDkZcbA90/dL8RejFRH1uuHYwcWIjfoP9frcglod+qHpkCfh5uWDocNuEvb81FNP4/ffpmHkq/9D1wFD0fT6J5nJkPBdUFBwIdlIj0FEl0ESyaA4lI6jOvybtYT/Jd2kQuTk55Ngz9asqT0iI+Ddu7Ps+6EPZhUYfzV5YbBoL46sjMGh5dEFred9angiKymnIGUS2igQbr4W+DjccE3Xvvh56kQM/9/DMuk8+NAD2Oq1CqmeCWjQRzPz2veP1oSt450t5PMnr9Nex7s+e8E4kHQ4TfaFZIZIOpQq7qVMzRDWpBS5X/9ubadSKvzf5GY+rXHS+QAnJR6zTIlcccUVoj0i6WT1BtMm1bFPZUFVdH3lhE2BY3R0tCwcXBE02+JvZkQzMB5nTKex95XChY0LgnAw50yNAC2SjQaGYymGozOiK4JaDOot6E9wNtdW5uLd3NyxY8OPOHZgMSK6Xo3Q5l3kPu+QcDS74Wm4+wbgr79myW1/z/4TMxevwXMP3o7AzGOQfISkb7Lg4emPzIw4NLzqHoR36o/mQzW3zcSlC5C2bVPBe4ZffxPMPr6wJiQh8adpBXnqoIGXix4i60BsQWM2ikXrv0k7dGDpexsk4kDcMvEq0W38991OEYGa7Ra8/sOLoiHo2PUS7K+1EWvrzMWq7cuRlpyOvfM006++/+skz9szW5uEgiL95X+WwlozczRCYTYhNzUPKcc0F1Kzu0ls0VOOZRT8D6sN9rRCjYo1I6fgc5jcLNWeeyfZYDWBrvdgepAVI1FRUdW+b86oyhbzFM7xHGCUg2TY1UACyXQoFz9GNDVjlIOEw9VdXhUuAsLB6AatcmmaZMQJmznwylT6ni9QSMjJhdUIZSmdZAQkLi4WXl5aSarDll9kQvIMCEWzIU/B4uUrVuVmDy/sstbEtDmL8Oy9N+HSh59Anbselsfm5aajRpueCGqohbDdvP1h8tJKQ2Nn/IbsY4cLGrk1fPIlzW30v23IWPIvMtZsQuxb4+Fxyj6cQlG9U2tY1+ZwC/ZB5sls/Pf9roJOsGFtguHgWLcsEJfGXIv6/o3x3pj38PKLr2DDxo2AyYHBn10mZGXr7/vkc/lH8HMACftSkHxEs0QPaRKgeXJs0khI4KVN5TJmszZJ1e6oVQrwOc5plfyTWuM4vh6fb8/KMwzhcF7pM/TNiIceomfEg43bqnsfq5Js6KAGi6Jv3Wrd1cBIAn9DEkWjgWSWYwwXLQoXLlyecFDM+PPPPwtDNqJ2g9ENqsRdDVwFMWrUtGnT0yylzwQO9unp6XIZu3Ehji6eDLutUIPg4ReElre8KGTDnp+HPb+PwbSfvsKsHXvx1IB+aNm+PWoO0yzpT25bjuQDm5GdFIt9M8fB4ukGv0u6SiQkevL3yE8+1d3V20d6rhBJv/6FxO+mIKRXM7T54n5E3NFLZnGmVvSqkzZfPCiRiI0Td0u6g9cf++Q+jB83Hm1rdMIW02psrLUIDR4JlCjF+u92yoQaVM8fJjNTImk4sVUjEO1ubSqP0TvI9h3RWezJk1fvQeKSHUC+Tdrax2zWeqh0uqsVzG6mgkqVet01Aa71pKbrgJuWdslP03QcZnfN5Ks00GfjfE9+TPUw0kHiwZboLHOlO2dZOwS7ItnQQcLF0mHnbreuAv5uPJ+5CKpuglhSBIb+SRT+K1y4cHnCMXv2bBFCGdHYht0QqQo3ognZ2cDQK1MoHKDKC66iaDTFMkgShgOzvoQ1R6u8INy9/dD6tpdhsrjBZs2DxdcX63PtmB+bhAcaRqB990tRY8gt8li2rd838zOYfLxR76GnEDHkFng1bAJ7bg6iJn0D26l+IyQd4GY2w+LnhXqPXCnGXXXu6AWzt7u0no/+eaX2/kG+qHm9VtoVNTkNnWOvQouczli5bymeee4Z/PnNbIk0NLo0UgbmuO2JiNmkEYYrXu2i9Vf5Q+uv0v2RtqLT2DPniDw2ol0NSeXQaOzQh3/DfDIBDqsDURs0t82azYNhtzlwcq9GMBpdHinRnpTp8xD1/GggXyNF1rTsIsLRkkBNSVBIqBhysXKH0R76YJwv8Pggme7fv79EF0k6WMlEon0hkg190mY5MBcSxR1UXQEkiCSwRuxhwpQ4U3Xl7Y+j4DpwecLxyy+/SJM2o4lFWaZLcV1FJuzqBleqLKOjOv9cFO30aLj99tuQGX8Me6d/gpwUbdImEnevhcOaB7h7wJadhWPfjsPyvQcKSEeHXpchdMBgeSybtoX2GwC3gECtr8pdD8Pi54/8pATE/P6TtK0/+tUncPP1ginQH7asXJnsSQT4+HbfPlLgraG3jG/y0EA89OBDeOSmx7EzaivWRsxB0C0O2PJt2PP3kYIIxICx3YRg6OkXtqOn8PTAP8eQlZwjHWRNFiAtOhPxu5NhdjPD4qF9Z9d92ht3TR8k19NPZEkaxyfUS/bl5B6NcASwNNZsgi0pFbUGtQO83IsQDupOSoOsBu02uAWFwCuirghrf/vtN5xv0ACOqQbaVJP8sL0Aj5+qXkWfb7Khg+lRalp4fLtaaoXnM6uNjBjlYNVar169xBxO4eygbw4bq9WuXVvGOfrbFAfPj8GDB4uRHRe+1CFxXiorSExZsXLHHXdIfzIuRC9awsFVNM1J+GUY0VWU1tGu1iOAqRRWpTBHXxlVNZMnT8bHH41FXkYK9s74BBknDiFx73+IWTcbIZf3R5OX3pSeKbbMDBz7bjyW7dpbQDou6T8AQZf1kwhA7LTJyD6upS3ouyG6DbMZ2Yf2I/rnb+DRsA7CX38Sdd95QSZedmMlwSDcg30R+dQ1MrEztVI32xsPW9uhZb+uePa5Z/HZS18hOzNbbMu7P91WCMbqcVvluc36NBCCcWxtLOL3JIuNed1Lw2C3O7D7L01H0vOFTloH2VNi0u5PaR1l43ZpKYaabbSUFPu26MhKzBGBamBtX4mI+LetJ/1bwkg6SDj0SpVT5l8lgSkvwgEr8jNTCnwNqgvMwXP1z4oOTmiMeNAC/0IiGzqYUnLV1Ar3naloam+MBi4euYhUODsYSWQUuTRvGs5BJHAsWKA/Dk0bX3vttTPq8Uim6cVDUKPFhQSN+0isaWXANgN8nYuScNB7g1+A0Rqh8cdh+ZwrNn4ig2VKpDJ1J88++yyWL1sqEY39f32BY8umIKBjN4T2GwgzTbyGv6C1n8/JxvHvxmPp9p0FpKPz4KEI6NQdDhsdR79CbqwWCjZ7eqHhM69ob+BwwLttM1j8fGD29EDtd/8nN0f9tAxp2zQSED6oHfwiQnDPkFtwi60F1rvF4lf/g0iy5CI3LQ9rv9Imji53tdJsy1efQNTGeFk59B7RWQjEhh+0KMeg0T0lSrF16n6JorQb0kies3fuESl3bXOdRlIOLdNKby9/tpPoNnQdh09N7YSnAZibl0Yock5oEQ//VppLbs7xBGTuPwGHtfSKAn3CqD36OYSPHC7Xi7eCrw6QaLPJHN1olyxZUunRjuomG66eWuH5TT8dkkKjgU6yJHHnupK+GDBo0CCMHj0aN9xwQ4n3v/LKK7j66qvFzZnOvZwnGe04k3EjI/P6ufryyy+Lqy/PtalTp2Lnzp3yfL7uRUk49HSK0cABlpGN6hoMzzWVwoOzss2BeODGREdrr+uww82/MHrCiEW9B5+ET6Nmkj45/v0XWLJpSwHp6HLLHfBr1Q72vHwc/2kC8hK0iZbmX/WGPyfXk6fMQdYWjRC416qBgLtZ/mrCwXf+RH5SBurZ/TH+88/RoH59PPPkU1i8da3oNNp8dp+QBlaeMIJBAeigMZcKwWBjN558HYY11tIoi48j+WiadJa1eJmREZslrevZQdbibUF2ci6iN54UJ1O9EoVplLDWIbCLjkPb70vuob09kHgqbUNYkzOw7Z7PZX/N7mac+P1f7HrqJ+QcP1W9UgIyMjIkymPy9pKyYKJnz54wAphm4eqLFU6VGe0wAtlwXg3Sot0VUyskHBQcV5fQtzRQoE6DPUZGL0akpaUV2dgSoyKgTocRCS56BwwYICSDkceS0i5niqD+73//E4JKcOx+8cUXpUrroiMcnBgpUGM5rJHAH5r75mqVKZWdSikJdKvMycmWjqdJyxdKx1f7KRdNCh7r3PUQ/Nt0gMOaj6iJX2HR+g1COh5sVBvd7n0I3g0aa1GQH79EfooWEfAIqQFTaE25njBhMvKOaRGQ4D7d4N6gLmxZeWizNge35DfHerc4fJezCbFxcTg09m/xu6CwtO6D/YRoLBn9n5CPpv3pduhA/K4kHFwSJfd1fqCFXG78abe8/jWf9dTEo1M18ehV73eV//ct0CIqdbppq4gjq09IqoZIPJiK3PQ8NOoRDlhMBaWx9OIgoal/STDa3dJUoichjQJw6y9XITCy9J410t/DbELij9OQtkATxDLPaiRwoGO0g/ljajvORRBoJLKhgyXvPF9cLbVCQsjUCsPuRgNT5CQcRtOYnC8dS2BgYMGmN0EsLxj95ILk/fffx8CBA/HPP/9IJIQuzyxlLw1iNnhKD0mCUVwSQEJIu4SLjnAwr8TabYZvjQTaQfOHMkJou7pTKaUNdFzp8sRK374JUT9NgC3rVO8QkwkRN92FwC494bDZEP3zt1i4+t8C0tH9weGAm7voPaJ+/AI5cSeEfCAzHR7tW4qjaNwnP8CarHli1B/5GP73/Avo3aYzxsydiA1ucajRoxk864fCmpqFYxP+kUZvfB4nfBKMnTMPyXNv/22gTOarPtsqjd26P9JOHrN79hGkx2WhfufammvpqhikxWSiSc968v++BcdgzbPhipFaNcvhlRoB8ovwFiJxYluikAhWrsTpFuc1NS+O1jc0RvdH20haJqRxIMJahSC0SekaIDFw4v7HxyB7625pbW9E623+5kw/cGMJbUUEi0YkG66eWmGJLwkg9RxGAtMAnNTYb+liw/HjxyXypG8jR7LXVPmhl9Jff/31ktLmMTpixAiJHjk3RSwOnpdcdPIc4zFdXK/Bystz6XbukoSDXwrTKUYUi3Jg5IlstKqZ6kqllAYqpfv17Yuc40dx7OtPkZdYKKisde2NCL78SqnAYHv6f5Ytx7yoeDzUKALNmzWBOThAIhzHv/kU1oxUhI98FBFP3wv3BrVhT89E/Kc/INDqwDPBDVGzQxtZ9W/8ZhZS1mvRCKZRaK6VuGQndj78DWImLkeTKyPlPnaOZWoktEkQPHwtSIvKwK6/Dkn1SYvBDeQxm3/eI79vq6GN5HLHjIMS/fCp4YX8LKu0radnh4hN/z0hlS+9XmwvBIQ6DgpPieTDqUJmWl6r6TbSYjK0dIwDyE7SQqmMjugW6CXBv109tP7sHoT2ay3PM7rxFEVsPEcYri2r46VRyYYORuxcMbXCqBMXbEaza6fwmc3+LkbxaEBAQJGtoiJwmtRxAUnRpzPoNnumKhW2o//000+lOzOr4IovQNeuXVuqZuSCJRw8sckEKWAxEnRWyjCrK5E3WsOzfPd893phzf2L/3sB+anJQjqyj2pVH0TNfoMQOnCICEJP/PEzfh89Cr/8+iveeOMN9PpwFEwBnNBtsAQHwK2GNglFvPw4TD5eaOofjOd96+Jwfha+zI6B5YGhotc4OOYv5Malintn0NXt5Tk5J1Jw7Se9cfUHPRHRsYYQhtXjtsh9d0y9Wi7//XK72KD3e7mLkIjt0w4IKenzfEdJweyYfkBIxZDP+2jVKnO1tIpnoDusOTbx8GjYta48N3qjpuMwe5pF15F8LB31L60rolKW1urkgr1dCCmxLY1vmE1SgSOfIyZZql2MDoZk2cSQUa5Vq1addXVtdLKhg+c8RbJ05nUl6E3TjNYbh9o8ChVdicAZCR4eHlICu3fv3iK38/g8U4O8e+65p8hW3N+KVS4ff/zxxUU4KHxh2M1ohlpcKXAVxx/bVcAUEAf96qr0GTNmDP6cPl2MvI7/+EWRPimhPS5DjaFaFCvvZBxWZiVidm4ShgfVQ+9PRgGeHsg7HoP4cT/CkZ8vOpCbP/8Ar7/+On6d9DO+nTQRHEYD27WEV8fWsOdasf/NP7Dv9SlImauVvZIgMEJB4nXjhL5CIHb9dVicRP1r+SCwnh+yU3Kx5de9Em2I7FFLiAJFpqww8Q71RE5qHg4uiZZGcFKdsjwaeZn5uGJ0F3EZPbzqREHjtridiZJyadhLaxNOHQfb1DPDwNSMDpbMEhZ3yxmjZRl7YnDks3nIPlIYITI6WJbHpnAkuMwnlyZcdBWyQfA3ojcHI4VGS1GcTWNDAzeOA0YCI2Hcr9WrV1f3rhgWGRkZsvjmRvDY43U9gkHB55QpUyRSwVTI559/jr///huPPfZYud6HwlVqfSoqYHV5wsEvzWjRDTJxRl3YldFVwFUNB3TWaetK5OoAu8cePHAAJocDsdN+QeLyhQU5/pD2nVDz1vvkevriNZjz50zMzk7A8KAG6D1+NO0ukbvvCOK/+AXXeobiuoBwTEg8ggULFiBt3nKkr1gvzw177C6xHM85moC0jYcxePzleGL9zUIwDi+PFqdQTu7XfNhDogyL314v6Y5bfz7V2O2HXRLVuPbD3vKczZP3Cqlg23k+fusUbWUb2jwQ9nw7Di6NQqNudUWrcWhZVEHEg2SFWpFO95yyON+XAu8QTyEqeoM3gqW6/A4snpZSIxzkIXlxqbDuPQx7Tr5oJVwFnEyYV2ZkjRUsxSc8VyIbztEb5reLryqNTpQ4ZhktrcLULvUGHOsVSgb1UEyDcyOee+45uc4FF8HUB/UaLItlF242x5s+fbqQudLw008/FWhnWCL7wAMPyMKeug5G8NiR/VyIh8sRDk7qFLIwwmEksHU1f5Dy9B0xwnfJSc0IKSCW6X3//fdyPXHxPMT++RscpypYglu1LYh0pEybh9m/TcHsrJN4LKQhen/xrqQW7ujSEx1t7vgk5SiOeJsQ+rLmS5E0aQaydx9ABokHxaF2jcjkZeSLLuPuP6+R/5e+txHpsZlofEU9uPlYpF8K29VTU1GvRy3Ycu347/udEqkgqWCKZcf0g9Ihlq95YkuCVKEM/viygrQKX59nGFMlJBPdnrhEyAl1HKGNA4V80OJcj2CkRp+KcJgg9zEdY3E3l14vb3Ogz4hOuPYjrRTWVSZmHfzcjKzRS4eldjyHXJVs6CB553nFfkKuAp7/jDIZbZ+5qGQzt4uxWqUs6NOnj3w3xTeSBh3333+/iLQZdWP0gyLSM+Gtt94q0PExfUIfHfpd0YNj2rRpUmnG2y8awsHeKfQaMNpAxDwoc2OuIhalYI+VKRQRnS+h6JnACebBBx+Cl7fW8Td960ZETfpKbM/ZLyV9zVJYArVusamzl2DWxF800lGjMd74+Xvxexj5wv+w56cpctL5NWmAoPtukuhE/Mc/IGniDNQc2B6NPrhVJvRFb6yTDq8UdzbuXwe2PBsWjlon5OGev66V9/n3823IiM/CdZ9cpnl1TNmP1OgMDPvmioLmb9ZcG3q/0E5IBrUd7CBLInB8fazoMNre3ETej9UqLa+qK/tGrw4hI0xpbUsQvw8iJyUX1hyrRD4IRlTo8VGSGPSbb76RS3qC6ESF5aeuCPYbYr6ZZdkkHq5KNgguOjiB8zO4CihM5G9QHsvr8wFa5ZO8uVLEyNURExMjxwJBsjdhwgSJlJBIk6wwPcM0TUVR/TNNOcEvwWjpFObSaNJC/YargKtIDjT04a9u0E/ikks6UlCBNp3vR/d+r8Jsckf20SPSI4XlsRSWhj3/oLhqEukLV2HmNz8gxpaLdt5BmIk0qT3PXLFeTMA4sQf27gzfXp3FU4OgdXho24YIvboDbFY7Zj+3UiIVV7/PEKMDUf/FS1M2n2AvNB1YVx6z8qPNkmrpcJfmGrv2y+0S9fAL9xZCsPvvw2h/SwshGbtmHUJeVj4aXBYumoz9C4/j0ke1MtXDK6ILKlCi/ovFV72mye35mVbs/rNQaEgdh7vvKffR1FyJcJS0wtNDzSQcrG4hqaGy3FXBMnJO1GydzqiHK5INHc2bN5dj8Vz8CqqjqRu/eyNFExjKJ+lQLevPH5gS1L1ZaJ3OahdnsKqJLUUuCsLBiZ0hHqMRDp6oHDBdRSzKCZ5hNpZMGSEiQzOa3NwcNG19A3z8wuDh6Y/Gra4TR1JrShJyjh9B4OAr4FE3HO61a6H2mJfkebc2bQv/zFzMzYzH3TUboc2AfnJ7+j8rkfr3YrkePHSgpoEwm7D/zWnSor7RE4Ng9vOWNMeSdzfI4+6fq4UaV328WW4fOJpeIA4hDeyj0vuZSzT78nlHJQ1y22TtdcXunEZdTQNgzbZh37yjuOqtHvJa1IWwuRvvj950UjQfNPmy5TvQ7/oA+GgBG7w6IRJN2noUEA6KVQmKUS00DXOaA8aOHYunn35aTO8I72AvSdmw1PZc6uONQIC5mmV5KQVuenrFFUFRLFOE7EVhpAn8bOJRarrOZTKpCnCsVzqO8wdaTdC6PCUlRbr3MsUijsasnMvKkirBc3EzdinCQbc0lnEZqQMrBxQSDq4QXAUkG9SanMlT/3yiXz+tQdvhffORnhqF9JTjOLDrL4Q06wK/us2FLCT/MQ+Z67XKEveaIXjsxwkSdn/1xZfwy4ef4re5f2PkPQ/gspF3yWNSZy5E8owFiH3vS1h82KHVgUyp6Jir2ZVPepx8BnvnHBGzL5pvMYrBpmwLXv1Xq1qZ2EdzIH3nP9jy7ej3ttY5dvVnWyWy4OnvjvTYLOxfdBxDv75CCIim+3AXkhC3I1GiD4H1/bQ0y7o4tL+9qYg9m7T1xqNvhcFkBg7vzsF19wfJ85keibhE+11YHcOyWOdJ6+2338a4ceMkolYY4ciU/XZVOGs2GN3o3LmzpFeMVjlRHnCMYom83gjL6GBalRFajmVGAoWjFDEmJCRU965cFBg1apREMUiYmd5cuHChLKYpGuV8QR+O8ePHXxyEw4jVKQybUrXrKs6iFA+xfKq4IUx1YuXKlUII8nLSsXnN59i+4Qd416iNyMtvQtNrHkZ4x/4UnSDhq1+ROmcpenoE4tLAmvgiNw7xCSeRs3U3Zn33Exac3IHHul2PAd8+L6+bNm8ZrHGJaPXJ3eg443l5D5p9nfh9jbR9b/eTJixd9t4GiVpc9mxHmNnldUcSNk3ag7ptw6WChBM6/29zTUOZ/BnxOL4+Dtd/0UfI0PrvdsIrUGtTn3ggVUpqG/WrLWSCzqODP7nsVHlsDDrd3Upu3/lfJjr1DGYrFBzek4OWbQMkSkGCUrd7DSEf1HToEY7SlOGMoEh1i4sSjpIEoozUdOzYUQY8rrRcEawY4iDtSlEOLpoYWSqrIdv5AFO+rLyYO3dude/KRQEPDw/89ddf4uRN0kxhKqtaWMbOlC2P53NpSuoyhIMnAQWj1113HYwErgi4MmCZnyuAAiySI6NU0/z555+YOfMvhIa1RsOmV2nN1vOz4O4bxLpdeUxE54GoN/BBuR65LxqDPUPwXepxJHm7IXL8G1LuSsz45mcssR/GfTUvxRVfPFVghMWuqxYvD7T/5Qn5P3rSCiQu3wXPWkGofW9v0VvMfm6V9Dl5cOGQArMvlqyKgNQBrP92J1KjMjB0Ul85a+aPXIPp9y2SiT75UBqOrIzB4E96y32znliGQ0tiJIJCK/TgBgFSHsvyW+8gTxqoYtvaTASGWmCzAgd25CCsjrtYmqdFZSI4IlCIjx7hIJx7dYQ9/4Bcevi6i/hUDMMMkBorL85UjcKJhlqIdevWSUWOK4LRWBJFV0kPBQcHi67LaBbtHPOVjuP8gv1X2PZ+3rx5YjHAypeHHnronL2vXIZwbN26VbQHHJyMAuY8OZi4SjqFIiDmyVmZYpRoy8033QwPTz80azcMkU364pIeT0ldaOqR7dg74xPkpGgh6dAGrdDjgVFiZvPt199g7ZjxsGdlw+zthcjP3wTc3ZCxOxq/vPQRllgP4aE6l6HvB5rBzaEPNFtzj1B/NPlE6y58eOzf8vg6t/SCe61AZMRlSZWKh587LvtfB3nM/Ff+lYqRjve1kCqVpe9vRO2WYRoZSM5Fvaae+OjPOpJ2Wf/9LtTrURt0GsvLsuG1byJhttC+PA0J+1Ng8TTLc07uSZazLiXBhrgozUUx6lCu5jDqAFKOpwspYd6lQMNxqopHh0ekJvT1CvJAbka+aENcRT+koyylr7RVpmiNehUjrbrLCi5CqO5nNZgrRDlIWnXxqJFACwS6ErviMaDgooRj2bJl0uK8Og2qioP5WeY+Q0ND4SqDPEueWLpnBMyfPx9WmxUBQfVhNmumVf6BddClz0uAwyRkY++0j5ByaBs8LCbc26c1th5PxuJFi8Ts68TbnyP/ZBLMnh6o98Wb4jyadTAOPz//ARbnHcQjzfrh8rfvk1TKgbdnIG3bUQS3iES94VcKgdg36g/kxqWg3TePyIRwaFm0GHp1uK2FVIokHUrFuq93oteTHbRUypoT8ph7Zw+WtEhmmg1NWgXCZHIgbnuiWJhHdg8TjUb04Tw89lb4KSfTA2jSVyMmbPbWsI9Wdrbzvyx4eEKiHFEHtZQJ0zdeQZoRmJZSMRf8djpMpwy+fEK9tAqVUxEBV0FZfTb0xmj87rngcIVJuzjYpJAT5bl0yT2fIOFghEM6ERsEPAa4uCveSEzB9eAyhIOGI0bzGaCojQO9K4Sz6YTKOnuKgYwC6nFYlZAQtxObVn+K9NRomVSO7FsAs7s7gppcArs1D0cWTsSgSDvSsnLxxYdvw6NGLVh8/WE9mYTYt8Yh9+BRmNzcUG/cKJh8fZEdlYRJz7yPxTkHMLztNej94u3SEXb/61ORsTcGtQZ3QUD3prBl5WLfq1Nhy8lDh1+fln1a/elW0WA8OP96iThs+HGXeGXc9kd/OVuWvrcBnn7u8AhwR3x0Pub/noyPZ9YVYrHm820IqhegpWgmJeGqm0KEOGybcgD7/jkuJOfQ8hj0+V8XWNyAnRuycOkAjfwd2pMjRIW9XOjFwcdm0YfjVISD9fE62AuGGg/fUG9JpxDDhg2T6g6mywYMGGDYCa68pl6MEtBjhWWmzqTLVcAFCVMrrrLvXIz4+/vL920UcJHJxSbnAAXXhksQDq4QVqxYIQIWo4ATIwd1VylFJNngQGIkfwNOJmwcN27cZ8jNTsbmNeOxa/MvOBmzGZGXDUPtLgPlcbfddhvCArzx9sjnkJOSiDp3PYRGL7wOn6atYM/OQez7XyNzwzaYLBZEfvIKzMGB0qRt4pPvYlHWPjx+6Y3oNvxG2PNt2Pvyb8g6HI/mrw2Fe6gfcmKScPCdP+Hm74WGL2qC5DkvrEJethUDxvYQMsmqlaDwQATV90d2Uo7oOe77W3vsL5/Eo86pKpTY7QnYPlXrSEsysvXfTLidynSM+lZzc43fnSTeGoxqbPs3E3c8HS7k48ieHPj4F3Uc5XvpEQ7nvDr7xjCto5l+ZUi0heVruv8Dq7ki6tQRh8CSwNws7axZvtmtW7eCEtvSwNdhaoCPp0VycQEfzwXaKTN6xs6p9E5gJZQz+H66sygrDxgVfP/998t0nPA1uZ8kKkaaCMsKfnaKy1m14gogaTUaYeXYzyi3gmvDJQgHLVk5WLVvr3X4NAKonmeYzxXSKZwQWJlipOiGM5588kmcPBmPunXrIDF+Fyye3vAOrY0ji35Gl96XY/CNQ/Hex58gNZVNvhxiAib55jvuR+gV12oVLF9ORuq8ZaJ9qDvmJbhFhCEvKQM/Pf4OFqbvxbNX3YbOdw6SniN7R/yKnOgktP/xMRGcpm05gqMTFiK0Tyt4NYsQseb8kf+i6eV14VPLC+nRmVgzfivu+H2QCEFZsZIel4XABn7ISLNh5veJGPlVhNh9dO7jh8/n12WLF8z+OQmvfV9bCMWG5Rno1MdHoiZHV2vlnieO5sHHTxOOHtyZgzbdvOX2tGgtTUIysfV3beIuqNZws8CWkSU6F6ZetA6zZiEDdocDns0bwf/KniK41Q18nEGXQPZcYPkbW8TznGJEpLSJnH1OSPjYU4Glqux7w81ZxMpeDSzVZd8GijwpLONrOos9rVar1PhT5c7IIDf+7uURNHJf2T/C1USk1NcwVeEqUQ4uokhwjdRBloSDi06l4zg/4AKGvhsl6e543wVNOHT9hpEqQbgC4ErACLbgZwMHD56oRs7zM/JCQWvfPpfDlpeLPX98BFNmIh57bDhmxybB685H4N2oqRCKqB+/RNKqpUKkQnv3Ra17tfLWlD/mIXHiDKlOqfPWs/BoUg/WtGz89Nho/JOyGy/ceD8uuaEfrJm52PPSZOQlpqPj1GeFBJycswnxszag9cd3wwETotbH4b/vduG+v66TFAkn/phN8ej90iWSzvj76RXIjs8WAvLH1wlofUmAFNWQWHi4eZEDYf3idNRv6CeEYtlfKXh2TKSkXmhzXqNFoOzz7k3aSU3CMeT+IIlW6F1jaSR2bLVW4VDgQ0Ax6e6DUtFC2/OUqHRpMicwA7bUdOQePs5YPkaMGHHa98zW0lSb33fffVIaTZLg4+ODH374ocTf5bPPPhPFOsW6FBvTB4Qlq+w8SfA3+PTTT/Hqq6+K9XG7du0wadIkSQGxqzPBiZYpPb4fX4MTGrfyKt6ph+A554p6DpJ9ijEro+NmVYMVbExjGMkEzFnLo1D1ePPNNwsMv5xBEsL7KgqXIRxGSqc4Ew5XAKMbDOsanRxRqLZ+/X+Awywuo5wUjx09ijVHomQVH3nXwwi78XYRgSb88zdifvtR+qwENmqKhs9pDYUyV/6H+E9+kAqW8BcfBYICYcvMwU+PvY0FiTvw0l3D0e7KS5GfkoW9L02GPTsPHSZrK+1jXy9C6n8H0fGPZ+X/dV/vwPH/4nDTj/1E8PnP6+vQ6uqGgMkhkQUvL6DLFb6w5jvw+xcn8eCrJKDAH18l4Lq7KSYF5k9Jhl+gCRmpdhzarTVcO7I6BoPe7SmRj10bsoRkpKfYEBTiLZ9T12UQY/9oKJcFLc/zrUiaOF0qgddO2I5jq7XQt3SItDlgjT2JvIPHCkqKi3+/9LZgykMHjwn+r3eILA7e7vx4gtEL/fE8tnguOD8mMDBQUiB8jK7ZYLkloyCMCNJX4cMPP5SoR3nBlA7TE0arpDgbAgIChFQbrV9JSWD00GhpFS42uehUaZXzA5K7krSJJHznkpY39gxkUP0GWR47K7oC4eC+sprGCB1hz4abb74ZmZkZ8Hb3Q5cu3URYOP6jsTgy/n2kb98sjwlq3wkNn38NnK0z9+7E0S8/Qm5sDNyDgtH45XepMEPO3oM4MfoLpEydCyQmwyM8UFIpEx97B/PjtuHl4c+idc+OyI1Pw54Rv8LkbkGTMTfL6x9890/kxqagyZi7xNRr/og18Av3Q2jTAGQl5mDF2M148J8bJMrB6MbzYyPFV2PuL0nofkWAXF/8ZwpufIhW0cC8yUl477c6Qi4Y5QgINkvkIjMhW9NxrM1ErTpa5VVCrFWiFaLLOBXMy8nSiINeNUDBqHutAImgDLpNa3RHsPU00Wr8fXLJCb44GCXh+VT8uD3T5FISsXZ+vH5Z0mMoYtUFos888wx+//13Ef498sgjePfdd/Hiiy+iIukJplao/SkgYS4Ckn42eXSF6AwjUPxtjbSvSsdR9WDqkoSCZIMGX7yub1xI9O/fX8bpC5ZwUL/BVZiR9Bs8EblSo5ug0cEBjoM/hXdGBkPws/6aBT+PGrB42vDkU89h1fpUOMzhsOfm4cQfPyNm6s/SPdY9MBhNX3kXHhG1YU1LwbGvP0Xq5v9g8fJC/YefETMua1wC0hasQGDXxmj//XCE3dQd9nwrJj7xDubFbMFrz41Ay85tkROViH2vTkFA00iE332ZCEv5v2/dIARe2hR5WVbMfXE1bpl0lVSOsFkbq1jCWgdJWewvH8fjvpdqSjRj4tg4DL5PM1Sb+UMiAkLNSE2yIeaQVvq6al4anvtUK5U9slLTcTDqcf9LoZrF+R5Nm0DnUDcvjYRkZ2qEgykJwj3EF7YM7XHdr/IvkjYze7ojP1mLjgwaNAjV7flCUq5Xo1A3wgmDKZdHH30UH330kVgkVyTFQHGqK6ZWOInzd3QFm27aW/O3MVLLeqXjqHowPcq0K88rpk7oLqpvTL+uWrVKROcXLOHgAUZrVSPpNzi4u0J1CkVfDOHWr18fRge/T28fH2TkJ+L+++9DQlIudu5LR0hN2uhqk0rGzi04Mn4MMg/slTLYBo8+D/8OneGwWRH35284MeNXxPz+E9wjwuDRuqlEKNI2HUHS6r2of28f1H6gLxxWu1SvzD22EaNGvoZmrVog80As9o/6A3Vu7Aa/tvWQn5IpJbSNXxgshmLsibJm/DbcPvMqrbX9m+sw+LM+EsGY/UsS2vfwl4jDyjlp6DckRIt4TE7G2CmNxPzr70lJCI+0IC/HgZw0s6RVDiw7Dq8QD4mSuHt6CmFhTxX5nLFZ8A3zLhLh0NMPtGS3Z2vkIyEuRz6j/lt7NwpDxs4oEcIymlAcNNHieVTcSfJMx7MuICzt8fql82OYRuFxR71GaeFXplz4mY4cOYKKgKkVCmmp+3EV8LunDoWLAFfYV5IOI6VVdB0Ho1sKVYN77rkH9957r0Qihw8fLv/rG8Xj52q8aXjCQVU66/CNAr2jIk9Go0OvPDBKk7YzgVGsxMQE3DRsmExGY959BTFH/8WhPXOkiVvb+98FZ29bZgaiJ32N+DkzkJeUiKx9u+FWI0TElOlbNiA/8SSCb7sOEc89gMChA+Gw2nBw9AycmLYOtW/oiobPXyOi0klPv4/pq//BqJGvolmTpkjfcRwH3pmB5qNvgVuAD7IOxePQh7PQccozwnc2/7IXKfszUe/SWshNz8fSdzZg0Gc9RbMx/uUYvPp9bSEXP7wfh0uv8oXN6sCSv1KFfOxYn4UXPqkn9y/9K1UzDTuRiZykPLlt//ZsedyB7dkwu0EaxdVsHlQkwqFXDIgHx6m+KavnZMh1316dhXgwDJqybr98vpJSKkxHdOrUSVwbdfB1+X9pAwlvd348wYZO+uPpMUHSoT+GZIM6EZbFnsk3R49cVvTYdNXUCsk/K3RcQTx6rq3Iq4IE8fjlnKBQtbj88ssLIvisCmOzSOftgiUcHLx4kBkFXFXxwKenhdHBlRQHOKOLRZ0nkYcffli+29TUBBzYNRM2aw5qtO6B+C1LRSwaPFBrI5+yfjWOfjkWtox0hL/yGCInvA1TkL9UZ5z88hdkbd2NoEF9EDJSszeP+n4Jjo6fj9A+rdFk1DB5rT/GfoNffvkF73w4Gi1aNhfB6OGxs9GBPVfMJqSs2YfoyavQ/JsHJLJB0WifFzvLKuvgkijYM2wwuZmlwiTlhEOqWeitMej2GhL9+OuHRDz8ei0hFStna+Rjw7J0DLg5QFIsXfv5yW3b12lpkOgjedJfhajRXOvm62WqL2kIvYdQq+YtxcuiVkQIDu7SJq2sqFghHhm7opB9RHO/pWaCpOOxx7TPr4OpjW+//RYTJ04UfQVXMUx/UKBL3H333Rg5cmTB459++mlxhGUKhBbdbE/NAf+JJ7S+NCQ5fK/Ro0fjm2++kd4LP/74o1REsXyWoHiUoVqmQEhIJk+ejGeffRZ33nmn5IwrCqZW+B1xv1wFPLb5mV1B9MqIGAmHkcpjORdwTlCoeu0fz3GeX6wm4zHrvFUUJoeBk6DMH1Kowvy+UVIY+/btE9JhpKhLSWC4moM/856uQI4IhtcpNGS7ek6a7KEwb/4CIQcMMwT37oea/a+FPS8XR7/+FPlJJ2U1Hzj4SgRe209W/wk/TUPmyg3ynIBr+yFoSH/Y0zMR9exoIQ0BHRqiySs3IP1IIva/MFHe98mPHsZlTa7Eqy+9ir179qHGoA6o9/CV2HTDWLm/wbPXIP3ACSTN3YyQhgHSJfaHgX/B3dsNt/06AJOGzIGPnxlvTQzHizfHSI8VDy9g/9Zc3DeiFn54Lw5ePmY0bOWB3Rty8NhbEfjqjRNo38MX29fmonGT+kIi6tdrjPYdm8LXq6b8ZsxV51nTkZSQKQ0Cidj4OPh4eUvVA++nmRT7+dBzw725DXPGL5Zzxrn3Cj06nKMALGlllQjD5QxTs3qEUSWCxwvFjWzW5Gz8xbJX/j7sIEnfDf42OjiEPPXUU0Le+D5MgX755ZcFXSXp90HiQ2LAlT2jInfddZeQn5IiMeUBS/cY/uWKjN+JK4CVPfzN+D0ZGfxdSTZ5bBjFMJCpQmoMzmZWV9XgKp/nWbv734WFJ/s5wpaXg20/vCznsxGO48cff1zOK5bB81ylboPH7Ndffy2GffTUueAIB/UbzBsZqdsijZBIfoxqoqWDYdudO3eeVtJoZIK0aNEiWc07+4Wwuy19H8i43fwDUeuGW+HbpLncd2zqROTs0Ory3evVRs1HbhP9RsaBo0h890u53bNFI9R89A6YvDxx/MlRQlC86oai2ds3Iyc7G/se/VEe99h7D6BvqwF45X+vCqkMH9oNfj2b4sBzvwhR8a5fA9lHEiQd0vL6RrLq2zv7KCK71ILFx4yjy2PQd0ggVs5NRV428PzHdfDRc9EICLEgMNiM4wfzMfyNcHz9Viw6964Jb7RC165dcMklHWVgj086jC0b9iO8aTymT9yHhJOJyMpOx8DbAjHv12S4Wbzw22+/yfnASb1Zez8kx3jLREBdABudteveBjV8tBQFUxwclHfs2A6r1Valq9Ty2pVXNhg5YdhXJ01GB38/pqXob2L0pns8hujLcS4tySsTPDc5RnAxWp2ifZ1wsDKOYvVzhS0nBwffNQ7hYFUj/XS4AOH+cNHAMebnn3+Wcai423BZYehYu9HSKRy0k5KSJNRodLiS7bo+abGShmFyZ9CumyF/VjZYM9JEv8Fqlexjh5G7Z6emX/D1QX5ULGJe/xRpC1fDt1EkIqWZm7s0eYsZ9Snyj8Wg3oTRsIQEisvorqd+gluuA82/f0je58uR32PR1nmSXuHgGjt9HQ6/OlXbCQeEbPR/s5uIPHf9eQi129WUqpVja2PhE+CllcNOT8UrX9QTAeikD+MRVteCtCQbrr4jFBY3M2K2N8Urr7yGl576CjcOvR7Hj0dhzop3cdfdd2LNzk/xy68TsfvAOhw+fBBdriQJsyEt2QY398J6+IaXa5GOgBCteWB0yjEhalMW/Iox376D2++4HWPHjpVj9fEnH8ekST9jzJgxctxWxdqiusmGfozwu+BndAXwOOcgbrQ28CWBY52Rqmo46ZGkcTGlUHXguaQvqnms6ucWo3IMBFQUinBcgPoNV+vzQo8JigzpRFlaI7wJEyYgLzdXCEnGzq04/uOXcFitCLltMOqPH4XAIVeKxXnyb7MQP/Y76bFS78u34dmyMezpGYh9fwLSF/+LOmNGwKtdc1jTs7H7hZ9hO5KES6Zojdu+fv1H/LNhDt75QCMdtqw8dLyrBdrc0lhKWdd+vQN3z7xGHrvifaZttH3bOfMQ3L1E04pv34lDcJgFJ0/k49q7asDL2wuZR3viqwlf45oBdyE99xCGD38Uq/e8iz+m/Y6TSVGS/jm2Pxe2fPZUyRV9R+zxPCExqUlWuHsUfifsw0JPD/9AC0xuJtTtUkv2LaxFMGI2n4TNapNV6c9TJ+LVz0bgtVGv4aqrrhIdBQcKagcqi3gYgWzoKSOmpGibbuCAbYk+F65AODjZGEXHwVQrI55Kx1G1INlg6o9gH6WpU7XF199//y0Rr4pCEY5ygEyfJ6DRu8PSiZEDr1HyrmcDyQaFSGer/GEIlXqeP2dMh+nUABj3wdfIPRqNoGuvQN1PXwM83JGz7zBiXvkImWu3oNZzDyDkkTtEVEkykvDVr6j50G0IuvlaOPJtOPD2dCQs3oH2Ex+X1/v27YmY9+8svPPB20I6Nv28B+EtQhHSxB8ZcVlY+MY69Him3SknPuD6+4OEaDRu6S3N19hm/rq7Q8UaOnlvZ3z91Vdo07ILdhyejMefeBTb9s9G/MmT2Lg8Q4jFf0szRGC6Y70mHD24K7ugzwqRmmiDmxPhsFs1B0C6m0rkJYX26g5Yc/KRn0vhqkPSPjmpeYjdmoCD+w9KNQdJB1MvnJRpnsTV9blMzkYhG84rX4bZXaW5GwkH99XonhJcXHGRVdDLxwBQwtGqB0Xkuo08WyRQw0FiT7E32xxccISDgwfz90YiHFRsG2FwvZD6vDCfTSbN6EZZweoHrrgo3M07fgKxb41H0q+zYHJ3Q70Jb8P3sq5w5OYh8dvfpambT8tGqPvZ6+JPkbVhO0688Rm8WzdF6KtPyesd/2Yxdj03USIFxA9jfsHsFbMweoxGOha9tR5d728Di6dZTL+SDqTBp5aPEI6kODvNTbFnczaGPqgRpkPrmuDrb75A3z4DsHHfJIx8eQRmTP0X+Xl2rJidJk3eWNlCopJ80iqXmel2eb3MNI1IJcZrvhuMcHh4FhKO/Gwr7GxzvydL/DxObE0S4nF8Q7xEeAimfa4cqq1CmIrSyRpXLVdccYXkZ5mTXb16dYU6mBqNbOifj7+Vq0Q5mP83Wr+SkkByS5NDI+2nIhxVDxILCsEJ6gAp+P7111+lgSMr1yoKw85IrNPnKqB4Tr+6wEGMg/O5lASdL7hSOoXVFSy9qkiYjp1Jo48fh4e7O9IXr0H0iA+EUITeNQR1xo6U0taszTsk2pF3JAr1vn4HbrXDYE1IRuxb42A6eRJ1x42S18pPzJBmaA8tuUHOiomfTMasJX9qpKNpM8x/+V9c/X5Peeye2UfQZkhjscOg2dc9/9O+61k/5GLMxyPx0IOPYt2Wv6RcdMLYpZICOX4gF/WauYs/R9tunuLf0aKzu1zWa+qmCVP9tM/FCAVJA5GRaoP7qRb1RPrJdEm1nIzSCEleumYClpde2JfEP8iCmKN58jqsFnEGV6tMP3AQIVlYuXKlDCZlDZkbkWzoYHUNq2BcQRvBidxV0io8NytCTKuScHD1rbvvKlQ9aK9w4403imD3XGBYwkFREN0EjQKq4DmYGUFBfCZQYMlSQVcw+2JlCr1COAFWFKxo4e8ycsQI2DOykDBhMuI//l4Mv+p98y48WzeT29nQLemXmYh49QkEDhsAR74VCV//hpS/FqIuBabcnxwbpj+4BPfOuk56mUz+4nfM/GcG3n7vLTRt0hSzn1+F68dfLo/994vtIiIlvn8vFs+81h+ffjIOOZkOabv+zbi5aNPdUwhGp8s9JIrh6eUmFb5x0XZJoySd0HqsWSxu0s4+LFJsRODuVCmam62lSHRkxmveG3lOvlE+NTSVvE+zCCE3Tdp4YdfGLJj1hiylRAQYVaIIjBVNy5cvP+ukYmSyoZMplty6Uht4o/UrKS0aY6SUCkuzSdhc5XdWcAHCwfInqs+NAp5wzGcyDGpkcACjzsQV+rzQ/pqmMpUxebEZmMNuR926daV9O6MaqXOWotYTd6PGG1poMGP5esS89jG8GkQCIRpxzFjyL2Je0fw2HB4WJB9Nw5S7/8EtP10Fs7sZv309FX/On46333kLTRs3xZwXVuGqD7tKRGLx2/+h66Mtcc/d96JLi3sw8efvMOr199FlQJ4Qh9ijVolGrF+cJxGL/duyhRDEHc8XEhF7TFuhHdyVI3qOtAQ30aF6+hT9bHk59iIpldPgaYfZzYysfSfkdXKy7ZK2ob9GWVav9LDg5MdoR2kl6EYnG85RDob/z8UN8XyB5ykF00bfVx4jXMgYJaLAVDE1O5wjFFwLhiYcRqn91gnHuahzzxdcJZ3CVR21G4xuVKYIl701li9dCjNTYDP/EYJhychGve/eg1tkbdiSUhD3wTdAUhpafnoPLMHeYgxGNHt9GPw6NRTB5R/3L8Kg93vCzduMKd9Pw7TZf+DNt99E4wZNsOzNzej6SGt4e3rj6to3o0v3Lnjxpf8hJW+z6CkWT8uGX6AZJ2Py0babh7Q7adLOJFGOiAZaNUvthtqlpFFOLXCT4q1CTNITpRluAXJP9VMROGkMvf1ZtWJCVnSedJkl+LyUBJtEUoq7jJ5pAGffk86dO0sqs7gOwlXIBkEjMZJOV1j9MiLDSKTR0yr8TlnKa6QoB+cGRThcD4pwlBEMNzO0aGRwBcLVnSsQDlb8cHXnbPJVWbjssstE/X/jDTfCmpCEuA+/QcJ3UxD+7H3wu/Gqgscd+WweWr57B0L6tZJeLPte/h0BLeoi/P6+0s9k9nMrcelj7eEV5IFpP8/AH7Om4M233kDDuo0Q/U8yPv7sI1jzbRj96VuIjjmBTSsy0H2Ql4g//QK19MmujXmi5dy/1SHRjqgDkMuYw9qlxWKW/inOaRTCOcqek316yF0qUTLZd8VR8D+jKiFh7lLhUh5DKU54LH3kcdO7d2+pBPrvv//kO3QlsqGDaRWW/xplRX4muIqOg2OfkXQcinC4JgxJODhQcKAzEuFwhQgHJ3GmKHx8isXkDQhqN1imWZVdgKdPn471a9fJ9az12xBFUenc5aJ1cAv2QfaxBOx84nv4NqyFZh/fJo+LnrQCmZuPoPHo2yXysOLDTWh6ZST8wr0x49eZmDJzirRtfvvV0dixcwc++fYjnNgbj7qda8nz183PgY+fSSb9hi0tQhzCT0U1QsK1S79AycgIMlLtsFtJMLQIiA6SEYKZMTZwKx4EslhMBcJSgtf5Xuwuy9cpqxMgdRwUZofWqCEugtQokbCxeojls4x2uBLZIHie+vn5GcqhuDQwwsGxxejkiN+pinBcXMjPz5eIMatFK8tUz5CEg6F2aiU4IRkBHHwpTDR6hIMDgitU0TCyQaEilc9VjbvvvgcmsMOqHcjNgz0rB7nRSWj+9q2oM/xKaVfPstiYH1ai7XePwORhQdqmwzj2yd9oPuZ2eY1tfxxASINABDf0w+ola+REpJ7nn7kL4eZmEYFp1H9xqNOTHi1aioKT/+E9NiEOsUc0ApHEHms2ICNN2x1CT51Y87QISHHo81DxCmertTDqoXM2vmdWhvaeVw4cIKkqlrcNGDBAzifnpmwEG7Ht3ru34MlsS00wOsLIE8XHJCBGP+5LAo8tV2gDT28Do6UrSoIiHBcH0tPTxWRR701ETRTTrfRI4jn10EMPSfTzgiIcPJAoCqrK1W95fwRGDowuGGXI0+hRGILhbu7n+XBs3b9vPxy68OFUlMCWk4+dT/4Aa3QyOvz2FExe7sjYFY2dT/yABk8Ogk+L2shPypAUS/3HrwLczDj2byz8vP3x9ui3sGrlKvzwww8YNep1hPvVQVC9AImGRK9OgG+4NzLSbKhZV6pypZcK0x0mNy26wTPOmTxQ5Ek4Rzec9b76IXeazMUpy+LsHaW/HqzajezS+s8//0h65P0xYwpsqlmO/Obot2GymOFev7a8gd5OntFFnoOMbFDLQc8Oo1dSFAd1HDxvjS7INGLZaUng5EPhqFGMykg4mPojKVaoHLApHgkGuz2zbH7mzJmi6eJYQKfiUaNGSWUhTQTZB4iGjRcM4TBSOoUHtSvYmbtC2odgzroqtBsl4YMPx8BMkQThACJGPQVLs8ZyPW7mBux47Hs0ev5ahN3YBfacfBz+aDbyY1PFmdRhs+PoF/8g9LJWcA/1xwM3PSL9T/5c8wcW/DMPU//4FaNefx013cNRo5n2vaefyBYucDJa02VkpNg0MmE/lSbRL4uRDOfohnN0naTF+dIZFIwWfxyhG5jplwVwOFAzrCbM7hYh9GaTQ8qD2YemdkSE9GRx1mww3N+9e3c5rlxtNckqLa7KXEUfYaToQWmRGC4ASTqMUuHDsa4ik55CyWDkgu0P2Brhtddek8gorSk4VtBk8f777xcywnOK5ousaisvFOEoI+FghMPIcBWfEKYjuMo+X8JWtkDPzEwX51WGFk68OQ623fsRfvOl8GkRAWtKFg6+8ydyDp9E6y/uFzdSW1qWPHfgez3kDElcshP33XE3QmrVxEdjP0LivlTUbBuCWX/Nwe9TJwvpCDXXgl+k5odhcbMIocnN1lIn7JFSoLfQCYSlkGQ4V6S4Fwui0VzMGc5BP10wWvxxdCAtuCzGOUhMmEYqsEknKbHZZbVIY5/iAlFWKHCw4cDOx7gSXEWQabR0RUlgeo66GKNEFLg/F3taZcWKFbjuuutk8cbvgxGJ0kDHYT6GEc/SwC6wrVu3Puv7ckzg65GAXDCEg+YuRgFPMp5sRoar+ISwfwS/y/NJ4Lg648SzdfPmAn+SuBnrENSpMVp/97CkTNI2H8GuZyaizl294duxgUzU80euQavBjTBwSH/07NQN777zDrw614ctz4a4rUmo0TIIs/+ei99+n4zXX38ddXzrwSuIbqJ2ObN0wy79UiIaDo006GSD9xWkQUxAvpPNBtMo1lP/63zCUuyMdSYrziiInjicSI5ZI0Amswk+oV5yu05OBg0ahGHDhuHtt98+TSDKFTgbZjG1wjSFq4Akk+cFybiRYTSfi9JgJMJBXOyEIzMzU/oksc/JmfDnn39i7dq15xRVZmqShIYLknOBIQkH1eVGEYzqP6zRCYcrlO1WpU8ITcTq1KmDF154odTH0JaXglXafXOVHzN5FfY+Own1h1+F2nf1lGZu0T8tR150Cuo8f7U8J25VKu4adg9m/PsbThyLRvLyPfDt0UQm8vgdKXALsGD27Ln47dfJeP21UahXs6FM4lxNMKrBiZ+XJBY6ydDT4CQAzpUmxdMmzimX0iIeJCslcUx5L/31GOjQycapNEtOSm4BGSHZuPPOO6X6Ztu2bSV+dxysmN9lLwVX0XOQaHIyN7rVOVeM3Fej6zg4BholpaLrdFyhEqmqMGjQIIwePRo33HBDqY/h90Pn48mTJ5fLDPLmm2/G559/XlA0QY8e3sYxlNV/FxThYOj2fOX4zwaKpLKysgyfUnEF/Qb7dXDwrwrCwRbKPG4++ugjmMxmmRxLK+UaPny4TJr33XsvrGnZODp+PhL/2YHGr94IeFqQeyIZ0WPnIvSKNnj8maew/r/1mDlhLppeW1een7n6AHyaap/BlmYT0jBnzlxM/vUXEVZx5SWk4xTJYKTCmVg4RxsK/j9VSKODUZCCyIeTLwcjHha3osxEoiDFQx/yJKerJBunIhrsLms/Fdm4etAg3H33XUI2uFrksX6m75iEjYJTV4FKq1QeOAYaKcLBOcLV0nxliSQ4b0yTn8t4e9ddd0l317KkSoqna+jJo0dIdI0g3YtJci4YwsEDmptRmraR0VMsxRWIkeEKhIMEgCWjVVG6m52bC69WTRByz41wr11LSiJDw2rKb/fBBx+U+BxWmvBE6tKlC3JjU3Bw9Awg14bIXjVl5d/OEYYGtSPx3bffyeS9f04UQhoFws3bgqxD8XAL8JZoBcmDpy+9L+Zh8mQn0mEvShb0ShNGJHRyoZXRFhWNllSc5RxU4D6fFtWw2Ut8nrzHqbO8eGBCj2yMGvWGaDTOFrlguu6SSy6RZm+ukloh4Th58qRhqitcmXAYLaXCOYLl9RcSIiMjJVKtb++9916FX2vMmDFyzupdX8sDRtv01Or8+fMxdOhQ8Xe65pprzkmoazjCwQOIPgBGMRrS9RuVab9dVYJRo6dUuNJkXr2yv8sRI0bIDG5Lz4RXs4YIH/UkzH4+Mgk7zMBLI0bIe3KFXtKKgarszHSt4R31DcdXxKNl/0a494F78O233wrprNU2FJ7+7tJrxZ5nR0Btb1jTs+X5JA95vOrQSMcvvxSSDmdwPqeeVNdlkCDwtiKRjVNkpPj86Pw/yYkW6ShWYsvHmM1Fmr0VpHRMJZONN954EwcOHChzt1i2Kmd7exqCuQKoa2LKgqTDyHCF0liOg4xwcTMCLkTCcfz4cTkO9K24d05ZsXHjRnz22Wf46aefKjTekviwFJZjHwkHS2GJ5OTkc1p8G5JwcFVilAme+SujO3dyZcTBwOiCUVanVEUX27feekuOl/zoWGnaFvPyWOkQ2/TNm9Bh8pOIfKAvPMICxTHPy9dHCC3DhDp8ff3h6+snBkxLlyyVXGeboE6IjYpFWngcLF5mxO9KQl5GPsLbhUo6Iu14JrzDCu3D7YxUnIowzJtXMung/afsMYR4OJMI/nS6gLSsEgk+ljyBr1tAPOz2Au2I/MsIzCliU5xsvPX2W5JGKe/qn00VOYHTRt/o4HHBY073HzEquFjg4sbIwlGeF9w4JhqFcDBFW1ay7AoICAgospEsVwQsWaVAn4sDzgvcGPV9/vnnJd18NjzzzDO44447RCfD1FWfPn0KUi3n0sXdkITDKOkUPXpQ0R/9fMEV0imc1JiTrIr9JIHgoLN18xaJoNgSkuX2/W/8gQPvzYRboA/afPkAmo2+BUFdGiPfmo8bhw2VyYjueVlZGaL74AnZp18/OdHZh2XSpEnY9ddhmGBCw94RMpHHbkmQCg+Tmwk5CfmweGinkMlu0vQa5pJJByMnMvmfut+ZeMj/JBoVHDf5uvqY60w0ZL+KpWucBaJ795xyGS0neD6wNr94kzejwhXSFVw1uoJwlL+9Uap+OE/QiMroZLI6cNddd4kAnMZd+kbiQD3HggULzvp8Nn5khINp51WrVkkqnGjUqNE5aTgMtyQ2kmCU4Mll9AoVhr2MbkxGskGWXZXRIiqodYHg999/LydN+rZjSN9yFEfcLQjq3hQ1B7ZH5MNXIHHhdsTP2STVLYTDboObjz+sWekyKe/atRs7d+6U+6w5NhxaHgPvEE+ZYLOSc8TAyzPQDbmpWn6EQkxWgOhlpjrpIEg6RJR5YF8BMZDUClMjlSwt0MkFIybFSYxONt4erQlEiYoeN+zyyxYEjHRURdSqsgnHjh075LczSuS0JPC3YJSDplZGBUmRUQgHI5L8bTlnGP0YrApkZGRIOlQHz0cSC8oRGNlg+tMZjE4xe8AIZWmgUPT666+XjZUp3JxBDce5QEU4zgKeXEYXjLrCPuplu+drwH/ggQdEr0G3UFalmGwOJK/Zh/1vTMOuJ38U/UXjV25E5EP9xIeDINnw9PISh72ZyxcXvJZ7ZARMgf7ITspFTnIe3AK0x+dl2Iq4ejqTDR1FIh1NmhWUqjoTDZIPLiD0r4aXZ3L1L95Xpch9ThETZzhHNvbs3if7wXBpRa2/OXixK6srVKxwImcEzEglnSWB5/C5VCVcbITjQtVxlBUbNmwQETc33eSQ1+kJVFGwVwojG/TdYQ+Vl156CatXr660SKYiHBfAZO4K+1idaR/6bjCl43Yq32HLzEX8vC3Y+9JksTePuKk7fDtqjeR6X9ZbQrQ7N26GZ69OHGHF+tuRkg63miFilmFLO3XyeThKd/V0MtsqQjqaapoOZ0JB8sHIh35O8/JMsoozpawLUimmkskGIxskJb169hKB2rmAuWB+V0aqXCgJDAczTWb0tIqR0hWlQREO46BPnz5CBIpvFIqWhCNHjog240y4++67xWeD5zUtBnjO3HTTTRIZobMozb/ORcNjOMJBoYvYUBsEXHEYfTJXOpOzg/4SVpvTTM3rZjPyTqbhxJR/kb1VS63ceMdgrNy0AvbMLOSu2cQDAGYf7fe3UhvCk1p338ornNWp0dB9L/TrjHroos7imo6qrtLUyctpZMMMvPLya9IzxeR2buXefC4HIlfoyuoKVSBGm8xdIQrDucLoxm6uCE9PT1x99dX4+uuvJWU1a9YsIXfsscJUzbXXXiuRD5cnHAzxGqUfCFfFVI0beTKnaIqbkUkRw9n0bahOwsETRBM0FJIEz2YNEXL3DfC6tKNUnoRHhKOmTzgWzPgHdbvWQv2e4QAbnOkDrMNRIBKVf09FNzTHUEcB2ZDrum24qbBSpLTqlapCcbJB1K/fUOzLxTDJZkduft45TSDMFbP7r9HFo64iHDU64TBaFIZzhat4wrgyunXrhnfeeQfbt2+X7YorrqhQZMlwolEjdWbliUXNgZEJBycL7iMrNYwKkkgacJ2rYJS/x+zZs6VTYXlLgAvZOJuZsGGZA7n7DiF3T6EG4cqHb8buYwcl15+1IUuIg9ndjBqtA5CwM1Wandny7HKblOKdilIUVIiIe6ieFyl8O3nMqQqWIkLSt97Evr37zhvZIA4fOVxw3exmgslhPqfjmwJHknJGD4xcKUX9kNGFo0aLHrgCKdKFtgpVB36/zqXH7ML87LPPVui1DBfhIFs1SlUIDW4ojjPqAOWs3zDyPlaWeVpAQKDkE909PGE2awSGiuunn35aVtlngl7WJbA54B7si6ajhqHGdR01AkLrbvcw/LtouZTRhvRtDfewANjz7Ti5PRV2dmYleaBRV75dSmWLwKSlT7Trpy5Ova4u5NQrRgoiHa9XTaSjNLKh7UThVSFQ5xiZIJFkhYDR7cM5MTESaOQJXZ/MjRwt4sLGKMZfBMcVFeGofLDihRUptLMnWac7NDcuKs7FKdpwhMNIEQ4RGhrcTMsV9Btl0cGUJdydb7PCK7gWwjv1R0D9VrBaPGVCpb9/ZP0G4qVBUsNJkI3c3njjjYLnUiDJVs4SCWJX1tQs7B/1BxLmboFv0wg0urMvWrZqhQ07tsCamoXEZbuQH58Gk5sZvs3rAB6WIt1ZCypSChqkOf1/qima/hhnHwwdVZVeKYlsFG+zohMg4X92e6kN2y6kfiU8Jrh4MDLh4HlMsmGkCb04OB5yXDQKKVIRjqoBxxC6itKHY/HixViyZIlsS5culcuKwnCzKdmqUQgHV0SuQDiMrN8oCynq2bMn1qxZU+D1bZJeIW5SZ8/JrG/fvpJG4eQY0qIbwtpdXhAtseXl4OTONTixbnZBaQbDf9QocNJ9c/TbWotVh0O+pzZt2shJxJJOsYK32ZG5JwahgXVxIiYGJ49recnwVsFIj81A5slcZOyJLmjT6txQTRqu2UpuyCbdYh0Op5bwpxt7nebTcY6ttkuLbOhaWX1/9X1mSiXAL0j8S84FjHCwiyxTK+XpSFld+gOjtgDQHSGNvIjQx0OjLMY4V6gIR+Vj69atYo9+Js+OiqD6jxgn6D79RkmpXMiEg8LB10e9oa3I7XaZIJl24ITBiZ6DMn8Heup37doVN954Y4UnprOZp23atEm7YrPBq049IR55CfEFHRM5eVItTcT8Owux/82Dh38oPANrwjMwFLlpp5wGHQ641w6Df9NQ1Ln7Mmmwln0oHlmH4pCxPxY5SRnyXh0u6QAzl/3SPtUB396d0ah2Qxw8dqRgn+J3J0nKgQiK9EN+jhWZcdlFPDcKyIap4GssiILYTj1Xv600F9HKIh1nTKOcgjM54nG9e9ducQytTJdMZVp1Yes49PHQKGOjSqlUDdjQklHhC5pw6KExFeEoOzg4Mc9WXnz11VdaGoAr/7r1ZXluy0xHXlYWclJSJJxGUGjHSZETWUFrU8KprlNPY3BVRqJCQ6lOnTpJVIK14hzkzzQRkWR6hUYgJ/EE6tzzKCxeXkjfuRUnpkxE+GtPwJ6Vg6xNO5CxdC3MXu6w51mRkxwrm8lsEZdQHflxCUiKiUd+UiY86wTDKyIYof3aIKRPKxwaMws9nmoPd283JOxLxs6Zh+QzZa7aiMYjrxL1tcXHEz6Na8E91BdJy3bLa6YcTZdogI4iBl9MT9gKpRGMIjhHQcqCcyUdZyMb0uq+WFqHJW+VQTaKl50qwnFh7yMXJdw4NhoBKqVSNfjuu+/w6KOPIjo6WqLCxSOXFV18Gmo2JVPl5GWUZmmuQDg4OBW3sC2rL4XZwwv2vGzUHHAdvOs3KriPqYCExXORuulfhD1zP+wZmbBlZDldZiF332Hkx52EV0QQrGnZsGbmwpqZKRUeTGewA+uECRNkQh8/bhyefvZpbNywqUgXMf7WPJCZrSDZINK2/AeLrx+yjx6S/y1BgfCIjIA1LkHECB2nP6/5XHCez85Dblwq9r03A/nHkuAZ4I7cdK35Vfr2Y8jYHaWVqOqVIwDWjNuKGs2CEFTfH53ubYmACF8hbc1aNMWsObNgy8qV51JIqkcySDb8w32RkZAFW469sMIDjqIpFqeUSmGko2pJR1kiG85kQ0+rsK6+MkGiqcpOL4595JhoJMKhIhyVD7YsoIvwfffdV3CbnibmZXkbPuow1GxqtFbwrkA4KrqPnGTNbowWZMPsWTQlI9+/1Qazrw88G0WW+PzkKbNhRj7afvuI/M8D0Z6dJ5bh1tTsU5dZchlaqyYcLcMQ7N0C1pRM5KdkCVFw5OYXCuQocjABJ+fOLFJKEf38O07LdDt2PztRKkxYScLNPdAHpqw8BNXzx4B3usM72BPewV5w87IgJzUPaTGZ2DZtH46uikVWktYDJWFfChIPpGoN1ax2icwETQnG8aPH4R/hI6+Vl2lF3I5E7W2tDqRGZUjDNl0UqqdbzkQuytuMrbykoyxk40xpFRJ7NnJi/4TKGPiNbsDEydzoHW6NNJm7wj5yvlARjsoHXUVpk/7bb7+JuVplzclu5QnBs9McQ+36BMcfmiUyFP0tW7as4LG8TqEfG8uwyZOrCiBdgXBQIFmk5LOMIEM1e2mRJHMJAjV7Xg7MXqUL1+w5ubD4eBRNq/h4yuZZq9CPweIwwSfPC/63dkYTU4eC24+Mnw8cPoph3/VDTmqukIPslFykn8xE/M5knNyXhNSjmcjLzIctn54X2kyZue+U2YyFFSma4RY/fkqCA1PuWlj4vu5meAZ6CPnwDfVCZNdacp2EZPOk3agVbsZtT9XEkX1Z2LPWV37rtNQ0OFIcSD+RVVDS6kzkvb1MyM6mnXnhbWL05Sga6ShJUFrZpKMiZKM4aFF82WWXweJmgTVf+wDsAEsS2KFD4W91oazMXWEfeS4bpQLEFQgH9WbnYrWt495778XEiRNPu519lebPn4+LDUePHpUoaGWmXYkyz6YkECQYbBjTvXt3uW3lypVSRbBu3boiZIGlM3QgLA/Z0CdPagGMAqPtT0moqJERP5s1QwuBn5g2GWYvb5jd3WCyuMHk5i4pDbstF8l/zIPJ3QKTmxtMvJ8EzN0NeVGxMOflI2Xtfrnf7MH7LdpreLjBzOe4W+Dn4Q14ADm2fMBJB8HUhbePm+gpuDFloaP1tWfed2ueTQhKTnIuslNzEbU5HsdWxyD1uEZQxF8i346shBzZEvdrQk/dBdRscuDoPuD9JzTvjlatwoVI+weZERBiQVANN/gHWpCWkoWYI3akJjgkVZKVcSqdYtGIhi3fyea8GIr/JMXTLedCOipKNkrbBxujWSRwvN/qkFLglMTkAsffshBvXexoZGMtI02UpYHfnbPJklFJkVH2sTIJ2sCBA/Hjjz8Wuc2o1UJVjX79+kmlSrURDqpV6aXO6IVOOHidbWxZl7t27VoRCOq3k6Ccr9V6VcHoKw2iogM8PSq42Rwm5EYdLfysp1IbktUwm5D2z0r9jbQb5aLwe9n/5rQzvo+YxPzYE/9d/wHsYAt3s5ARCj+TrHZMHDxb7MLdPC2weFgkFaJf5+1y6X7qfnczLPp9TreFRPqj5t2tCp7j5vxcXpL8WEzYN+8oVo/biifeDcPKfzJwdHcO0lLsCA4JFsKRlmyTLepgnkzOZmo4mCoqdhhI5KKEzrA6qK/Kzy/2nHNMr+iN1vr3749bbrml3GRDDpEzHCYkTnoKyGG1I5CuodITxgETzNjw33rpIFkWDwmjDtKuMJm7wj5eqOSHxy0X0AoQzyK6iVJI37Zt29NEo4MHD67Q65YrX0ASwejFiBEj5H9ef/HFFyU8z+skHAxvMeLBHJCrEw7CqKs15++sIvv4yiuvyKZD3ErNvsjJThJSEdi1J7zrNYCDJj82G1LWrYTDbIdvj47Izc6GPSUNSKOINBOOnDzYc/OAfCscXEFyRuaE7LDDcmplrA8KrCix5RfmGqiNKBGUS3DCk79T2gl5AUch9yklunA2fPZyvGgz3DxM8PA0I7SGL/Jt2ajdwAPuntptHp4muLmbkJdrR3JiNtKTGOE4sy5DPycrqzGbM+l4//335fqtt94qRLG8aRQpSCrPfknL2lOdcGGTqiNG+0h49P0qHj3gccgIglEJhyukK3RhnpFhpH00UrTlQsKjjz4ql2+99dZp95030SgJB9vbclAhsaDZz+WXXy6GP1JmCeDff/+V0Oq5RDj4ekYAv1QOskbZn5IgK3C7/Zz3kblQN/cgmKDlQ4MbNoZ/20sK7rcd3g+Hjwk1rrmiXK8bYnYT++xmP3yIjDUbkTz5L1wy7bkSSZLDZoc1NRPbH/oGlz1/Cer3jJDUCIWdcpl/6pIeGKeup8VmIS0mHZnxWchOzkVORh6sWTZkxGXJBOvlbYLNrnlmSAv4YmOTPZ/v64m8HDuS45zTZ6dYjQR9vCVC4OtX1NBc+qbovVKcXrcyZT+MFnJ1obumfvzxxxLt4O9VFShJ/MqKHF0ku3zVylKPNf6mjHAYta8Pz+fKOFeq+nzm+GrkfSSMso/8TSs6+RUH+zQV9wt6+eWXZbvYYK8iEmdylIOqUgTatGlTcYVkCJoi0p07d0oZZKNGjaQs7t1338XkyZOlpKa8YIOtYcOGFZAXBQUFBQWF0kBL/SeeeOKcyQ9Fo/SckFJ+J4SEhMhWHDQkZCl45Bdvwux97oUO9uwcHH98lHjZGKVbelWgXGsxCkho6sT0CQkHoxtE7dq1xZGSRIT3UXBSETC6wdAsTYmMAJpecXVZ2W5rlYnly5ejdevW52y4RHtqk9kHOdma4VdAp+7wrluvIKWSuuFfOCx2+HRrL2kT5vmZO3BYbacurVJKy//lOfIYG0J8/PDxSy/j7uefgS09E/b0DLgF+UqJq8Nul9fRHl9JjJrZF4meUNvCY6poJIX8Whi2/ZQ9h0OL3FGX9N5778Fo0DUbn3zyCV599VXxT+F+kvxXVkRDD5GXx7CMKVPukzOYamHVS0WM6M4HWBLLnLSuNTMi9u7dK1Ei5s2NCo7zbA1ATV91g+dBZQn7edxWtkjSlfD7779LyrYsYJT12LFjUqFaHpQ7+MvBmWFePcKhgwMNBxwaPg0fPhznko8zSj8G7o9uTmV057+y7KNe7siIFKuKnMORWqDrlHGT2YzsVUtLeDMT0o5GnV6Cob3CKaFAUVGp6VRnwYzDxwrDdGcqY9MFq6dC+UIg3PgZTSIAZWt4qWzxssDT3wNeQZ7wrekF/zre8A3zhq+/T4Gw1M1D0wNNvnk+7nkhDD0GBiA7w46sTDsyUigQtYpINMTbhrAIX7TuakFKkhVpSTakp9iQnVkyCWKVCvenPJM00yzlLZBgNYouENVFoxwUqKGqjN4r1AebrVq1TXnA3+CLr77EF19+Ib8VB3y2rGZkkilV7rcR4QrnM/ePiy4j7yNhlH3ksWc03Z+rYsKECTKu0OyLotGWLVsWuZ/RF2Yh2HRy4cKF+P7778v9HhUiHI8//riEsPQIB8HrDG1xUquIfsOIAiCjC0bLK+B6+OGHsXv3bplp3Lx8Yfb0gDUtEV71GgLuHrBn03/CjNzjR2GuHQaPurVhCvCFh4+3VhKrl8W6seTV/VS5rH7J+91hcrPgxFvjUeeOnqgxsAP83LVwY5e/XoTdqSy2NPCzbLx2DC5/qSPa3dS0xMdYc23i2SH+HVIamyfX0w5nIT4lRe7jRqOv7GTNd2Hi2HjZSlrht2p5HK2fCsCG5RmlT8xStQLk5+kN0JwdU/k6JljPMHFXhGw4l77qmg2e6Dz3KqPhG6twSiUbjA65mUU/49zSnqB+JqBzY6Rt0NKmQlot7pLX/397VwEd1bVFdzJxdyEkuDsU11IoUEqhReru7r9uUG+plxoVSoUW2lKKFYq7uxMj7u721z6TN0xCgBAib5K713prkslk5s2Te/c9Z599pk6dqttup8ZmevqenPRcVqxH1GahAbWHlbsek1jp2a6/tqPl9N749NNP8dxzz0nEh6ZfLChggIHHhseC6SdG//m3eiEcFIx27NixwgeScNBiViufrQl44dSWAKg2oDcCdLGEQ1uRGGzs4Nd9GJx8g3Fy8ZcInHwDbD1P26OffOsFuA3qA/crahZ6tnawE+Jh5+UiZbcoBBwMtshF8ZmC14IiozW6acuViMaWz/YjNSwT+SQOJBUkD+kFKMgsREnhWSIPEhExem1U6Hei/d0aIP/x9LZBux4O6N3PHlb29rAqNsDb2xOXTfZEXGQB4iILkZ5cbArUiNBU65FSxaHm60g2hJRYn0kuLjS6cT6fjZraoFfuqVLZLbXCa+imSsM1whawsTYI0dOQtSfMZP1OeLm7ioaLZIj5bT3moS3ByM8SSJGeqglrWqVXFWjwVXnu4nx29OhRNBVcddVVsiUnJ2Pjxo1iAMb5nkSDzqPcLubcX/Dd17JlyyonuBYtWlx0qZTenAA5ONWGi51eSJHG1K2tbVFSVAhrW2P5Ymml7pS0OqeT6IVAtBH5BdJrxcrOFjmhCUhefVBIRO5l3ZH5xw5EREaarM1JLEqyC4wakErgRFaYW4qDf4bKhFZV+Sttxm0dDeIi6tfNGy2GBcAr0F1SLHQTFWvzdFqbZ+Pf5zcjPSoHY671RFxUIeIiCrF5eTY2LDZGNOztUzD8NxvsXlOCtNTcCpOvixMQFAgUFtniVHQRCst315Ykgk3bzHZNqmDKapY+uVBTr5qQDnOywaiNecWOZr9SJd8vBkqsT7/YxtEA346eiNuTDDt/d/FUod9Kamqq/N3d08P4hqUlsLO1k8q2d955Bw0NvTkZW6rZoJ6IG8fn2qjY+uGHH2RTOD1XsPlmbUMfV00lX3y9hBUtwZnwQvYxKChIHg0G9lDJh8HOOPiWFlQkebQ6L83Iks6r5g3bzJu48feSzGzZSnNypaPr6f7sVkhbf0Q2RhxSuk6E1dEkpO08WnGGNoODhx1cfB3g19UL/j284RHgVt4XxR4O7vZi8FUZhblFyIzJkX4pmTHZOLo7Ahkx2Ug/lY2s+BwU55t3tAVWLEivkEJgisTL1wAbx0IRFD75QCds3noAu/cXID6R+hYgKxs4EUaLkYoq+HIncHlfbqY29IwMlBqfq+qrnu35mjiIXkyXWTOpjMmGvawKUlfGKIh4eJTBzs8NhYmZKM4rQdz+VLGXL0zIkDdr0aEtUq2M15FtoB/s27VC9tqtkl55//33dUM49OoRooH3cl2VPDdGwqH131KwDOjjqjFrAEWyQSW+HpTulkA4LiQqxJJmorSUPhXhKC1f4ib9+4/MhCU52SjJy0Vpfh4KE+KRvWFHxTcQI64z29ObwD9Tz+FkC1t3F7i0C4BLp+bId7dB57vGofCePrB1c4TBxdHYOK2wGLsmvodRr/RD54mnu9VqoEEY+5qw0RoJRQbJRTmhYORC6wyrfTbtuUtLTmsOGPlz9bRG76HOuOImd3j7OSIptgjhR/MRfiQfJw/m49SJAhQVlkkZ9+HDfli2KtdECBwcgRadrJCfbYdTJwskIlA5LSE62bKKz5NwmEc5zC+h2iIbNSEd5lENjSCJ3XmlU2kiIJVSLoUpZhoXOxs49eiM3K175Xi3DAjCgQ075U8kqiSmGvQgLiR4n+h9cuI+UoCrZ+iJcDCNz3lDwTKgj6umHNpgwItIEY7qgSs2jXCQqLH7J0uTKephZQPFPnyeK03qY6ysDCjMzwAKspCXHCuzUH50ZNVLYGuSBwcYPNxQZm+PkpMRCLlvJOwDPUydWvlo7WB7zohUfpEtfDz94WhTcWajzsPG2R7H/z0laRRjtCIb6VHZyIjKNnZ3Lauo0eCEaZ5iYf+5Nl0ccNVN7mjT3Q2+zWxlwqQOg6Qi/FgBwg7n4a0H45GaYDyXUi6raTLKHUKz8iIx8oouyLXbgH1bcpAQVYT8PODkAfZlKTAJTK1pjMWvYVVxshbdpBnp4GVT3f4pF9uIrbqkw+RYf5bGctr+m/+tghEYyZyGvEIj2SgH+yYtXLhQvAm46izJyDIdgEGDBkEP4H2idwGg3tM+TPlw0xPh0DuJVDgNfVw15aBDITe9tBtuaMJB4Q7JA0uNKVwigWBJK0V5FOfxxr9ywgSp2e/JPhdnmd3YmM3g7glbF1dYOTrA4OQMq+JSZB3YDc/rroRtUAAMrs6wdnWBwcVJqlEqI/94OBLe/hJuPVvCsYVP9V0TM/OQWpAK2/wSxG3dIm3pC+LSkB+bhqLkLJkCT22Nl00IRXn4XgPJgF9zW4y+1h3d+7siINgObp4GE8HJzS5BxNEChB3Jx4KvkxF6KB+Rx/JRWFBmmjBltV7+lu7e1rj5KV8Et3KUSMfB7bk4sDUHWzceR4c2A7Hqz3TTBOsVYI1WHZxwZHcucrNK5T2KtGASUyclFUlFZdLBgND5+EZtdH09H+nQ9lHbT41QmO9r5ciNFqHhc04u1sbGdWZ5GEYtuJHMenh6wdvbG5GnopCdlVlhvygk9WBfFh1A75O5JaR9tPFQL4SDc4WKcFgO9HHVmIEXD1lrUyYc9LH/6quvzlT2oTzqYGOArbcvDC6uyHNxg0/zYHiPGAODs7OQCYOzi2w2Ts6wdnSCVRWq4oL4WCEc9m1CYN+mxXn3iVEOojAlqwLhKMkrREF8upFIxKejkD/HpwuhYH6faZPgCRPQuXNnRM9ZZ5yFzU2+DICTjz1aDgvC4T/DcMUNnrj7pQDpZ4JKNuIJ0UU4tCNXIhdh5SmR5Lgis6iFFUrK0wDUHwT28saIpy4Rf47Zl/0FTx8btOzogNkzkpCfS3W7SduIYyVH0KxZIG5+pD22rInC8b15SI1np9hsISCi9wgAUuKMp0TTYphkK+UTNjdtsqaoVJvstb+bazhqi2ycj3ScLcpiTjAqZ8jMvwdt3wlbJwPcm7si+bixGqW4tFiI39WTJkoELTrq1BmfoReyoZU96plwcKzhpvd9JPQibFUpFcuC7ggHw2N6IRy8qRqCcDAtYmVlg7KyYgT2Hw/XZm1g4+Ai3hnHF30O+9Yt4T9hinEfnRzg5eML7xGjL+gzbFzLW4+nZeJc6yk6hhanpKMoPkl+T/hrO5L+3YeCmFQhFiU5ZtUsVlbi41Gh8sQayC7IRGDLAFz+Wn+4N3eRzdHL/ow0TNKBFGPPsOIyHDmUi4ijRmLBqEXEsXwU5JlFLcz6oti52uCSOzugw+jWcAlwQmF2EeL2JSN2TxJWv7EDiYdTZaJPSypGWhJFyQD1spPv8UHL9g7YtzkHW/7LwuHDR5B4tA2O7T0uK3m/5gaEtHHE3s05UvaaGm/8TDoZs4incnTDRDSKKxIM7e9yPOuIbJyPdFQmPJWJkAaurouKjHoVvia4mQ2iYpmzB4pySpB6It14bLp5wsXbCZFb4kVz8Meff2DatGnSbZP7QIM5PYHpRJIkPUcPSIh4T+i1Fw3B8ZDjoh5E/YRKqdQennjiiWq/lj2dGgXhIFvVS0qFNz4HqfqummGeOSIiQn62d/OBs39L099sndxQkn2akGUWF8OVRlxVW0ScFdZMq9jYoCQ1HcXcktNQnJSK4mRuaShOSEFRUgpKM9kitTxqYLBG5t4Io4bCTEdhcLCGZws3tLm8GXxbe8M92AVugc7iCEq4FHoiKCEIHfu1rNAinceVFSZcMSefSEduRiGW/ZqHZfPSjF+GhlrmUQsD4NPBA5fc1wkhPQLFaZTITspD7O4k7PrxKKJ3JiI1LEP+39wnwsPHGg++4YcWbV2wZ0M2tq3OxvwvUoRIaDqFnbu2Y8yVA1HguBmblmUhMboEyfHZKC0GfDwpIrVBdGyxVKhoYlHZr/JJnETDPBVB8LGylqOuyMa5SIc54bExGKMv3G/teW2/Wdrq5OSEUaNGYdWqVYgr1724eBjQupODpFaO7s1D0qE0JJamwcbOBn369sbmsHXyOpoD9erD9F6ZrNRpIPTyyy9DDxMTI5Z6Jhxaykcvk3lV0FtzPpVSqT2wGas5du/eLQRTa+3BcYRkk52jawrdEQ49RTh483NSrO9QLL1Odu7cCStrA4pyMyr8zdbZDbmZp93wsopKYGNtBSeDNXLMRX3m5lq59L5IRVFaKopSU1CUniKPnNDT5i2WzQQD0zgV4/DWtlZw8XdCy6HN4NfB0xSlcPYxVpucDzm2GTCUGZB9uAgRRyORdDwdScfShGSwxJIQcqCRmDJ+Txt0mdwSnca1gVdrNxhsDabvkx6ZhRP/RSFubxKidiQiOz73jK6mjl52yEstxI9b2ouAdPvqLPzwdipiwuMrlLL6BRlw81OeOLm/FAe37MKNN9yM7SuLJeVCTLrcGYtX5iCFC/u04vJKHKM3hUYkzCdx8+hGZe0EXzP68rolG9XRdGgBKI0wmVfUuLk5w83ttKcG+2awbUFGagl2b8gR/cxl13jA0dkai39MRfeu3ZGVkY2NC7bJ64OeGAek5iJ9ywnkHIuVz39l+muwLjOaCv31119oCNCWmekdPU/metdv6FEHw7miquZqChcO6gXNIxgkcnPmzBGPHYIFCLQ9Hzp0KBoN4aBDIUWRegDZHIVx9U04unbtigULFsDWzgVFORUJh52zBzKjTzvfFZWVIa+4BA6ZqUiIijaSirQU42NKEorS01Bm7iEhDk+cbc1doACDmxNKDGVwdzFgyCM9hVC4BTnDzvnCShpJCEgASCpIKJKPpSHxSBqCn+iNY3/FY9OmnRWIAVMu3u3c0POW9gjuEQDXQOcKkwKttflejGDE7ElCzK5EcRut4BNhDTTr7YuRz14Cz1ZuYvh1dFkENry/B7cMPDOlMHqqG6682QdbVmRh1V/pmPl4sqlyIzIyHA8/Oxofv70IOZmlWLQiRyZj7wCW3FpLWqY43yhFIYEoKY8ScBInVyPnKzH7WftcwznIRnWrWarC2f6Xn2dOOmbMeA1Hjx4/gwxVdkbl3ziwUA/TvVsP7N2715RWZJpk3759WPNXuomsXD5mtFgiG1wdUJKVj5iP/5Uv7tDaD12/vBs5J+KQvvUE0jYdw8J/Fsm91BCTqp7Eq5YymVuCDoZzBU0nFWoXM2fOxIoVK0xkg+DPr7/+Oi6//HI8+eSTjYNwsGtpQkIC9FZ2ynK/+oLGIG1sHFCYnY7SkmIUZqWhMCsVBZkpKM7OROzvPxoJRVoqUt5/D3n/LkLs3r3l6knrM1SA1o52cGzlC7duIbAP8IB9oKc82vm4SqqEiPp2NXI2H0Kbkc2rtZ/F+cVICc0wEovj6Ug8mmYUFOaWl58amGswlrGGhYWhXce2SPePRfsxLeHb3kMMvSqjKK8Y8QdTRH8RszsJ8fuSjZba5V1g+V6MuLQf1wL97+oqpIjg555cHY2wdTGi2dBSMnx0cAaenRWIlm1csX5JBlb/lY5HJoSd1jHYAvdO90H0sVKsWv0fLh89DjlZC+VQDhpnj13ripCSYBSNUL/h6GCNtIxSFJrzOBKP8gmc76kFmzSSc3k52eDEX1lXcSFko7JW73yC0JUrjKTjpZdOkw4tolGVI6pGvMhLSS54zG+88UZp2ETyQcydOxe33norvLzd0af3Jfhx7mMIuKY/HJp7IfLzf1Gcnov8sEQcfOBb2UGPYR3g0qU5so/ENNgKnoSDpbt6hiUQDr1FYThXMP2nUPtELinJqNszB5+7mAyE7ggHvezj4uKgFzSE3bqxKZ6VtIrPDU1C+sk9Z8w62Yf2mWLiXJF6+XjDLtADTl2C4BLsayQUgR5CKmxcqjeIOTT3RnxcthAJGwebilGLxDyj1uJ4molcZERT32F8janRF2EFuIc4o+u1bSRq4dXaHSGFnvDL7Q43/4qW6Wy6Frs3WSIY0bsTkXQ0TXQXphQL0xWOBvS5pT06T2oHV38nk8to1PYE7Pz+MMLWxUqvFaZ3tLRM0CU+8OvgjT0/H8OtTwXg908zcHhXnJGDUN9hDdz+rB98A+2weG4qZj1njHLYGNbiphtvxj1PDMAPn2/DhiVGAWWAnxUc7A2IiCpGXn4p6ApfXFi1+VdlN9GxY41k4403jBO+hgqckDzR2By3ckar4qmvRhsDLbpCMPKyogrSwX0l2TDfV3N/Dj7a2Bm/47zffsbPP/+M77//Xho33XzzzbLR62Xx4sWIjY4Bfow1Hv+SUtgG+sLjmrHI3rIHebsPIn3zSdmRhqpsYPk4B1C9RzgYPdCD/5Almadxrqhp7y6Fs+Pqq6+W9AkjHf369ZPntm3bJh3ir7nmGjQqwrFhwwY0BcLBPPm7776LJUuWiEiUngbSF8WGs0oZSksKK6Y93J3g1CYQzq18KkQp4BOAbj0nIcvGeGHUFI4hPjLbMVLAxl1CLKi1OJaOwpyi01ELmHll2Bng2b8t7PzckfDHdtz570Q4+55pzZyFVLTJ6I6s2BzE7E2SCAYFntRjnKG/8LTDoIe6o9WI5nDyPE2W0qOysPfX4whfH4OYnYnSsVVLq7Bl+pDHu6Lr1R2MEZV1MTgw/4T831evxRsNUsuA0dPcMO0Bf/z3Rzrmf5kireg50RI3POKD1IQSqRJq2XI0CvO3yvOcJ+MT2VSrWCZhV3cbpKcYm7vRCIz/rglFTRGC8on8iivG4cYbbzo90ZuRAULTfoivRzVUv1JhY2t8rZigmdmra9EK7f21feB+LV9+JukQnxDzXjDlkQ2t+kcjVAZnA8pyy3DHXXfgzjvvlEgHmzfSF+aOO+7As88+Kznf//3vfygxWKMoLgnpf62A62WDUHAsTKzvmWenn0xDgCsy9hyyhMlc73oEvZmnKcJRN/jyyy/x1FNP4YYbbpDCCYKia97/7733XuMhHM2aNRNzq8ZCOFavXo2PPvoIu3btEiMvY+tusgczxWE5DO6usPP1QuHJSHgO6QjPwR0kSuEQ6AGDq+NZBW9pxQXwKbuw/guMWhSlZiMvPBG5YYnIDU9E9rE42bUVL249M2rBi8XbBR5ju8O7Sws4tvYTp1EN9OEg4Ug4nIrWw409Wzjxp4ZnCrmI35uKXndchqUPbpcwqDnBcAtxxoCHuqBV/+amyhOipKgUUTsSELExFmFrYowRFbPUiltzZ1z5/lB4t3OX96J52H+vbUPo6mjpKKuRo24DHfHSFy2kuoLRjLsvPWESjdII7IVZIVjyUyp+/ihZJlxnp7/xzeyvcPUNffDP77uMx8Ia6NLXCQe25QrZoMNpYX55dYo2wZd7emiRjspkwzyFYRKZmhlvmZOGs4EVMuapnLPBRGTMftY0HSQd06e/hmPHKopWSZbMU0O2LnYozitGUTZNz8rg08UdyQcy0L1Hd9x+2+0S7dBsuFlSx41VA9R6hIaFIXWuUSAaEhIiXScbCkynMCWqZ8GopZR46intw8ZtPLecMxRqF6xUmzVrlpALtn0gmJK8WNKuO8Khx5QKG3ud66L/9ttv8fvvv0vOmwOuRCmstfabpydsOnjaBPrB1t8HNn7esPX1kkcbPnp7mhw+ox+bDseWPvAe0bla+xhnlYNOpafby1cGzbfyo1KQG5aA3Igk5J6MR25owmkPDak0MetAZrCGa7dgeA/vDKfW/mL0ZW1/bvEoG3vZejrh5H9RSIvIFP0FiQY9MeS7G6wQeVkk2rZrC6tmxRh4TzcEdPcxlc5qyE3JR8SmWIRviEXk5jipYjGVt1oDna5qhcEP9oCTt4OQjti9SVj71i4cWx4pn6W9NqSdLd6Y2wo2tlZYuSAdD40PRWJMkUyqJAkTbvPA0Cs88fusJPzv2giZ8Pn81Xd4IT2lBAsW/ImBfadh4a+7MGqaI9b8mY/DO3NlQvYPAeKNVctw8wYyyy8PRga0yV0jG9rEbqOlMMojCFpZKg+9JjTVwH3h5aOV2l4IzE3HtPcyt0Uh6eDnvvzyK3ht+ms4bkY6ePa1prDiqppbjOZ9/ZB4KBX5GYVCNgh3N3cRjt13//04fOhQhc/nhHny5En5+YUXXpDP27rVSGAbCpYiGK1vrZili0Y5T3DVraeIS31i/fr1Qgi4mOWxYAWY1uGVUYkXX3wRS5cuFf0crytqXd5+++0LImh8X26sVGNTwYu1iNAl4WAtv146xvIgM/Vx7733YtOmTRJGzsnJESMhGc0rRSmsXZ1hRzIR4GskEr5esPU1kgprN5dqfSebAF/kRxvLEquDeOsc+BQ7wLbMGrnpWUZioUUuTsYjPybVFDu3sqEx12kSZPB0hvvwjvDsHCzkgmma6pS6ai6jFAJmH4xC5oFTKMrIw9ElEeX93YxRCHpntB0djB5T28MQXIAbu0/GUe/ToXW+hnqQiA2xkgahhkP+u5w40NTr0mf7oM1lIbCxM8h1wVTP7rlHcXRpBHKT802vpdfGq983Q9vObji2Nw/fvZ2A9YszTNbm1nbWKC0sxYir3BF6sBCLvg8XDw7iobf8cep4Mf7+3mg+ZmvzDyZPvhLjJgzFst83yHM9hjjiyI58JEUZvTucXQ3ITjfO5iQUPMSc3MePH4cbbjhNNqQSxCzdIsddq2gxK6k1Hddyx1KJMpDnUXNynlNibjpGCGEpJzKVK1mWLi2vXiHpKK+YEXlFucA2J6s8XVNaiqitCUahroMNSvONbz7t2muxf/9+HD927Jz79MYbb8jWkOD1kpiYKPb/egbLdknW9NLoripwEuOml262nAj9/f0lXdYUkZOTgx49ekhas7Kugul5+mi89NJL8hrq/B599FEpTaflwvnARTaN/FgqyznrxIkTaN26taRUWK1CbUejIRxMO3CSZ3+G+sZDDz0kmgqqcXNz8xDSIgRvv/UWvv76a+MLrA2w9fCEvbcv7Lx9YOvpLVtuxElk7N6K5h+9dNFEyTbAD3lR5w5BlxaVID86RYhFVFgiMia1QcZHi3Fo177y/SxP7GsRFoMVnNsFwnNQBzi19hNyYet5YeGxovQcZB2KNhKM/ZHIC08qV0ueFibQBKzrtPboeHmIVKIwLaMhNT8OXZMHozC7GKe2xRlTJetikZ9eUEHwGdjbR0pcvdqcDoNTv8Emb0cXRyD9VFYFU68XvwxA/5Ge4p2xdlEGPnwqFJHHCkyGXiGD/HDl+8MQvjEOq6Zvk9dI+sAaeHVOM5zcW4yvXk0SC29OzBNu8UB6Sim+/moObr75dtEs+IeUYs/GHPm8dj3scPJAIbIzSkQ8WpBnJAz2dsCo0UayUdlaXEu3aOSCh6tyNKIy8dA8PKjZOBcHrFxtYv57hd4u5cSDh1RIh9WZPh15xq8Ig62V7G+zwGaIiYkxkg1rK/Tp1RuXjRyJJ55+WtKFegfTFFyV670Dq5b20TMYvdX6XekBjVG/kVnJEoIVQWerCqKBILeqwGtp5cqVFZ777LPPRAB66tQpSXOeC48//riQX762U6dOpuevvfZaSZ02GsJBls+NF1N9Ew4Oup9//jkMNvawsWH4KAfFPu3lhDfr3gv2l0+AjYtblb1JykpLkL55nThzUotxMbBt5oecrbtF8c+S1aL0XOSGJyCvXGuRw6gFIyDlkzyjFic6HkerwGAcwj5YOdnBdWBbeHYOgVMbpkR8YXC4cD+Ngrh0ZB+KEpKRuS9S+qTI59G+vPyzHTzt0PPW9mg9sDm8SRDOMjOmRWZi74bjaH9Jf6x95iCOHjlqJvi0Qp+7u6LH5DYVRKI5yXk4sTJKoiZiT259Omoy5H894BHghn8eXY+sVCt8+Vo8/pufhvw8RsaM/h5XfjQMzfv649jSSPw8bblJA8IJ+ZOlzXF0VylmPpqAjJQS4U2XjHBCz8GumPtBorSsLy1Zg2k3D8d1U+8UHQ5Pe8/BzmKARbTuZoXQA0bS4+IEjLh0HK6vRDZMx7N8opdUipZWqVSayr9VVaoqZOYsizgtVaPBUIVOxJxsaO9PIrJ0yZnmYE6uxkZt7F3j6OWA2PhYETJykuFA06tXL7kvw0+e1M3Ecy4wWkqyoZfeH+ciHA2xwLpQwqEnjUljJBzBwcEVfue9+eqrr9ZaFI0LuOqkF+nBQfF88+YVLRLatWt3UXos3REOc+EoDbDqE3T45IzUou1oOLn44eDO7+Devh9S0jPh7+6KHLeznyg7X395LIpLrDHhKGO/h/gklGRmo6ywGEef/UW0F8UZRifNCkn/clg184Nrz86I83RC+1494J5wBO2nT6vBZ5ciLzIJWQejjNv+U6c/1yyC4dHCBb1v6YSg3r7wCHE9azSnpKhEdBwR62MRui5GqlM42fd+dCcu6XMJYjIicdlL/eV9NBdRoiCrEKFronF0aSSid1T0Y+k6rY3oN2hGxvenXsTGzhofPRNrSld4tHbFtO9Gw2BrjUN/hWLlq9sl7cLPdnazwtf/tceRPbl4/d4ExIYXyvPNWtjg0beb4/OX4jD7DeNnjpjkKqLQF576BJ988gmm3TwE//27VfqqkDDQ5jvskFFM7OdjQL8Bl0tk49VXjRN3VYZcWubNXOtxBukoZjrHKA7VoEUlKoPR93IBeZWRDXMdh5YB1EphtVTLiv+MpOPVV18x7XtgKyA+EnLcgvr4ImZXkpznSy+9VEK1FIXqId1ZXcJhCcZQluATwhC+nggH54jGJhiNiooS80sNteV5Qn3QM888g+uvv77C+5/rXFM4WhnMPFzMPumScAQFBcmBr29wxWZtbUB+bgq8/Y2CzYKMJCRlBMLX2RnZpaVVRjfkfz29ZQRnSaBDx/MPHCXZuSiKikNhVCwK+RgZK2TldL9wa0ldmGBjA0PnNnBt1wp2Ic1kMyc2CbbO6O0dgJwT1dO/UEiaczwOWYxgHIiSSEZpfpFR6Crxf2M7cudOQaL5cLUrxLU/nrtBXE5SnlHwuT4Wp7bEi2GXqRrFCmg/LgT2Q4sw1n4UvJ44PaPydUyvkGREbIiR10ukpAxoMTQAo17qLzbqBHuv7Pz+CA7+cVKEjFpvlsGPd0PP6zqjILsI+38/gT1zj8rPfA/vAANmLW8nbeun33NK9B08jU6uVvh8aVv88kkSnrkuQkiLkyvw2NvB+OzFWGRnlgg5OB7/O8Zfdg/WrTgB/6AUsNCIre3FX60U6Nu/ItlwdrJCXr6RXVQukzV9Z7PnKpMOko3zuY/y7+ZkQyMTKD99lXukVNVAjseuuABYtbacdLz2Cl59xfgdug4w4ODWEiEb7ScFwzOumYhBOeBQQGYJ4CDLiVzzEdArmPKxBMEoIxzVmazqC9HR0Wjfvj0aE9zc3Gr9GFN3Qz0G54Uvvvii2uaTP/74I2bMmCG/cz5hMQRtHLjwaFSEgxcRRSoNATs7G+RmJ8LBkeJJG+SnJSA1pwjNAvxxIiMdtp5V18mzEZqttw+KYiuuyim8K45PQmF0vJFYnIpFYWSMsSnaWaIW8HKHS7cORmIR3Ay2wYGwpkDgHIgqLkAzjyAY8opRmJQJe7+Kg1dxTj6yD8cIscjcfwq5J+KM4tHyiV3TYrj3bQOfkV3g2jXEpPFIXLwLp75cKV4c5lbnTG8kHEo1ajHWxojjqHylcn2FrbMBAx/rhg6XtYKjh5EVF5ZmwCnaFfb5TjixNwzHlkVIXxTzahSvdm4Y/84QeLY03nilJaXyGSQSEZviTGWxTj4OmPbDaLg1cxays+mTfdj/2wmJfpAotOhoiw8WtEViTCFmPhGN7auzhQAw7fDDpvbYsTobD14Rauqb8srsZli/OAdvPhglk3bXfg7w8rXD9KcW4c47ffHm2y/hsUefRlZmHgKCbZCaWIoxl48RU69XyifqQH8DklJKUGp92qTLZCNeiXyYm4VJmsPMo6My4ahMHzW9sgbzKhfNR6Oybbl5QRI/W/v/ghxgzdp/5efXpr+KV15+FQe3HsfIiQ5Y/Xc+CvZY44n3H8dHH32MrVu2Yvbs2SJI0ztYfs3wsV6qKs4GkiKWG+pZMKoRDj1FFHi/XXnllQ29G7pGUTnZYBqEmqvqkhkSi8suu0wEptRU0mPn0KFDsuBg8USjIxwbN25skM9mHjUxKQFWVtZwdPZBQXoi0oqs5UYrPJVwVsJB2Hn7Iv94ODJXbkJRdBwKImOMBMQU267k+mRtBetWwXAxRS0CYePvA6sa5JszyoqRXVIsaaGco7Gis2BqJJv6i/2RyI9MPnMfaNp1WTf49Gsr1tM2rlWrz916tRIiQKMupkDod8GyVUYy2NfEXMDp19UTgx/uiWY9mSqpGA0iw445lICwvFCc/DkVC+evNf0vycP494YgoLu3KTqTm5aPw3+HC4nITsg1WaV3mdoawx7vDRt7g+gy1ry5E4cWhpZXVhj3Y/7+jsjNKsWXr8aJyZcWmHrz1yA4Odlj+t1ROLE/T56jduOau3zx/pMxSE8yztCvfOuPr6en4dB2o4jLyn8pIsOD8eD9j2Htns+wc3U2Rl02FrfccjNefvlVGfzatgQiokpg5WAAckqkz4p5C1+tQkUqZsrJhzlRML80zlcOa/538xSMeUTDvGmcllKRNvPl3W9T0wEXTyA9mWLRUtF0cN+mzzCSjtV/H8fUO5thVL/n8ecff2LLpi2mrpIMz77zzjvQezolICAAeocllO2K27CONBzcH95zjS3CURdkg4t3VptciEaIcgYe308//dTUwZ2VMA8++OBF6WZ0Szi+++67BvlsOijGxKxCcVE+nF38kJcWj/RiG/Ru3hwFO/fDuX0niVoUpSajID62fItBfmy0qW182rx/zoxaODjCpU172PkFIHXdSnhcMwZu44bXSi6cN19xfDLCC53RrlNHLJm5WDQglQWe1i728BjdFT592sKlUxAMTufPxUm32eIS2Lo7YvXrO5CXRqvv0w6ffOxzUwd0uqq1KSJRGSlhGTi+LFLEn1nxucgeb4shg4fgn8X/4NJX+6D9iJYmcsLPo7cGoxknV0aJeJGTtsHRGhM+G4KQXsYVFqMpO787jBMrT0nIgKSl/fgQXHJLZ/xy7XLcNuQ4CvLK5P85id7/egCGX+GBnz5MxKI5MeWlu8DP2ztg3udJeP6mSCElwe1tMfUeP7xxXyxKivn/xtfNfjMOLi7vY9bX7yMt7QZ4XHYKt952M15+yUg2hg2wwsbtZSjj6SzvgOviZo2crFJxJ6VprCkiUal3XgXtRXllTWWNRmUXUvP0jLnew1QWaxZNkdeXExqmUMg5E1MAT3drZKSWonVXIOKwcf/+XcFIh5WQjjffeBv9Ot4kqZQFf/5RgVjqPfzPwZaVZuYKe72CYj5LcBilFYBe3FppokiiRhFjU0V2drbJ84YIDw+XijpeSyQFU6ZMkUgk2w/w3JGAE5oI/HzgPU4vj9qEbgkHDyQPUn2ry0ePHo1Vq1YhNzsBTi4BSI3cgIjQkwjsMwT5+3cj8sBeFCbFo8zc8KBSst3K0weurVrDISAI9rIxJWJWfXH0gIhDa0o2KC4tPBWHghPhElEx2kfn4ej116N1SAsT2bDxdYX/2J5w7RYC5w7NYG1XvdNNfUfW/kikbw9F2tbjKEoyEqmi8hW7jY8LPHq3RsqqA7h75aQqm7BlxeVIGeuRJRFIDc2oUGFS1CUVHTp3wFNr70SurTGCwHQNfTX2zTuBtPBM0+QWPNAf494cZPqMuH3J2PHdYfHtMPZbAXrf0QGDH+ghzqSMhrDqhdENTspjrnPDw280x/rFmbhr5AlkpRkrUrpc0wYH54fixn7HTOTjzd+CsO6vXLz/RIz83ueuTghdGY3MqCw5xbc954onH3sRH8z8EJeNcsCLL7xgcutcv9U4ETt42EvUp1VnIPJYqbEapcDYl6SssLyPC1/Hctoi46VToVtrJbFoVQTDPEh1thJY82hKWfll6kKPjRzA1RXIyASyc43HKOwg0KqTAyKP58Pg64ZlS5dKeP+VV1/BieMn8NHHH6Lr1NYIWxNrjDSVWeH555+HnsH8PldmetIcnA2cOFu1agW9l2uSbOil2ockn1FnvURcGgI7d+6soKdgFRnBxoqsbFm0aJH8TpG3ORjtGDFixHnfny1GvvrqKzEOmz9/vmgr2biR1+qQIUMaD+HgF2JLbApHjZUj9QetN8SJg3+ioCATJUV52DXvA6Rf3hXNvTxw9PBhs1cb3TlduvSAS8cusA9sLmmV86VEHJqFIDes3KqyGigtKERhWBTyT5BchKMgNBJl9LeWJhqnl7+hkREYPHwoOn14C5zaBsCasfRqgrqP9B2hSN92Epl7wlFWZNZj3QrwGNQB/lddApfOQfK+hanZSF65X8y6Ol/VWt6D0Y+Tq4xlrCQG5n05WgwLwmXP9zGJP5OSo9EsuzW2Jq/FgQUncWRRuKkrLDH61X7oMK6lkaiUlSFySxx2zD4s7qWaZfnQZ3uixzXthcjwMzd9uk+cSjnDdutvjzfmtkHcqUI8f2Mk9m81VsnQBv3aOZdj29cHjWaw/G5+BrzzS2u88UAUIo4ZK08mfT8M62fsQ0ZUtkzk970aiM9ejMO4seNgsDEgMyMLl156GXxaR2HrijyZ9JkOoqbFYFOGcLPLREgGozAU85Yfk7yKPeyEOJAsmBML83SLOfkQYqH1O6nUWl77u60jUJgHuLlYIz2jFC7OVsjMKoOXpzXS0kvRqZ0djocVYlBfAzZtL5Hv7eljg/TEdBnEOaBER8WgTdsWaN++DQ78egydJ7dG8rEMxB9IEfMnuuzqFcxZ1/fYUdPIAY+j3lMqekv7qHQKhDRwTDkbzvW38+GPP/6QBo3sFM0oCYXNWjTuzTffFAfTRkM4uLqiqxkvqvoeNFizHxwcgnjxAfFCUFBHYZEswWrTqhXSHILg7B8CR+8g2Di4YP/3z8OxRSu49bik2p/h0DwEGbu3oTS/ANZc6lZRwVJwIsIYwTgaJkJTo+qwYjTF0L4V3Hp3hUOHVrBtHoCo5esR4OOHZg4tkWk4d8MNplmyj8UiY/tJpG05gfxT5RqP8o5eVo628J3WH/5Du8Ah6Mxwr52XC1w7N8exZZGSDmGFCStTzC9y1z6tEXzXZTj58m9wcrczkY3iwhJsO7QJl/lNwO+3/oeSshKJZtgHe8Pnsq6ImbNObM/5Xif/i8aObw9JAzkhGlbAFe8MRJuRIfL3iI1x2PjRXomK8G/+QQZ8vqydEJWfP07E/C+TjRzGGrjr30lCSObdtAKpYRlCTF6ZE4TSAms8fGUoCtgF1skGk2ZdikWPrJcSXW9/a1x1mw9mvRwnJju33XmrOHQmJ6Zg5kcz4OP7FHavnQkbnyKZiKXyo7zpmX8XLyQcSUXrLgZEHC6Bs58DcpML0CygDInJgKM7kJ1W7p1R/j/cVxtb6i7MKl3Kbc5N5w7s92KFnNwyI1Epr3JxdLRGZlap0am0XJOcl1sqpMpgMPqTMArE9zp6slCICckGQW6amVaMZoHNxZKczQRnfvABpkwbi5defEV0KgcXHEeHK0IQvz8FBYUFcp9qjZ30Njky3MwVmd5BF1RO5HoXjOrNJ0QRjrrF66+/Lg3cbrnlFsybN8/0/ODBg+VvNYUuCQfBi4kXFXs21DdOnTrT2OStt96SOvmTDgY4+Z42Z3H0DkR+TPQFvb9D8xYygxSGR8OhUxsUp6Qh//hpgsGqljNi5wZr2HTvCLduHeDQvpX0ZKmckiltE4LDhw+jRbANDgScOREUZ+UhY1eYpEpINKSXihmJcWwfgMBr+sO9T+tztrSny2nm7jCUFBQj6lACorYlmFImDq190eqhsXDuGGTaP+/R3XH8z63oeUN7ISgH/wyVtEOfz4bJSvpYSBGaTR4kKZ/SgiIk/rkdv920QtIoFIXyvZmKueqroWjR26jhiNufLEQjbm+ykAn+vawEeG9+GxzYmovPX45FSkKxRBMGPtodfW7qiN0/HsWWWQeMX6IM+PCv1ti4LAN/fJ0ik3HHSS3RalAQ/rhzlXSiHTDKCS3aO+K7txKMZOMuhipfw7GjxzH1Pi888fjTePD+x/HuzPfw5ow3EFsWi8BePrJPAd29pGGdwRYIP2SsmslJNEZPUlKtUFxchqzyHiwkGyQdJALeHkBSCjUIpxkGTcUYcNJAgmFtZ/y7eSmtI0qFeIQE2SIssgiuHgZkpZfA3dUaGZmlCPAzICGpBP17O2DX/nxcPtwWS/4zXie29tbo0rk3HnvscSxZvAS//vorBgwYgN9+/QcZqcWY/vprmD5jOo4sO2o8fKVlKLY6R91uA4K5bBoW6X0StyRhK1e2XATqBZwbBg0a1NC70Whx7NixKsvfqesg+Wy0hEMvoLZj8+bNyN27oQLhcPINQWZ09Ut4KTiVluK2tkj9dRFKs3NQkp51ZhLezha2PTvBrVtH2JNg+HieV/Nh3yYEO5btwKCAS3EAeRIByItIQsYOajFOIOdojHF5rBEZgxU8r+gB/2FdRERKgenZ97tMql5S1x5C6rojKMklWTHuj42XM1o9egXcerc6I43DSIqdr5t0HaWYUyMmBndH7HZMwbWP34XvbA/J0r4kvwjJ/+6VstaivCLx0TDYW+O6n8aIiynBxnBMnbB7LCMeJBpT5o6EV5AHfpz4D24ZaLxmmLpw8nXErX9fiez4XMy//T8kHDT2pxn2bC8cmHcCj18dZkrhXLtgFE6tS8LSpzfJc/e/5o+YsCLM+yxZyMbt99yG1159DUcPH8Wk292x5q9MpKUW4dONf2Jiy35SRrbs0EL8/NYC6dmSFmZ0Ne05yAV7N2ajhPbkZUZPkoLCMrh4ALmZgG9zIDkW8GkGJEQBOblmpS3lTYV9vG1AixYNzKBREpSbTzMzAzLTjNdMZvlllJBUJDzS0aUUOZlAy2DgwFEgPtH4uv1H8oXckGwM6e+AnfuK8eCjN6F31zFifyxlb1ZWcr336dMHy/5dBhc/J7z43EuSGz5+8oTsxORJV0NvYOiX+o3hw4dD76BGjRGODh06QM/gMdVb2odzA7sVK9QNSIKpo6ycYWD16MUQT10TDna/0wu6dOkivvLFaUalrwYnvxAkH9qEkrxcGBzPdGajuDQ/Lhp5kWHIiwiTx9ICOl9aoSg28XSKxMUJLn27S/RCCIbnhVcB0Atkf0oCbvUKQvxXvyB+/SFpQa+lSTRyEDh1IDz6tYVDM89zvh8JC7vKpq49jOTVB1GclmMiK9bO9mhx/2h4DmxfZbVLUVoOkv7dh8TFu1GUklXu91EGz5Gd0eLuUbBxc8LRskJcXuiAwBxb7PpnLeL/3I6SbGMUwMHLDtO+Hw2PYKO5GX02tn11UMpftdKL8e8NQusRwUJQds89hoKsYlOVx5RfRiKgrS/2zz+JjR/ukYiFwdGAe/67GvH7k5GTzP4tRlv4e1ZfjXXv7hYdCfHhomAsmZOF/xakm8jG9Ndn4PDBIxhzrSsO7SxASmIRSq2skHciHj+sm4Mct1Rc2fsaNH+mDVaHLcXOPw6iTRc77FpnzG2QYNJYzZGmYLllyC5fJBQX2qCkuBip8cbjk5tnFtnwAPKzreDocCYRzMs1HlL/5rZCOPx8DUhMKpHUSE6u8RAlRhvTKPsOl8LBwQr5+WViXZ6XXYpbptph7oJClFg1x7vvPozi4hJsPvouNm3aI+/vVN6gi50oee3Pn/MHshNz8dobM/Dqy6/ICqihKsnOBaaCGPq3BLEoKy1YLaD3fdWbTwgNqDgZqpRK3eHuu++WZm+8x7nQpaRgy5YteOqpp6QhXKMjHBzkpk+fDr2A5kFsBOVtV9EgwdnfaJucHx0J53adUMrVQFREOcEIRX70KZRxBjTVJ5ZPKHYsU8iHz303iDOpwa3mauvi5DTk7T+K3L1HkH/4OGImxyA42QZRJBucuHoFw39Mb4lA2Dif3wQpPzbVSDJWHURBbNrpiIiNNfxuHIRml/eCrZdL1bX6B6OEZKRuPGoyFLNysEHb566G+yVtKvRayU3LxIbI3eiUWYpFczfIaz1auuDqL0bC1d9I3qijYCqEm5S4lgL97+uMfnd3lRshansCVr+xw9gnhWLR69pgxNOXSDXFX/evQfQOY2ig9x0dpZKFFS5bmVaxtkKr4c0w+uX+otegGJX4dVcHEYduWp4pZOOOe2/H629Ox6G9hzDwcichCicO5KGMoZXiErGed/Z3xJpl67Bizlrcc9c9eHjC05iTOgcxqVtgbSiEy6iuyFxxEC072iHiaOHpkmJrICW+WB7Zu8UcHNv9goCII6dLc81BzTDTKHn5xiZ13TvZYU1qHgb2dcCm7fkYeIkDtuzMR88hLti3ORuTxtpg/j9FaNvVHvu35GHhMhvccsu1GDfuSqQlLMbjT/+C0tISDBzjim0rs3DJJac1STT8adu2LZYtXwZbbxe8/OJLeG3GdJOQTE8RA6ZTKqvy9Z5O0btNPNMpeopu0FeCY42eUjyNDc8++6wQO5p/sZ0B0yu0NCfhePjhhxsf4WCTKN6QemnQw0GB+9IiwBtRhfkw2Bknbms7B9lSVv+L5JVLUJAQV+7sVEng6RsAt/ad4NiyNRxDWqEwKQFR33wCG2+PCyYbLIstCD2FvH1HkLvn8GnNR3kkY8eeXRgyaQxSr24Nlw7Nzpkq0cCqk9R1h5Gy+pC0tDdFRVjZMbY7Aif1g2PzqkVj1IIwApK4aKexqRw/r7QMLj1D0OrhK86IpOTHpSF+wTYkr9iHKE8vzPrsc/S9vAd6PN0STl4OJmHpgfknJapRlFskRKPt5cEYM2OgiFQZ8djwwR4pvSWJcfCww61/T4Cds41UrKx9e5dUvXByv2vFJCEjfz+0TkzLiElfjYCbrxPm3bxSSnh5On/e1hFvPRSNPRuypRqFZOONd9/A/l2H0G2APZq3csTvs4ziWq/bJiH1hz/k55yEPNmI9957DwMHDcStt9yKwsKJ+OmXn7Fr8z75fJ9AO5w6UYgWlwUg4r94XDLSHrtW5aNLXzsc2lFo6gzba7grdqzNgpu7M0pLcpBfyOuoYqpK85JLjimTiE5MnPH/i4sLy+3Si+T3+Kh8+fuiFUWSPTqysxh3PzAZQwdMlIjdiy8+i9DQcIwa5oTVG3JRVFQC32a22LhpvSjRr7jiCvkcrijZk2TRT/NRlJqD16fP0E2JpHl0g4MiW5brHZwwOb5xnNM7GOFgS3K9gFE3tlzXS8SlMcLKykrE408//bTc+xRhd+7c+aLLkHVLOPjFmNvkxaUX+1qyfB70HStWoKQgD1kxJ1CYZdQF5MfFVHBzsgkIEoLh1LKNVKVYM6JhBodmwbCyt0f+4VDYtzl/c6mSrBzkHTwmJCNv/zGU5VcUfDq08IHfuF7w6N8W2X7N0auoA9bacSV+9vcszs5H2qZjSFl9EFkHThmfLF9o0+K82bUDK4g/K4PplsQluyUSonl/kKg0u28kAkf3hLV9xQEhNyIJcb9tFg2IVs7r1sUOMW4ncd/j92Kf1zrRd1BYSp1GTqJxEvfp4I4ps0eJrXppcSn2zTsufy+RiRiY+M1QMQTLTc3H4pe2Inyd0UeDRmBjZwwSgemSpzZK2S5x38bJSDqSJtUqRXnFaNbSBh/92Qav3HEKR3bnYuzYcVIS9tr013Bo32G06miLSyd44eNnY+X/fR+8GUlf/iI/t352IsLeWXQ6cmWwwp4ju7D36d24dNhIPHDf/TKxbN6+GIv/3iyXSMKONKnKyUyyEk5na2+HsrJCXDLCBTvXZovVemkxq0aM11NBwZnlbdrH5RszUAiNNPqLbNlpPCbbdhv/Nza8GL6BtshKM+CVF8YjIHgMrGzzpPsty916DHKGVRjQrZMtNm6zws41uXj7l5Z48ZZIjB8/vkLVEUtN6b9B8TS1HQyxDhw4UBemVayWYV6/d+/euo8YaFEDlv7rqfKjKvD8p6SkSIRLL+CcwOtPoe7BlB/9bLjVhueJbgkHwYtKT4SDYWZ20Et87z2xPi/TTCZgBadWbeHUqg0cW7SBfVAwrFkucA7Qq4NkJO/QCbhPGFnljc7mbnn7mCo5jMLw8kZuZiTDbWg7+A7tAvdeLSvoKGLLskFpavMyV0RZlSsJy8EqEFappKw5JJUq4kJa3k/FsW0Amt88tErxp+n/C4uRuuEIEv/ZhZxjcaZ0i10zD7T530SJqFRG9pEYxM7bhIztocbXl5WJ8dawJ3rB1tEG0SXHEBx7JQp22mD+O/+IURgJiaOXHW74dRycfY16Apadrnp9O1JOZMjvrUYEYvx7Q2FtsEbo6mj8N327GIjxf29fehVc/Byx95dj2PDBXuMxtTPAwc2AvT8fw7avD8l3vuwaV9z5XCCeuSECEUfzMXb8eNx6+2145fkXRacQGGKDO58NxEu3llcuGWyQ9PlcOQ8hT01A9A/rjORJc9cqKUX/u7uKJmTpmrVYs34DxowahWun3Y4J427B7vDtWPDN34BrAY7ty5P/O7wzR8jCyYNG9hDDLrZcWaYYSRwrS8yNATUrc1MXWBtIQzl6bWTnlMlr+XvH3o4ozQ7C3Y9ciSCvfsjKiMWcOXOwadNm9B/lIv/fc7ATDu3IxcwvjMeUp/3Z6yPw6NvNhGDZ2NjIxKiBNfjm0Avp4CqMg6Kfnx8sASSh3Fe9RYkqg2lkpqr0lFLhnMAFgULdgff8a6+9Jp2yGd0gSDiYTnnllVdqHF3SPeGgK1pD4ciRI3LQlyxZgpzcXBisrfHTTz8huEVLpJc5ITv2JNx6XQK/K66uUf8Tp7YdkLR8kcmPgwZf+YdPGlMlew8bG7yZtxl1cYTb8AEoTk5F4YlQtP/f1RU0ERoY1ThpnYb2pZ6Iss4SUpG5NwIpaw8hbcMxIR0aUbDxdUHwrSPOKv7UkB+bhqSle5C0fG95Oa3xc+3690bh5p0Iun5IBbJBwpS5Oxyx8zYbu96Wp3X63NEB/e/sChu708cr5mgclm5fjE7B3ZEW/rNUedzwyxh4tTYKZ/MzCqQx26G/wqQyxeBgwG2LrhRfD2o81r6zC8eWRsrEH3SJL675YiQKc4ul4oREhGj1vwlw69kKB+/8Alu/OCjPPfNJM3Tt54Knp4YjNrIQYydMwC233oq3Zn0gZMMnwICXv26Bx68Ol1PgNnwMik6FIi88VEjfqff/MTs/VrAqA4Y/1xtbZxnf32vyGKTOXYh9R5Zi9f2L0alDH1x900Spb8/MjcaKpVsRm7IX61ceFUlPejK1PkBKgrFUlSWtlQ3ACHd3A5JTStDM3wZRscUIbmOPiGMFGNLfEas3FuLOxwahNLMjho3oD+syJ+zauwmzP3sFx46ewNSrSDTK0HuAPbb9l4U57yXh5if8xPJdGtYNdMb+LTn4749UjJrigVV/poueijqOytBy6A1NOmieFRoaKmWSlhDd0AiH3tvRa8JWnlfrs3TJrm9QV8DIHCN0CnUHEos///xTqu94b2v3OavUGPGqbtdZiyMc77//fr19HgVnFMWw9Cc5ORWljGuXw6N1d7g0a4tTaXkYe88L2BmVhdDl34oWoyZkg3Bu2xFJJX8h7bfFKE5KQ/6xsPIl62n/DeuWwfAY3BuO3TtKaSxBO/OEbfuQcyxWylmrwjHrNFya2wzfzV0hRKMkK//0+9rZIPj2EfAe1qlK8acGEpX07SclmpG5J+K0rsPZCb53ToNj9w6wsrZGQmYm4v/aAe/LusqKPW3zMcT+ugl5YYnGVb8VMOx/3dH96vawtjk9cKWfysLmz/bj5H9RsHe0xxefj8CDX98K697GlT7TK0f+CRetRmGO8VyMeb0/2o8xlmpRj7Hi5a3ISzWmSqb+PBKBHf2QfDwdi5/cgKw4lmsAPX95FAZHW4S9/w9K8oyTuU8Q0KaLE56cHI6U+CKMGXsFbrntVrz91SfYt2oL3D2t8dHCtnhsUigKC4xmWZnrjB1VCStnR5Tl5cMaVijjVsbXlCErNhf5mYW0+ETG0rXy2gm3+uCT52JxKGo/dv1vJxwMjrju9sEICuoq0bt7bgVSsyKxc8sxJCSH4cTRWKRnpiIthVGHMolgmMPHi+6hVujVIxBOrk4YM6kjirICMWRgB9x5f3MUFGdg/Zrt+Pzzz7B390Hk5hRhxFXuYNuFsSNsMH8RMGtGMsZc64GVC9KRHF8Av+a2SIopwk1PuGP6Xfk4vCsf9033wbG9eTh2/DC+/fZb3HnnnbokHSSHNOxr6ChLdcESU1qFW4LWhITDx8cHegEjWexeShKsUHf45ZdfxPCLwnkN3bt3R3BwMK6//vrGSTgoqKJQs77Mcfr27Svszc7eDT4B3eHu1Up8qE8c+gvNBkyAvZs3orLK0MrbUQiHa1A7xG79B6WFhbCuRjMcTfDJCpac40eQffSgkIDs9dtP9ww3WMNlUB849ugEh85tq3QitW/bAgY3Z6kEqUw48iKTkLLmMI5uPI5JH86C7b5EE9mwv2wgSvYegVunAARM6nvWfWQpramkVSurZTSjV1f4TBkLW/+KA5DbmGFInDkb0d+uEbJREJdu/B/RaZTi+nlj4Nv+tOiMbp+0Fj/4B0tcjc8NerwrEtucxMCskdhetgxJJ9Kk+kTcO8u70E75ZpR0iKXugqZfFJUywuPZ2hXX/zxWxKSHFoZhzVs7hazY+Lmhx+z7UJyZhyNP/4TckzQoA8bPHIrFT2zAPZedlLTC5ZePw0033IiX//c8jp+gp0oZvtvQEc9eF47UxGJMmniNMH1qihhetra2ld41RHZujqTZNDK2a47RGAuZ2WBggmLURT+kyOcOvK87Vr68DW6t8jF39goU5P0LtwBn+Lr446b7esLJyQ9Tpl0NOysfKZXkZ2VmZsgEJU3sWLL74Yfyefw7PV3S0tNRYkjEpjVHEBu1BB98egjpWXEoKbZCYX6ZEI0NSzPQa7gt1i4C7nsmHWMudcKqDbnoO9Ieq/+ywrJfMjBjTgtJGz11TSxemR2C1+46hYfHRePr/9ri4QmhuOvuu3DDDTeIpbmeSAfDvRS/WoLvhgaOZ9VtoNWQ0KN+g9ENTnx6EYz6+mfA4FwupLoIlOQUoDxprgtQfF2VyzfbjlzMdatrwsGcLGuteZFpavm6BPPVtnbO6H/p86bQbHFRHk4cWojsmBNCOCJS8zCgpTHU7xrU3kQgnNt1POv7FmdnIefEEeQcO4ycE0dRVlRYsYrF0x3uQy4RkmHXMkiiBucC/+7YuxvSNh5B8F0jUZiYKRUmFG+KRXn55Mc24iOum4pVtvmwax0i3ynDzQ1pi1aKYNTcTVRW5wdOSTQjbXO54RonORsbeN88CU79esDa3q7qPi8xCbCytUH8H9uMBMLWgHYvTYZrzxY4dPdXope48v0hoq9geesulrjSYrt8Er36q0sR3NcfcWXhCM7oiNy/7fDr68tNpcTT5oxGQDejuI49Wpa/sAXZ8Tny+1UfD0GLwUFCQtjNlhERIuDmoQi+YQhywxNx/KXfUJSeC3s3G9y98mokn8yAjYONOKUK2bjpJkmdiaEVQzRlwOQuR+QUhYS0lL4Cch6Li4XxL1++XH5ncyStyqDFA5cjc38k0jaUlwOXozAfku6gG+rJVdGSErr1yQCphrH3sEV+diFC48OwfmMK1v2TAdvvrVCQXwbnAHu4wg2Bzb1RUmgnJIOlarNnz0Z2dhoSElLx5L0GvPpeMu57LRA//BCH4GbWSE4ulQ6zA0a7YPvqLAy43BVrF2XgixeN1TXUftx2nRv+XZOL1+9LwLT7fDD/q2T8PisBQ8e7STnw5hXpGD3VA6v+SMf0eyLxxHtBsr/0YmBIuyo0FOlg2pOuonr3sjBHTEyMLirvLFW/oQSjdY+HHnoIM2bMwPfffy/kg2AZ/BtvvCF/a5SEw1w4Wh+Eg81wfvvtN+TnpsDR2biKt7F1hIt7EDKjj8O70wDEZhTA1toKvi62SCzzh42zG3JDj1cgHFx5smU9CQajGAWsYCHMSIahfUu49+0Bxx4dYeN14Te0Q5d2yF67FYce/A554YkVtB6GDq3gPWY49nUIxFTXQGzOCIM2TTgP6o30P/8Vnw2/K3sL8WDX14RFu057btAJtGUQfG+caCIqlVGSk4us1VuQ9e8GlOYaV/tWLnZo/9JUuHYLNv1P4A1DEfbhEqkqYUSDmgtOyCyZbff8ZBx/4Vds/Ggfrps7GidWncL2pZ/joXsewV9eS2A9vA1Slu+V5m4+HTyw7YsDQlakEZrBAGvrMriHuElqZvETG5EWYRQ+dv/+ftgHeCBjZyhOvv6XWLEHdPfA1G9HSx+QhQ+uRUlhCSZMvgHXThpfTjZOSkv3+9ZPxR93rULS0VTY2thLms0cy5YtEydOWvwy1HzsxHFxUnXtGoLIz1fAYG2Qkj2S5OZ9fWHnYo+wddEY9/Yg/PvcFqlOObwzV9IkQ5/pgf+e2wlbB+D4/jypYDG42sKmpAiD7u+Jla9sg3tAJo7tL4CjkzGyQC3FpVc74MT8dAQG+El57L4tRmFwdFyp+G9s3pGPfiNdsXVlFtYsTIWzqzVyskrh5GmH3LRCXH+vsTSYp2jQFfZY/JM1DmzLx3frg4WkrPw9Ez9v74DdG7IRG1EEj4AyXHWbFxb9kCohVTZV1APpYPSTLejNO2ZawiSelpYm0VRLSKewikYv+g2CcwEjbQp1Cy5W2TWdZJ7jGbFv3z5JZ9Gb45prrjG9llqPRkM4WBmyevXqevksqm9JONJSTpoIB+Hp3Q5xMTskT18Ka5xKy0drb0ckZRfBraZUCoMAAGclSURBVHkHZJ84Cu9LL0dO6HHkHD+MnKOHUJKbU1HwaWcHlwE9T6dKqogWnA+leQXI3XsIOVv2IP/gcfHXoHU5YdXMD15XjIBTry6mNMyR0jzZhU62zjhUZIwI2Hi4ifaCBCPnZLyUxJZx1irfTcdxw+E9ashZvUFKMrKQuWIDslZtRhmXy2VlsPV1RdsXrjmjQkXa0dtYwdrOgF3fH5HnbP3d0fn9m2HnY3QQDb53NI4+NRc/TVmKtIgsiZD0H7Abz379Ln5zOAGnYG8c+WipMXJRXg0S/NQE+PRvi8MPf4sfJy4RXQgjNCwa6vjeTUI2EhbtxKkvV0qqqs9tHTD44Z44tS0e/zy6XuzFx44ZixumTcZbH84qJxtluG/9FPHwYMdXkhqKEasCGxgRUiZmZSWddg/e942QNbaMZtTDYGeNS5/vi5+nLQfZXkFGobid9hnuiM0rssQbo4Q8wQq4+nYvzP/KWF4d2NsPoWtjTKmmnoNdcWxvgck3jnD1NMifXZ2NT+5enwMPHwPSk0uw71CBpIk8/Iyal23/5eKKGzzx7+9pGPVaPyx9eov4kzz9URDeeywGT10Tg9v+54/ZbybgmevCcMuT/vjm9XjcfdlxvPRVCzx3QwSemRKDR94yntvomGi88847eOaZZxqUdHDg4wDYtWvXKtM8egVLixnd0FaNegbJnJ7KdhltIeH44IMPGnpXGj08PDwwefLkCs9xsXGx0D3hoMMZV6C82Oq6hKxTp04wGGyQlnwCzUIGmJ739GmHqLA1yEuJhZNPc5xIykUHPyes23fS2IQtKR4n33rxjI6u1l4+8OjSA2mb18J90ii4j73wPDMndfpv5Gzdi9w9h4yOT+UrjjJXZ3iOGwHnfj1gcDdO4ObgXmwtyMBAe3chHKWFRcjdvk8s1YsTU8RRlCJSKy93+Nw4SaItZ0vnFCWmIHP5emRv2GHsr85Gba180ObpiXBqdWYpYsaecER9s9oYfeG86mSHzjNvgVNL39P7V1AkTeA4e2ZEGwlRpw9vxc72juhT6IIexT5YmpJl7JnCGdfeFj2+vx82ro4StXBs3wwFiZkoLSmF0+BLUBKXiJNv/AXXLs3FX4SY+PlQtBjYDKFrorHsf5tEC/HUk08JKXj5hefEu8Ha1gr3rLlG3EbXvLlD/o/ueucCTbFYuSROqnZ2KCsugoujkzTPo66k25S2CF8fK74hxOo3dkqq69oH/PG/ayPkuTVv7pTv1muoG37/IhW2TgakRWbJsc1Lp/W6FTr1NjqumhMON08bIS8uzsZzlZNdhj69HbFrfTZoh0KO+9UrKWjVyQHhR/IxbII7lv6ShiVPb0bnq1pL8zxWqrRob49TJwswfII7/vo2BUlxxRh5tTv+/S0N0WEFsCotwsTbvbBoTqqIXj1buSItPEtSO/fff/9Z0xj1QToOHDggg2JtDIL1BY5hjA6Zu7jqeV9JODgm6gV79+6VcaBbt24NvSuNHt9//32dvK/uCQdtirl65WqGpj51jebNgxAdTetctvU2Duhuni1gbWOHjPCDKM7PxbpD0Rj96G049c+nyMkxTpQayWDliXPHLnBp3xk2bkatR0FiHPJ2Hao24ZCUzLFw5Gzbg5zt+yuafNnbwX3MUDgP6AXbgNOT99lAwvGieyuULlqD6OVrjO9VPnvZDegDn/HDz/k+hdHxyFiyRoiK/F9pKZy7BqP143QQPXMiYdQk6tvVyNobadSSGKzR4Y3r4NajorlZ+o5QRH62HIVJWRK18BrTAy3vv1yiNgUowV8Z+zDFrisWLjsiaYiguy5F4OT+5cczQ1IluSfp6gp4PX8/XNu2RFF8MmJfmmkiG7ctngC3Zs4StVj5ylaZiNevWy8VAhSBHj8ZKhP+XSuvRlZsDhY/uVECPUyj0Mr+XPj888+N0R1bZxQVGq+BhIQE0R2JNsXKCju/Oyz7F3jDYMT9ukmIhEY2CH42v1tcpNF3o6i4xOhBQvFvmpFwULRKmJvFunka5FLYvicPDvZWyC8oQ5vODti7KRvvzW+JxyeFIyG6BNc/7IXI4/lITc6Hl5+NvBeJEMW27z4ai6c/ao53HonGvaNP4P5Xm2HmkzG4begxvD6nlZQKP3tTDP483Akr56cjP69UyIaNhxOK03Px8ssvn7M0sS5JB1MpPNZMpVhKGawmFqXYUU9VH2cDyQajMLye9YK1a9fKAlTv3iWNEevWrZO5jvfyxbjO6p5w8OLiRcaLrT4Ix7Rp08SeOis9SohGQX4mUpOOwmCwR/yuFcYXWVkjevIoWSVv3LEL7t17wbl9Zzi1bgtr2zNTJS6duiNh4TwUp2dKSqMqkFQVRsZIJIMpk9Ks7NMkw8oKrpcOgPOAnmfVVJzxfhSz7j2ChFWbsX/ajRLl+J1kgxPW+EvhPv7Sc6Z1CkIjkfHPaunRIvvBPieD2iPk3lGw9z3zO9CuPGbOOqOLaPnsGPTIGHEcNfcKKUjKxKkvViJ9y3EhJAYPR3T99A7YeRsHNk7WTIfs/HYNmt3/AB546EH83TbF9HfqMkLf/ls6yzJNFTzzeVg7OaI4JQ1Jn86R42VtZyXiUHtXO9F/MJKg5SUp2KO3y4ZNG+DezBlTfxgleo6FD66Tx5/n/lylOrsyWCbav39/qZAgWDLKkj1jL2CIuRhh7WQHgziuWqHLlNaI3Bgn3WuN56hMUiFhh/NhY2sFhzbNkHsiFqXs8ptWgDKUSWSBMC+NJeEglq3KgauLNfILSiSawTTNb7MSJXJBoWrfkS749dMkfPRkPCbc5i1RjMTjSQjo7i2dc3sMdJbmbwkxReh/mStC2tkjOrQArp7FRtHon+m4a8Qx5GaXmj6fZIM5faZVzoe6IB1aKoWrXEtKpWjW67SHtwSSpMc+L5wDLEmvY4l45513pPKLglFtXqJQfsUK49xHszpqO2palqx7wqGJOXmxPfHEE3X+WUzfvP/+TIQdW4aS4nzkZMWV/+X0jWfr7osDYTEi/Irs0BOOLc7dRMilQ2cksLPo7kNwHWk0UdFQFJ+EnG17kbN5N4qTUiukZGx6dIDX8AFw6NwOVmdx/qyM4rRMZK/fhqw1W43GYdbWInS87/77sdXZBzG//4jS7JwqyQYvrvxDJ5CxeDUKjoebUjdeY7og5JZLYevhfMb/FKXniOcGS2i1yInftAEIvm4wrO1OX16lxSVI+GsHYuauN1WntHhhIvwGnQ7ZFiRkIGzmP8g+YBQlLorbidcvewz9bGKwpyQBMT9vQNyvm03amODPXpLvURAehcQPv0Npbj5c/NmSfoKUyO764YgYhhEHDx6UAZ+kYCZzwGVlGPhQd3E6XXDnKrFFv/3W26stSONgzHw8Oxoz1MvrhlUcWldegZUVgp+8Agk/GBvTDby3Gw79wXSGQSZg+r08OKMZFnydjOKiMgTfPRJHnpgr/3p4YZg8jnypL1bP2IF8oy7XpOEgtu02RkaIlh2NEZmdq3Mw9gYvRIUWSOrF1cMgBmIjJnrgj69T8N8ruzBmxgD8u38rHrsmFNc+4ItPn4/DfWNO4JYn/PHRM7G4//IoEY2yYiU1sRTtxgTD1c8Ju386BlsbW5n0q4vaJh1MpXCFRTGbJYFRtdTUVItIp3AcYASpPhZ4F5LiWb9+vdxnCnUHahjN9VkLFiyQ475hwwZJr91yyy1yDn7//ffGTTjIuOpDx0HPAycnR2SlR5pZlwNuLTrDo2UXuIV0hq2zG+IdbHFpDy/M/fLb8xIOg5MznFq3k/QICUdxWoakKLI37xb7cvP28datg+F56YAK4s/zQYjCkVBkrd6MvD2HtSflwav9JYi1CUBhQQEuadsKOf0GI3XDKnhcPQYGV2dTCid39yFk/LOqfH+MRMN3al80nzxQNBOVUZJXKO3k4+dvET0F999zWEe0fHhshXJbguW2ER8vQ36MURjpPrAt2j4zydRrhfufvGK/RD5ITDQ49AzBEttwXFPYFus/nYe41fQrATzGTkLGqiVI+W4+nPp2Q/LX84SktRgagKs+GCav2fL5fuz49rDJGIodJjngP/bE4zC42MMh0ENMwxhl4LHq1LGzRC0uFFdffbVsbHB1hu6jrAyRMxbKj3RPlcZxZRD9A91GCUcna4SWW5prZMMc3m2MaTmD/emcipuH8bblaeoz3EWqSZxcrCVKUlRUhi59nfDPnFTMfOoU+l3mirV/p8PNw4CgVnZim956RHPYu9khMaoQl07ywNyZiUhNKMGnLxrJtaSVDmfjzuf8hYzQrfX+jVMQuTUeqWGZQpSGDBlS76SD+gdOhCNHjtTVyrs6CAsLE5JkCWJRXst66/Oi6Te0igmFugHTyfQ5MdeqTZkyxSSUf/HFFzF16tQav79FEI760nHQ4CY0NKzc3dEJfs16oCA/A9k5sWg99o4Kg1xsZhGKS8rQnFEQCgfPMwA6d+iMpKV/If6tL1BwIqJiBYuvNzxHDoJzv+5Vij/PBpam5mzaJRUjpuhI+Xt26nkTwo8vQ2lRIXy6DMKyFSsxfNQo7Os7CKnr/0PW2q1wHzdc0jfUaFBEKvtkBfjfNAhBk/rD4FiF70ZxCZKX75NIRTENxcrK4NjOH+1emnJGqqUoLUf0HCmrDgqpYpv6Lp/cAcfg0wMZjcXCP1qKjB2h8rtj767wufc6JH36I8LeW4yShwphG3cEj065Df/beRR+9z4BG1c3OLi5If63OcjdsV/+b+CjPdD31k4SPVn33m7s/+2EnBNGNOjVwDQAnUStHWzR8Z0b4RDkhUMPzEZ+TJrkqauy7r7QQfp0U5VyladZ47PR0/sibFWM6DY+/fRTfPbZZ/L8i1qPFjPYd2yDwvBTKCsokjQP4RpQLh61tjJFOBgIY/O1Xeuy8cAVx1FsNFEVwkEc2VmAibf5ip/Gy7eFY+Q1nvj5w0Rs+Xo/uk5ug91zjuK3LxIw5V4ffPtWAmycbTHhzUFY+MBavHBLDP452RnLf01D6OF8HFsZhrFvDMSv1/+LoUOHVmjqVh+kg6WkvP/79et3Xn2N3sCIUHR0tBw3SwDTKXRB1VM5rNJv1A9INM1JMe/Xxx57zPR7s2bNpFy6ptDPFVVNHUddIjw8Ai5ugeg9+DEMGvUy2nWZhKAWg1CYk468lHIvDTMcjU1F704dURBvzLNXBh1Isw7uRczP3yJp6UIhBAUnyycYJwe4X3UZmr35FFq89TTcRg+uNtlgCiH5298R/fjrSPttiZANstKCvDxToztHZ28EtRiM9LD9KM7Pwb64fAR6eiDE1Rmu3fsga/l6xDz9NlK+X2AkGwYrMa/qs/BphFw/9AyywQmGTdsO3PUVIj//V9w7bTyd0GXWnej6yR0VyAYt0Zli2X/nl9Ikjgh6aDT6/PlUBbIh73fP18jYXW7W9coj8HvoZljb2sL7jqnSKC70jb/w85y5iElKwsuffQk7VzeUFRdL6bGGSd8MF7LBipCVr24TssFrRiMbXKldMX48rG0N6PDm9VJVk7xyv5ANvo7h7osFdR+ffPKxcTIsJxt2fgGmNFPbS0MQsTHOWDrEG8/GCp0mtET/+7rK72wDra0oeQzEmpSksrwjrp1r+dqAxTr2VuIZIscs2E6IR1GxAV6t3KSLvcHaCn5BtqYIChF5okiqUfjavXOOo9vkNnJOf/s0FWOv94SjizUK0gsR1McPbUY2F2L09/cpePjNZuIP8t+Lu+DZ0k3SUNrAc6Eg6WBYloMYo00XEnXctm2b/K+lNGczB1N5TAPRu8USwChSfTg7Xwg49jPSrVC3YH8fplAI6tNYxce5VwOJ88VEviyCcBAUC9V1Izd/fz/k56XB2dXfFLFw92ot5l/pYQfOeH1opgGDBg1GziGjTkATa9JVNO6PnxH69kuI+/1H+V1Wu9bWklIJeOFBhHzyCjwmXV6tShPN0ZMlqbGvfoz4GZ9JZMIGVvhg5kxT9IeWs7/++qtU10SHb4B/80tgMNgh6cAGuLbvj9Vr1uCSwkwhQSRD9NRgX5VWT4wXokEjMHPdhYbMfZE4/Mj3CH1zobiayrGa1Be9fn7kjJLY7GOxOPzoD0JKSvMK4dQ+AL1+fwzNxvU57d6alYfQtxfK+9HS17ZVCIK/fB32LYJMkZvUOX+K7wjhOWYSFhnc4GZngyt83RD1wxfI2r9L/tZtaluE9AlEcWEJlj27WSpSyNB5o5Bs8AYaOGigVL+0mz5NvEIydoWJSZfsi1kn1NpoeMTJ8eCBA7KCL0wylgR7tHRB7J5kcUPlpMn+QPQCad7XXwgFyQerZkh8rBzsjWW2+QWwMkC+F2HvXr6qt2Ir9jI4uxoZh3+wkRiyRU7XKW2F0OxYk47uA5xF6PnKHac07gJPXxu06+4oHMjBwx4tBgYKsWBX2km3e8vr/n5kLQY93F2u19lvJOCH9xJNnzvv1hXodVMHEZ3GJ8ZLv4W6Jh1Mo27fvl2IhhYlsSTQmZVhakvZdwoGaU6mJ2LHe5SToBKM1j0efPBBcRKlCJ5iUUYjO3fubPo7PbE0d+VGm1IhyG4pVuHFRwvyugBbHsvAnxZp7KMieXIDvPw6Iz10H5r1O93IhghLK4C9gyeaF+YiNTIcmQd2I+vAbpTm5VUQf1Jn4DKw9wWJPzUUxSWKADR7405TSSu9B5jTrCosTTOqDh3a4+ixvWjVYZz4icQc3iJ/W5x4DJ98/DECfbwRl5aE1o9fBc9BHWQyrgq5YQmI+naNdH3V+qn43H0t8g4ck8hFsxuHmPQaJBHRc9YhackeY5VK+So/6NrBFTQgLIcNn7lYXk94PHIr3HuevqALIqKR9NlclKRnynu0fORZ2Hn7oqC0DN/sPoTHurfDkPZtsTo5Br7jeuHA/G3waeeBk6ujEbUtHi7OLkK+SDaYitPEhW1fugZu3VuI1fnJGUZnvMTE8sm0lkEFN3tQ0KeCg/cV7wzB4UXhMrnTuEgbzPPTCxG+IVY8NYgiepIXAfFvfC6/0zxMi3A4exnDnCRtRQVlJjFoQHNjJKMktwQ+7T0ko/PjR8m46RF//PdHOoIH+SOkbwA2f7IPC75MxMhJ7jh5IA//vrAZ3a9th8jNcXj0qlDMXtMeC75KRvS2RKORGi1lbKywZ3s2Lp/RH+ve34Pko+nSB+fyGQPE0OzGG2+sketjddMrJNLmuXtL021ouhNG0fQWMTgbuIJlOkVPfV54DTC9Y64tUKgb3H333XK9/vPPPxLZoBmmOWJjY3HHHXc0/ggHBxzeBByk6goUpjI6kJxgbC+uwTegGwoyEpGXarSE1pCTEodtew9gcO+eiPr2U2Ts3GIkG4Sdg5RrBn8+Hb733iDdXqtLNuj8mbNzP+Lf+QqxL8wUC3GrwiI88sgjIvBkqOtcOfD58+fLZB9x4l8UFGSKjiNx/zrEx8Vh7ZbNuOnee2Dj5ACP/u2qJBsFCekIfXeR2KYzukE4TRyFkK/eEP8PjylXoCS/WKpTRPD53wFJnyQt22t87ZghCP7qdTh064CIz/5FcU4+SnILEP7JMpx4+XdJx1j7eiH4s1dNZEN6uazZKpMtyYbB3QNtX3hLyAaRG34Sez5+G++8+640Epsw7yUE33kpvC/rImWvUVvj4ePtYyIbAwYMMJpClX8/5/aBKEzNxvEXf0NpUTEW//OPdBitS5BsaLoLGo9RoMqUC5/nc+yCm3IivULvFTkWmflCthw97U0aDjvn8munDFJGy6iEHGtXgwhGCRIvIiWuxKTjiNqagFbDgiTA9tsXKfDwsZGfw9fFocWgADj7OSInswwOTtYYf5OXpGrmTFgMGzcH0TGX5QNtR4dgxDN95LO/H/8PPIJd0XmCkZDXNLxanUgHU2LMF1O3YYm5e0Znjh49io4dO1oEWeI9SMKhtwogChdpp22J14Al4o477pDqO3aErUyUZ82aJSL5msJiIhy82KhPIPOqK/EVCY2npweS4vahdcfxJuMvWpsbbByQHroX1jb9kHZyN1KP70RBeiJK23fAK6+8jG+++QYl7p7w7jcIrl17oTAxHtE/fIHC6Dg4tDu/rwNRnJqO7HXbRdBZmpUjURLmflkVYB7WOh9o9+zr64OE6J3lWoAy2DQPhPf1E7ChU3MxAgvx8JOOsP4TTjdCKsrIRdxvm5G4aJdJ72g/oCd8r5sAg7NxAiNsPN3gfuVIJCxcgexD0cg5ZtSwWPt5IfB/95p6w3jfcjViX/oAYe8sEgv2whTjBMw3dxvaTwgZUZpfgJQ5fyJ3m5GwwNoGtk5G23AiY/d2JCz6Xf4v1q8Ua5xiMbWkI77P2oWcMPaRAVq1bIX//vtPyAZXzVRWlzHKxO6urs5Cnkrzi1BSUITHH30M48ePR13CZMdvBfw8dZn8aG6ipJUGmz/v6uqGrOwsFKVRwGuNwB6+pgjH/nlhwEScITQtKSmTtAodRR3c7ODk44Dc5Hw0a2lnioJ4tnSFS4CT+H/Q6MvG3hrFhaUSYek+rR22ztqPmU9F4e4XmuHvH4zdebt9/wDiF2xF3Lwt+PO+1Rh4v3F1yevih6sWISsuDwZHW6SmpcnAxMqb2ox0cCXF6iJWw1iaSFQDUylM7wUFVezorFdQmMsGXYxw6Akc85muVLB8WEyEg5gwYYJ06KxLXH/99SgsyBLjLw3FxflwcvZFwp5VOPzL64jbsUzIBnE8NhbZRcUY9/LraPvIs/AcMAw2Lq5wbNkGNh6eyNlkNJ06GxixyDt4HImfzBERJz0wSDb4XakH4ervQsjG/v37pbMonQIJu46tRDMS9NpjcOjYBpllJdhQkI7bHn4AsfM2i714SX6h/Lz/tllI+HuniD5t2rZA0HvPIuDOayuQDY0glNCYzMroLEr4PXY7gt9+pkIjOvZjsW8dIhUoJBtWDs5o/fSr8BwyUhrIFYRFSafZuNc+MTqZ0q9/2BR0mPSwCHET/1mApJWLxTSN6amQ+0ejzZMTsNuQiL2FMbghtz3c8qwxeNDgCmSDE9exo8eFbJC0lRYVoSgjT6IsgwcMrJdeDOxAa0wrnX7u77//NhmQhYSEmKoAtOfZip7XAzUezGm0GhpkjHCQd5WntGjNPnp6f5OwMyutRMgFeWVxfjH8OnrK6998IErIBp8vyCxEmxFB0tdm6PM9MPxZY7Ti78fWocuk1rKfG5dkwyfAFqMme0iUI/6vrQicPAAGZ3vE703BX/eugVMbf2EcmdG58J8yAJ1n3SW/P/DgAzU+TlVFOlglweZ3bNyop06lFwKmx6gj4r1rCdENgtENkiM9RRJIPHm/1EfzToW6h8VEOIjLL79cCAFvZLatrwvQZXTWrC8QH7MTebkpSIzZLc3cKswcNjbw6N1fqj0cmodgf0Ep+oY0x9HIBNNL2JPErWdfpG1ZC8/rJpzhqVGSnYOcjbuQuXozSpLTZGJ0cnSUzntjxoyp0YqaIp9CiiDLyuDUr7tEIeyan9kG+7/8VLwc3AqdW7RF2Hv/IOtgFIoz2RfE+Hf/p++BQ6c2VYZcc3cdROpPC40RmLIy2A+9BH43TDzDSIxajOSvf0VxgnHF7D56AvwGDZfB12fkWORGnBRnUHaaJcGR8lpnX8Tt+BcdpzyB4CGTcWrdb6b3a/vOdfDs3sqU8vnkmc9x88RpmPne+2KmZE42iLXr1qBXr97IyckGCoqMRmHBwRItqg/ExcfDPrA5PAcMQeLyRSjNyzWJ3qgtoWnY2cAGcMTuH48iO7Hc20OLiJSWiTdHanimHMuM1GIEBNvCYLBCRmwOfDt4InJLPI6dAJr19kXs7iQc+OsEWg5phn3zTmDnV0dxy5/jseaNnUg6lIbjyyMl1cMUz66N6VIiSyvzuJ82I+iGYQi6aQhOffkfDK4O6Pzp7YiZsx5xv29BytrDJgHx2frv1CTSwfQDzyXL3y2hhfvZQN8XVqXUddquNsWtdOHVWxfbxYsXy31tCXbwCo0swkFBJE1/GGKrK9Au2dvbC/FR23Fsv7FzrMzEtBfv1gvNbroL7Z5/E37jr4FjsNGmeE9aNjq5OsGxkh7CvVc/lLFhWrlXBCdsWoYnfzMP0Y+/gbT5S4VscCXHklZ61V8o2aAzHPszXDZ6NAqLi6T9PEttfe+7sUqyQeSWlmBp6BHccvPNSN98HMUZuYCtPQKm3gwrO3tjk7hKKEpIRuIH3yJ51k9iu27l6ozAGU8g4PapFcgG9Sfpf69E/OufoTgxFbCzR8vHnof/4BGmlR6Pg62nt5AuNqdbtXIl7O0dkJ+XDqtSIGzZt0g6dJoYBN87ykQ28k4l4/Djc1CYkg1rWIlVNEPvVE6bh+TbtWuHsLBQ+Pr6CdlgDlizIa9rSJ06z3VstORUSnNz4HUB/QdIqBm9yEgqQkFOiehsMjKMPVYIplkcPewlLZOZVgL/5nYoKS7Dz1OWidkZCYRrsCuGPWlUk+/45oiUu1KEmpdSIJbv1HXwM9a/vwd2fm7yXu88HIugVvYYcoWbdJw99fN6IaPymVn50hU38LpBsPV2QVFiJlLXHJJ0R17OuRvdVZd0kBDSEZZ+ODUpu9UL2GWYRl+WFN2ggJoRNz2ZfRGMaDPaq9A4YFERDuKqq67CvHnz8OSTT9b6e3Ow48Vtbmzi1KY93Hr2gUvHbrA+i0tgcmERYvML0MPdGVtTs05boHt6icMoxZAMldOgqyg6XqIZtgYDPvrkEzzwQM3C0WycxWMgvTusrKXXitvYYbDxPvfEln88HGm/LcbvMYkYMWsWBg0ahNCAFnDt1ltWqsVpKUhevRyuI/rDtpk/yoqKkLF0LTIWrzEZWXnfMU2ITeXBlOkRRjXErZQplaAQtL774Qor4MLUFMTO+x6FCXHw9vKSRlwkTHv27EbXrt0ke5ArnidWsHJ3Ef1L9Ldr4NTaHwYnOxx77leU5BbipRdewG233SbdWSlsonEXV5RiL14OVoNER0dJLr1Dhw6oL3A1xlRAemYm4v80lo6+9NJL1f5/phRIGjrOvAXJ/+5D3PyKQmmWyjq42wlJOLYnGy07ORlPjYMtfEd1Q9Li3YjaloAr3xsCGwcDivNKYGNvQPCAAERuikN2Uh46jGshDqKERCqsrJCTQQJTLO6lG5ZkIvHnzSK6ZVUYq8NiflyP1k9NQIv7RuPk638ayYYmkq4F7wcSQgoWQ0ND5dzVVWv7ugYJMPf/Yppc1Tc0saieCBIXYEyVSopRoVHA4ggHhaMUELHssDbYOOvOR48eLcZCMp0yTRAYBLdefUX8ST1GdbAjNQsDvN0qEI6CRCO5KAyNRmpEtLHMs2VLqaQ4W2vv8+G5556TBjvcVytbG7hdNhhulw85r2kYu76mLViGfK0ZW2kplhw4gtsefhQzj0drflTwGDgcGbu3IfXXf+B2+VCk/PgXSlJZSVEGq0BfBD33AAwuFTUdQqZWbETaH8uNr4MBdjaOKIg5hfyoCJP1e/bRg4hb8JMYd02dMqWCHz/z+LNnf4M776QuALBrF4KAp++WnxM/+h4nXjVW3tAMbNZnn0skiKF3EiYO7CSLTJfQgpeRMHMhcH2SDXMBHvP4JJScsM3d+s4HbRKn9wkreiq0ii2PcDi4G8nvjrXZGHB5uc6hqETIAElKSX6JlLcG9vBB1PYEFOYUofXQZohYH4u17+zAmBmDTO/HunseJ2pbru9jbDonwtKiUqxYtlzuD/6djrEkfhQbE7WlryDpZLkwo1TUEDA6UJet7esSHE9InCzJpIpCUZ4Dve0zyQajXg1x/zZFXHPNNdV+LVP/TYJw8AJkPTYbkokwrwbgau3xxx+X3hl5eSxBBAwurnDvMwBu3XvDzufCTW/2pmdjfKA3guwMOLprJ9K2bUT+qXAhGRRhccK5GKZ+1113GXt9WNEi3F5a1LteNugMQecZ3zUlDel/rUTO5l2mHilGAeaTOOIdBDqL9PVyxbZyokSXT69ho5Cw8Ddp5CbCRxtbOLdsg9zocCEL5ihKTEHKt7+LXTtXR0yX+Lt2QCf/K7A27BPE/v4jWjzwFNI2rkHapjXyfkuXLBG9iTkYqdDqu12vGgXPiaNMqy2XUQOR/EW47PefC/6QEunKmg1W5vA4s8kQ89B6yPkycsPqpZo4U5JMC9kA0DywYnqBfWIYsSBiIopMrqJ0/2L6xbGFL3JPxksEhKmU6J2JCF8XLUZjRNjqWMw5sMT4P1aQ65LVFCQcto7WGPlSfzj7OODPe9bIIMQyXh7vtu3bIeqbVSJgpW5mx44dF3V8eK2QXPC9mVbUNBt12dq+rsEyWI5Remrrfj5oZfZ622emUxjR1lPUpTHD3cwJl/cmS2P5nNZwkIsCtnC4EGJi8YTDvFrlQgkHe1i8+uqrSE3jir0UBntH+HYdjMyY47AN8BcxY02RnZqKzQey0SUtBWvmz5U0BysROAHysaa4/fbb8cMPP8jEYO3iDLcrhsN1+ABYO567CVRJdi4yl65F5sqNplSIh1c7tGxzGfbu+EoIgMPUm7A8Pg2TgryxOy1bBKfpWzcgedUyk3GX2/DL4T98FEoL8hHx6TtI++lv+D50s1yQLOFN+3WRiD7ZLpwVMiRyTPf4OLdBj4CrsDfub4R/+AbKCgsk8sBKBE7E5li4cKGpttvz+qvE5l0DRarJX/ws+7Jj+3YZGCuTDYKDEnPmrNDZunWrmG+1amXUfVgaGP0SEzAzaL/TjCs1IgsGJ3vRYKQllogFuTmc2vqLwVlGdDaa9fKV9My/L26Dtd3p6gOX/p3g3cwTUV+vkmPJqhAeL6af7Jxt0fwSf2Mb+0OpokmgY+v/nnpa0pnUmFxsEzJ6VPB6YSqFUarKpMISSQcHY6bDqBeyFPA+JsG9kEq4+hKxUjBKjZpC/eD77783/cyOsdOmTZMmk1rVEu9ZRmxrGp23ONGohkmTJokZDHN81XGp44rXYLAR46y0jEx4tumJ1lfcjW63TEfzIdfAp9NAZB87jJLc879f5VQCbctjfpqN8A9ex6I532HooIG47777UFZaIpUINSUbEydOFO0DyYa1i6uIOZ36dIH72OHnJBulhUXIWLYWMf97G5n/roc1yUZpKbz9u6B73zvg5tUCfgE9xBE171QEDmbmIL2oGANtSxE5630k/bsIZewCVlaGkPufQMDIMbAyGKTjLYWyubsPIvO/TdIOPvXHP1FWVILlS5fK5EF8+OGHItg8nPAvikrzYEXzqKIiqdDgSrky2eDrr77ayJitnZzEUbWUUSeSuM27kTTrJ9mXE8ePn5VsmIMpK/6dK02mrjhwNSbw69B0rTA1x9jpFsCvX6TCzsk4KDCqIXbzpaUI3RiFgC5eQkyIoNtGwGdcT4lQOHRoDv+rLoGNm6OUHWpRJr5237zj8nu/u7rIZ/CYEkzl8Zq+WLJBArN582axch8+fPhZz2VNe6801MRNHRFJG4XnlgKKRTmR6K0iiOlR7pfWpVShfvHdd9/hqaeeqlAizZ+feOIJ+VuTIhwsK2TYsjqeHP37D8TOnbvg4hYsv7e49Hq0HHUT3EM6yURKeLaj+VUZMvfvrtbnl+RkI3XDalm5x8z9Bjknj0ply6+//CI3bk0FrVzF0uiIRIPfzdbDC/5XX4c2T74M72GjkL1xl6RIzkZ+2GuFRCN9/jKxQWefFd60LDFMSTiE7AxjA7r23SbD2sYOiYsXoDg7C9/9/CtGtQyCn4MdaMIQcul1Ev1J37Khwme4dOkB++YhSPtlEfIPnxQyVVZWekZlDQcLW1sbHIpfDg9PDxw8sP+0EZYZGAl54gkeqzLYunjAytoGJYmp0imWkZmU2b+JhiMlOVkU9OcjGxqYjuBExkmKExtz1I0F99x1t+S0tYE4qLcv7l03Ba2GG305MvdGoCA2TY7b3rknYONgA79OxuPlGOKDwrh0Ka2N+WalpF+8L+0iGhH6tlAEarAy4NTWeKRHZaHF4EB4tXFHYnlPmNqKAqxbt04iUbzWzzc5WwrpYFqC+o26KtevKzCixUovPXWGJX766SdZYVdeoCicBvvLMNrPii5GeBkprkyCX375ZZmTeJ+NGjVKyrWrKzvgoq0y+NzFLOL0dZVVEzy4TKf8/PPP532tvb0tHBw90WPAfXBxby4uoZVh6+gC9xZdkLl7+1nfhycv71Q44ub/hND3XkXyf0tQkpkuk21hfr5UttBOmwMkb+ILad/Nk8uwsp29AzZt2gQ7X38ETrsFLR99TkprSYw8+g2BtYODGINV3q/cPYcR++JM6fxKfwz64fN5pjcIDvDsCXPy8N/yvLW1DVq3v0LMtcJmTsfepf+IJuaJZ55Hzzteh3eHfggaMAGZe3cg58RRE8liI7qCaJaWWuH7b789q5cEFfobN23E888/j/j4OElvVIUlS6gjMPpvlBTmw6q0TCIp+ScikPbrP3KeCwryZZKqLtnQwAmNjrRcjfPGNC8rtWTQJ4Y3veYnkptmJFNuQc6SBTv+wjwxbyOJyEkq14D08RXTL9q6Z+43nrOS4iK5FjyHdhLth5anJdGlJ8fBBaEmQsOoCTUyFwv6PHC/eY+QBFfXYErvpEMa9h08KAshS5ogGSEm0dQiWHoBFwhsz1BTjV5TQU5OjujZPv/c2HupMtgX7JNPPpG0CIsiWMHH+YoRxuqk8tnAjbou3rPcZs6cKVpC/q1JaTgINo1iMzfeMOcy17nuuutEuJeVfgr+QX0QduQfFOVlwdaxokDKu2N/hC2bjfzYaDg0O91LgNoFRj6obShMShDhpbOjowg4r7322jM+j2ySg091WjzzxNNXZMvWbaIpIXzHXAWPcoMsc7Ak12vwSCE6buNGwNbPG/knI5D221IUhkaK5oKrerZxrgxqJ2677VYJhdG2nRN8fHS54K+kBLauXthV4I8hHt4Y0s4Om8Iz4NWxP1JP7kHCovnwvfxKJCxh99Y8iWqcy7RKAycwbRI7G0g43N09xGDNwdEDxWXFKM7KlH1iZQdvKJbrXSjZ0MD34D5Qc0AtDSctTl6NSYSWFp6J3XOP4uCfodKBVsCqFpqpsWT7RDrSIrNQVlwmuVc2EyMB5HE99NB3JvMuzaOEYl6mUfie4ZvikBaWIdoPpgtqCkbu+P8kHDwfNWlkpldNh9ZgjqtMvVmCnw9cGPFc6C0FxHQ5K894npsaMjON96MGLpjOlsLkvVpZfG9+XTKC/OKLL0p6nvjxxx/lGmUkhPPiuUAhOa8NkgxWMGlz29NPP31RlhQWGeEgmCtlUyfz0sqq8PHHH0tPFDqH+gX2kIk57bixtbk53II7wNbZXRqwEQUJcUhY/AdC331FLLYLkxOlbC8nK0tCp1WRDYKhSe4bG0+dDbm5RtdJJycXbNm6FQY7e7QZfw9sXT2RH3PqrBOiR7/BMDi7SEqDVugJb36BwvAoEfQV5OdXSTY0kCDRXOv4wT+wZ/MnyM4qv4j6jkOXG56HrUcA/j6QhOFtPeHrYiv70HzQJJRkZyJu/lxxypz1+WfVIhvVBUstT548AQNLhwuyUVZUIPoRDjacpC6GbGjg92AKgtEnVkQwgsTz1xigRQg2f3EQxaUGowU6Bymb06vsX65djrC1MZJuKSwsFNLx77//wsrGGvmxGTD4lZN1s5A6baQpTs0vtkG76dMQfN9oU0l6TTQCa9asEfLIa/5iuqbqMdJBosZJojYiQPUJ3l+8lzl26A2MXLMTcWNaGFQXwcHBUhmibW+99VaNySQFzEyjaOD79e/fv1oNUDmP/e9//5NFAiPM3Pgzn7sY63uLJRwEQ27M9Z0LZO/NmwchMXYvrA228PbrgpQj285IeVixDX2HvsjctwunvvkEkZ+/J+TD1spKQlPUSFDJz1D9+UDCwRB+VYMiT7abq7uQA1f35ghpfSlKCvJg4+iKgF6jkHVwn5CdqlCSnysOnXn7j8rGiTkrI0PITXXaSU+dOgWlJcayVi/fLrC1d0VOAgmE8caOySjA9shMTOzmi5zYkwhd+rX0cyErLiwoqFGDrvOBvgu7d+8CykpQUlwg1S48blq5ZG2tZlkmywmPEy6PPc2lLiTtpUdoJmel+cUoSje6fTICxcjZ1KlT5ffmd16K3n88AftAL1MolRUJZcWlovMpjDDqeq4061XByJNESwwG6bWTtGSPqSzuQiY0rvxZOksRMVOG1bl3LIl0cOFgiakUgvcXJyC9RIo0cGJjdQoJR1NEVFSUzB3aRt+lmoBkg6gcdePv2t+qC46ZF1OZ0mgIBwdVDoKcPM6Ft99+G6UlhUiOP4jA4L7IT09Arky0RhRkpiJ222IkHdyIspJiiTKQNMRGR0s+kWGkCwEHH+ZFGcqvjFWrVqGktBj2Nq6wsXFAi7aj4ODkjfidK4Tw2Ll6ImXNvxX+pyQvD8krlyDiwzeRfypCJppDBw7IgGtucnWuBkic2EnOHJ290L3/veja5ya063I1Mk8dli64GlYfTYBVQQ662SagODdLcoC8QOtyQKWvyvHjx6SJGatdaptsmKdY+Fnm0Y7qVDrpFVobcWtnR1i7uhgFtinGEtnZs2cbG76RNzjZw7VHCGBz+nZnmHTs2LFISUoS4lW5XQAJWl54IkLf+EtKbKUh3jGjKdiFRjV4L9XmalUPpMOSUynUjPH6JxHUG/744w+JFrGnTlOEW/nkrm0XWxFWU1AScPPNN8v1zXGTUQ3zrUkSDlYjMId1PvEo9R42NraIO7UNHt5tYe/khaRDm5AReRihS76WDrAJe9fAzhp48fnnZVXPG/JiSsUYqqS+pLJY8dlnn4W9nT1sre2RmnwM2ZmxCGlzGTIiDiA/NR4BfS5H9uH9oiVhl9O0TWsR/sEMpG5cDVuDNVas+FdSAtWtm6eiuGXLVoiLS4CTiz/6DHkcHl7GfLiPfxf4BHRD9MY/UZSXLdGOA/Pew4fvvSMpo4SE+HprC83jRZOfuiIbZ4t2cGKkcpvVPJYGmmUR1rYOsHM3HiutIkdbkeSGGRsKunYNBopL8eabb8rvTG1QKHy2Y0wSzwgaNRf0WSGROd8qhxEUlthu3769VqMaeiQdTEewzNvSUinavjPyS3G33sBFkRKLXjy01CWJgzmqoy0k2DaCEX22ZFiwYIE4i5pvTZJwmKdVzhcev+yykchMj0BGagQcnXyQdmKXiEQzo4/LZHfwwAFRm8+YMaNW9oslhgxvVy5DIlu85957kF2YDAdbd0ScWAn/Zj3h6OyDuO3L4NW+D+w9fKUle/hHb4gvBooKMevzz2Uyoc30hYCTAEmHk60HcrMTkJZccX/adp4IlJTh5KLPcXzhJyjKSsV1110rhIZCv/r0sagPslFVtIO5SdoocyC2JN8OViOxjLk4PQ35sTGiT2I3ZRNKy5Bz3Jiec+0SbKpyqQ5ILjiRV8dNlOkTenjwGPLnuohq6Il0MJXCe4OaLktLpfD6JpkkIdSbRoLpBFZDnE/QqHB+8P4jsWBEXQO1RqxWqY4Yl+eBC3mm0el7ReGp+dZkCQeFbGRtdJc8F+bOnSvi0f3bv0J6stEpkeU9RYUFooE4W+nmxYBdLxm6rhy2FytpO3sYrGyRlnwMWRnRaNF2NDKjjiBx3zqUFhWKjqMkO0vMyrj6rql+givM559/DjmFKXCx98PJg3+huOh0WVRRYTasDXbIT0+Ch7s7kpISMX36dAlpcnCqbt22JZGNytEOVvfw/PO7MuLBFJQl6DtY9puemiJiUKYCqTOiEl0Dr/GCuDSU5BfBztdNurwyR15b4HXJe2flypXSO4beIBRymzfQq2vUN+kwT6XoMUJwPlCITUGgHrvxcoymS+vFCIubErKzs+Va5KYJRfkzhcwkk2yn8frrr0up+4EDB3DLLbfIeSeBqI54tS7GQIsnHAwNMtf01VdfnfN1LJ194YXnReC1c+dOWfmzTJQr3boCB16e4MoVKxR4PvzIw8gpTIajrQfCjy2DvaMnDDb2oiUpzsvCTTfeKBMIq2wuFiQQzPfnFaajuCgX4ceWimFXVOha7N70CYoKszBj+msyaWgN8Zin4wqOk3BtTlJ6IhsapCKneXMpUeYERh0Jy2jNuwbrFRT+nW2VTQEuNRx5EUbjLrceLc5oBFcTkIgyGsSIBicwpl20JnoNgfokHRzULTWVwgmE97Meoxu8pmhfIFE7hWqB8xjHaG4EXUD5M82+CFaUMCV+zz33iNs2Ccry5csl+n4+sKSW6X/a3tcmrMosYSl3HpC9sdyHoXG9tYRmGIvGW2Tu5vlsCrfc3NyBIjvkFZdP6FbWuHz0KKkSqG0iRDV9j+494GLng8yCRNFzMMXC1QTz7mdbVVD4yotu2LBh1bpQLY1sVAWeG4adSRTZEZUTGo9PQw7STFXQn4Alq9UN4zMdwohDi4fHwu+KXkhcugeRny6XKoDx48fX6Lgw7K2JtBkFoxhZL5NXXV9LJKCMpPL9a6NTdX1DvFcOHZJSyYsR/tUFOBEy4szVuSWkqTiuk+z3XvAEDM4XL+wsySnA7ikfiOavtipCLgacR5k65D3PeavyOakpsbdY46/KKzk6FzIkxxSEnsCLh1EOukNyHzWQULz00ovixslUz7BhQ0XEV1cmPFyRPfjQg9LAzgrWyMtNFidSOsmdC1wN8ebi5MVVbG0OVHokG9q5oXcH86AkW4x4kLCReFCXYwkDIsFVDf02ckMTUJyZi9J8YwO4e++9Vyaf6oIpQa7sGdVg1I723YwI6c0Ouy7NwXgMeA/wPrJEssEIAu81kkS9kQ2CEWq6WFrKvdXY8dFHH9XJ+zaKCAdBskGTFDJ4vay4zAcr9hKhVqAye9V8CriSro9Bh6JTsmiucqubK2WunikGMnqmpGrj+OqVbJztuFHXwX0m+SKBZP8J7nd9XWs1iXAQZ+yflRVsDIYzutFW9Z2pPyLJ4MqeFVuc0OvzO+vl2uIqj9c/iQaFxpYIHhOSRgp69UYUGZkmuWe6h/eVJaCxRzjqCo0iwqF5cnDFTlMn3lR6AleF9OWgkp9VEZVXofUFDjTmquXqgisipqyYGuLAdbHuhJZENrTjxhU9Nw40jHpQ7U1RJidiEjeGIPU4ETMNRr2Swc0dJXm5ZC5n3U9OrCQX9F0h2SCxYUSHkbm6SKdZQqSD6zGWB1J3ZYm6De28MjXKvht6IxtadIM9PiyFbDRWZGZmmshOZYv1yqgpKWo0hIMDIgVHTBnojXAQDENTzU8/A0sMyTLVQz0Au6+6urrWWKFvaWSjqhuNq1xWtXBi5sa8PgdyGkCRfFCgXJdi5AsBU4zvvj8TJVmZsLezQ6eePTFv3jzT30lGWOXF70HfGJIofgcSYV6neiRR9Uk6aHbGwZcaJj1O1tUBNTfMw+ux+oOl/iQcjFArNCy4aOJCg2M7I+5V3fsk4Hy+pr5F+hgVawn33XefpCcoPOLKTE/gQM59Y5RDWtBb4EDOQZuTLdXRHICr43LamMhG5agPBZPcmH6giIqTNlN69HMh6eDGG5eh14YiIO+8845s5gM8q46oKSLRYAiX+8jJiJUeJJOWeG3WBelgqJ+TNcuPq9M6QI/g+ab4mRFKPZ5Xmkrx+jPv+aHQMGDaX7tH+HNdXC+NinAwJEf1/RdffFHjpjd1CaYitKY6F+Ni2pAgkWNZIFMKJB3V1RM0JrJRGVz50s+DG8PuPD5axIB5aQ76JGccWDUCcq5y1toCoxckFyQVWgMmPscUH/eDaT4SjYayT9Yz6eCxYvUWS34tOafOVAojVbw29QhGpB988EGLjR719YuEvcvF38cF2UXYjYYFNYacn6inGTFiRJ18RqMiHATrjqnnYFve+jQgqg64ymVqhVEOht8t9SajCynDzOxjU52VU2MmG1WBUQJuWq8KRjy0SZ8aCa44OfEzDcjJnukqPvJ3bePvvF54jZiHMFmqxugKQ5sUfvJ9Km8kOHykIZhGdDjpkPDWB9GxdNLBY0d7dt6rekxDVBf0XaDolxEaPYKLFkYEb7311obeFYVycIzgwp2yBPoSkXhoPZtqA42mSkUDvw7zzzQDe/TRR6E3MPxO8SVPoh6bJ1UXnOzWr18vA/K5XFqbGtmoLjipkTycjSxwI8ng9VL5FtVICImDOUGpTFhINpoauTgXqnMt8phTp0QSyF41ekxDVAe8ZkiweA3otbKGjpccA6trt6/HKpV710+utQjHV8P+aPAqFRZdaBsJIRctJOwkHyQh3C6mWWGjIxxax0HaujL/qsfcK4WjHAxoBlZXvhv1tYJiuSBZMVeDlaHIRu2BNz59Wi60LFah+tckyR0jGzzWtGnXo19FdcEy7n379ok2Qo/XC31tuDDkGK1Hm/WmSjjMwUUPybdGQHhvcKFJLxdGpmoCy4zpnwdXX321pFPY1E2PYHibNxlvOksGV080A2OKQHOf1KDIRu3CUlfaesPZbNBJNiiGZoSJ16wlkw2WwXJsYeRRj2SDoJBZ6+2hoE8wUsrIBuUJr732mlS8ccyn4LymaJSEgyHnZ555Ri5qvbYdpw4iMTFRNksGWT5JBy9CCo4IRTYULIl0aF4bNOjjNavXSfpChKKcLNiAS4/gOPH7779Lrw8F/YERPqbLSTKYQqEGjBWg7LX12Wefmcb5mqDRiUY13HjjjdLE5q+//sKUKVOgN3BAYGiKfWD06P53IeAFyYGaAzjTRSy3VGRDwRKEpAwZM+JIPQ3L1fWYgr3QNCcJv55L79kt+5prrrloA0GF2gcjGtRusFKFVStsg/DLL7/UWlWl5c5y5wEHjqeeekrKY/UqU+FJJdGonI6wRJBccEWl2RQrsqGgd/A6Zb6cUUamHyy9PJjjHBcwLF2vj1YJNQHLxdmlm51IFfQHzcKfxIMaQ7bCqE0Lh0ZLOAg2A2JZ2IoVK6BHkGxQQU43Q65MLBlcVbGTKL8PQ24XE3ZTUKhrULPBsm5NBMef67q1fV2DDfkoOuT30XNTME5mtFlX0B9Yuv/111+LMy0lCdTYsDnqQw89JCZt9Ba6GDRqwkHhKEtj9WgCpoFsknXPNBnSayTmfDDXbHDVyEd6jVBMqqCgN2gCURq0MfXAzsBVCUktCawoYHSDE7le00KczGbNmoXnnnuuoXdF4Rxz5tixY/H2229LaoW+Qe+++64QED7SzuFiego1asJBkJlxMmdZj17BwY7qeE7cloaqBKJ8ZFkhxWvcFBT0AorIWd5HzQavUS2NcrbqFUsAFyosgaU/gp4djD/88EP06tVLSJ6C5RAQjufc2GuFZoQc72uKRk84eJCohmbVil4jCDyJvBF5Ii0ptXKuahTmkDmg8zVceXFVqaDQkCCpJ6HQfDYqRwIslXQwlcIKAoa+9QoKyT/44ANdR5sVYPKiYTRj3LhxMo6zCpGRKZo8fv755xe1MG70hIOgCRgbui1cuBB6haWlVqpT+sqSWdoqM+/Hjqoc6BUUGsqoiaV+jGhwAD1b6aulkQ7a5us9lUK88cYbot3gsVfQf8Xhxx9/LHMSo1KMUnP+nDNnDm677TaZp2oK66YSFmKJ7PPPPy+mOHpPrei9auVCfDZ47Ek6aKTEAZ95cwWF+gRbblN9z+oNNmM7X+deSyEdlpJK4XjxzTff4M0332zoXVE4D2gzz7Gd1YY0zrzzzjtrtXy5SRAOrWKFinSyNL1CS63QRIsrMj2iJqZeXE3269dPFM8kHQyvKijUx4TMCjBWoPC+oji0ut4UlkA6uOqkEFPPqRSCi71rr732nD2XFPQB+m5U1aaittBkCAcnvddffx2vvPKKhCH1CoaxONhRRa83l9SLcRDlQE93VYZ+d+zYIW3bLSF1pGCZYCST95DWLbUmFtp6Jh2MFDKVQiKl51QKIzDsbUXXSgWFJkM4iGnTpsHPz0/sWfUM1tGTIHFA0Qtqy66cZVWamJR20nojVQqWD1agbNy4UdKTdEuklqim0CPp4D1DMsUS9Ivp3FkfYAns/ffff1F5f4XGgyZFOGi0xfpiKqUZitTzfrI1Njs+UoHe0Kjt3iisHOJEwN4VnBj0HHFSsCzQWp9pO01dXxvuoXojHWzMRk0U90nPWLduHTZt2iTaOQWFJkc4CFq1MgxJ4qFn0GiF+8mQZEOWytZVIzb2kmGkw9XVVQYmPQzkCpYLpueYPiEpoFaDqbva7E+kF9JBMR83il/13H+J5ZW0Inj66afh4+PT0LujoBPo94qtI1BLwOZBn3zyiegI9Awqz6msbyg9R113feUqjaSqXbt20kSL7qQqxaJQE5dNegfwWu3fv7+kGuqicVlDkw5GBPfu3Sv3DBckesbcuXMlQvv444839K4o6AhNjnAQvGFvv/12PPzww7oXLlJoSXAyrk/UV4t5Tgwsuxo2bJg00WK0gyZGCgrnA+9d9u9ZvXq1kFf6PPj6+tbpZzYU6SARp9iaCxA9l8ASTFfTbJFGXyyLV1Bo0oSDYMUKy+X0bAZGcCDt27evDKzcGhPZMAe7dpJ0BAUFSd5XRTsUqhPVOHToEHr27Ckphvqq1qhv0kFitX//flOll97BMlimtCZPntzQu6KgMzRZwkHhIrvh0YWUqnY9g6sEDqjUc9T16r8hyIYG5qSZf2cZoxbt0LO4V6H+wcmXQmotqnHppZfWqOTVkkgHOy/Tu4ZeNvzOegbHqNmzZ+PTTz+tk7SWgmWjyRIOgjatDE9aggMey3k5wHFVV1dVHQ1JNszBMkYt2sEqFu6T6sWioEU1WC6uRTVqowpFz6SDxJvRPpINR0dH6J0MPvjgg3jkkUdk4aCgUBlNmnBwRc2mNMw16l1Aqg1wzFFz0K3tdINeyEZV0Q6u7lS0o+miclSDWo2GiGrUN+lgdRoF4927d9fFPVkdoSgrhV588cWG3hUFnaJJEw6id+/eEukgK9e7gJQhSuZG+Ui1em3tr97IRlXRDk4wjHYwZ6+awDUd0FFTT1GN+iIdbMOwbds2EYly0zu4GGAJLBdvLi4uDb07CjpFkyccmoCUCnC9C0gJrvAYXk1OTsbJkycbNdmoKtqRkZGB//77TyJSem7Ep3BxYNqQpHrt2rXi2aKnqEZdkw4uJChoZ+mrpfQfYcsI9nSZMmVKQ++Kgo5x7raJTQScaNkl76GHHhIRGl0K9QwOwPQb4IqfgtKaDsSWQDYqRzvoHsl298xrc/9JRLgC1LMJkkL1wegVySSFkrTt5v1oKStmkg6CpKOm9xTJBqM59NxgZM8ShJdbt26VbrBsVWAJ+6vQcFCjdDmYViFDtxSjGpIihpd5k3MCbuxkwxzUsXAw7tq1q0R5mNunyZDeU2IKZwc1SSQajF4xikUXWpaDWwrZqK1IB48Br2Xel+ynZAmRKI6dLIVlDyiF+rtfXnrpJTG5o5iYXkYzZszQ/RioIhzlIDMnS+ckxrDg+PHjoXcEBASIoIw5bg7Q1Y3MWDLZMD9frGJhlRHbdNOngIM1fQrq2vxJofbA6iP6yxw9elS0GSTRrMiyZNQ00kHBJa/hIUOG6N5JVAOJBiOPTz31VEPvSpPCO++8gy+++AJz5syRtBvFxTSz5LmgHlGvUITDDMHBwSJ6uueee6RBEr069A6mE9gVk2FNahzO5+zXGMiGOZhKadmypXSh5Xcj+eJ5I/HQe2qsKYMrsbi4OLkW+TOJPlODjSUkf6Gkg8eCqZQBAwZcVHfb+gS/2+effy6TnY2NmkpqA5mZmRV+JwmvSiTNVhATJ040LYw5Bv76668y/ukZKqVSCXfccYdEDSwltUK0bdtWVvscAOhV0FTIhjk44LVv316a83HApr6Fx4MltXoPMzYlUOgbERGBNWvWSFSKoWAKQnn9NhaycaHpFXa4pUiUFXOW0uhMS6VQLGoJ7qeWtOh1d3c3bexsXhWoZVu1ahWOHz9uMlzjmDdu3DjoGYqWniO1smTJEotIrXCfub9apIPplcr538ZMNsxBe2uGGDmRMUS9Z88eISMc/BkNUiuxhpugeA3ynGg5Z0al9O6cWdeRDq5oWf6qRXgsBdQPMIL45JNPNvSuNCpERUVJmwcNZysBf/bZZ+XaoW6G9xA1HW+88QZuvPFG6Blq9K0CHAiZWrn77rvF98ESUiskHVwhkXBwAGNoVptcmwrZqFzJwwoWdqJlO2/tGJB0tGjRosJNrVA3YGSJgmaSjPj4eNFmsKTb29u70UUzakI66DHC0DjJF0PilgLuM/UDKpVS+3Bzc6vW2PT777/j559/xi+//CILLJaQs00HSeutt94KvcKqTMWbqwQPC6MbFCBSmGNJIWsSDoKlsxRUNjWycbbzybA2w/msAuDqjMSDN6glDJo0glq6dCmuuOIK3VcvMK3H645Eg9cjSR4n1KbeOdSc+DMSxyaFDKEz7WIpBIyRKhqw3XnnndIRtqmC0QWmPO5dPxn2Lhd/PxZkF+GrYX9IhVZ1CAevG0Y5aCVv7if1008/iQBbr9D/SNtA4ADw9ddfS6ns/PnzMXXqVFgCOHmSaDDSQTtwDhDM9zVlsqGdT66sufGcMnTJkloK9RjRooaAx0j5edQMJBbs+8HjSt0MtQhcebGSSh3TipEORggYBicRsySyQTCFwvtEpVIaFrm5uWfcV7ym9N5zShGOc4AT0XfffSflRn369DENGJZAOmiaRHMsruRV+qAiuLpkGJvnk913uRqn0yyjIDxunCQZ/td7JKGhQTLLVAk3Ot+ylJMRI+oRmno042zgdcUVKCNWvM4siWwsWLBAKiGoi2rs2hu9Y8KECaLZIGklsec5oQyARQ96hkqpVAOsa2b+lSFQTlaWErplvvzYsWMyqDHqYQmpg4YCbwOSD20CZeMsrtI5KXBraF8EPaRUeIwY8tWOEcPKXO1qx8jSTLrqG7ymOIYwmkbhLImHpaQ6OaZQI8YF2DXXXIOmjoZOqWRlZYlw96+//pLIIon+9ddfL74oep6jFOGoBlj9wbTE8OHDhUXqGZUFopqmg6eZpEOt2qsHWktrEyvLFl1dXU0TK6NG9b0ybSjCQfU7oxfaseD1xFU6jwOjQXoe3PQ2QTGVYp5GsRQxN+3maUbG8ePTTz9t6N3RBRqacFgq1JK3GmBp0rx58yStMmLECFx11VXQI6oawDRNB1MGXF2xeoUVHArnBlMCTLtw42RPXQInXE4anCxIOjjg8JEbIyCWFB6vCsz/cuXEzp/cOPhx4/VPgtGrVy+J+ihNxoWBYmVqqpjCY+WUdp3URu+V+sBzzz0n9wD7TSkoXAwU4agmWF751VdfiZ6DJUhUCesJ51otaaSDeb4NGzbIa1T4u/pgRIF6Hm6clDkJaxMyrai52uExNicg/JmkRa8khN+D+619F278nWRC+x7s08BHXit6/R56B0kqy0eZZ+fxrAy9k47FixeLLxG/g1qonIlR7ofg5HrxepZcQwm+QuOHIhwXAObI2CiMj2ybrRdNRHVCs5xImIOlrwgd6RjpUNbfFw4eR/qymHuzMO1gHhkgCeHvfK02YXOwZqSAj9rG3+tqIuc+MRXIEtXKG/dNIxcaOWIkhz/rmSRZGrQeP7zvzmXqpVfSER0dLZ4OX375pbj4KihcLJSGowblSBRjMq3y5ptvNvTu1CgPzHJQikn5PVSjs7qNIJCAUA9iPvnzZ+bFiapICIksyQAnfm78me/HyYsVINrvvHW58b0qkwuGwM/2/tSjKHJRd+A54T1G2+kLucf0pOmgVufSSy+VFNDs2bMbdF/0rOGYv69j7UQ4skowtcdRpeFQqAjm6unyxggBNR2TJ09usH2p6QDF3iuceCgmZV6eqnmF2oUWPThbFKlyBML8Z/7NnFDwZ62+niF6liRqRISPTPmQPNBjxJxg1GUERaFq8Hyx8SPdbSm0vJBGbHqKdDzxxBMy+X3yyScNtg8KjQ+KcNQAbFY0d+5c3HTTTTJ59+jRo9734WJXQ9SgsMKAYlKW6zFkqian+gNJA8lrdctttSoVrphVpZE+wagAm7AxZVWdzs16JR3UbNAym2NDQ5eDKzQuKLl5DcHWwLSWZWqFddD1idoKvbKskQMjLag5UHLAVFBQuHAwbUZBNu+hYcOGXZTxWXW7zNYF+B3Yk4MmX1WJXBUULgaKcFwEnn/+eZn0p0yZYsrJ1zVqO8/LkC/9RRjKp5iU7pEKCgrVB31K1q9fLyktrU/KxaIhSAcXHkwRz5w5U8r/FRRqG4pwXASYgqDzHlc3Dz30kORv6xJ1JSpjrp/GZtQbsP9Kfa+qFBQsFeHh4eKxQXLQvXv3WvUoqU/SwTGMUVsunu677746/SyFpgtFOC4SzHEuXLgQixYtwqxZs+rsc+pawc6BkloUajlobsXVjoKCQtWgiHffvn0me/K6ai9fH6SD34Xlryz1/vjjj+vkMxQUCCUarQVQgElP+1GjRsngMHLkyFp9//oql2PEhgMcyyYpGGNvEXZWVY2aFBQqlsZrmiemI+taWFnXQlK2Nd+9eze2b9+uBMkKdQoV4aglcCD47LPPpI09Vz21hYaozadvAHO4VNszxcJHBQUFIC4uTkz/6JVAcWh9VXHUVaTjt99+w/vvvy8RWtrWKyjUJRThqEXQ9vz+++/HmDFjpA7/YtGQRkAcSAcPHiw9NEg66JqooNBUQW+UAwcOSCSAqUdu9R35q23S8d9//0k7c5IOGsopKNQ1VEqlljFjxgwxZxo7dqwo180tsC8EenAdpK6DniNc+TCEnJSUJAOtXizdFRTqAxRUMsVIMIXSkH2Iaiu9QuLEihTalo8bN66W91JBoWqoCEcd6CB4E3NgoEdHTcpM9UA2zMF25EyxsHSW0Q46ECooNAWwnwhTKCx5pWeNHpoeXmykg7brJBkvv/wybr755jrZRwWFqqAIRx2AEQC2syeuu+66CzLU0hvZ0ODo6Cils+yYSnMg9mLR7LYVFBobaDXPqAbTKGy+pjfxdE1JB6OvTPnecsstePLJJ+t0HxUUKkMRjjqcoCnECg0NFV1HdTw69Eo2zKM3bObEHhHUqDBlpKIdCo0NsbGx0hWa9ywbmAUGBkKPuFDSwYZjjGxQm/XOO+/Uyz4qKJhDEY46BPUb//77L1asWCHhS0smG+agQRhz2bRGV9EOhcYU1di5cyf27t0rEY2+fftKEzw9o7qkg99t0qRJQp6+/fbbWjUoU1CoLpT6r47BTqwkHYwKsNz0kUcesWiyoYHhZQ50rGLZs2ePlAsy9NyYWysrNO6oxv79++X+o4+O3onGhQhJmdJlo0mKX//55x/ltaHQYFCEox7QsWNH6fQ5evRo6bNgbh1siWSjchSH0Q5GOZhiadOmDdq1a6cqWRQsAhR1s508K7BoTc4FgiV2TT4b6WA5L11EOcZQ/HoxTeUUFC4WalaoJ7Ct+LJly6RclpPxXXfdZfFkwzzawfLZZs2aySoxKipK6voZvrXEwVuh8YMpQFZrHD9+XK5bS4tqVId0sDEjvYEYgVyzZo0y9lJocCjCUY9glceSJUtwxRVXSL61S5cuFk82Kms7WDpIkzD2mWA/FubC9VBKqKCgITExUYgxiTLvP5a8NhZopGPTpk1SKUf/HEY2qLdSUGhoKOVQPYMTMvOo06dPlwhHYyEbGhjRaNGiBS677DIJ33KwO3z48AWVBiso1FUPFPYLYbkrJ2amAhsT2dDA+++nn36SLrastqHOSkFBD1ARjgYATbQWL16MCRMmSBj37rvvRmMDtSrMiYeEhMhqkgZKFJnSx0OlWRTqE0VFRVKezhQK0yckw5aePjkbqNmgXTkrbaip4vdVUNALFOFoQNJBIen48eNl9U+vjsYILc1CwkG9Cgd9Eg+GeBXxUKjryTciIkJ0GkzrMaXZ2CKK5uA4QoEoNRuMLOrVP0Sh6UIRjgYEJ+Lly5eLGQ9twx9//HE0RpBYBAcHy2qLEwAHRE4A1LA05glAoWFAwy4SXHZtpk6jV69ejZ7g0meDNuVMX1IgqjQbCnqEIhwNDK662LWRQlKK2d58881GOzBy8GfZLNMsDHFv3rxZvEkY8VD+HQq1QTQSEhIkksY0CsvRSXQb6/2kISsrC1dffbW4/pJs8J5SUNAjFOHQAehouHHjRulxwAHz66+/btQ+FjQe4mTQsmVLCXezIRyFbfTvYApGQeFCiQZ7hJw4cULMrdq3by/Xlp56n9QVOF5wscKSV5INVRGmoGeoKhWdgD1KuOKntTJXK1TUN3ZQuEdhKUV89vb2QrroIZCcnFyt3jMKTRv00qDnCydalmEzZTdq1CiJojUFssEqN/ZFIXln5ZsiGwp6hyIcOgIHTK0hGgfOmrSetkQ4OTkJ8aATK82Ktm3bJuSDq1ZFPBSqEoNysmUqkg63LHHltdO2bdsmY9tNHRTTsax0mzt3rlSFKSjoHY03bm+hYEqBvVduuOEG6b/Cn5mHbgpglIOOpUytUFzK0j4+xxUrLaebwqpV4dzCSF4X4eHhpmuFJL2pNSJjRIeN2F544QU8/fTTjV6jotB40LTu1AsE+yuwXJUiRw5w1BlQZ0EXv+uuu05sys3BihPe/K+++mqF5/k73+NCWtsvWLBAqli4iqHyvCmBq1SSDq5amYtnbp4dd3kcmkKqSaEi0tLSxDGT10BKSopUnbCsnJ4uTY1scFy48sor8fHHH+N///tfjcnGucY2gvcd37vy9vbbb9fyN1JoSlARjnNg8uTJKCwsxJw5cyRsS4HWqlWrZNC79NJL8dRTT0ntuybw5MqD0QjWwJuDz/P1FwKu5r/88kshK8zT0qaYA0JTAo9Bq1atZPCjrkMLo7Pkj8/5+fmp1V0jBe+rmJgYiWiwCoMTI0mGq6srmiKYWuRkzyq233//Xfx76mps00A35MqmhE31+CvUDhThOAvS09OxYcMGIQ+0QNYsg9mEjWB1RXZ2tog8BwwYIM/xtc8++yyefPJJ8dWgKJKP1CSwidKFgpPpa6+9Jqp7DhAcAOjV0dQmWX5flvpxY4SDPVqYw+bqlueEJI86EAXLn1R537EXD300eE5JLBnJaCrajKrAa/7OO+8UUTnHpJ49e9bp2GZOLpQtun4RExODZ555RpqC8hqhhun777/HJZdcAr1CEY6zgIpvbgsXLhRCwbCjOUgCmD9m9IJ/5yps9+7dYln+6aefSrUFoxocJJh7vtAIhzluvPFG+TzmbWkTzshHY7VmPh84CdG3g1U9FJVycqJw0NPTUyYmaj2UgM6yQOJOgsGN9wrvKzZV4zltauS6MnhMeN/zfmcPGEb16npsU7CMNOPgwYNlXiHh4GKMqWfeM3pG00qAXgCYJvnhhx8k5EghJ0/u888/LxO+Bp5sLX3CFQNJAU/8sGHDTM/zkWkBriAu1quDAw5Njfi5cXFxaMpgdIMTEwdMpppINFgiSZEtI0pk/6xmUNAnSCyYImNVFkk7K7MoAqUuihoNOtA2dbLBRQtXq4xosAlbbZCN6o5tBFfPGjnRNo5zCnWHzMzMChvvk6rwzjvvSGSXEQ1GpjjHXH755SKw1zMU4TgHmMaIjY3FokWLZCAkeejdu7fcrARzyhRZ0dWQf+PvBMOU5oTjYqIb5uAES5MsCipJQJjOUTBWtzAPTaLHY81BlMSMIl6KDblK5DlSaFgw7EuSwagfiSHvLWozSBj79+8v17eqRDKCZICl8axE+eabb2o9ane+sY1gBQwrxcw3PYfrGwOCg4PFGkDb3nrrrSpfx/PGczF16lQhoiTpvE70DqsyZXRwQbjrrruwcuVK0RHQnpt5M5KORx99VG7QadOmyeqaTJM3NBsofffdd5IWqS3wlM2cOVMEpbNnz5aKGYWq9QBMu3BjyoutyJmT5ubs7AxLAgkTm/3RVdJS9AznOge8L5TupmqxLCMLXLlSHErS0RBjG7Uzjz32mGwKZ4LRBxKC+fs6wsn14klyblYJpvY4KlFa8zYPXExVlfLSUupPPPGEkA5GvzkHMd3OBn56hdJwXCAY9mXukyCpICMl2yT71wRYDO9zIymgEry2IhwaGGpmhQz3hX4d27dvFwW70i5UPEbMZ3Kj5oOra23iO3TokISHOfHREprh+8ZsJV+fYAiYFUUsu+SxZlqLVUWMynElpq7Rs4PH66abbpKFCu9pLmYaamxTaBi4ublVq68UXXYZ4WDVEsEIx8GDBxXhsFSwPIzM8Y477hAXTCq2mcJ49913MXHiRNPrSCZmzZolg4N5h0aSD4pHNXFpXYCrXTLba6+9VvKwv/32m6QWFM4EV9M8NtwYLWCjPJYCkiiykojEhOSDK3BFQC6MYPBeIcHgI6MYHDB5LPv06SPHs6l5ZdQEjCyQbNB75q+//qrT8tPqjm08lyRBle8j1Wix4REYGCgE0RxcWP3xxx/QM9SoehZwBcy88ocffiipE05SjGawLp0CK3PC8eOPP5r0G+aEg2FRRiDqElw5UlzGdA5zsMzjcTBRODuYktCiUAz7M/rBVTkHYnMCwsmSehCGTjnQNnURI1dVnISYJuFWmWBwwOMxU1GMC0uhvPLKK2LkxQXKbbfdVufXWXXHtpdfflk2c9x7772yilZoWAwePFiq88xBq4aLLU6oaygNRyMCV0ZctVDT8cEHH4hjqcKFwZyAsJcNqyeYr2XEQyMffORWnySkvjUclckFjwM3fl/tOJBckGgoglEzMF/PBQlLHBmd7NKlS0PvksIFajjSjreGWy1oODKzSuDZPkzusepEkBjZpgs1fZqoG2QKjoSRncZrUy9Y21CEo5GBzowkHHl5eTKIsZOkwsWBOgQOMBwMtAmYvzNVwNUiBaha2aD2c21PwnVBOHjrM5rDlu70wuCm/cxHVoyYEyz+zO/W1CM9tQF2d2U045prrpHohhLQWhYamnAQ9Hx67rnnxH+DZbEUkFZ2htUbVEqlkYHqctbKs5yOpbOff/45br75ZjVJXAQ48WoCVHMSYj4585FREf5MXQMJByNMVJObb1Scaz/zNSQttX1uSCQYqqdgmYSC+8NH843PcV/5PbifGmGijwwHLxInlUaqffCccJJg6pOpibpOuSo0Xlx55ZWyWRJUhKMRgw50t9xyi+hJKGytLeMghfNHI0hAGGWqPMlrP3PiITihk9AwZVN5MycjvE21MmvtOZIFEovKm2Z4xteZExzzn7mRUJBYKO+L+gGdiBnV4Lll9JH6KwXLhB4iHJYIFeFoxBg3bpyUgD7wwAOSH2a0g/k+hboFUx6VIyJVaSRITDSCUBVx4GvMIxYEByOtgqYyUan8O/dDRSgaHiSXb7zxBt577z3p8EphptK9KDRFKMLRyMGoxvz588VEiMSDP5N4qGhHw4LRi7OZ+lQFkhOq0On9YinGXwqQqidGNUgaaRBIvwQFhaYKVSDfBMBVLr06GO3gqpnRDhIPBQWFuotqsNyVlQT0tmBVgSIbCk0dKsLRhEBjsgULFkj++P777zdFOygUVFBQqN2oBsm9imooKJyGinA0wWgHy2YZ7aAugNEOGpcp7bCCwsWBVT+sDmNU46qrrhL3TkU2FBROQxGOJhztoA0uIxwUsbHT6r59+xp6txQULA4k63/++adYTbONPKMa06dPV8JQBYVKUISjiUc7aIN+9OhRscodMGCAdByksZWCgsL5QSEvq8Fo+c3uzSqFoqBwdijCoSCGT+w2u2fPHhw+fBgdOnRQaRYFhWqkT3r27CmNG0k8br/9dtWoTkHhHFB3h4IJtEFfsWKFpFk4mA4dOlSlWRQUqkifsFHdmjVrJKLx2WefndNzRUFBwQhFOBTOSLNMmTIFR44cEcIxcOBA8e+o3KZaQaGpgRHAMWPG4L777hONxsaNG1X6REHhAqAIh8JZ0yxvvfWWlPglJCRI2PjFF18U610FhaaEkydP4vrrrxedE1MobAvOsleVPlFQuDCoO0bhnGjfvr1Us6xatUrCx61bt8bMmTOlH4iCQmMGo3oPPvggunXrJj1nqNN49913VfpEQaGGUIRDoVro37+/lPz9/PPPmDt3rhCR77//3tQoTEGhsYBRPEbzGNWLi4uTpmuzZ89G8+bNG3rXFBQsGopwKFyQvmPs2LEyALOqZcaMGejevTsWLlyoKloULB6M2n3wwQfSr4b6jP/++88kEFVQULh4KMKhcMFg7vqGG24Q/w5apNODgOK5efPmqYiHgkW2Gn/nnXfQsmVLKQdnBI8VKPSlUVBQqD0owqFQY9BJ8aGHHkJERATuvvtuPPvss+Lh8fXXX6OgoKChd09B4ZxISkqS1ElISAgWLVokaRNWotDIi9E8BQWF2oUiHAoXDUdHRxHXnThxQjpkfvzxx2jVqpWIS7Oyshp69xQUKuDUqVN45JFH0KJFC+l3QrLBFMqVV16piIaCQh1CEQ6FWoOtrS1uvvlmHDhwAF988QV+//13GdRJQlJSUhp69xSaOOgtw3JWCp5ZgUKSsXz5cukjpIiGgkLdQxEOhTrReEycOBFbt27FggULsHnzZglb33PPPdi/f39D755CEwJbxC9btgzjx48XnZGNjY1cgyTDvXv3bujdU1BoUlCEQ6HOwFXjyJEjsXLlSvHwYCULhXjDhw8XIlJUVNTQu6jQiEtbP/roI9EU3XHHHejbty/CwsJEp8EIh4KCQv1DEQ6FegEdGr/55htER0djwoQJePrppyXd8vLLL0tOXUHhYkFCu2PHDtx5551o1qyZRDFoQR4ZGSmdXPmcgoJCw0ERDoV6hZeXF5566imxi/7222+lORwNlijY++eff1TUQ6FG0QxWRvXp00ciavb29pLG40ZLclZTKSgoNDwU4VBoEBgMBik//PvvvxEaGopLLrlEmsRxFfrwww+L/kOZiSmcDYWFhXLtTJ06Ff7+/kI42FQtNjYWs2bNQo8ePRp6FxUUFCpBEQ6FBkdwcLCEvBn6nj9/vjg+0tG0Xbt2UuHCHhYKChSAsrKExCIgIACPPfaYaDToncHyVoqSXV1dG3o3FRQUzgJFOBR0Vd0yYsQI0XqwbJHujyyxZfOsfv364ZNPPpHOtQpNC4cPH8YLL7wgjQOvuuoqESMz/UYR6Ouvv66sxxUULASKcCjoEg4ODpg8ebL0smADrbvuuku61rKBFqtcaCpGozGFxgfa42/ZsgXPPfccunbtKuWrPNcknCSi9Hhhq3jlnaGgYFmwKlOJcgULQlRUFBYvXizukOxeS0dTrnpZ+TJw4EDxWWiMoJh26dKluOKKK8RgrbEhJydHyqd5Xnl+i4uLxTuD55XpNTc3t4beRQWFCv133N3dkXa8NdxcDRf/flkl8GwfJgLoxnytN87RWaFR6z3YMI4bbdO1Seqaa64Rkak2SY0ePVoGBAV9k0eSKJ6/VatWiTkcySM9WgYNGtRoyaOCQlOFinAoNJowPCtbmNvnBHbs2DEJxVMTwm3IkCEWTUAaQ4SDHizr1q2TTqxr166Vpn8kFiSIJBoUgCooWAJUhKNmUIRDoVEiJiZGJjdObNxYemtOQIYOHWpRN7YlEg6eA+34cwsPDxevDO0cUIdhSedAQUGDIhw1gyIcCk2SgLDCge6n9P/gJMiNAkW9mkTpnXBwAGZ56q5du2Tbvn27HGNzgsEoU2MeTBWaDhThqBkU4VBosgRkw4YNpgly9+7dyMvLkxJcTpKMhvCRv9O5sqGhJ8LBQZHHSztufGQVCU3bNPLG3iUqgqHQWKEIR82gCIeCQnkfDqZdNAKiTaasnmCzr6o2X1/feivNrG/CQZMtijppuma+URvD1AjLkzVyoW10/FRQaArQG+F4++23pYz80UcflaaFeoWSgSsolHe2ZU8Xbtdee62JhDAtcOTIEdOE+9NPP8kjIyQccDTyQVdUTsKBgYGmjYSEFu56tQanpwU9TmgHzkc20WOkgt+PjyxNZdmx9h0p7OT37N69O/z8/Br6KygoKADSsPCrr76S+1LvUIRDQeEcJKRNmzayVUZ2drY0oNOICCdopmg4cXNLS0sTssFVvzkJ4e+033ZxcZFH85/Nn2Mah/9P91VuJD+MOpAEaD+zModpIJYHc+M+VfUzV2MaudAIRkpKinw/EgemQrhvJEysGrntttuEYJBs6FXToqCgALnPb7zxRnFnpuuu3qEIh4JCDUByQNEpt6rAfjCc5LXogbbxORIVc1JQmShcKEhINKJSFYFhiJbkgWRCIxfcSDaU14WCQs2RmVVaq++TmZlZ4XkuPM6lIXvwwQfFe2jUqFGKcCgoNGVr9pYtW8p2IWDkIjc3FwUFBfKztjGaoUU7tI0RCicnJ/ksZfOtoFB/YOSPDQRb9Imotfd0cXERY0NzsHklG1tWhXnz5onOjCkVS4EiHAoKOgKJBAcebgoKCvoEST7F09RC1RbKysrOWDicLbpBQTcFonRa5r5YClSVioKCgoKCggVh4cKFuPrqqyuI0hkFJWHhooURUj0K1hXhUFBQUFBQsCBkZWUhMjKywnO33347OnbsiGeeeUZMDPUIlVJRUFBQUFCwILi6up5BKpydneHt7a1bskFYN/QOKCgoKCgoKDR+qJSKgoKCgoKCQp1DRTgUFBQUFBQU6hyKcCgoKCgoKCjUORThUFBQUFBQUKhzKMKhoKCgoKCgUOdQhENBQUFBQUGhzqEIh4KCgoKCgkKdQxEOBQUFBQUFhTqHIhwKCjpGUlIS7r//foSEhEgjJ3aoHDNmDDZt2tTQu6agoKBwQVDW5goKOsbkyZOlI+WcOXPQunVrJCQkYNWqVUhJSWnoXVNQUFC4ICinUQUFnSI9PR2enp5Yu3Ythg8f3tC7o6CgoHBRUCkVBQWdwsXFRTa2oma7aQUFBQVLhiIcCgo6hY2NDX744QdJp3h4eGDw4MF4/vnnsX///obeNQUFBYULhkqpKCjoHPn5+diwYQO2bt2KZcuWYfv27Zg9ezZuu+22ht41BQUFhWpDEQ4FBQvDXXfdhZUrVyIyMrKhd0VBQUGh2lApFQUFC0Pnzp2Rk5PT0LuhoKCgcEFQZbEKCjoFS1+nTp2KO+64A927d4erqyt27tyJd999FxMnTmzo3VNQUFC4ICjCoaCgU7BCpX///vjwww8RGhqKoqIiBAcH4+677xbxqIKCgoIlQWk4FBQUFBQUFOocSsOhoKCgoKCgUOdQhENBQUFBQUGhzqEIh4KCgoKCgkKdQxEOBQUFBQUFhTqHIhwKCgoKCgoKdQ5FOBQUFBQUFBTqHIpwKCgoKCgoKNQ5FOFQUFBQUFBQqHMowqGgoKCgoKBQ51CEQ0FBQUFBQaHOoQiHgoKCgoKCAuoa/wdzVXkaRRoB5QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "hybrid_plant = hi.system\n", + "time_series = TimeSeries(\n", + " wind_directions=hybrid_plant.wind._system_model.wind_dirs[0:8760],\n", + " wind_speeds=hybrid_plant.wind._system_model.speeds[0:8760],\n", + " turbulence_intensities=hybrid_plant.wind._system_model.fi.core.flow_field.turbulence_intensities[0]\n", + ")\n", + "\n", + "wind_rose = time_series.to_WindRose(wd_edges=np.arange(0, 360, 3.0), ws_edges=np.arange(2.0, 24.0, 2.0))\n", + "fig, ax = plt.subplots(subplot_kw={\"polar\": True})\n", + "\n", + "hub_ht = int(hybrid_plant.site.wind_resource.hub_height_meters)\n", + "wind_rose.plot(ax=ax,legend_kwargs={\"label\": f\"Wind Speed (m/s) at {hub_ht} m\"})" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.11.11 ('hopp_v4')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.11" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "c74bd93e7545c41009c08d5ed7affbf327c670204c2ba512a009929a96f58f07" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/examples/10-tidal-battery.ipynb b/examples/10-tidal-battery.ipynb new file mode 100644 index 000000000..10f6c4afd --- /dev/null +++ b/examples/10-tidal-battery.ipynb @@ -0,0 +1,166 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Simple Tidal and Battery Hybrid Plant Example\n", + "---\n", + "In this example, we will walk through the process of simulating a hybrid renewable energy system including both tidal energy and battery energy storage." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Import Required Modules\n", + "We start by importing the necessary modules and setting up our working environment." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "from hopp.simulation import HoppInterface" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create the HOPP Model\n", + "To generate the HOPP Model, instantiate the `HoppInterface` class and supply the required YAML configuration with the technology configuration and site information.\n", + "\n", + "For the site information, the tidal resource data **must be pre-loaded** in the format given in the `Tidal_resource_timeseries.csv`.\n", + "\n", + "The tidal technology configuration requires the device rating (kw), power curve of tidal energy device as function of stream speeds (kW), and number of devices. Additionally there's a variable called `tidal_resource`, which is required for model instantiation but doesn't impact a timeseries simulation.\n", + "\n", + "Note that the tidal model doesn't come with a default financial model. To address this, you must establish the `CustomFinancialModel` from HOPP.\n", + "\n", + "The `default_fin_config` contains all of the necessary parameters for the financial calculations.\n", + "\n", + "To maintain consistency across technologies, apply the `default_fin_config` to each technology configuration. This ensures that all technologies use the same financial model throughout the HOPP Model." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "hi = HoppInterface(\"./inputs/10-tidal-battery.yaml\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Add Tidal Cost Model Inputs\n", + "Add the inputs to run the tidal technology cost model and instantiate `MHKCosts`.\n", + "\n", + "Tidal costs are available for the Reference Model 1: Tidal Current Turbine. More information about the reference models and their associated costs can be found in the [Reference Model Project](https://energy.sandia.gov/programs/renewable-energy/water-power/projects/reference-model-project-rmp/)." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "cost_model_inputs = {\n", + "\t'reference_model_num':1,\n", + "\t'water_depth': 100,\n", + "\t'distance_to_shore': 80,\n", + "\t'number_rows': 2,\n", + "\t'device_spacing':600,\n", + "\t'row_spacing': 600,\n", + "\t'cable_system_overbuild': 20\n", + "}\n", + "hi.system.tidal.create_mhk_cost_calculator(cost_model_inputs)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Run the Simulation\n", + "Simulate the hybrid renewable energy system for a specified number of years (in this case, 25 years)." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "hi.simulate(25)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Retrieve and Display Results\n", + "Access the simulation results, including annual energies, capacity factors and net present values (NPVs), and print them to the console.\n", + "\n", + "You can see that the Annual Energy Production for \"tidal\" is different than \"hybrid\". Part of that difference is due to the battery but also the \"hybrid\" system is limited by the grid interconnection limit, which in this case is less than the rated capacity of the tidal farm (interconnection limit: 22000kW and tidal farm: 22300kW)." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Annual Energy Production\n", + "{\"tidal\": 60625515.491999194, \"battery\": 62256.91807749245, \"hybrid\": 60446486.28573774}\n", + "Net Present Value\n", + "{\"tidal\": -124990852.96205442, \"battery\": -32620759.796329703, \"hybrid\": -157608702.59276733}\n", + "Capacity Factors\n", + "{\"tidal\": 31.034623078812785, \"battery\": 0, \"hybrid\": 16.377843736864506}\n" + ] + } + ], + "source": [ + "hybrid_plant = hi.system\n", + "\n", + "aeps = hybrid_plant.annual_energies\n", + "npvs = hybrid_plant.net_present_values\n", + "cf = hybrid_plant.capacity_factors\n", + "\n", + "print(\"Annual Energy Production\")\n", + "print(aeps)\n", + "print(\"Net Present Value\")\n", + "print(npvs)\n", + "print(\"Capacity Factors\")\n", + "print(cf)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "pysam6", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.11" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/examples/inputs/05-floris-wake-model.yaml b/examples/inputs/05-floris-wake-model.yaml index 158513213..eb90493b4 100644 --- a/examples/inputs/05-floris-wake-model.yaml +++ b/examples/inputs/05-floris-wake-model.yaml @@ -34,7 +34,7 @@ technologies: pv: system_capacity_kw: 50000 wind: - num_turbines: 4 + num_turbines: 3 turbine_rating_kw: 5000.0 model_name: floris timestep: [0, 8760] diff --git a/examples/inputs/08-distributed-wind-solar-residential.yaml b/examples/inputs/08-distributed-wind-solar-residential.yaml new file mode 100644 index 000000000..69c6a80b7 --- /dev/null +++ b/examples/inputs/08-distributed-wind-solar-residential.yaml @@ -0,0 +1,58 @@ +name: "Example 08 - Distributed Residential" + +# SiteInfo +site: + data: + lat: 38.087 #center of twon + lon: -106.1423 #center of town + solar_year: 2018 #year to get solar resource data for + wind_year: 2013 #year to get wind resource data for + site_details: + site_shape: "rectangle" + site_area_km2: 0.80 + aspect_ratio: 3.65 + hub_height: 24 #18m or 24m for Bergey + solar: true + wind: true + wave: false + desired_schedule: !include "residential_load_profile_MW.yaml" #Absolute desired load profile in MWe. + curtailment_value_type: "desired_schedule" + +# Technologies +technologies: + pv: + panel_system_design: !include "residential_pv.yaml" + dc_degradation: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] + panel_tilt_angle: 20.0 # corresponds to roof-top tilt angle + system_capacity_kw: 1800.0 #system capacity in kWdc + wind: + num_turbines: 56 #number of turbines + turbine_name: "BergeyExcel15_15.6kW_9.6" #turbine model to use + model_name: floris + floris_config: !include floris_v4_template.yaml + resource_parse_method: "weighted_average" #weight wind resource data based on hub-height + store_turbine_performance_results: False + adjust_air_density_for_elevation: True #adjust air density based on site elevation + layout_mode: "basicgrid" + layout_params: + row_D_spacing: 11.5 + turbine_D_spacing: 11.5 + + battery: + system_capacity_kwh: 1750 + system_capacity_kw: 700 + minimum_SOC: 20.0 + maximum_SOC: 100.0 + initial_SOC: 20.0 + grid: + interconnect_kw: 4170.0 + ppa_price: 0.01 + +config: + dispatch_options: + battery_dispatch: load_following_heuristic + solver: cbc + n_look_ahead_periods: 48 + grid_charging: false + pv_charging_only: false + include_lifecycle_count: false \ No newline at end of file diff --git a/examples/inputs/09-distributed-wind-solar-midsize.yaml b/examples/inputs/09-distributed-wind-solar-midsize.yaml new file mode 100644 index 000000000..2f1478111 --- /dev/null +++ b/examples/inputs/09-distributed-wind-solar-midsize.yaml @@ -0,0 +1,63 @@ +name: "Example 08 - Distributed Midsize" + +# SiteInfo +site: + data: + lat: 38.087 #center of town + lon: -106.1423 #center of town + solar_year: 2018 + solar_lat: 38.087 #for rooftop - center of town + solar_lon: -106.1423 #for rooftop - center of town + wind_year: 2013 + wind_lat: 37.7768 #outside of town + wind_lon: -106.033 #outside of town + site_details: + site_shape: "rectangle" + site_area_km2: 0.80 + aspect_ratio: 3.65 + hub_height: 65 + solar: true + wind: true + wave: false + desired_schedule: !include "distributed_load_profile_MW.yaml" #Absolute desired load profile in MWe. + curtailment_value_type: "desired_schedule" + +# Technologies +technologies: + pv: + panel_system_design: !include "residential_pv.yaml" + dc_degradation: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] + panel_tilt_angle: 20.0 #corresponds to roof-top tilt angle + system_capacity_kw: 5850.0 #system capacity in kWdc + wind: + num_turbines: 25 #number of turbines + turbine_name: "VestasV47_660kW_47" #turbine model to use + model_name: floris + floris_config: !include floris_v4_template.yaml + resource_parse_method: "weighted_average" #weight wind resource data based on hub-height + store_turbine_performance_results: False + adjust_air_density_for_elevation: True #adjust air density based on site elevation + layout_mode: "basicgrid" + layout_params: + row_D_spacing: 5.0 + turbine_D_spacing: 5.0 + verbose: False + + battery: + system_capacity_kwh: 4000 + system_capacity_kw: 1000 + minimum_SOC: 20.0 + maximum_SOC: 100.0 + initial_SOC: 20.0 + grid: + interconnect_kw: 16674.0 + ppa_price: 0.01 + +config: + dispatch_options: + battery_dispatch: load_following_heuristic + solver: cbc + n_look_ahead_periods: 48 + grid_charging: false + pv_charging_only: false + include_lifecycle_count: false \ No newline at end of file diff --git a/examples/inputs/10-tidal-battery.yaml b/examples/inputs/10-tidal-battery.yaml new file mode 100644 index 000000000..60149d306 --- /dev/null +++ b/examples/inputs/10-tidal-battery.yaml @@ -0,0 +1,120 @@ +name: "Example 10" + +# SiteInfo +site: + data: + lat: 47.2690 + lon: -122.55 + year: 2010 + site_boundaries: + verts: + - [3.06, 288.87] + - [0.0, 1084.03] + - [1784.05, 1084.24] + - [1794.09, 999.64] + - [1494.34, 950.97] + - [712.64, 262.8] + - [1216.98, 272.36] + - [1217.76, 151.62] + - [708.14, 0.0] + urdb_label: "5ca4d1175457a39b23b3d45e" + hub_height: 97.0 + solar: false + wind: false + wave: false + tidal: true + wind_resource_file: "" + wave_resource_file: "" + tidal_resource_file: "../../hopp/simulation/resource_files/tidal/Tidal_resource_timeseries.csv" + grid_resource_file: "" + +# Technologies +technologies: + tidal: + device_rating_kw: 1115 #[kW] + num_devices: 20 + tidal_power_curve: + - [0.000000, 0.000000] + - [0.100000, 0.000000] + - [0.200000, 0.000000] + - [0.300000, 0.000000] + - [0.400000, 0.000000] + - [0.500000, 0.000000] + - [0.600000, 10.421100] + - [0.700000, 20.842300] + - [0.800000, 39.968900] + - [0.900000, 59.095600] + - [1.000000, 89.201600] + - [1.100000, 119.308000] + - [1.200000, 160.886000] + - [1.300000, 202.464000] + - [1.400000, 259.292000] + - [1.500000, 316.120000] + - [1.600000, 392.673000] + - [1.700000, 469.226000] + - [1.800000, 570.306000] + - [1.900000, 671.386000] + - [2.000000, 802.908000] + - [2.100000, 934.430000] + - [2.200000, 1024.710000] + - [2.300000, 1115.000000] + - [2.400000, 1115.000000] + - [2.500000, 1115.000000] + - [2.600000, 1115.000000] + - [2.700000, 1115.000000] + - [2.800000, 1115.000000] + - [2.900000, 1115.000000] + - [3.000000, 1115.000000] + - [3.100000, 1115.000000] + - [3.200000, 1085.370000] + - [3.300000, 1055.730000] + # Tidal resource is required in PySAM prechecks + # this is a dummy resource profile and does not + # impact simulation when using timeseries data + # TODO: Remove once PySAM Pypi updates + tidal_resource: + - [0.000000, 0.009000] + - [0.100000, 0.031000] + - [0.200000, 0.042000] + - [0.300000, 0.044000] + - [0.400000, 0.048000] + - [0.500000, 0.049000] + - [0.600000, 0.053000] + - [0.700000, 0.051000] + - [0.800000, 0.052000] + - [0.900000, 0.056000] + - [1.000000, 0.050000] + - [1.100000, 0.052000] + - [1.200000, 0.050000] + - [1.300000, 0.048000] + - [1.400000, 0.047000] + - [1.500000, 0.043000] + - [1.600000, 0.042000] + - [1.700000, 0.040000] + - [1.800000, 0.034000] + - [1.900000, 0.031000] + - [2.000000, 0.026000] + - [2.100000, 0.023000] + - [2.200000, 0.020000] + - [2.300000, 0.016000] + - [2.400000, 0.013000] + - [2.500000, 0.011000] + - [2.600000, 0.007000] + - [2.700000, 0.005000] + - [2.800000, 0.004000] + - [2.900000, 0.002000] + - [3.000000, 0.001000] + - [3.100000, 0.000000] + - [3.200000, 0.000000] + - [3.300000, 0.000000] + fin_model: !include default_fin_config.yaml + battery: + system_capacity_kwh: 80000 + system_capacity_kw: 20000 + minimum_SOC: 20.0 + maximum_SOC: 100.0 + initial_SOC: 90.0 + fin_model: !include default_fin_config.yaml + grid: + interconnect_kw: 22000 + fin_model: !include default_fin_config.yaml \ No newline at end of file diff --git a/examples/inputs/default_fin_config.yaml b/examples/inputs/default_fin_config.yaml index eacb350a0..b11a61841 100644 --- a/examples/inputs/default_fin_config.yaml +++ b/examples/inputs/default_fin_config.yaml @@ -1,29 +1,39 @@ -batt_replacement_schedule_percent: - - 0 -batt_bank_replacement: - - 0 -batt_replacement_option: 0 -batt_computed_bank_capacity: 0 -batt_meter_position: 0 -om_fixed: - - 1 -om_production: - - 2 -om_capacity: - - 0 -om_batt_fixed_cost: 0 -om_batt_variable_cost: - - 0 -om_batt_capacity_cost: 0 -om_batt_replacement_cost: 0 -om_replacement_cost_escal: 0 +battery_system: + batt_replacement_schedule_percent: [0] + batt_bank_replacement: [0] + batt_replacement_option: 0 + batt_computed_bank_capacity: 0 + batt_meter_position: 0 +system_costs: + om_fixed: [1] + om_production: [2] + om_capacity: [0] + om_batt_fixed_cost: 0 + om_batt_variable_cost: [0.75] + om_batt_capacity_cost: 0 + om_batt_replacement_cost: 0 + om_replacement_cost_escal: 0 +revenue': + ppa_price_input: [25] # cents/kWh + ppa_escalation: 2.5 # % system_use_lifetime_output: 0 -inflation_rate: 2.5 -real_discount_rate: 6.4 -cp_capacity_credit_percent: - - 0 -degradation: - - 0 -ppa_price_input: - - 0.01 -ppa_escalation: 1 +financial_parameters: + inflation_rate: 2.5 + real_discount_rate: 6.4 + federal_tax_rate: 21.0 + state_tax_rate: 4.0 + property_tax_rate: 1.0 + insurance_rate: 0.5 + debt_percent: 68.5 + term_int_rate: 6.0 + months_working_reserve: 1 + analysis_start_year: 2025 + installation_months: 12 + sales_tax_rate_state: 4.5 + admin_expense_percent_of_sales: 1.0 + capital_gains_tax_rate: 15.0 + debt_type: "Revolving debt" + depreciation_method: "MACRS" + depreciation_period: 5 +cp_capacity_credit_percent: [0] +degradation: [0] \ No newline at end of file diff --git a/examples/inputs/distributed_load_profile_MW.yaml b/examples/inputs/distributed_load_profile_MW.yaml new file mode 100644 index 000000000..d2c713e41 --- /dev/null +++ b/examples/inputs/distributed_load_profile_MW.yaml @@ -0,0 +1,8760 @@ +- 6.91601073834396 +- 7.652079909694651 +- 8.466046516542907 +- 9.391285124931189 +- 9.9005646041258 +- 10.288427183846979 +- 10.278676599381335 +- 10.755967736834465 +- 11.400962787904815 +- 11.596971314121602 +- 11.997341633816305 +- 12.579838122549745 +- 13.247951471095586 +- 14.107296080317507 +- 14.47287343839896 +- 13.719413985576479 +- 11.84661882167167 +- 10.052948877564068 +- 8.63865137251234 +- 7.59913682246736 +- 6.521809820530946 +- 5.528022431020552 +- 5.117208091823769 +- 5.867047609524703 +- 6.91327432934153 +- 8.180885048185145 +- 9.03461986033867 +- 10.032262351951072 +- 10.550891175500922 +- 10.954047077963345 +- 10.785793502434629 +- 10.657366532111869 +- 10.665446787780278 +- 10.653577600484013 +- 10.945713136347475 +- 11.171028325337137 +- 11.842390092644134 +- 12.710701573202284 +- 12.91384474952817 +- 12.139443227536914 +- 10.822417715501528 +- 9.776772591981839 +- 8.992125596533384 +- 8.272099348676763 +- 7.710513663779936 +- 7.721916706816427 +- 7.797829836498241 +- 8.04541107117756 +- 8.977524724383565 +- 9.301915751297733 +- 9.736997525630704 +- 9.814817638191842 +- 9.757107012222548 +- 10.024151716041192 +- 9.931009657625074 +- 9.99543625176398 +- 10.180830195028179 +- 10.357964400345763 +- 10.674403626035774 +- 11.309151698322685 +- 12.182226900487587 +- 13.095979219969085 +- 13.641054934923028 +- 12.914601047010427 +- 11.622101729615883 +- 10.42050406857797 +- 9.321699382931744 +- 8.664453023185727 +- 7.909569726509561 +- 7.123524765282463 +- 7.2249446822797445 +- 8.126998987077291 +- 9.433293148387824 +- 10.21360485968953 +- 10.6639117591067 +- 11.343306462313969 +- 11.770872163864512 +- 11.95509066439679 +- 11.869234360705992 +- 12.181292605090217 +- 12.158424009879202 +- 12.339797589147295 +- 12.496239329831946 +- 12.957488195008727 +- 13.45251052624889 +- 14.383367230535697 +- 14.713686575766943 +- 13.979242658803958 +- 12.369155784837545 +- 10.860935587928639 +- 9.83267186845871 +- 8.923060229977636 +- 8.11474671368512 +- 7.755571244836189 +- 7.693082569612186 +- 8.579724085420732 +- 9.714001255095024 +- 10.410138575455441 +- 10.800216929362906 +- 11.338917607707184 +- 11.484038045357506 +- 11.694637170478789 +- 11.386158805116793 +- 11.45436754207466 +- 11.201266473390394 +- 11.314879676568786 +- 11.500255188784566 +- 11.917818132853869 +- 12.564552594335089 +- 13.25109854909718 +- 13.428762017949795 +- 12.846323982955104 +- 11.99600555393456 +- 10.710510009058268 +- 9.968541074060546 +- 9.580412489644136 +- 8.990900632694897 +- 8.314822506530339 +- 8.523690976560937 +- 8.811386722338003 +- 9.947829398471907 +- 10.67378150729451 +- 10.9466942170787 +- 11.46633608617227 +- 11.57147230752042 +- 11.70115745579212 +- 11.550527985242173 +- 11.582489485196565 +- 11.757506215444957 +- 11.743906737664123 +- 11.81717103823585 +- 12.072644542887243 +- 12.696704675602723 +- 13.350675823552523 +- 13.747799125221103 +- 13.194537894034527 +- 11.634442100199475 +- 10.168987783956903 +- 9.230750612087729 +- 8.517904576880046 +- 7.106659255436282 +- 6.069361938044534 +- 6.05959660330463 +- 6.796006682788437 +- 8.187132669080574 +- 9.145621991476089 +- 9.571120726657652 +- 10.247283147520866 +- 11.023353474592014 +- 11.260771752212957 +- 10.947083518001632 +- 11.230867286606168 +- 11.367486804828921 +- 11.434795925792534 +- 11.847660796055834 +- 12.381236575991236 +- 12.880051777871762 +- 13.526133384339545 +- 13.470036273894838 +- 12.861128782136518 +- 11.518147975378719 +- 10.294513763669055 +- 8.88424526738374 +- 7.783067640679137 +- 6.521556309611686 +- 6.0826983390428335 +- 6.230611774659519 +- 6.434169861747247 +- 7.420017949104449 +- 8.209401712022698 +- 8.378271927561702 +- 8.834345323101912 +- 8.97171936763671 +- 9.001847900494727 +- 8.97401096052479 +- 9.180538880084463 +- 9.74256386164614 +- 10.07099037653068 +- 10.770063642529804 +- 11.293546216224826 +- 11.855676284578422 +- 12.982832992461756 +- 13.31600759381267 +- 12.263422877039257 +- 10.431962090047522 +- 8.70757741942345 +- 7.522008013811027 +- 6.449908565932153 +- 5.524322602301806 +- 4.707721593446308 +- 4.753639388533657 +- 5.4884028816195185 +- 6.923667435482455 +- 7.832417528616494 +- 8.850745192933765 +- 9.32998025407155 +- 9.662971495829044 +- 9.830406430700831 +- 9.74481590543231 +- 10.051816468145923 +- 10.544163375725017 +- 10.882184026262253 +- 11.09560428585845 +- 11.658602802494393 +- 12.47072886127195 +- 13.40538011788317 +- 13.599562005587224 +- 12.62465695915546 +- 10.538599436909756 +- 9.057244427899155 +- 7.848908426182631 +- 6.668552815790694 +- 5.7562806526928965 +- 5.089015856810115 +- 4.907335795471991 +- 5.388878909049519 +- 6.775913207045906 +- 7.975522042207782 +- 8.494314861810752 +- 9.242861146870789 +- 10.39291452883672 +- 10.802224018222308 +- 10.756829661826755 +- 10.80790090186677 +- 10.732293644363583 +- 11.154406709873122 +- 11.64154477755189 +- 12.16536169117369 +- 12.878297401987421 +- 13.819462657571973 +- 14.120500906983153 +- 13.284188806452052 +- 11.327786036777349 +- 9.762511672704504 +- 8.263395115048679 +- 7.207759559303931 +- 6.008376088663368 +- 5.401285819545797 +- 5.014622135021301 +- 5.367670598560583 +- 6.349578674501673 +- 7.3402163280154955 +- 8.170794889625244 +- 8.86109488508997 +- 9.580379359537165 +- 9.711642979064976 +- 9.918401543768274 +- 10.185622703385796 +- 10.253981385161525 +- 10.363355886895445 +- 10.859998357163796 +- 11.233196746116606 +- 11.839036975996677 +- 12.834590817135494 +- 13.064788219402818 +- 12.073689607867044 +- 10.527912022792732 +- 8.965823403976296 +- 7.900353952904459 +- 6.938841729807866 +- 5.828924218067278 +- 5.0171173124399004 +- 4.780960498286715 +- 5.233993767030054 +- 6.259717498030916 +- 7.156650457653866 +- 7.965589434159642 +- 8.84812571042116 +- 9.280481651985179 +- 9.382726869290542 +- 9.458620230612457 +- 9.587124357056858 +- 9.726099883615808 +- 9.945045932367632 +- 10.159770162690958 +- 10.604900007511684 +- 11.390050006694413 +- 12.324669971014778 +- 12.501369200918575 +- 11.719006539868163 +- 10.035757835656618 +- 8.919026890475237 +- 7.798890361206986 +- 6.636248439241059 +- 5.562288409325624 +- 4.968705188472637 +- 4.790331425311789 +- 4.830614267705919 +- 6.165087865886084 +- 7.04440485154115 +- 7.683221711776052 +- 8.497540754740907 +- 9.188637508043668 +- 9.60494140529123 +- 9.941841444319337 +- 9.985603819786542 +- 10.20617515693507 +- 10.78277253448948 +- 11.380981694501264 +- 11.83676157290901 +- 12.370746999056587 +- 13.207753516756304 +- 13.64458802653657 +- 12.790411794720645 +- 10.766842249151543 +- 8.688439358741855 +- 7.302323198003925 +- 6.447445776795975 +- 5.340773120454862 +- 4.884013850626791 +- 4.3753844320761415 +- 4.4824490040122384 +- 5.309352984203062 +- 6.544840824537993 +- 7.533515180916229 +- 8.86139178006653 +- 9.611174014366739 +- 9.144984433313136 +- 9.342113265002837 +- 9.557979932292056 +- 9.697533466128322 +- 10.052261351173208 +- 10.509093797910362 +- 11.087132768513358 +- 11.731963705134893 +- 12.56299053587973 +- 12.924626329434396 +- 12.229078589063345 +- 10.920258834725098 +- 9.381811364548817 +- 8.25086725194044 +- 7.374756434146215 +- 6.256659049075165 +- 5.408587710955264 +- 5.00877989948373 +- 5.867749396817046 +- 6.829894176193227 +- 7.500047430336276 +- 8.064969259182897 +- 8.697230982771488 +- 8.888631009202692 +- 8.999821194704703 +- 8.857314469233327 +- 9.000206446187027 +- 9.025774269488625 +- 8.765001693674181 +- 9.118445166526945 +- 9.501378835135087 +- 9.944902317997103 +- 10.70186458166778 +- 11.002651408664459 +- 11.028446046090627 +- 10.260194326812494 +- 9.7073198847094 +- 9.045714417620598 +- 8.5843727751818 +- 8.144344090386333 +- 7.574361354284456 +- 7.730809017086227 +- 8.318823451284397 +- 8.76246772482629 +- 8.890623060547183 +- 9.262495661421127 +- 9.116914030728386 +- 9.054367448429003 +- 9.057451498108556 +- 9.46095079095468 +- 9.649828323962737 +- 9.418649757862404 +- 9.485402127544301 +- 9.684381544892693 +- 10.156342914791113 +- 10.775001184687978 +- 11.528794442635334 +- 11.935773582825385 +- 11.45973035464125 +- 10.699068106690707 +- 10.259960547521228 +- 9.55141759977033 +- 8.96542811917525 +- 8.165080455725372 +- 7.927962673153335 +- 7.94835677116731 +- 8.834026466077308 +- 9.254915457158608 +- 9.701229747492128 +- 10.129022219652091 +- 10.452685728792371 +- 10.912453045518598 +- 11.212464660131365 +- 11.450950043200374 +- 11.893661270362369 +- 11.639184206023497 +- 11.748940964088959 +- 11.941579130551283 +- 12.145021870539225 +- 12.682311369168055 +- 13.73600916007076 +- 14.06765693872668 +- 13.47616180990958 +- 12.40338414734634 +- 11.190490918725462 +- 10.05209225485 +- 9.304072974595389 +- 8.096914352202464 +- 7.197460250301381 +- 6.955306789678904 +- 7.44783977785767 +- 9.074434653513787 +- 10.412722304641552 +- 11.317647727030204 +- 12.330661652708025 +- 13.038824876784737 +- 13.457734698431054 +- 13.716616628268488 +- 13.660337635897342 +- 13.741420741424381 +- 13.810792469177347 +- 14.196535611817506 +- 14.753906201836514 +- 15.494138363714402 +- 16.01436628916534 +- 16.602637243367656 +- 15.608697088736918 +- 13.788122893462203 +- 11.905612323366007 +- 10.159386847937741 +- 8.477126830730073 +- 7.004484772130241 +- 6.128397291056481 +- 5.810259698244079 +- 6.396912382158379 +- 8.052114637505424 +- 9.361495015116587 +- 10.63239236045147 +- 11.678242918417249 +- 12.16420171226572 +- 12.489682767781309 +- 12.612016378878687 +- 12.929822877011551 +- 13.009333192592525 +- 12.987210054324878 +- 13.058018701643569 +- 13.661707696309668 +- 14.425709110607771 +- 15.155874360293017 +- 15.197848001447525 +- 14.306327158514186 +- 12.667474297036254 +- 11.098007334314323 +- 10.00709493641003 +- 8.870429377701504 +- 7.807325623248299 +- 7.155440129566563 +- 7.188812401244753 +- 7.57041646310025 +- 8.413732496839216 +- 9.224620216668043 +- 10.10830831823781 +- 10.593040080381053 +- 10.694420551712314 +- 10.524153788206808 +- 10.174791098315257 +- 10.409392589258767 +- 10.482563145150293 +- 10.666209786419909 +- 10.884330662173342 +- 11.398230590542116 +- 11.908345990081704 +- 12.767262277913058 +- 13.32121703002448 +- 12.553090904399792 +- 10.862825498626352 +- 9.808154744558617 +- 8.936325818434598 +- 8.047995068721617 +- 7.393215833051149 +- 6.798722545849936 +- 6.576731170208637 +- 7.293237571579648 +- 8.645294344897184 +- 9.965202000572356 +- 11.154672422646152 +- 12.168071287925402 +- 12.453992169117496 +- 12.735193615136879 +- 12.833501944367047 +- 12.996196771761888 +- 13.268405942204225 +- 13.26214566284096 +- 13.53419444035057 +- 13.869711855633854 +- 14.653185856729428 +- 15.739337289472363 +- 16.080021761110533 +- 15.269437156819391 +- 13.896772453399228 +- 11.936209854924888 +- 10.591169550271704 +- 9.599536029004867 +- 8.335521223060766 +- 7.229959664527586 +- 6.747350299682033 +- 7.108509545294538 +- 8.097802691631493 +- 9.368699597270759 +- 10.669470265978761 +- 11.529565828970025 +- 12.36267385176292 +- 12.669497413639975 +- 12.610876332300661 +- 12.928242475730242 +- 13.084409335648461 +- 13.343868136550373 +- 13.790910504879827 +- 14.196143468835615 +- 15.14508709397728 +- 16.250354401232773 +- 16.673862816560668 +- 15.370752701991185 +- 12.95323586232515 +- 11.219084735903643 +- 9.95992630411194 +- 8.86274055042398 +- 7.354256761434575 +- 6.411611163919687 +- 6.265331796551759 +- 6.536977249707687 +- 8.135208958002995 +- 9.730832286123864 +- 10.70653191426642 +- 11.635220232073726 +- 12.467937368269828 +- 13.013740290967018 +- 12.907043190307132 +- 13.391751299695919 +- 13.528455012699867 +- 13.749690224135087 +- 14.178011939437857 +- 14.794349567225012 +- 15.452093114421853 +- 16.135256244367504 +- 16.1459719026033 +- 14.96977952873222 +- 13.0163618774358 +- 11.183340899486433 +- 9.442484560108936 +- 8.119372641069596 +- 6.87553276546418 +- 5.8901891983496295 +- 5.700779847731274 +- 6.180243858820246 +- 7.133316841458478 +- 8.46524381576202 +- 9.470536508889937 +- 10.353549049876442 +- 10.916169695101265 +- 11.802648850136192 +- 11.877805554925505 +- 11.95020854642094 +- 12.232322877927901 +- 12.323597877458788 +- 12.625422371847804 +- 12.915214886005414 +- 13.498750607825123 +- 14.001465506358374 +- 14.1571404856984 +- 13.143997941267699 +- 11.149533091580212 +- 9.55989724712964 +- 8.42585360799318 +- 6.841228651708437 +- 5.76820703750148 +- 4.978004315045402 +- 4.526143125636837 +- 4.924694080377023 +- 6.123058700856359 +- 7.271134598711584 +- 8.256542443274038 +- 9.018179545435983 +- 9.69815834256307 +- 10.309736942568264 +- 10.530666654615338 +- 10.47470609735085 +- 10.762369479911449 +- 11.127302443937184 +- 11.433659386499023 +- 11.97137845064539 +- 12.456456925264394 +- 13.194314261950407 +- 13.168926530305558 +- 12.196493132466626 +- 10.598634039246184 +- 9.279514772559835 +- 7.8196169397840976 +- 6.783911194563883 +- 5.7115129063111665 +- 4.985488125121018 +- 4.5558491587620376 +- 4.843423516825937 +- 5.781213607927146 +- 6.914625074828164 +- 7.748838452342319 +- 8.448861325498832 +- 9.342502834672555 +- 9.741120178171009 +- 9.63987263947608 +- 9.696440240743406 +- 9.83419291293177 +- 10.01935664304739 +- 10.335272314034272 +- 10.691880460177156 +- 11.252823213313164 +- 12.297799177979705 +- 13.010499335680556 +- 12.332861188487113 +- 10.93063857634575 +- 9.391167138459906 +- 8.03945943213333 +- 7.062106880044916 +- 6.1446985166980985 +- 5.446229457726686 +- 5.114666936997675 +- 5.579689084749062 +- 6.240058447932657 +- 7.331454801877195 +- 8.214549198581107 +- 8.996169745309844 +- 9.305085536307118 +- 9.772224800474655 +- 9.91208861666365 +- 10.226346854046637 +- 10.415915255178964 +- 10.634386862429729 +- 10.866346301239629 +- 11.283717465679624 +- 11.923457334135483 +- 12.631500412566789 +- 12.87550172541711 +- 12.281350155612778 +- 11.172121181196385 +- 9.86935591174236 +- 8.971673211278116 +- 8.516106880065866 +- 7.217035413597681 +- 6.287102695077401 +- 6.228522909340914 +- 6.642083913925087 +- 7.4505896700643515 +- 8.279138466450512 +- 8.96031921177879 +- 9.636817795684323 +- 9.664213037427189 +- 9.684707380071735 +- 9.66844684709126 +- 9.751172417621333 +- 9.677464710663601 +- 9.767340688183006 +- 9.885336506408146 +- 10.12942961908328 +- 10.630978766027413 +- 11.047305830925916 +- 11.287894476322489 +- 10.916589097259681 +- 9.694126410745424 +- 8.595342754655363 +- 8.009887014407493 +- 7.52308410632151 +- 6.866348730462319 +- 6.188556509413631 +- 6.125852048844464 +- 6.361558979054606 +- 6.892045451031188 +- 7.3853497247176705 +- 7.949893340344857 +- 8.765327122162125 +- 9.301382553532324 +- 9.290947050877449 +- 9.077276594790337 +- 9.081503074356453 +- 8.951530920222217 +- 8.923681034731505 +- 9.33687582721339 +- 9.895177678775022 +- 10.667847149831069 +- 11.317986329003485 +- 11.493867552745156 +- 10.924982154617501 +- 9.502955870396914 +- 8.411708581828721 +- 7.5469405871609085 +- 6.980690851723923 +- 6.239407802658772 +- 5.817101002370677 +- 5.519465879536605 +- 5.896757412354901 +- 6.7292176329082904 +- 7.4804021074213916 +- 7.961217158454405 +- 8.672054871244434 +- 9.17233661975338 +- 9.475010253877826 +- 9.744474396617855 +- 9.826947087733519 +- 10.002233479931702 +- 10.216799228039081 +- 10.670895110971346 +- 11.098657996969223 +- 11.829706098078729 +- 12.721355502257612 +- 12.949571395130079 +- 11.880781263969247 +- 10.377280870992257 +- 8.712849426304109 +- 7.828449522427237 +- 7.088296856131435 +- 6.114058084639062 +- 5.593866426945553 +- 5.455906093806126 +- 5.448014399044954 +- 6.133394776011473 +- 6.888479492244021 +- 7.551670864107162 +- 8.180865264128029 +- 8.879090245605273 +- 9.22614075753814 +- 9.340169178735811 +- 9.421900961970692 +- 9.654786356989126 +- 9.814923932169876 +- 10.13892020689607 +- 10.350323226460334 +- 10.805064334809314 +- 11.406177956872584 +- 11.437890245140883 +- 10.645609987270063 +- 9.018200598389944 +- 7.674821454714865 +- 6.932963885402113 +- 6.007780769235367 +- 5.299013516540143 +- 4.542498075644873 +- 4.782863780800799 +- 5.322442130723729 +- 6.031199679685088 +- 6.711085354635691 +- 7.315826483397036 +- 7.886525202297114 +- 8.200746672501827 +- 8.394420237174367 +- 8.396094084337673 +- 8.507924803303094 +- 8.610089755325799 +- 8.787844898723707 +- 9.214486801585101 +- 9.716566742081026 +- 10.190491423540754 +- 10.97264171414713 +- 11.131073063713451 +- 10.378482122430404 +- 8.965013266571031 +- 7.734396360333993 +- 6.650151456970269 +- 5.658204091368905 +- 4.739954203002913 +- 4.142101777611279 +- 3.9555257800020627 +- 4.432285490751616 +- 5.431985549959365 +- 6.218976165093333 +- 6.8030035506160536 +- 7.170881787229448 +- 7.380694966496248 +- 7.61823092060812 +- 7.6439972751825005 +- 7.992632644729509 +- 8.219890379141457 +- 8.481905270516089 +- 9.133970421078518 +- 9.906011683443511 +- 10.727538917382383 +- 11.557897409373613 +- 11.739121041093107 +- 10.92833832753428 +- 9.478027942220367 +- 7.996673816516095 +- 7.061284656326856 +- 6.368449790107868 +- 5.625220679234232 +- 4.989044563828221 +- 5.014494915681654 +- 5.6488768273199845 +- 6.5974805494830875 +- 7.5769188289569875 +- 8.204107562279196 +- 8.601968952393115 +- 8.84945481630156 +- 9.24225219791653 +- 9.474196422486102 +- 9.515182207001084 +- 9.685000911550587 +- 9.9915246828133 +- 10.436249607196418 +- 11.077919620837271 +- 11.734677297280196 +- 12.272795015591246 +- 12.437636392884777 +- 11.586634587090671 +- 10.090016905376231 +- 8.699580200009386 +- 7.569507497171534 +- 6.571275941409619 +- 5.816408383164496 +- 5.097967217043009 +- 4.691820718591979 +- 4.945670868519927 +- 5.75373688495457 +- 6.950223709892624 +- 7.808562986607897 +- 8.510671735473025 +- 9.171610302771223 +- 9.50414192463499 +- 9.718591549983344 +- 9.979133320506433 +- 10.17453227098815 +- 10.412902203746055 +- 10.733524840545346 +- 11.402152667896011 +- 11.860313712908352 +- 12.317767570967863 +- 12.649199958457961 +- 11.953354260043985 +- 10.60357444640635 +- 9.087066643291848 +- 7.874602541735356 +- 7.154631231794419 +- 5.8773262387179654 +- 4.993320909782992 +- 4.7579084979369695 +- 5.126950154096945 +- 5.9149813491135825 +- 7.084192381407891 +- 8.066864009969313 +- 8.436282106069015 +- 9.042833033350659 +- 9.43276385886952 +- 9.475438182093507 +- 9.90486423451714 +- 10.088368543654981 +- 10.374558242469366 +- 10.732670717426029 +- 11.213486640149712 +- 11.659553899872979 +- 12.24209146290612 +- 12.348619903298193 +- 11.424877114743525 +- 9.835808846257686 +- 8.641678231050546 +- 7.628050328002101 +- 6.642521260222821 +- 5.776670166876646 +- 5.136732513638502 +- 5.186013811978582 +- 5.407177961043038 +- 6.2689810680484435 +- 6.981352087136337 +- 7.783651055526454 +- 8.291449209574747 +- 8.64000934122975 +- 8.838680893788744 +- 8.82416960026157 +- 8.992566968873929 +- 9.154705115106708 +- 9.369931470806577 +- 9.83486885267648 +- 10.299416617626322 +- 10.967707923569899 +- 11.587942478381116 +- 11.729465093440835 +- 10.905957236598915 +- 9.7991817228312 +- 8.767902446229686 +- 7.892672278637485 +- 7.11859873106194 +- 6.3266678484149415 +- 5.871911487568607 +- 5.827178297983112 +- 6.195202419983809 +- 6.790755053624985 +- 7.4470925839039355 +- 8.091835257241055 +- 8.58638500891585 +- 8.901756262574402 +- 9.051758806484344 +- 9.157273863071845 +- 9.095327610326294 +- 9.132338703263393 +- 9.390816692209919 +- 9.829295580787106 +- 10.176148881768693 +- 10.817575739116739 +- 11.570415088918224 +- 11.702883049945735 +- 10.942228359146004 +- 9.367178629441367 +- 8.360129976285986 +- 7.496007555401886 +- 6.457131922640281 +- 5.40217047385206 +- 4.5412046398461445 +- 4.308066401849102 +- 4.726796484900634 +- 5.458057306922864 +- 6.253932772095508 +- 7.248244468282217 +- 7.774371304167739 +- 8.214813249052222 +- 8.820656216069288 +- 8.949757081313626 +- 9.203477423658999 +- 9.494404855635096 +- 9.779904145762757 +- 10.195847643651806 +- 10.794856753698514 +- 11.568981052211505 +- 12.144207332003457 +- 11.986124289024746 +- 10.854911531345167 +- 9.379172056465055 +- 8.185626945260266 +- 7.216475438653102 +- 6.156936918535725 +- 5.226589020491192 +- 4.186825769579851 +- 3.824447572786892 +- 3.952577129324501 +- 4.921199886690146 +- 6.054231408880901 +- 7.10846885441775 +- 7.969173269718439 +- 8.436519581080814 +- 8.810964566356533 +- 9.099606836517722 +- 9.150863060790426 +- 9.52854528375159 +- 9.780170287895068 +- 10.137497522082073 +- 10.557878493979247 +- 11.095648630283653 +- 11.766082128330655 +- 11.944346402001488 +- 10.976307878744704 +- 9.310369179352435 +- 7.863317299551988 +- 7.017315015467836 +- 6.081608492477424 +- 5.043485211055945 +- 4.138691644620482 +- 3.6480409916980885 +- 3.8279755128933948 +- 4.560561373773268 +- 5.401276386950882 +- 6.5866037196497444 +- 7.243197506761496 +- 7.836118465592745 +- 8.295473195039877 +- 8.29617714063931 +- 8.642286491029477 +- 8.832107978945249 +- 9.189935655069448 +- 9.566388675760164 +- 10.143906316814158 +- 10.724176971776641 +- 11.464925497076669 +- 11.38623822963285 +- 10.694717604626534 +- 9.632158762970548 +- 8.251594227999552 +- 7.460023352554069 +- 6.408335936751388 +- 5.380167600614356 +- 4.4759963341818985 +- 4.1261194797642 +- 4.5260851029177225 +- 5.045173876062348 +- 5.852155406938373 +- 6.630008065450196 +- 7.2725412109074545 +- 7.896328190678039 +- 7.969204086665573 +- 8.176032219920664 +- 8.514285338370685 +- 8.839274555768489 +- 9.212496826616857 +- 9.66380963448119 +- 10.099289333240334 +- 10.734395994353477 +- 11.24845674070811 +- 11.177027446977682 +- 10.32910787044146 +- 8.690045211398138 +- 7.150111117683365 +- 6.3468980375066595 +- 5.433430027868077 +- 4.8151941364189295 +- 4.29518490958339 +- 4.115547629217671 +- 4.331357247880829 +- 5.148579986360838 +- 5.6141928446730915 +- 6.122162685497587 +- 6.62966843958489 +- 6.909197243885204 +- 7.281551074585309 +- 7.060132596019378 +- 7.290245098616197 +- 7.432241521758168 +- 7.7558993051559275 +- 8.296025842032853 +- 8.946043132374047 +- 9.734370109465035 +- 10.477865944703131 +- 10.403480403168844 +- 9.695326281060861 +- 8.222325772769077 +- 7.29277357230627 +- 6.362122395245593 +- 5.461589721768915 +- 4.844013032691184 +- 4.20685043917506 +- 4.123835406890562 +- 4.314771148801051 +- 4.736886726192508 +- 5.8161722495960175 +- 6.650958444501621 +- 7.017810320482371 +- 7.75285297647729 +- 8.016749021899832 +- 8.017223251632984 +- 8.193729056125154 +- 8.548700140978 +- 8.940414086563274 +- 9.126882484169057 +- 9.46729478953865 +- 9.874391033305939 +- 10.643042589149381 +- 10.476476998883053 +- 9.56320675854629 +- 8.424366556345683 +- 7.227536260689736 +- 6.308484643280609 +- 5.510954747347604 +- 4.75265221558229 +- 4.05046096318427 +- 3.7099574204510266 +- 3.70082855331492 +- 4.178331976037658 +- 5.1105410694124025 +- 5.738122504854757 +- 6.543516509402086 +- 6.9665976096280495 +- 7.338038088461115 +- 7.408674365748969 +- 7.571658109939883 +- 7.899308547850414 +- 7.962309696056173 +- 8.397948505104802 +- 8.881800925622247 +- 9.562355817200375 +- 10.448317170146245 +- 10.257143562179808 +- 9.22603289998348 +- 7.950691448201635 +- 6.687789882537907 +- 5.683359978125334 +- 4.706886765069419 +- 3.9291072069179616 +- 3.4984916762746656 +- 3.6950253672416573 +- 4.259593367854537 +- 5.044616155852938 +- 5.693099804546052 +- 6.167024555237168 +- 6.994421760209278 +- 7.470961246595942 +- 8.175974336393928 +- 8.207178457567263 +- 8.279533480691367 +- 8.428670458152265 +- 8.662847919295901 +- 9.084763216637686 +- 9.664642093758493 +- 10.376577393456076 +- 11.309708246229809 +- 11.049978434718014 +- 9.574259373723889 +- 7.822739129096455 +- 6.765174981544415 +- 5.783315360479284 +- 4.861681667908827 +- 4.144772428472 +- 3.6099132661314766 +- 3.447850942291005 +- 3.797048287498395 +- 4.528787925944345 +- 5.377799811330066 +- 5.922340859094083 +- 6.421943161382758 +- 6.983097796457054 +- 7.5780605580648475 +- 7.63205945415257 +- 7.816238850956774 +- 7.980648660507453 +- 8.300412789541848 +- 8.6533800374574 +- 9.181436146295356 +- 9.665737431984512 +- 10.575438403107995 +- 10.657916713482228 +- 9.50443250140111 +- 8.021602209316795 +- 6.822273525083317 +- 5.822648907567878 +- 4.829937626207092 +- 4.057140373075378 +- 3.686766919067901 +- 3.588301320737552 +- 3.8078385232486767 +- 4.519119716242704 +- 5.2041011584999985 +- 5.907002699773851 +- 6.666858914478259 +- 7.055875544878561 +- 7.342072276581528 +- 7.435321050026585 +- 7.699949098219568 +- 7.749342318868899 +- 8.037197030722941 +- 8.28340636794029 +- 8.840916133766868 +- 9.300137366361188 +- 9.602434324600313 +- 9.511970084415271 +- 8.412315196342663 +- 6.913973088536666 +- 5.991838992357567 +- 5.31846255781015 +- 4.417128445774561 +- 3.575762914921019 +- 2.9605697158725386 +- 2.7511655071264176 +- 2.870406089962284 +- 3.4889604474712135 +- 4.0492986361611045 +- 4.406662148023981 +- 4.866414237998136 +- 5.555610497781988 +- 5.808843551621861 +- 5.852136742140995 +- 6.003560431233613 +- 6.3825851930681825 +- 6.718886594491326 +- 7.0830231277867695 +- 7.54868005997745 +- 8.20321368630233 +- 8.6434763641581 +- 8.740764007599758 +- 7.948129127220288 +- 6.451794703414245 +- 5.381436482069594 +- 4.657409389831131 +- 4.157588918997127 +- 3.4446910696772455 +- 3.0314410193808805 +- 2.77687411204242 +- 2.8078800720530213 +- 3.2086897331121005 +- 3.889004566622102 +- 4.476492807821625 +- 5.041710227771372 +- 5.369449948654959 +- 5.6121986626885825 +- 5.696704280430263 +- 5.96713171655235 +- 6.3121568396647305 +- 6.493878271811376 +- 6.990757661030382 +- 7.7275186523134565 +- 8.374934374216517 +- 9.004779025390006 +- 8.791505484759984 +- 7.7354481655371305 +- 6.595062172768841 +- 5.587346946576423 +- 4.8708330110401095 +- 4.444257600061172 +- 3.8302184577164056 +- 3.1307514547822053 +- 2.9464429120656863 +- 2.9657350793902837 +- 3.4003339611248076 +- 4.187136602957991 +- 4.8596612218967605 +- 5.615499600747339 +- 6.207210885915727 +- 6.580133458749876 +- 6.794318630808634 +- 7.04435623576662 +- 7.145415334297498 +- 7.537805390285845 +- 8.03520592718432 +- 8.506305667999277 +- 9.322210310178258 +- 10.160111800345826 +- 10.225888769615514 +- 9.064506719678128 +- 7.389552946655056 +- 6.135627487868549 +- 5.081261354939611 +- 4.239684650851619 +- 3.606400777995259 +- 3.129395628154 +- 3.01448979917025 +- 3.0541294269115276 +- 3.5012038153563787 +- 4.13912125313251 +- 4.941739511026085 +- 5.670448897934418 +- 6.0212124221540835 +- 6.632257510006814 +- 6.723227391283083 +- 6.8733325278226 +- 7.260029071603397 +- 7.678096804439769 +- 8.190808514000791 +- 8.858216345691247 +- 9.758609581402439 +- 10.29566059184702 +- 9.960899543356708 +- 8.935833312730344 +- 7.591962920711525 +- 6.551591175797435 +- 5.6310645347876065 +- 4.777958052176707 +- 4.201797226399311 +- 3.457060530499276 +- 3.1489336432547046 +- 3.193066973205497 +- 3.4553949446464878 +- 4.166000034829641 +- 4.8144997546816555 +- 5.469873124807434 +- 5.71776838210087 +- 5.979691119425566 +- 6.043624969725793 +- 5.968364323625585 +- 6.106156438807339 +- 6.091170183857664 +- 6.493942586916314 +- 7.0321202309045985 +- 7.8550454907227625 +- 8.326512346984359 +- 8.383897342571569 +- 7.4471219529528385 +- 6.504416606118523 +- 5.8151859688146725 +- 5.430092143000626 +- 4.868177266303056 +- 4.3784410603007045 +- 4.082631671493131 +- 4.080366042200893 +- 4.693169816324222 +- 5.323863797258005 +- 6.0158009915001305 +- 6.394448357700829 +- 6.8731772392761945 +- 7.460583136093897 +- 7.508481212688256 +- 7.575761921547374 +- 7.582145606012246 +- 7.5773991584443765 +- 7.786615984147567 +- 8.153934137606175 +- 8.78368790802547 +- 9.594863848429236 +- 10.2563280720605 +- 10.285613336055436 +- 9.890413951844241 +- 8.911335425552485 +- 8.354985021063149 +- 8.115050113632172 +- 7.801279676600135 +- 7.089461455088685 +- 6.543077205023237 +- 6.40716723788305 +- 6.765703501615767 +- 7.30110990409326 +- 7.488145794223425 +- 7.791923097657698 +- 8.236786884407694 +- 8.438475719651647 +- 8.539645077769775 +- 8.328951438174961 +- 8.481340818463224 +- 8.562296663670674 +- 8.75004972435274 +- 8.944526781538062 +- 9.35103475429668 +- 9.854302667715077 +- 10.336993871851208 +- 10.451114484777078 +- 10.038649784861702 +- 8.90520448428619 +- 8.19550338828476 +- 7.520142469945913 +- 7.391310130684325 +- 6.8669806622370775 +- 6.671352139834546 +- 6.769636628574797 +- 6.900388621224906 +- 7.418435316615378 +- 7.80827482835148 +- 8.069440086219 +- 8.207077242058169 +- 8.198942602563157 +- 8.033095658868783 +- 7.800434757339085 +- 7.880121902477029 +- 7.808345125740091 +- 7.958393850641077 +- 8.172060504777322 +- 8.671079762299678 +- 9.20039636029558 +- 9.564923987419407 +- 9.401470325486049 +- 8.860612904815758 +- 8.42770513770913 +- 7.774960510673868 +- 7.6493844139559295 +- 7.453815165441964 +- 7.15523132364734 +- 6.912135538181007 +- 6.602513595233552 +- 6.652603699692012 +- 7.207183047513736 +- 7.679421819328669 +- 8.668219314523213 +- 9.011271977079778 +- 9.448412301451995 +- 9.652883603381971 +- 9.582007709672444 +- 9.777324982687286 +- 10.004811160370348 +- 10.427085949319597 +- 10.829716281474791 +- 11.572881479527876 +- 12.423696210316375 +- 12.936231861631073 +- 12.814155781904697 +- 11.816213948937817 +- 10.206358437111618 +- 9.071363744436853 +- 8.467576152223058 +- 7.752292767913368 +- 6.634219296420616 +- 5.79510666278243 +- 5.8856873642621945 +- 5.927333287013672 +- 6.543687477513535 +- 7.024289338119175 +- 7.758422629657412 +- 8.72821383849661 +- 9.296184845514349 +- 9.354965551127139 +- 9.681208413100713 +- 9.755223187228777 +- 10.118467712896496 +- 10.553052636371314 +- 11.198393513859132 +- 11.821137566036333 +- 12.464554362913464 +- 13.212488039597087 +- 13.00115431187583 +- 12.066923888381561 +- 10.554981406717424 +- 9.3964969809164 +- 8.33385078043321 +- 7.413921643596503 +- 6.454702763486671 +- 5.448910046995361 +- 5.26960959523607 +- 5.391304469539715 +- 6.069100787155345 +- 6.982241348208049 +- 8.005838247509157 +- 8.781955935494862 +- 9.306965561538851 +- 9.460149058075785 +- 9.575824421976959 +- 9.884487964139522 +- 9.956323271518112 +- 10.226942537076283 +- 10.533490064196393 +- 11.066271820345834 +- 11.691159577002988 +- 12.185965167499925 +- 11.763757861595487 +- 10.443573169685905 +- 8.95248159329851 +- 7.733483781453575 +- 6.917656039642799 +- 6.209721112919656 +- 5.320097857414903 +- 4.4856468948731445 +- 4.359922454499483 +- 4.652511810016831 +- 5.439822673483606 +- 6.3942485627256165 +- 7.035598164150745 +- 7.875675298045395 +- 8.25784312708122 +- 8.122327989119052 +- 8.215622767522488 +- 8.226465232744236 +- 8.159274361647816 +- 8.180697566207984 +- 8.416486774407662 +- 8.851156451072328 +- 9.484401499198789 +- 10.217413912863265 +- 9.683020293371575 +- 8.629910593551024 +- 7.5605258369945 +- 6.656667331488268 +- 5.820032350916571 +- 5.132386385767377 +- 4.271434386851148 +- 3.8582276147281256 +- 3.756811556705254 +- 4.025665279216242 +- 4.47300702755386 +- 5.074832575665206 +- 5.514155328679534 +- 6.372096976502039 +- 6.503095359972624 +- 6.798483239617558 +- 6.875474122292746 +- 7.01949682109339 +- 7.008264906453499 +- 7.280930826600968 +- 7.650098177140792 +- 8.222771296807368 +- 8.775570529298948 +- 9.64804873213616 +- 9.53180700800836 +- 8.748903975956265 +- 7.683873627334475 +- 7.149342268968066 +- 6.945921643966937 +- 6.565796320770144 +- 5.8932366657685105 +- 5.336019840266855 +- 5.091044730355298 +- 5.365527686166707 +- 5.936112346251589 +- 6.409789362844259 +- 6.977753994165442 +- 7.156179017378457 +- 7.332445118381794 +- 7.502476103289162 +- 7.661078733165159 +- 7.377365770405856 +- 7.334324360586659 +- 7.505242581209691 +- 7.838382564608972 +- 8.391369367820849 +- 9.110244745521483 +- 9.601686249074326 +- 9.605829813446602 +- 9.041734192542926 +- 8.147206224475925 +- 7.274143056541066 +- 7.155608856847898 +- 6.79081231558656 +- 5.838110884176934 +- 5.155907202710449 +- 4.920922013344995 +- 5.3536743431563885 +- 5.7277139510631025 +- 6.501312626464323 +- 6.988412237204796 +- 7.280085410287803 +- 7.930785351875221 +- 7.968640354361259 +- 7.986886925414779 +- 8.180190087900634 +- 8.431227493620794 +- 8.753727855083058 +- 9.056030836678552 +- 9.460148890690059 +- 10.22827264459281 +- 10.91724688595861 +- 10.448185498655905 +- 9.179272569073238 +- 7.7780232691857005 +- 6.407127927999358 +- 5.862657486837831 +- 5.0758620245616095 +- 4.177068177696064 +- 3.5386450411336474 +- 3.3276869118849506 +- 3.476920174484553 +- 3.5989363416085696 +- 4.289795043988068 +- 5.051234304886074 +- 5.6371783661862125 +- 6.065287934140247 +- 6.442339781247383 +- 6.3977621049929905 +- 6.676603100385831 +- 6.879116201252542 +- 7.331722366799295 +- 7.7600062175814 +- 8.247827425575286 +- 8.901895795049517 +- 9.893297906500095 +- 9.498506900688032 +- 8.118636668600569 +- 6.724890911392053 +- 5.826853096244124 +- 5.337436669710197 +- 4.504050920377955 +- 3.811469459302654 +- 3.4001101776985605 +- 3.1226497564955706 +- 3.2488549627137098 +- 3.9384107087809967 +- 4.818928188389292 +- 5.3206401091188145 +- 5.768554878677231 +- 6.1591802740073955 +- 6.24996471885143 +- 5.95375332744965 +- 6.146269669746769 +- 6.183005933616958 +- 6.265973972857826 +- 6.376927181872786 +- 6.673994626693936 +- 7.108844165607192 +- 7.752128347616047 +- 7.660692679310691 +- 6.621173251686443 +- 5.835575703167468 +- 5.366603665851319 +- 4.977472113462474 +- 4.392815058759395 +- 4.048558863287576 +- 3.9094876958657427 +- 3.5653611077739558 +- 3.9317527103382344 +- 4.546551061246657 +- 4.984605464935027 +- 5.512012506855627 +- 5.790940877365087 +- 5.969955839712132 +- 5.793122784771792 +- 5.609100060526099 +- 5.701838373429244 +- 5.727442466626813 +- 5.787463166801951 +- 6.051367049941089 +- 6.405635908911002 +- 6.879585964192523 +- 7.383499950836712 +- 7.27940377608664 +- 6.345769538387017 +- 5.331969832601314 +- 4.683326206355986 +- 4.078535310956973 +- 3.5335092518662354 +- 3.1023400586597396 +- 2.725793346852024 +- 2.628518910505832 +- 3.0344160125408806 +- 3.3647423849031664 +- 3.8882692938926446 +- 4.415168652867609 +- 4.931267693067354 +- 4.932536586730435 +- 4.953307498984124 +- 5.0234366977641 +- 5.241832403559866 +- 5.305361469450617 +- 5.355473322108762 +- 5.616537164481409 +- 6.110778034379836 +- 6.924277401352174 +- 7.6563626869684 +- 7.74893629797493 +- 6.61498955603617 +- 5.504088303264365 +- 4.986086853996513 +- 4.173143513450077 +- 3.579744643894763 +- 2.947565136114615 +- 2.5683168063200434 +- 2.3876850602368975 +- 2.470891128303795 +- 3.0585506270364275 +- 3.825656270651674 +- 4.706308617270112 +- 5.269625302460371 +- 5.571374958460762 +- 5.754051509492482 +- 5.687315151844263 +- 5.8850088674734895 +- 6.165475706132003 +- 6.547372576445179 +- 7.008202120202211 +- 7.404160522092981 +- 8.118413266762596 +- 8.993828057925501 +- 8.47448843652253 +- 7.669136178701595 +- 6.462589728362657 +- 5.173062725423603 +- 4.272515416637067 +- 3.65142486189036 +- 2.83963676117788 +- 2.2522603242460963 +- 2.3026876058947408 +- 2.405663732781218 +- 2.4587842934446367 +- 3.080030733250375 +- 3.6087618246215762 +- 4.074194673850379 +- 4.3400583137277025 +- 4.747772477742926 +- 4.991079578337771 +- 4.988679210666862 +- 5.2332388464671356 +- 5.3863131144462795 +- 5.863765665813519 +- 6.203589039363409 +- 6.857523314872213 +- 7.2520625824235045 +- 7.363005329006273 +- 6.753842795640398 +- 5.998010197041926 +- 4.931769299476651 +- 4.705227180533864 +- 4.559355374087887 +- 4.343380387184111 +- 3.73151128726542 +- 3.5110782873254522 +- 3.679827645734203 +- 4.0169432375350755 +- 4.155124419383563 +- 4.699771239412013 +- 5.140135169075256 +- 5.357634977120243 +- 5.59770594114971 +- 5.382903117295908 +- 5.2745052817358395 +- 5.274941693945047 +- 5.138209694520594 +- 5.405768361650573 +- 5.757204720636071 +- 6.177535922247524 +- 6.548187122052475 +- 6.481370907914385 +- 5.837041473428265 +- 5.1800714580653695 +- 4.394377622298196 +- 3.8827332247162594 +- 3.2387299405627057 +- 2.735317107470173 +- 2.534377486854447 +- 2.3949203345927734 +- 2.7133772393310096 +- 3.0691839557999163 +- 3.5314845681015425 +- 4.05990340404223 +- 4.71571308429997 +- 4.99079972744223 +- 5.141406667328766 +- 5.1950663107383335 +- 4.995135454477885 +- 5.165201835401724 +- 5.619877532466487 +- 6.184910910752537 +- 6.938246202180667 +- 7.846439925867073 +- 8.333878051246625 +- 7.864475314417966 +- 7.058055054609101 +- 6.410661911291309 +- 5.778517708177772 +- 5.241901935884799 +- 4.54501585458397 +- 3.67048337285571 +- 3.4819060832827855 +- 3.56330064553748 +- 3.8532439496203446 +- 4.245092789007991 +- 4.7981941830481505 +- 5.253756275828439 +- 5.700490288190125 +- 5.808253133683764 +- 5.863834033861871 +- 5.998491883040821 +- 6.158565166347949 +- 6.45532308395379 +- 6.7950016675660425 +- 7.24777995863824 +- 7.78956657997661 +- 8.68276911751277 +- 9.20604002496032 +- 8.568776645749127 +- 7.183118704061518 +- 5.828359581985099 +- 4.8348056655632865 +- 4.009747327167993 +- 3.258281217030458 +- 2.7630366797742107 +- 2.4193157872664313 +- 2.1287824361063628 +- 2.5310715955481693 +- 2.8443826647550106 +- 3.2208358284448244 +- 3.618270766608919 +- 4.318035484590163 +- 4.539858449822103 +- 4.827702124524666 +- 5.037873178676981 +- 5.267594943563259 +- 5.749768417197024 +- 6.268284680966289 +- 6.925064591817434 +- 7.644293388742265 +- 8.590530783244457 +- 9.056082423296562 +- 8.379060236715759 +- 7.083805407927474 +- 5.968329412488049 +- 5.027596618672247 +- 4.285884488355071 +- 3.577068063028646 +- 2.8895490784131552 +- 2.5737234137378353 +- 2.4806976886062 +- 2.865230065911492 +- 3.2003500788498207 +- 3.6190657415527063 +- 4.18984824579092 +- 4.598273549084348 +- 4.82054843997632 +- 4.947552635406736 +- 5.135979639357937 +- 5.221474762172858 +- 5.568076486154238 +- 5.977875973652678 +- 6.461554525509138 +- 7.083612738512501 +- 7.830831396168066 +- 8.330050458013133 +- 7.736022786402758 +- 6.57398200428013 +- 5.5604293954176285 +- 4.771789648023859 +- 4.073596153131611 +- 3.5052591526711208 +- 2.8820685250339664 +- 2.5917275580493424 +- 2.7380935425070767 +- 3.158609337248963 +- 3.5880453224313893 +- 4.234615292845356 +- 5.060341993926135 +- 5.409859859855551 +- 5.479954265893693 +- 5.507319451446966 +- 5.7026177490762775 +- 6.0968361015965655 +- 6.308321614783102 +- 6.593587719763386 +- 7.116426751264287 +- 7.857282068842533 +- 8.840541495546006 +- 9.28413046008675 +- 8.941890706644564 +- 7.956023446609913 +- 7.0617613681731735 +- 6.411531667037045 +- 5.436944515210591 +- 4.6632555853946585 +- 3.763645988640706 +- 3.2453322462562593 +- 3.2628724763526207 +- 3.3521828485582543 +- 3.57509468223908 +- 4.164006761968265 +- 4.543899354247401 +- 5.204156876431355 +- 5.624144333217239 +- 5.8075733241869765 +- 5.903277873571281 +- 6.264615598366644 +- 6.695995325284859 +- 7.156983522891596 +- 7.7412350115013675 +- 8.236489535621509 +- 8.940086950905238 +- 9.43096210768175 +- 8.789544367045492 +- 7.520236607830051 +- 6.265218407461574 +- 5.129299119258497 +- 4.372659418026832 +- 3.527458408084586 +- 2.768624053543609 +- 2.4349899943394315 +- 2.437768093478226 +- 2.624232626677192 +- 3.033390594223604 +- 3.622583552496779 +- 4.108646061332898 +- 4.745942426351406 +- 4.9952736371722635 +- 4.8214701020299096 +- 5.120867682140133 +- 5.4982135452799215 +- 5.800774896224188 +- 6.150082676321875 +- 6.573289296000056 +- 7.392022771727875 +- 8.261695677029742 +- 8.760765940751371 +- 8.025059950833695 +- 6.775030906633616 +- 5.880350943276453 +- 4.939056004275998 +- 4.425915794156541 +- 3.7186430177130685 +- 3.2940271012976274 +- 3.2009796262400476 +- 3.3278427341707006 +- 3.401756930181677 +- 3.513271539862873 +- 3.944156891715415 +- 4.356649913894926 +- 4.831915419618821 +- 5.12689986573225 +- 5.193339419061017 +- 5.588197424844548 +- 5.912608032311621 +- 6.165628566387686 +- 6.517710391734386 +- 7.095509713032999 +- 7.685513686289268 +- 8.372328071682018 +- 8.734312073640902 +- 8.069006358775754 +- 7.069760871707917 +- 6.392526696575262 +- 5.685491274913246 +- 4.9989288267994505 +- 4.364206036847049 +- 3.6139171149534985 +- 3.213293124242091 +- 3.2047103845362725 +- 3.555173322082317 +- 3.809413041658743 +- 4.011286719399987 +- 4.321351034381085 +- 4.656292331548485 +- 4.948906505101328 +- 4.939310874849775 +- 4.954869000844247 +- 5.089096932194525 +- 5.383507206152492 +- 5.892913405353047 +- 6.5963373690613265 +- 7.321658253975019 +- 8.212356194768072 +- 8.77309281507706 +- 8.053175918652151 +- 6.832374685680683 +- 6.055534298425414 +- 5.012365535685401 +- 4.389877367146048 +- 3.7703160003581697 +- 3.0482757309246393 +- 2.7512900152698787 +- 2.8881925049402764 +- 2.9426822688013554 +- 3.160313509956454 +- 3.6387506187773444 +- 3.9355252859933643 +- 4.5198110864604555 +- 4.913270181657248 +- 5.222433407650858 +- 5.34946035889138 +- 5.914417328767498 +- 6.415903520477961 +- 6.935801579816537 +- 7.595363342680171 +- 8.284748615383101 +- 9.328082629940106 +- 9.555433083051975 +- 8.671286349832403 +- 7.457370337657913 +- 6.391207018074132 +- 5.709003420423415 +- 5.1279464899054 +- 4.39439477924194 +- 3.8350239652954308 +- 3.5199517222646066 +- 3.4896150825766643 +- 3.5204695927392478 +- 3.7299726124479076 +- 4.256422065874202 +- 4.611664514536332 +- 4.999672511322325 +- 5.2039895225218835 +- 4.993503362846579 +- 5.198572609533576 +- 5.407360956125294 +- 5.731541105584211 +- 6.068999967784249 +- 6.620155258364461 +- 7.130859480596214 +- 8.281464880122918 +- 8.546995128283804 +- 8.00928964804686 +- 7.154739350231024 +- 6.647569594848361 +- 5.799086158518248 +- 5.259535052341663 +- 4.534537264076703 +- 3.9774269682741075 +- 3.7375462739320513 +- 3.600162468105758 +- 3.862962064718517 +- 4.319046579875141 +- 4.75844147236909 +- 5.390480372999902 +- 5.696549570338339 +- 5.75088416711239 +- 5.776307681744102 +- 6.1886171829612415 +- 6.3354827384532 +- 6.829623891718482 +- 7.210144947220889 +- 7.486642367548401 +- 8.251524693948356 +- 8.999851313321193 +- 9.082726069291482 +- 8.533669134341086 +- 7.030730490780557 +- 5.921203169061435 +- 5.0325680009049245 +- 4.104322249208651 +- 3.287812323181384 +- 2.6506091909764002 +- 2.1968112798334656 +- 2.1658708963620743 +- 2.5318177600612852 +- 2.5635989320010415 +- 2.8173470285292623 +- 3.112954016124266 +- 3.54395112157073 +- 3.5150585370646126 +- 3.868533625538322 +- 4.069454770564778 +- 4.459734123490566 +- 4.980291843749835 +- 5.550160532356082 +- 6.066749993807846 +- 6.647508532937039 +- 7.400104819746414 +- 8.068775315617016 +- 7.559434543368846 +- 6.5213878725900045 +- 5.5332656011692904 +- 5.155499880594442 +- 4.572434905797728 +- 3.999744013488172 +- 3.4845530649622245 +- 3.3933001838494428 +- 3.4165155114736696 +- 3.5186535742712253 +- 3.5224452349019892 +- 3.827285600592882 +- 4.20178396618758 +- 4.155005572966887 +- 4.351708607493207 +- 4.388597849552209 +- 4.59049492549445 +- 4.869680134122492 +- 5.3648022675165885 +- 5.92128754998145 +- 6.510345352465283 +- 7.150152592974716 +- 7.859287053362528 +- 8.036965279531884 +- 7.523207384734667 +- 6.313670561544884 +- 5.611631532118924 +- 4.802554336742195 +- 4.378940707392039 +- 3.6576969083681887 +- 3.0986111690165563 +- 2.6041999275852135 +- 2.6188493393943633 +- 2.641698215647791 +- 3.0286070916446395 +- 3.106400942403905 +- 3.5102748968530535 +- 3.8177228452077094 +- 3.934770076130587 +- 3.755115830313018 +- 3.821591600783485 +- 3.948186219579482 +- 4.169826302237707 +- 4.577164417682498 +- 5.003320210899351 +- 5.613047736465249 +- 6.392438125332858 +- 6.585709186718845 +- 6.0037819879381376 +- 5.306062322871197 +- 4.811118041257919 +- 4.118347983373656 +- 3.6155593041941234 +- 3.1446112107358557 +- 2.904509680838946 +- 2.6652099340321804 +- 2.5552200996217436 +- 2.9066165415047767 +- 3.0518923867821415 +- 3.2888600800489534 +- 3.683306137830323 +- 3.9827733120421063 +- 4.05091208189898 +- 3.823664366958788 +- 3.7430963005379625 +- 3.926151907895393 +- 4.242108339553578 +- 4.6963820942834476 +- 5.3372481163158145 +- 6.0819251844776 +- 7.0001176017867355 +- 7.374006402127941 +- 6.869706231943069 +- 5.972729398622993 +- 5.149495589322808 +- 4.701202294484153 +- 4.3850017238009835 +- 3.935975588806299 +- 3.413756221981612 +- 3.207725484390081 +- 3.377941063583199 +- 3.4289442819407476 +- 3.728196658805474 +- 4.005041177603726 +- 4.163654337062854 +- 4.399049891688475 +- 4.421440738382358 +- 4.285068896996512 +- 4.2126876957064034 +- 4.442785332667881 +- 4.549369661620609 +- 4.82183371451942 +- 5.3274600555345595 +- 5.964287518034475 +- 6.827615868424176 +- 7.2359000074814155 +- 6.679208441302165 +- 5.981846155731181 +- 5.427987919654891 +- 4.986424485387362 +- 4.627229043511196 +- 4.053672365046124 +- 3.5209268199054145 +- 3.1686592258030837 +- 3.2518894632732396 +- 3.4980600482066024 +- 3.8530399795205486 +- 4.08061258835011 +- 4.352422877783855 +- 4.535689846782717 +- 4.781589796410658 +- 4.598067140936245 +- 4.656463037680767 +- 4.837785771576636 +- 5.027187603372726 +- 5.238567934790673 +- 5.638538265219295 +- 6.388576666504141 +- 7.092363838900226 +- 7.8206777826363325 +- 7.650353959401955 +- 7.194924495294425 +- 6.839994863931787 +- 6.027415947919639 +- 5.630779029736231 +- 5.3894708405563225 +- 5.416289419304298 +- 5.36983645201511 +- 5.627416753750114 +- 6.043304820435603 +- 6.168231415026604 +- 6.340554694734829 +- 6.852005232338023 +- 7.121690115526624 +- 6.806517076485636 +- 6.663433710817172 +- 6.429575051842192 +- 6.605365733148606 +- 6.776119964522994 +- 7.057259776222401 +- 7.409399139155665 +- 7.9773240114204285 +- 8.873091942200572 +- 9.146585671749211 +- 8.680569723598701 +- 7.626835798799116 +- 6.832104602997312 +- 6.135294212438315 +- 5.517369464818037 +- 5.045541512651647 +- 4.453952254885635 +- 3.8788499528050866 +- 3.8749750134078846 +- 4.219584932088713 +- 4.439022254170916 +- 4.728024270818156 +- 5.242958802797089 +- 5.651189772089849 +- 5.93729377706719 +- 6.211034699107886 +- 6.379412141314305 +- 6.917712534642345 +- 7.3472976565129455 +- 7.669328621930748 +- 8.194362269192302 +- 8.670385845136277 +- 9.498610177063856 +- 9.598280654022064 +- 8.951680447383605 +- 8.095138803329345 +- 6.9122952678468215 +- 6.2141722924183895 +- 5.726303247190804 +- 5.176919692046807 +- 4.56846389521856 +- 4.239146616775173 +- 4.07729449553644 +- 4.190941580194991 +- 4.271866451196965 +- 4.586671311103705 +- 4.9195850266585595 +- 4.9566703321867065 +- 5.010872577697342 +- 4.824987846097901 +- 4.952676857286124 +- 5.094183161759766 +- 5.3130482253217295 +- 5.621196275586351 +- 6.008983801820267 +- 6.4684789191862535 +- 6.967066567256211 +- 7.2640551399453575 +- 6.84175080886202 +- 6.166668638014866 +- 5.285494618963109 +- 4.925748827376681 +- 4.54132877052537 +- 4.050204087704747 +- 3.8062014442100076 +- 3.2468475569320447 +- 3.376796518804131 +- 3.8219219657379306 +- 3.8377697657675895 +- 4.042743024950966 +- 4.16553306396194 +- 4.381580906720685 +- 4.247641836768632 +- 4.296777950753732 +- 4.235743074658896 +- 4.298484422174107 +- 4.597039993404116 +- 4.871913629606424 +- 5.414312378783065 +- 5.948765085403271 +- 6.842955400574369 +- 7.200595846782124 +- 6.786038235033787 +- 5.935134535067102 +- 5.4558246124970875 +- 4.801475344599499 +- 4.463360198405538 +- 3.8033383838408357 +- 3.3951908016040595 +- 3.013030006995367 +- 3.001268032002526 +- 3.0558290705151276 +- 3.1894465804017105 +- 3.523762632280203 +- 4.086162082609988 +- 4.278817708975166 +- 4.424664673028063 +- 4.403032838076299 +- 4.727242327812018 +- 4.898047724941223 +- 5.2562615471367895 +- 5.420344964067389 +- 5.83977011051419 +- 6.344446453248453 +- 7.025209251879683 +- 7.1021489758715814 +- 6.631031966637857 +- 5.64674874179938 +- 4.861608205160225 +- 4.213483952722476 +- 3.640580420614299 +- 3.2104948178857717 +- 2.5232369818332105 +- 2.343609179758572 +- 2.2341964059246204 +- 2.417571217431192 +- 2.7225962587464934 +- 2.8676891599483687 +- 3.262832682232463 +- 3.3485554057753464 +- 3.5874933706416647 +- 3.3941545335456276 +- 3.498371412349751 +- 3.623070234933209 +- 3.907620956583215 +- 4.12241102959362 +- 4.57725928336994 +- 5.035577581467908 +- 5.781392142240814 +- 5.906665858100357 +- 5.044441768925267 +- 3.9561530636057154 +- 3.298039249441388 +- 2.7417875106182885 +- 2.4250740747751265 +- 2.0790291788699915 +- 1.879532355316922 +- 1.852558393465964 +- 1.787484021373615 +- 2.179233887295691 +- 2.427402897919259 +- 2.9034918071395044 +- 3.3874692982034786 +- 3.80168421932892 +- 4.059363814594764 +- 4.178666983883851 +- 4.231777111291651 +- 4.481426278949194 +- 4.728035230540457 +- 4.953890113164325 +- 5.200490520386558 +- 5.942966236624677 +- 6.742481928544344 +- 6.853344951754748 +- 6.356405312748528 +- 5.5569280903794755 +- 5.048198581950434 +- 4.529787715148954 +- 4.186238084610042 +- 3.600881136825237 +- 3.1203384842790114 +- 3.0379238351115525 +- 3.2655362043193303 +- 3.364098017856433 +- 3.5937242157268665 +- 3.767658243173464 +- 4.141718649176782 +- 4.094961878146651 +- 4.114284434042329 +- 4.0554048019182165 +- 4.345133091490565 +- 4.7248534510887925 +- 5.032276417128375 +- 5.464070380814142 +- 6.184801667422655 +- 7.03809081100024 +- 7.808741141117641 +- 7.689912226331578 +- 6.514680039679313 +- 5.124389753909489 +- 4.185651988731955 +- 3.5602197982403014 +- 3.0130128544292805 +- 2.5185488354116914 +- 1.93677038381356 +- 1.8704717683899266 +- 2.188298212670663 +- 2.102553799490191 +- 2.2974186577683167 +- 2.6225045391992263 +- 2.7313577425830586 +- 2.9869332030429696 +- 3.128720205837993 +- 3.393628415094577 +- 3.400701885575983 +- 3.5362743418517537 +- 3.808739087894602 +- 4.355029751296842 +- 4.848933726868076 +- 5.442757895574864 +- 6.112463834601004 +- 6.182332943665426 +- 5.244343422020841 +- 4.280004230626212 +- 3.3073947604694194 +- 2.7440159488925318 +- 2.426127731641337 +- 2.14518316801434 +- 1.8492727789046846 +- 1.7062648919062375 +- 1.790335367866288 +- 2.0164869845312863 +- 2.118428448978461 +- 2.1897251960172563 +- 2.234758495357235 +- 2.4885882690562346 +- 2.538194121428203 +- 2.606767953779447 +- 2.555401705605864 +- 2.91012220540075 +- 3.3578702332092627 +- 3.6381472699687647 +- 4.083434532212794 +- 4.633426182910912 +- 5.290027159410923 +- 5.637492204178822 +- 5.185642934715221 +- 4.4981945171021644 +- 3.9919280376699935 +- 3.7654257843971943 +- 3.5868456108122717 +- 3.134558190193874 +- 2.824531477508473 +- 2.520101664292552 +- 2.7093345427935756 +- 2.8266868607721456 +- 2.820078090921571 +- 2.936780451604933 +- 2.9684494811747753 +- 3.3926375704841742 +- 3.4148989954239934 +- 3.3019511313992425 +- 3.505063441462826 +- 3.6394879617657034 +- 4.02078192008995 +- 4.455297605581062 +- 4.908410007388631 +- 5.347701017017585 +- 6.245814477983265 +- 6.44285444397315 +- 5.948220754209156 +- 5.36472954919926 +- 4.584600095474822 +- 4.200196492266774 +- 3.9058317180172786 +- 3.4718532491757155 +- 2.8157965753435232 +- 2.759216182065148 +- 3.165169012967888 +- 3.7236869273343163 +- 4.38398610494509 +- 4.97110529196774 +- 5.2379903636324405 +- 5.5619678982181355 +- 5.834491088572906 +- 5.7471604181482885 +- 5.753123443852894 +- 6.034782061061834 +- 6.325297321139349 +- 6.708569445044582 +- 7.114538739234181 +- 7.6598105925881015 +- 8.548995124153983 +- 8.742384011942855 +- 7.653448316436381 +- 6.919016036555369 +- 6.430256751034509 +- 5.980448001249469 +- 5.778240244997479 +- 5.16439435311547 +- 4.6852970293138485 +- 4.434107771085864 +- 4.48472120983261 +- 4.88052914333603 +- 4.906652688645205 +- 5.16175166572059 +- 5.3709875652094645 +- 5.646791580189964 +- 5.593810767763999 +- 5.4802826695524915 +- 5.625017263389994 +- 5.945692921855219 +- 6.12884433017298 +- 6.442757189581616 +- 7.076602919168568 +- 7.926843457438449 +- 8.999859244930668 +- 8.980977898655738 +- 8.309428923717244 +- 6.934340778484866 +- 6.372630241021723 +- 5.791505267836841 +- 5.376930800298274 +- 4.76960368624357 +- 4.2665334145502785 +- 4.078703798623424 +- 3.9290041506821285 +- 4.08437039672758 +- 4.230354386219514 +- 4.336212013170519 +- 4.530699472766717 +- 4.730797735019388 +- 5.011659443127495 +- 4.854170531830889 +- 5.02698055271754 +- 5.412904319577245 +- 6.0477654404175265 +- 6.551575505492747 +- 7.130063729342899 +- 7.8327072650863965 +- 8.769864969540668 +- 8.57901258831965 +- 7.49954634407299 +- 6.306465583643761 +- 5.319451402513693 +- 4.730570523992552 +- 4.144758390145146 +- 3.329793595283468 +- 2.875585028938042 +- 2.5692324517636504 +- 2.6791823665286105 +- 2.709802936681253 +- 2.8055800649949822 +- 2.9153230501228062 +- 3.262838570636683 +- 3.703926072798711 +- 4.076374461119881 +- 4.0462651479438465 +- 4.162341008766609 +- 4.586104711724763 +- 4.872541516051191 +- 5.40982820675186 +- 5.921121080641999 +- 6.590332874010628 +- 7.2843388890445775 +- 7.190728490758748 +- 5.681714162503946 +- 4.536796419351572 +- 3.5056518663275904 +- 3.042715996077589 +- 2.6654461269638836 +- 1.9846723080046655 +- 1.6951884483750463 +- 1.6251773580307651 +- 1.730466489354237 +- 1.9749923751080776 +- 2.084005790067938 +- 2.088262923615587 +- 2.2378351669957373 +- 2.4304251217366555 +- 2.5542154505283987 +- 2.2709964403749217 +- 2.164445222321319 +- 2.389369474365511 +- 2.742962781370057 +- 3.1165144192138436 +- 3.6117224733179416 +- 4.143233164321767 +- 4.746844221319815 +- 4.870992880056975 +- 4.281281689296337 +- 3.492525113704515 +- 3.008956983229956 +- 2.549863420665327 +- 2.1210377164614678 +- 1.9151838196671418 +- 1.6951161249163942 +- 1.802419455800269 +- 1.9282604217302033 +- 2.177206604293641 +- 2.1741474661089404 +- 2.1475171850968633 +- 2.384940336323885 +- 2.59576289858487 +- 2.6686435491693565 +- 2.734321172299178 +- 2.7593056523613892 +- 2.809788454324342 +- 3.098181521850842 +- 3.344458304268252 +- 3.7871436389294852 +- 4.245443515218151 +- 4.89671753449721 +- 4.992034828064384 +- 4.565500670553016 +- 3.595485569990216 +- 2.9623554355595494 +- 2.694618791448564 +- 2.5916299265689955 +- 2.3951846813481334 +- 1.9235547400492876 +- 1.7173552482970555 +- 1.832802311622319 +- 1.9832934129558426 +- 2.217471327107969 +- 2.149395469085801 +- 2.404656190643385 +- 2.3690229073456925 +- 2.133159403043097 +- 2.0405597077846744 +- 2.0905219499204204 +- 2.193505860613909 +- 2.349046023025434 +- 2.700330406304038 +- 3.0834290824405355 +- 3.7193319943865037 +- 4.3704470837573535 +- 4.616546860447705 +- 4.009960961798258 +- 3.330270969370987 +- 2.775903976642445 +- 2.6837080871853596 +- 2.735100127241681 +- 2.5420647369017053 +- 2.2241950966957944 +- 2.070309050115673 +- 2.5447832441168314 +- 2.890567047478117 +- 3.0630610751790317 +- 3.2827931506536303 +- 3.3878545901160395 +- 3.3590714402071296 +- 3.283293015278233 +- 3.214766298794258 +- 3.069697299425405 +- 3.144968956130679 +- 3.3021465555914578 +- 3.553795996065958 +- 3.839814491256815 +- 4.435108544698632 +- 5.266410170826528 +- 5.428902155015973 +- 4.780943770289966 +- 3.8610613051388776 +- 3.512141455466027 +- 3.22972895517392 +- 2.854332821795513 +- 2.537347003292401 +- 2.2370863724295718 +- 2.306509419576697 +- 2.2631636245352578 +- 2.812078185427571 +- 3.048852446499511 +- 3.1018780523144587 +- 2.9888056281506383 +- 3.4525681351241024 +- 3.4083075206257467 +- 3.2067130972015137 +- 3.028043843505278 +- 3.0594465711995578 +- 3.134510006464678 +- 3.2856968823822257 +- 3.608432716731552 +- 4.01626562316442 +- 4.699629764119484 +- 4.8390233604080635 +- 4.276159927953535 +- 3.840149976548418 +- 3.380537168699303 +- 2.893059816226122 +- 2.384460913360713 +- 1.9648247543187998 +- 1.8612399257354144 +- 1.8500390882374689 +- 1.927164067817762 +- 2.2393508824117863 +- 2.3763784580008003 +- 2.4912699059901517 +- 2.5833341721167433 +- 2.659852442105855 +- 2.458960131384497 +- 2.2520842937461687 +- 2.2002964118019435 +- 2.256053304043049 +- 2.492241931701272 +- 2.846223707255471 +- 3.255020214436209 +- 3.7298980739200496 +- 4.4750680193844055 +- 4.364979913566416 +- 3.700808433127694 +- 2.8563761096144735 +- 2.4293096134663377 +- 2.166130101015988 +- 2.1475481567380816 +- 1.882348733981466 +- 1.6444541341862835 +- 1.6600265440889892 +- 1.8372437263692194 +- 2.036345802349971 +- 2.078205419485984 +- 2.206010587846694 +- 2.2784517174073358 +- 2.3993300679979677 +- 2.3142594729445456 +- 2.0667053910158946 +- 2.139504763658126 +- 2.193414141636136 +- 2.258250567771855 +- 2.5768712058253898 +- 2.933914001133543 +- 3.4519102449266788 +- 3.9706128803720184 +- 4.000703051181262 +- 3.4831332868597804 +- 2.792963538810675 +- 2.2747264483739484 +- 2.0212883409041766 +- 2.0145554798079597 +- 1.8981617992604412 +- 1.5782079076019495 +- 1.5246629986990772 +- 1.7153916941152814 +- 2.0067649491155963 +- 2.06157106600764 +- 2.0564712596916412 +- 2.23495730592429 +- 2.322798068239991 +- 2.2852814059067326 +- 2.17939776385589 +- 2.3150174650561093 +- 2.2947910775610665 +- 2.4964236403007787 +- 2.691745467673185 +- 2.967813422725758 +- 3.5905663444367106 +- 3.9946258729931614 +- 3.9018290419310593 +- 3.666818474582913 +- 3.085662874179668 +- 2.6021946352949334 +- 2.2688118868134715 +- 2.3158099974208843 +- 2.212065330911185 +- 2.063997540273484 +- 1.9742040824389528 +- 2.5388696871109153 +- 2.7134442024543857 +- 2.6729076403708523 +- 2.9517030989110418 +- 3.304761151653294 +- 3.7039785044525964 +- 3.642741085309226 +- 3.5579071022741555 +- 3.701451813310398 +- 3.6668860984960823 +- 3.815647502629706 +- 4.0695933400708855 +- 4.444791913784646 +- 4.754475669728326 +- 5.1692059502844785 +- 5.176382719151805 +- 4.638291934252558 +- 4.355539868542169 +- 3.8561761533295065 +- 3.552050345711813 +- 3.0985614538616475 +- 2.66447041054674 +- 2.5631168353825293 +- 2.7633344860627354 +- 2.489629507106351 +- 2.93095415616797 +- 3.296287626187928 +- 3.546388470810164 +- 3.6347484369466057 +- 3.9533435518585733 +- 3.791168008380672 +- 3.6690796692060332 +- 3.891814320801999 +- 4.048787672190499 +- 4.252703212433514 +- 4.648697545980643 +- 5.058793626709948 +- 5.66511260429521 +- 6.294165158226366 +- 6.219846792371073 +- 5.4993947898405136 +- 4.5137790305534455 +- 4.090602497613506 +- 3.83380533649869 +- 3.4768757091072113 +- 3.1634964298399635 +- 2.992066270444903 +- 2.614261835972712 +- 2.8113176506262025 +- 3.038568146861003 +- 2.963184725083576 +- 3.1286929393441367 +- 3.440861161795645 +- 3.651307132074218 +- 3.733617017613375 +- 3.6545185918266516 +- 3.642977099731154 +- 3.8616519677276036 +- 4.267647902230243 +- 4.629077638401579 +- 4.934855385665347 +- 5.504877075416873 +- 6.294245542084622 +- 6.049323991688954 +- 5.197888180413214 +- 4.46957560740539 +- 3.947836696386735 +- 3.505208220673075 +- 3.172402905363065 +- 3.2892602639924147 +- 2.750549058391261 +- 2.5596972121889037 +- 2.632130722092495 +- 2.978846129447185 +- 3.0135216596168064 +- 3.441611886611578 +- 3.591351654696981 +- 3.8716348743683993 +- 3.7067445837870645 +- 3.4144509854948746 +- 3.593421277334674 +- 3.7927577100354726 +- 4.119331289686904 +- 4.494059128881601 +- 4.914455616418421 +- 5.40350466413884 +- 6.195620885084973 +- 5.990380443067197 +- 4.90106113676126 +- 4.1222757299090995 +- 3.6511623861143003 +- 3.2342997602089167 +- 2.993936470882252 +- 2.900800448622528 +- 2.3450125373094135 +- 2.1788745376906737 +- 2.32520400055933 +- 2.4307436322870037 +- 2.6158552618587194 +- 2.9454674099807088 +- 3.1044942133562397 +- 3.7560750271203225 +- 3.9222593453046017 +- 3.7156726695386872 +- 3.852892881971675 +- 3.9419299329796553 +- 4.1068932492944175 +- 4.496727496538953 +- 4.865069217640605 +- 5.444311104888684 +- 6.199412836358624 +- 6.027875897543465 +- 5.117280912615004 +- 4.212039571379272 +- 3.500118963927944 +- 3.1229034785905605 +- 2.6674906909970173 +- 2.211324927933938 +- 1.9128276469139462 +- 1.7645497685014946 +- 1.8430566967775832 +- 2.0135677951698137 +- 2.212439425379298 +- 2.348470673510705 +- 2.629499042788718 +- 2.6282614031169964 +- 2.6996825024420406 +- 2.5500866246772977 +- 2.64228618951299 +- 2.772416665498674 +- 3.107163446687484 +- 3.4770916607118347 +- 4.205328762179265 +- 4.877682605574467 +- 5.84600125153726 +- 5.730335847924519 +- 4.722464147795107 +- 3.9280717254841613 +- 3.309653288458442 +- 2.891531664295636 +- 2.787617178370036 +- 2.476656515873245 +- 2.1521274639487498 +- 1.9245426780777566 +- 2.1142511508781974 +- 2.3380846822607206 +- 2.4693384720164993 +- 2.7377725713117593 +- 2.760512673237113 +- 2.842473641076031 +- 2.619499523454148 +- 2.4916581845227506 +- 2.47780799854299 +- 2.5915527472026088 +- 2.801277641521282 +- 3.0200484673609753 +- 3.34625533522223 +- 3.9020656499259383 +- 4.385997054158791 +- 4.2038686046977025 +- 3.731762032016351 +- 3.058182627070045 +- 2.6303078831328435 +- 2.1813015649327583 +- 2.1866670818698153 +- 2.1106056809200946 +- 1.864915982357643 +- 1.8702684356530825 +- 2.2790301295333 +- 2.4166388773126877 +- 2.4976590631245497 +- 2.4818875700778573 +- 2.647510316416888 +- 2.572971425991555 +- 2.3414246670899233 +- 2.2284594399445843 +- 2.0919161321392896 +- 2.136674465842323 +- 2.2681498039093095 +- 2.412722958087411 +- 2.7455735901022673 +- 3.0361219913024207 +- 3.5871860876296586 +- 3.852428227232533 +- 3.595165147755478 +- 3.4293946261883828 +- 3.249843326091414 +- 3.0652605576116643 +- 2.8820472169053244 +- 2.686276328174323 +- 2.588044970978381 +- 2.4477480112754955 +- 2.4998968744059114 +- 2.7194551119849404 +- 2.726231324263552 +- 2.9563030488449047 +- 3.078264637493992 +- 3.500860900749919 +- 3.320186942131863 +- 3.0212465570715543 +- 2.991769191497116 +- 3.079269095002684 +- 3.3695006088325323 +- 3.663064945596106 +- 4.064168252469408 +- 4.655255801294129 +- 5.153697713455225 +- 4.820783437924129 +- 4.259619237311698 +- 3.6298578203057 +- 3.198241828197579 +- 3.0365726736444203 +- 2.8873295075631686 +- 2.612496427660917 +- 2.137190452262788 +- 2.114407901011125 +- 2.2757079309135677 +- 2.5326095658730288 +- 2.6435765368311976 +- 2.6811660702831324 +- 2.956558161655913 +- 3.153531840972581 +- 3.2791592989316523 +- 2.8545287948611655 +- 2.8220215966402367 +- 2.8429336252875967 +- 2.9062708085544777 +- 3.1236998698872704 +- 3.4051507441640285 +- 3.9690394088182495 +- 4.676269860297607 +- 4.361667781140311 +- 3.417347717873497 +- 3.015904215348582 +- 2.566483584395356 +- 2.3611987442807925 +- 2.2028017522757715 +- 2.1625113461643397 +- 1.9360671295447605 +- 1.9241108351646774 +- 2.0839773940863813 +- 2.311931540603975 +- 2.4965138742786133 +- 2.638137219498115 +- 2.4265292565867935 +- 2.3840778978101804 +- 2.3213862508945464 +- 2.032310900159222 +- 1.976673602826397 +- 1.9771656942842277 +- 2.0209367234859856 +- 2.125530629294391 +- 2.277569795355368 +- 2.8179992585037876 +- 3.280181608405242 +- 3.4245942062302746 +- 3.1374191595521324 +- 2.779766885074415 +- 2.6916591769537086 +- 2.3880708607222765 +- 2.1532973481942514 +- 1.8279226885384159 +- 1.6954468406009493 +- 1.817088993662568 +- 1.841828649385938 +- 2.0112565797600417 +- 2.276460361691801 +- 2.5293823593755684 +- 2.6905940064425886 +- 2.8273621996980935 +- 2.632837355714891 +- 2.3683665355996735 +- 2.3466265570369678 +- 2.459988118657521 +- 2.6758282016024935 +- 3.079132069555836 +- 3.481499359746426 +- 4.0908026441490035 +- 4.778672975339828 +- 4.683391020202444 +- 4.199447259326782 +- 3.473527840344587 +- 2.894982930798513 +- 2.818018740569403 +- 2.4297866788662508 +- 2.271246350196133 +- 2.016346481843545 +- 1.9762749261019148 +- 2.084690498056862 +- 2.2319237233515894 +- 2.39396338996981 +- 2.447439597229429 +- 2.4697545657208697 +- 2.5157930953315906 +- 2.4857836185855255 +- 2.317178541137117 +- 2.2957567485522175 +- 2.327396414346894 +- 2.4422664833583343 +- 2.59626696461343 +- 2.7768663181158266 +- 3.209940060110902 +- 3.7221555638985295 +- 3.7933158567572427 +- 3.6407487705766344 +- 3.180978206768521 +- 2.957514706133031 +- 2.854324462431222 +- 2.5531445500713823 +- 2.478822424104393 +- 2.2269033080633247 +- 2.3167796081541563 +- 2.4437333163525525 +- 2.694307612339201 +- 3.0860388163164307 +- 2.9332367667969943 +- 2.985873328526247 +- 2.9591189519489647 +- 2.8866611931459123 +- 2.6408646081453218 +- 2.604658743459871 +- 2.5876005556389194 +- 2.7032099911154606 +- 2.969739926295333 +- 3.2924755063582505 +- 3.760298592231846 +- 4.402532132859387 +- 4.526959845023879 +- 4.264964821926612 +- 3.9074015385868885 +- 3.4269162575342413 +- 3.2126067243623977 +- 2.984423235223768 +- 2.8658675497726493 +- 2.5119340442270994 +- 2.3999845783077074 +- 2.4953936103275427 +- 2.634608340687432 +- 2.542792342839962 +- 2.5620289746446385 +- 2.6393500051610954 +- 2.8461359918612743 +- 2.68080609525596 +- 2.4616451964106156 +- 2.632993746732201 +- 2.8698867154910017 +- 3.068341577359363 +- 3.317969852839717 +- 3.500487492166604 +- 3.7852846776673768 +- 4.014954491408857 +- 3.8509131491794393 +- 3.32781274786277 +- 2.639371933453772 +- 2.5133559128644642 +- 2.2908278707688456 +- 2.0241586689153546 +- 1.9805439836973282 +- 1.7682259973496752 +- 1.8154048660449913 +- 1.7367031220669682 +- 2.1234481368757043 +- 2.0928170919746467 +- 2.059004042049521 +- 2.1597159691218475 +- 2.179205717695478 +- 2.012693143424675 +- 1.7691801739406199 +- 1.9345405056880318 +- 2.027498892854402 +- 2.0543120736178775 +- 2.2707717448490055 +- 2.671020147402954 +- 3.077036760905937 +- 3.471755755190534 +- 3.427144022520545 +- 2.957474831252973 +- 2.5666107601695707 +- 2.1409008203669173 +- 2.075289282515596 +- 1.9620890891342282 +- 1.7915443670007754 +- 1.49767821062656 +- 1.5667151259906114 +- 1.7297354900333255 +- 1.9766705327157317 +- 2.221937514511524 +- 2.22893046961381 +- 2.4294308290038362 +- 2.609432288719125 +- 2.6890929411375364 +- 2.503628221075061 +- 2.5205964530996066 +- 2.724901065896518 +- 2.9298349644721036 +- 3.328808971249825 +- 3.5657184578553442 +- 4.079515521747221 +- 4.5943467104954845 +- 4.341352872563834 +- 3.6757168462705923 +- 2.9589010798331175 +- 2.477071412021659 +- 2.4255587636388 +- 2.272026940201381 +- 2.168015361570527 +- 2.200761265797254 +- 2.135397110325426 +- 2.26218962696758 +- 2.4724376891564175 +- 2.5993227219406476 +- 2.841587340199742 +- 2.8629886647723195 +- 2.829585417537816 +- 2.650698222790435 +- 2.3985035796557184 +- 2.4421531350313357 +- 2.573584137991573 +- 2.632491552695215 +- 2.7373155648218717 +- 3.0684557470786387 +- 3.544905863057474 +- 3.9869434271909796 +- 3.975488374664355 +- 3.340783702724155 +- 2.805796894098105 +- 2.633121206337011 +- 2.486646432583589 +- 2.4967744748932406 +- 2.278132824813955 +- 2.1715548852751243 +- 2.0962733455094593 +- 2.2251362196563225 +- 2.3593772302582985 +- 2.641913438256938 +- 2.752939660414252 +- 2.903556627978155 +- 3.0486911302346993 +- 3.012075052014445 +- 2.794365533333805 +- 2.9164409704022485 +- 2.87428168715151 +- 2.982658753278696 +- 3.144286519303757 +- 3.5084103631491903 +- 3.939352717056781 +- 4.165158949939604 +- 4.013732860765232 +- 3.510816254322109 +- 2.8849036890301356 +- 2.5866702529178354 +- 2.4373171897169152 +- 2.1882021739010424 +- 2.014122843457955 +- 1.8674796856248301 +- 1.7732502364189977 +- 1.8283493437969272 +- 2.026349262598576 +- 2.254653130163964 +- 2.228957879857607 +- 2.303555441222006 +- 2.3548449372421274 +- 2.3529348920979483 +- 2.026374912486685 +- 1.990144761411214 +- 1.8667418989911 +- 1.8734441353035896 +- 1.9077688194740385 +- 2.0775456682779887 +- 2.3570860533372917 +- 2.7117311561393826 +- 2.6047208280576126 +- 2.28295892409598 +- 2.0910936165861607 +- 2.021610083568797 +- 1.8035035494264617 +- 1.7694426029289065 +- 1.6279492365212782 +- 1.5002426257540176 +- 1.5869303699295534 +- 1.8660577453795395 +- 2.032021079143946 +- 2.1359349594977033 +- 2.088844438415413 +- 2.0534921509736135 +- 2.0212436627969326 +- 1.923354411781676 +- 1.6861476361867196 +- 1.5560308185574943 +- 1.6702299462550623 +- 1.9374023445190827 +- 2.043409544097457 +- 2.3469550501316516 +- 2.798005744066272 +- 3.1929383033743233 +- 3.0513643671573307 +- 2.6666179165228088 +- 2.2584324634156365 +- 2.2214759754205526 +- 1.893557146804562 +- 1.913893186284842 +- 1.807540732689845 +- 1.6805708937156985 +- 1.803585589086051 +- 1.9961565717643421 +- 2.1069127538070647 +- 2.3330125221050713 +- 2.1648411927457407 +- 1.975385463114824 +- 1.873383160919795 +- 1.82411450386987 +- 1.3734832397819703 +- 1.32093785907215 +- 1.479813636952244 +- 1.759494868024923 +- 2.0439913350138825 +- 2.3610765519273267 +- 2.8234312859099164 +- 3.117557194243886 +- 2.9886465499561625 +- 2.704100544220378 +- 2.307279652983426 +- 2.0843870873030936 +- 1.8522333490936878 +- 1.8498310735953885 +- 1.6560746631559282 +- 1.6188136777920565 +- 1.9645062137538882 +- 2.0243815281134254 +- 2.150910542002582 +- 2.152749048840096 +- 1.953871245658375 +- 1.9705240632477563 +- 1.8684868136961397 +- 1.7542819709040995 +- 1.5647003704561988 +- 1.6764888854677438 +- 1.8592187256562966 +- 1.9917751431573205 +- 2.0862516682148207 +- 2.5506711797687456 +- 3.0247107673901774 +- 3.4691763157314215 +- 3.154692879674301 +- 2.6695948509191947 +- 2.20712333071515 +- 1.8761300219309331 +- 1.696150734847238 +- 1.6692594703897965 +- 1.6772901383425913 +- 1.647032855644348 +- 1.7278886221555432 +- 1.9027083374227785 +- 2.0706045049079997 +- 2.145632785664273 +- 2.0546641810144592 +- 1.866161238009317 +- 1.91763016709304 +- 1.8232559536948596 +- 1.2857388969649393 +- 1.2203198315908699 +- 1.3220194269828858 +- 1.5009555375108052 +- 1.6616265577221294 +- 1.9351932251861927 +- 2.317080015038687 +- 2.7046045515203683 +- 2.6691748532950945 +- 2.3155922794572197 +- 2.109064414190371 +- 1.9234202334553179 +- 1.7174186819884045 +- 1.7784988434807802 +- 1.886385679485846 +- 1.6342687357473282 +- 1.5792940254925893 +- 1.893383970796006 +- 1.9912155521407036 +- 2.088572955293102 +- 2.2122633036010333 +- 2.2708253153727513 +- 2.1568815380284376 +- 2.081677235390124 +- 1.8718219099013647 +- 1.6964462080753273 +- 1.5415015858027445 +- 1.7199141137515108 +- 1.7574936179294316 +- 1.9536539801478794 +- 2.321938932113267 +- 2.740682780806342 +- 2.85876242134733 +- 2.519802855630485 +- 2.188510516230802 +- 1.917804150343009 +- 1.7313136581135722 +- 1.7556750544297284 +- 1.6234799175633812 +- 1.5416675023961384 +- 1.6357521951023792 +- 1.7641625617615366 +- 2.1602035460311235 +- 2.2512224088511705 +- 2.3115570102179066 +- 2.6315421709940368 +- 2.8133928710096034 +- 2.7837965487065923 +- 2.5170380004642974 +- 2.3666965016855652 +- 2.401693292717974 +- 2.507683559011031 +- 2.6683531016637514 +- 2.975936608792699 +- 3.438460665638502 +- 3.5910604909534487 +- 3.7877470479549045 +- 3.4259541708098347 +- 3.0407844861888984 +- 2.6059644681504777 +- 2.3809199091500264 +- 2.1489442956738034 +- 2.0800138858020802 +- 1.7474269256600223 +- 1.6615433641435373 +- 1.838635328204394 +- 1.9930114658438718 +- 1.9957255402535734 +- 2.195680509573056 +- 2.193031862036415 +- 2.2155117439756236 +- 2.003717911857124 +- 1.8525834477141 +- 1.763687951098193 +- 1.7579255938728777 +- 2.0154098452807 +- 2.161636347569519 +- 2.581866498826306 +- 2.95538876519436 +- 3.294441662746106 +- 3.1257415683686984 +- 2.6963093370856654 +- 2.261838062628794 +- 1.9154910583338196 +- 1.8330102770788501 +- 1.7833794658901714 +- 1.700485646528635 +- 1.5182993922571244 +- 1.5947065692175382 +- 1.8695505831683283 +- 2.004008981411691 +- 2.0921169375774586 +- 2.2668370254597208 +- 2.1589765274801036 +- 2.0785722918574048 +- 2.0147385466199466 +- 1.6054612549868783 +- 1.3693423248080105 +- 1.3120828761155217 +- 1.441260159275952 +- 1.6449759304979914 +- 1.9672278746864984 +- 2.3055202409687356 +- 2.574802877425353 +- 2.5336662763225 +- 2.400194172881726 +- 2.106113324777367 +- 1.812847721665691 +- 1.7428293438000435 +- 1.6717106037780556 +- 1.7667653906663319 +- 1.7517491542120935 +- 1.682747254677357 +- 1.9077748629399558 +- 2.1005326109608258 +- 2.1994469733320137 +- 2.2097303521523983 +- 1.9426118062940811 +- 1.8193889293506769 +- 1.804178381801944 +- 1.4025938859237603 +- 1.2577018695634996 +- 1.138883343225162 +- 1.244332128612101 +- 1.3548399086447758 +- 1.5726858174104261 +- 1.963426207796279 +- 2.162305808702441 +- 2.0996785735075383 +- 2.067947797167275 +- 1.930992153797236 +- 1.70245124091789 +- 1.9212153847790108 +- 1.700127839711373 +- 1.8683446786685673 +- 1.6990432847839403 +- 2.0783625483971297 +- 2.063005063302014 +- 2.3411909184478747 +- 2.250120811619266 +- 2.2213047826540255 +- 2.0644848662985917 +- 2.2525044076486616 +- 2.007585031899776 +- 1.6412895308281115 +- 1.420690979051721 +- 1.4720087980946308 +- 1.6858700552688157 +- 1.8544986548759423 +- 2.0988388509949356 +- 2.4746580205259465 +- 2.8948538228102723 +- 2.8157964756428187 +- 2.452069587613188 +- 1.9958550995028055 +- 1.9230972146268097 +- 2.0687315193190474 +- 1.7599313841672546 +- 1.6263447481642093 +- 1.8154800705782883 +- 1.825139784554552 +- 1.8104298192907096 +- 2.021266723350509 +- 2.0322716574477053 +- 1.998982432801533 +- 1.990365379728888 +- 1.967035768800863 +- 1.7245125950619868 +- 1.3596658961478727 +- 1.2737376886772502 +- 1.2686460980549343 +- 1.3471245178777875 +- 1.472363722565741 +- 1.7209207509986288 +- 2.100555656916594 +- 2.520552639503127 +- 2.361050164925275 +- 2.0575590237846932 +- 1.6456978176356334 +- 1.6757344457815264 +- 1.748952989223178 +- 1.6423830674648896 +- 1.4203009200304577 +- 1.402846961792102 +- 1.4748986278049785 +- 1.8697774012370358 +- 2.0028338121159357 +- 2.2787625762346684 +- 2.192580700419978 +- 2.1640559122386036 +- 2.1147597709816517 +- 1.8339380039950315 +- 1.5040950483928603 +- 1.145599300826055 +- 1.1575389999436643 +- 1.3495608463525857 +- 1.4845906147104049 +- 1.7456407494326605 +- 2.2181446199761328 +- 2.6025696473532176 +- 2.7169239689087985 +- 2.54817152891115 +- 2.0922603761108496 +- 1.7615089310074807 +- 1.7267366404269524 +- 1.8350979273599153 +- 1.6891591024429968 +- 1.4928880579104185 +- 1.6434038527004824 +- 1.922558417633041 +- 2.185030752094833 +- 2.1632921033095087 +- 2.11375323921402 +- 2.02986270953509 +- 1.9406752672381928 +- 1.746719446980516 +- 1.458987544487539 +- 1.0415316861784525 +- 1.0098375547928051 +- 1.0704693321644492 +- 1.2109162548092502 +- 1.450262354024064 +- 1.8599947632470055 +- 2.12972354500317 +- 2.1829600646298455 +- 2.088915991726551 +- 1.7524589504290928 +- 1.579113947315181 +- 1.5202935071778392 +- 1.6048919230285015 +- 1.6459718854321546 +- 1.5705705291589966 +- 1.5698989740889115 +- 1.6598657064617646 +- 2.0491474032285484 +- 2.1271136686176 +- 2.1332384600055523 +- 2.009698926638555 +- 1.8355102196475084 +- 1.7578972304332783 +- 1.3844648782973137 +- 1.2673994818817063 +- 1.3064745797789472 +- 1.516750904377076 +- 1.732323639232654 +- 2.1341138327863693 +- 2.4690752406851177 +- 2.789082858711143 +- 2.8067216141472797 +- 2.2884261558970667 +- 1.8687192110848008 +- 1.649500201789482 +- 1.6487152514459598 +- 1.5043151068001963 +- 1.4177726848502321 +- 1.3082198187101552 +- 1.3938008511032207 +- 1.5101687574875768 +- 1.8557831907140712 +- 1.9404884683994783 +- 1.8853771697711614 +- 1.929550339733801 +- 1.8334001931434927 +- 1.713643769963358 +- 1.2627269772173413 +- 1.0045811446949295 +- 0.9696893726610284 +- 1.1645122670705355 +- 1.4327347974134397 +- 1.7053172439874782 +- 2.1033051835283185 +- 2.143239531736803 +- 2.106159613444532 +- 1.9989335549025986 +- 1.8057224872330557 +- 1.7227551423496374 +- 1.6490900085094615 +- 1.707681583508039 +- 1.6615158116224462 +- 1.7758258960166728 +- 1.8699981998935111 +- 2.0661959273782586 +- 2.0577385658015452 +- 2.124731516629434 +- 1.9964354545333238 +- 1.9295060224550118 +- 2.0213855501548657 +- 1.7420018649881936 +- 1.504159730559791 +- 1.2997153498918712 +- 1.4275130229867734 +- 1.538540840902868 +- 1.7988110656890364 +- 2.02269133436956 +- 2.346222385090964 +- 2.501632664201375 +- 2.421599144039571 +- 2.128797200502445 +- 1.9116813635066192 +- 1.8121597586563167 +- 1.9249685046266602 +- 2.057487442597536 +- 1.7953305345329427 +- 1.7787550051201548 +- 1.7869884921799923 +- 2.014147948805617 +- 2.4322118220675852 +- 2.287036860430673 +- 2.201986033115916 +- 2.07141058183576 +- 2.0506701847041766 +- 1.9790442951373328 +- 1.541495677540401 +- 1.390949168776531 +- 1.3884293388813325 +- 1.517014681946119 +- 1.5626887505576925 +- 1.7540019125467812 +- 2.007469080586802 +- 2.2747741582476864 +- 2.4693321228819833 +- 2.2743960482395784 +- 2.0228205729535307 +- 1.7788294923395365 +- 1.7506111989779387 +- 1.6463181179988196 +- 1.6250295737803393 +- 1.63802653931362 +- 1.8204555318169915 +- 1.9024149392781924 +- 2.108709895723221 +- 1.963999702243499 +- 2.0412422881950625 +- 2.002181954289434 +- 2.0165769062684196 +- 1.905499913727818 +- 1.5587784267809177 +- 1.4384016775716435 +- 1.4047870412822565 +- 1.3199971344731096 +- 1.4122212392556246 +- 1.687513217952216 +- 1.8371223851767844 +- 2.213809785731729 +- 2.326655661564671 +- 2.5205935313623464 +- 2.2482582235797306 +- 2.1463192685586034 +- 1.9547818797705543 +- 2.045609637005868 +- 2.0503058455029706 +- 2.282278446708825 +- 2.404144331742981 +- 2.2404202321424864 +- 2.413603867855203 +- 2.667637232622165 +- 2.546813703531402 +- 2.5864252465217428 +- 2.6382653627195634 +- 2.3791802144381786 +- 2.1006301391583255 +- 1.967505562463777 +- 1.9659573855607329 +- 2.075938975671859 +- 2.208611730242843 +- 2.346034299585546 +- 2.590719810334659 +- 3.043156852549218 +- 3.0945141927811655 +- 2.7630604341723863 +- 2.4498928214487012 +- 2.3147936076878692 +- 2.2326026524895366 +- 2.0099579620430523 +- 1.9297485580787452 +- 1.8857679650974268 +- 1.8589349995762703 +- 1.8652334134147843 +- 2.1067099248687207 +- 2.2473467137534113 +- 1.9693947692029214 +- 2.0239144292935802 +- 2.016365352225586 +- 1.9003071878803184 +- 1.6206861495791176 +- 1.4564233197391314 +- 1.445347009967915 +- 1.4474977263733 +- 1.5645765657003565 +- 1.7308424758307113 +- 2.0744606729523487 +- 2.300461705435414 +- 2.4511051633925933 +- 2.10297956146022 +- 1.783752755284465 +- 1.6741967314693393 +- 1.6357204720879759 +- 1.5345875172503691 +- 1.5224071882850165 +- 1.5112214815948646 +- 1.7384638859059929 +- 1.9578050066864945 +- 2.1079018112461263 +- 2.338221958692305 +- 2.2843090751851 +- 2.074365877051619 +- 2.004487465432688 +- 1.6811472210642873 +- 1.3228663630323878 +- 1.2048391464156711 +- 1.0690215483156633 +- 1.2054756053512936 +- 1.3268822403637708 +- 1.6622645828645355 +- 2.1065348047209613 +- 2.4438936297678304 +- 2.307655849118317 +- 1.8954208964055714 +- 1.6478197731862998 +- 1.5708288804127668 +- 1.5571526079018798 +- 1.5798868092945026 +- 1.6181337059006173 +- 1.713666821682287 +- 1.7939287532659929 +- 1.8583069401178447 +- 2.036358613077257 +- 2.3292073341258575 +- 2.249810614975039 +- 2.033728104270169 +- 2.04384014033274 +- 1.6566566784022947 +- 1.3346659583868783 +- 1.036477602362311 +- 0.8749073884579092 +- 0.9520784291028022 +- 1.0350690452026772 +- 1.249288800228665 +- 1.5828373653435832 +- 1.735129694549008 +- 1.7995004106591133 +- 1.7385541325989033 +- 1.7746627045564611 +- 1.5734195495331467 +- 1.5857118419966432 +- 1.7677475211879101 +- 1.8231311383230104 +- 1.8810972250948843 +- 2.019388634977503 +- 2.1422345798061553 +- 2.2894465692304466 +- 2.3207421156537515 +- 2.219863056408595 +- 2.0935688441429394 +- 1.865238433993142 +- 1.6380234964655545 +- 1.1653876002066261 +- 1.0144190443430108 +- 0.9054714924914918 +- 0.9419914100145679 +- 0.9636277058433003 +- 1.1011005393517785 +- 1.256819082538204 +- 1.5492579015496664 +- 1.7345383929503988 +- 1.672651865396878 +- 1.543017560445995 +- 1.552875946288545 +- 1.5507763670613957 +- 1.8497006567638759 +- 1.562857529184359 +- 1.5788583390565178 +- 1.7564101228460305 +- 1.90307308247709 +- 2.0327714997002158 +- 2.066612463826302 +- 2.0186313600289996 +- 1.9472006864976459 +- 1.839474662887371 +- 1.5209384669885804 +- 1.142603400470964 +- 0.9819865825999377 +- 0.8732824298996887 +- 0.8931942401574458 +- 1.0266340654902681 +- 1.2575530659573728 +- 1.601494517744739 +- 1.9161128449025446 +- 2.0114524283841684 +- 1.9352974232974671 +- 1.7883547634995745 +- 1.719552282617702 +- 1.669879253570087 +- 1.6764221436977749 +- 1.5932406103117673 +- 1.513781428506785 +- 1.5992551960298693 +- 1.8396895674401765 +- 2.0111565908750997 +- 2.091282873143594 +- 2.0587252903678843 +- 1.9533370373931505 +- 1.9291379676829603 +- 1.877819952215175 +- 1.4442163638317027 +- 1.2655117527436388 +- 1.2224387473202893 +- 1.2968668733710336 +- 1.4122461613907167 +- 1.6118511253111496 +- 1.9588418796821134 +- 2.2762090124606362 +- 2.2512421952926402 +- 2.1317112910318152 +- 1.8297329903365578 +- 1.7417183319967064 +- 1.7600432894284412 +- 1.443408089813548 +- 1.4470818449206455 +- 1.543772477310579 +- 1.8349913745379154 +- 1.8872411665501962 +- 2.212390476723853 +- 2.2281583259160076 +- 2.1110480959772735 +- 2.0515560666021955 +- 1.914920189792177 +- 1.6347184594555044 +- 1.2414965161649985 +- 1.0017768816996582 +- 0.87548612947598 +- 0.9486292594264811 +- 1.003381892946882 +- 1.1628025199626455 +- 1.386306759388966 +- 1.6223834750027595 +- 1.6704916507126726 +- 1.5233994630450192 +- 1.5315640451741503 +- 1.6096349583388219 +- 1.7827037144943467 +- 1.7179912598867773 +- 1.5911620952129062 +- 1.6846156640863643 +- 1.8343088167510417 +- 2.159889675734553 +- 2.5362984909176016 +- 2.4324730243021038 +- 2.322721081071675 +- 2.147953301468772 +- 1.9338779076289438 +- 1.7598575031409445 +- 1.346385539697066 +- 1.1289175737124597 +- 0.8652931632750162 +- 0.851030654480249 +- 0.8845731358676517 +- 1.0372488525392511 +- 1.2725063095209137 +- 1.6416688995475737 +- 1.5952983862515433 +- 1.745400670964511 +- 1.6545378733680087 +- 1.5574381922829865 +- 1.575253154584663 +- 1.7678650520071146 +- 1.648427130188495 +- 1.7545466257761195 +- 1.8509948190865881 +- 2.0243641473525895 +- 2.0095572536418347 +- 2.194356243781363 +- 2.048035520276439 +- 1.847231716506891 +- 1.8354883238833624 +- 1.6982587946656735 +- 1.2600740383280058 +- 1.0471028522479577 +- 0.9059713705082987 +- 0.9295966939038742 +- 0.9848313817198152 +- 1.0478246449876858 +- 1.2868003780762067 +- 1.650747107688278 +- 1.6797968913413912 +- 1.4938300496800347 +- 1.4721699051267343 +- 1.5037533660016207 +- 1.4418359909020309 +- 1.4779027938772924 +- 1.56113785509646 +- 1.6143283945055795 +- 1.6844315320694614 +- 1.778946421631607 +- 1.932179736151539 +- 2.0073099828727687 +- 1.983476843102441 +- 1.9204521346049375 +- 2.0114003998448524 +- 1.5667432713840912 +- 1.3732377725181544 +- 1.1151348467875328 +- 0.9777488448462621 +- 0.9900058581716753 +- 0.9754027798878693 +- 1.1071938415614302 +- 1.2557083594347331 +- 1.4468264301259457 +- 1.635630121274229 +- 1.8674237247053929 +- 1.8232960610389441 +- 1.9269219920941452 +- 1.903951923309968 +- 2.042045030844165 +- 1.8894555704998206 +- 1.8972366752430896 +- 2.086467737758195 +- 2.076175978639411 +- 2.278108827541696 +- 2.2697530616031334 +- 2.1264934037438556 +- 2.0629912446894463 +- 1.8244924046955537 +- 1.5446129952902705 +- 1.1670700560507898 +- 1.0339010773153137 +- 1.0029509965178809 +- 1.0913648786712937 +- 1.1410236362855615 +- 1.3376418252386655 +- 1.6046485545420721 +- 1.6958109356509492 +- 1.8270086951978093 +- 1.7739932918001484 +- 1.7905683470245288 +- 1.7162259366119743 +- 1.7946680221689333 +- 1.8146206413662274 +- 1.9106097780530749 +- 1.8378469725955162 +- 1.9453235439874899 +- 2.1832028875869836 +- 2.4726861708425703 +- 2.35577108338838 +- 2.250257900756714 +- 1.9941725051880583 +- 1.8363673344282243 +- 1.501660568612411 +- 1.217765499430251 +- 1.1160968775431448 +- 1.1289640234446738 +- 1.2966420668751302 +- 1.2526807010015033 +- 1.506461237461381 +- 2.026304915104084 +- 2.228377204365159 +- 2.184627721989607 +- 1.7225701213850506 +- 1.6276059430282188 +- 1.615132278178709 +- 1.7482292058157072 +- 1.7707550785043324 +- 1.5852778205216915 +- 1.6965170264379217 +- 1.7359932742588295 +- 1.8305203806211243 +- 2.0975182122979974 +- 2.2748676433599275 +- 2.167217215839954 +- 1.9681056685100313 +- 1.8710051459366146 +- 1.8070378405892649 +- 1.3262776605958537 +- 1.0575615887661582 +- 1.0265322905758751 +- 1.013111014431129 +- 0.9901959117637966 +- 1.1075880650804653 +- 1.2659285597674983 +- 1.571112990103424 +- 1.7341701754295096 +- 1.5458618180097692 +- 1.6029022291969852 +- 1.6940998262371474 +- 1.5700904958128066 +- 1.7327513707620315 +- 1.652261017108373 +- 1.7967030595265674 +- 1.905738999942006 +- 2.072396487674646 +- 2.311218544193429 +- 2.4808851962415086 +- 2.2280986545542287 +- 2.2640543086191403 +- 2.042564528739081 +- 1.6956222521290167 +- 1.3005139002387056 +- 1.0288957167911665 +- 0.8983352693633145 +- 0.8677267233926569 +- 0.8457576891244263 +- 1.0496742674181392 +- 1.3423129039355666 +- 1.6082102549307833 +- 1.7686469074276296 +- 1.574710821845999 +- 1.4381252206799853 +- 1.5392800056403053 +- 1.6181503784995148 +- 1.7588043274843848 +- 1.6293011091984029 +- 1.7123561832648844 +- 1.7319721360045943 +- 1.9522250610029235 +- 2.1374354605069494 +- 2.2669475940016155 +- 1.9986588613431602 +- 1.8242666745424194 +- 1.8288328899393589 +- 1.6054289122419578 +- 1.3766428016779584 +- 1.0679558905993531 +- 0.9423916924084643 +- 0.9677731052719201 +- 0.9901580408140706 +- 1.2562366985829145 +- 1.546470266800154 +- 1.7812048489310817 +- 1.8633227332339082 +- 1.7242684064469793 +- 1.3943111944416113 +- 1.4635497860830855 +- 1.590749068158865 +- 1.5621264160118813 +- 1.4323461070902892 +- 1.5455901700872194 +- 1.5828328406598255 +- 1.7383558774058665 +- 2.0420249891777287 +- 2.1131747172309105 +- 2.0271937125617274 +- 1.874289496679273 +- 1.8059403598617552 +- 1.5889333014129976 +- 1.366082271124664 +- 1.06546158965355 +- 1.036504865858397 +- 0.9881821285883626 +- 1.0598361676302537 +- 1.1979022744139975 +- 1.5622420261824332 +- 1.8397029788353714 +- 1.8363485943748694 +- 1.7338848300711056 +- 1.5182722855936663 +- 1.392703246880555 +- 1.4938193483838047 +- 1.5266337130132075 +- 1.5751076567811826 +- 1.5504437323673088 +- 1.7329451225015102 +- 1.8662664055398945 +- 2.1240902154453263 +- 2.356743364425037 +- 2.4210881470622447 +- 2.1049079121487346 +- 1.83078181221352 +- 1.6546122323022951 +- 1.270376871742457 +- 0.9579419398650636 +- 0.8672089881874949 +- 0.8038646434083712 +- 0.8813185157453908 +- 0.9302253708961759 +- 1.1124596242541425 +- 1.3177441141883033 +- 1.3281157954305847 +- 1.6062909492008832 +- 1.6473721297694641 +- 1.7483147252670177 +- 2.02797099706042 +- 1.9094039747635225 +- 2.030135634935509 +- 2.2026845552526058 +- 2.1545277843112247 +- 2.1751169487448285 +- 2.4652218762706113 +- 2.4635835884938424 +- 2.3214747189971447 +- 2.1364760655619315 +- 2.0380714116511007 +- 1.557819838043801 +- 1.2520839665714176 +- 1.0463977123361465 +- 0.9764276982133572 +- 0.9582383980934915 +- 1.0034012955453402 +- 1.1255486105399395 +- 1.371517155110423 +- 1.4152927652239666 +- 1.5760413980972832 +- 1.6336390364808877 +- 1.6597872754052667 +- 1.8124203311413074 +- 2.0105834603390518 +- 1.9784867748053234 +- 1.9319601751348805 +- 2.022873705407352 +- 2.136277845924245 +- 2.3366613944313266 +- 2.6979223084742716 +- 2.7110301595879 +- 2.508071177972865 +- 2.1822459008287582 +- 2.0560248406520323 +- 1.7612024299675952 +- 1.3474361368336203 +- 1.054479141520254 +- 1.015934601662734 +- 1.045156955615134 +- 1.063264282438642 +- 1.0914324320525204 +- 1.5161217363941089 +- 1.7140170707062672 +- 1.8460814897752988 +- 1.718273472723236 +- 1.6727162694460889 +- 1.6741934405974492 +- 1.8018091588283844 +- 2.004413164785642 +- 2.0250241025642204 +- 1.906926653399196 +- 1.9912935018791713 +- 2.2078445593311598 +- 2.4271418817788897 +- 2.483602914259943 +- 2.5093184471772245 +- 2.1697410934126315 +- 2.051614653233883 +- 1.6830565514297575 +- 1.2733468848124303 +- 0.992870251207619 +- 0.8906169143774278 +- 0.8636205832241938 +- 0.8796508873666794 +- 1.0439023030535122 +- 1.3621981791430062 +- 1.5786983281534057 +- 1.603929841844879 +- 1.674757580777217 +- 1.433968746197041 +- 1.4890030389195714 +- 1.5743397580896303 +- 1.7189262980472586 +- 1.7511923571180168 +- 1.6638368454265913 +- 1.7707596033389454 +- 2.0691844105257626 +- 2.274724950920363 +- 2.398361629746881 +- 2.2015250099150947 +- 2.122462041487949 +- 2.051043241309306 +- 1.6511166241049475 +- 1.280647533641287 +- 0.9968617108951608 +- 0.8687475606819555 +- 0.8487046371547862 +- 0.8584750310183561 +- 1.0050098344692802 +- 1.2031999801437512 +- 1.5970254331648437 +- 1.5503339741226911 +- 1.6447838362570606 +- 1.5938235865472619 +- 1.5899164756344384 +- 1.5206754804508735 +- 1.7636853628977398 +- 1.6122029262380022 +- 1.811917134405639 +- 1.9889037467691701 +- 2.122817026139038 +- 2.2696045983382955 +- 2.2218770731240407 +- 2.1778407970080536 +- 2.038925145669286 +- 2.0456684213842222 +- 1.6028008810910441 +- 1.2884679540470272 +- 1.0259142429176922 +- 0.8844339406645321 +- 0.926605883654618 +- 0.8968221529678625 +- 0.9843558538417269 +- 1.2694176041361678 +- 1.5568212062107187 +- 1.8609853700905932 +- 1.7799687219532219 +- 1.5703794677687375 +- 1.5128358622223947 +- 1.6235143318733731 +- 1.6663151608426623 +- 1.7137902079514724 +- 1.884795452080546 +- 1.9767805634791877 +- 2.002597675174267 +- 2.2793673730576667 +- 2.5351217606809957 +- 2.3951828679979887 +- 2.1073363820231132 +- 1.9598045941683593 +- 1.7832861435033356 +- 1.2318827914498853 +- 0.999644374280913 +- 0.8251864031093785 +- 0.8174363487158292 +- 0.8171298139999061 +- 0.951446310705425 +- 1.2336866801771043 +- 1.4769908945028962 +- 1.6316444376778907 +- 1.51289329257416 +- 1.513043072945972 +- 1.6240637772135835 +- 1.6340046819320664 +- 1.7124667937833769 +- 1.7989406248645516 +- 1.8730568040852464 +- 2.0429210638494446 +- 2.2184579191992655 +- 2.3693319522887935 +- 2.2844903810626453 +- 2.3992675420208185 +- 2.192310156218605 +- 1.9978362693496923 +- 1.7779079391676733 +- 1.4566047909800486 +- 0.9559867105838373 +- 0.8372492991718733 +- 0.8315324668293637 +- 0.8392055686132923 +- 0.8809457634211633 +- 1.0335423869537284 +- 1.2143213003377948 +- 1.3968243051928169 +- 1.5544344127475525 +- 1.6615434573570864 +- 1.7305258731211812 +- 1.8257117697972962 +- 1.8392393841279744 +- 1.9883963841267958 +- 2.103335375730428 +- 2.19030547257727 +- 2.335368175399399 +- 2.5233220279978146 +- 2.5993077936035514 +- 2.4961585692080686 +- 2.2743450887040786 +- 2.203435345680926 +- 1.667224178766991 +- 1.3547378048595147 +- 0.983034909658285 +- 0.9880952619864675 +- 0.9438708356990465 +- 0.9526750273885608 +- 1.0401283574499987 +- 1.2254805399956015 +- 1.4164933126610761 +- 1.4188686959074164 +- 1.4779547184969115 +- 1.660567412047836 +- 1.6938959703721517 +- 1.790196439590937 +- 2.070062185077739 +- 2.0731229462760083 +- 2.055134429483648 +- 2.281592770564294 +- 2.5179026673813203 +- 2.645601849758854 +- 2.5847091714939165 +- 2.4536270859378257 +- 2.1368844377487677 +- 2.1764389602058256 +- 1.8133169795937563 +- 1.300789633083489 +- 1.2111551964857943 +- 1.0497226463375606 +- 0.9879706309981281 +- 0.937595486466626 +- 0.9475056840738817 +- 1.1326720944616142 +- 1.3964292754077856 +- 1.4988751678807173 +- 1.5563484188931012 +- 1.6516203960224722 +- 1.8177551792666393 +- 1.9716101558847243 +- 2.0079724636333793 +- 1.8905734815323338 +- 1.9697348338968066 +- 2.042913127132706 +- 2.2339883409763357 +- 2.343779507760718 +- 2.2605226036400508 +- 2.344379883610706 +- 2.1353092994204723 +- 1.9692476964373422 +- 1.740209801858305 +- 1.3148596366925736 +- 1.0975390811422037 +- 0.9040921690163339 +- 0.8236417485087388 +- 0.7906875277065223 +- 0.8310360580936517 +- 1.0179405001460877 +- 1.3189756382867561 +- 1.5493825131134 +- 1.509943892191582 +- 1.5731752747470678 +- 1.6916277933253168 +- 1.8114232942502533 +- 1.9293440048036965 +- 2.030669796283344 +- 1.987305485756486 +- 2.0552210543823994 +- 2.270279638407938 +- 2.4110346182725846 +- 2.4242367831733986 +- 2.343576826791308 +- 2.177338635058268 +- 2.1050959936016347 +- 1.7328335953470284 +- 1.38496330719467 +- 1.0048039522515764 +- 0.9062785574966948 +- 0.8090946830103631 +- 0.8088709721596472 +- 0.8983463658355508 +- 1.046228394255062 +- 1.3898869889301555 +- 1.5495350307518208 +- 1.411609368101534 +- 1.5493805072612832 +- 1.741447577803968 +- 1.8395367356817438 +- 1.8417922746529518 +- 1.9678620825987128 +- 2.0215671470004373 +- 2.0393750628838982 +- 2.130335339556061 +- 2.3276141320781774 +- 2.3705064828417077 +- 2.2911932032553284 +- 2.164361340047867 +- 2.054142365769761 +- 1.8235059628625874 +- 1.365160150363131 +- 1.0603850555797085 +- 0.9164095860934334 +- 0.8924917357310903 +- 0.8991031730247068 +- 1.0445874388184946 +- 1.161700153738546 +- 1.3668549085572859 +- 1.620800028084559 +- 1.5307125929001142 +- 1.5649225643359657 +- 1.654661912343186 +- 1.7600597373934952 +- 1.95050051554806 +- 1.9831406477773996 +- 2.0470886104101798 +- 2.1156913725404225 +- 2.135494445556194 +- 2.4053035706532375 +- 2.4525891145025818 +- 2.3429548473876602 +- 2.2482846210477385 +- 2.0461703712912396 +- 1.8203811280960482 +- 1.4192701905500302 +- 1.1036695774469518 +- 0.9807040659402259 +- 0.9639970805614321 +- 0.9511638828071923 +- 0.9719693884013086 +- 1.1495468039180232 +- 1.4938302848960252 +- 1.5261861285126537 +- 1.4444538510222968 +- 1.5894039631900532 +- 1.7422691418450833 +- 1.7222512098721043 +- 1.84898628779041 +- 1.8185995075983232 +- 1.8218257606697954 +- 1.9112577949208387 +- 2.135832559941052 +- 2.2816747650405675 +- 2.247952680877577 +- 2.1662741441804694 +- 2.019012677410559 +- 2.0104834683770076 +- 1.6096248259328148 +- 1.3207867414894334 +- 1.0611887646212965 +- 0.981513867728235 +- 1.0249795885924138 +- 1.0137199184691206 +- 1.081141108952259 +- 1.2978879812071005 +- 1.4154744843803293 +- 1.7063364692498248 +- 1.7774812463605072 +- 1.7401271615386171 +- 1.9086624301700683 +- 1.8026649278384033 +- 1.8634287202059276 +- 2.0131219062293133 +- 2.0344166928100793 +- 2.1928257248529768 +- 2.4089224064815475 +- 2.558291211219661 +- 2.5448229407888254 +- 2.4692619819427697 +- 2.2018460768882124 +- 1.9773551737045725 +- 1.703804033741625 +- 1.306306261332868 +- 1.0266191670593559 +- 0.9439221101478786 +- 0.9751144668502302 +- 0.8730281735156433 +- 0.9225026442021639 +- 1.0053081046020613 +- 1.18334180319864 +- 1.3565462458928927 +- 1.5306302956524425 +- 1.7557442389798454 +- 1.8558114886418549 +- 1.8096378539446583 +- 2.0066315696540213 +- 2.070646415755309 +- 2.047875451966548 +- 2.130833371551149 +- 2.271132215279164 +- 2.5288198796127883 +- 2.6451964283115674 +- 2.600618348609658 +- 2.2941307708025747 +- 2.1945437884602867 +- 1.8264059080470674 +- 1.413093123690543 +- 1.1006929125425866 +- 1.0088208797331177 +- 0.8511638318890201 +- 0.8507156922736817 +- 0.9306138577866362 +- 1.0762900163607334 +- 1.5595743334579262 +- 1.611123024430276 +- 1.5611857104542124 +- 1.717163884532059 +- 1.8531509097613534 +- 1.8687008846700652 +- 1.9264747648958032 +- 2.01970304087711 +- 2.1074844585052643 +- 2.153973600042233 +- 2.4285878263020586 +- 2.418505548252104 +- 2.4058691470071927 +- 2.538756629960892 +- 2.10231813154252 +- 2.1902500204183624 +- 1.9456205199194745 +- 1.4285151665613498 +- 1.124508699565526 +- 0.9227012502102572 +- 0.9097171378434259 +- 0.9370548852981202 +- 1.065409585487441 +- 1.296264880365589 +- 1.6310710944566087 +- 1.6942056661441283 +- 1.5879798506823328 +- 1.530769777958783 +- 1.4977430741423696 +- 1.7275211770581378 +- 1.7396571497368256 +- 1.6840382407171668 +- 1.899569191918926 +- 1.9832547719010776 +- 2.183709734548154 +- 2.387939616024761 +- 2.5420387563293207 +- 2.6477627678519156 +- 2.3973297937933125 +- 2.2004088714326837 +- 1.9059177696303284 +- 1.5117214392665406 +- 1.2090301014634595 +- 0.9801926786058824 +- 0.924316282409698 +- 0.8499567626791616 +- 0.8686671202336721 +- 1.144969785530841 +- 1.5121856343804174 +- 1.6012925073305162 +- 1.446732293259697 +- 1.6718572585620188 +- 1.7522304312226875 +- 1.8597899310129857 +- 2.026163804285863 +- 2.1648546511298448 +- 1.945543888038827 +- 2.1716408930578943 +- 2.3676652364935524 +- 2.6606873943164615 +- 2.625174551655673 +- 2.4345120303035794 +- 2.34681393247209 +- 2.247576267600461 +- 2.048446742476418 +- 1.4357339815242265 +- 1.1026563274236005 +- 0.9285380135621052 +- 0.8751276351057505 +- 0.7669857656484542 +- 0.8427959135705185 +- 1.0856836211879761 +- 1.4142706799428897 +- 1.5137007319877345 +- 1.5456095670152756 +- 1.4790751346861941 +- 1.7579907041041454 +- 1.8490136966621304 +- 1.8527742665051306 +- 2.0081259911794347 +- 2.1940069547789043 +- 2.305029064130155 +- 2.494092599859558 +- 2.558459330581659 +- 2.5281501429844933 +- 2.518584965557758 +- 2.280992305090708 +- 2.250645014838447 +- 2.063968018227707 +- 1.6276267620511213 +- 1.1479589353474888 +- 1.0380013463075233 +- 0.9740489136167525 +- 0.8555354193697746 +- 0.8972718006904541 +- 1.0635925090603124 +- 1.3603187833568997 +- 1.6901869735381982 +- 1.630657365257407 +- 1.6380336341084443 +- 1.8449187862420762 +- 2.0084557214010856 +- 2.146772268943137 +- 2.304716548655687 +- 2.230683625374584 +- 2.178433147889784 +- 2.3393291204274016 +- 2.4564479183709524 +- 2.430360400395375 +- 2.2363682109745455 +- 2.391616800841944 +- 2.250591273994912 +- 2.0863781108248483 +- 1.4283996231953586 +- 1.0675121921905701 +- 0.9121312564631142 +- 0.8522114085417886 +- 0.8024384757255554 +- 0.8703278571050113 +- 0.9280116401531335 +- 1.1308815785261863 +- 1.3426925310945241 +- 1.6625390635275945 +- 1.725577130362124 +- 1.779829748349316 +- 1.9773992166008343 +- 1.9931615539278738 +- 2.202407897558416 +- 2.291798563406528 +- 2.3080466988804424 +- 2.6174278047697976 +- 2.579275920519502 +- 2.560987881745588 +- 2.508364251573955 +- 2.2418036122012936 +- 2.136191670631744 +- 1.8200734377717174 +- 1.4187531640196562 +- 1.1418945406106495 +- 0.9374855288418372 +- 0.8417172641747026 +- 0.8374526732853209 +- 0.8650882764889446 +- 0.9550392268362771 +- 1.1269922305043738 +- 1.2947122301609764 +- 1.5184260448160432 +- 1.616967560644991 +- 1.804657885287021 +- 2.0620880976374707 +- 2.28507171553929 +- 2.213390520294204 +- 2.161502033953514 +- 2.0799750341056717 +- 2.2798060533149167 +- 2.531507900210868 +- 2.516406236117745 +- 2.4190911964457236 +- 2.2898360808296805 +- 2.2244968911455225 +- 1.9264093521523704 +- 1.5174386920174896 +- 1.2204263073144423 +- 1.047229871702393 +- 0.9639213193748005 +- 0.8839753685734688 +- 0.9299278344750956 +- 1.139925892949846 +- 1.4675754675708357 +- 1.7781381276838082 +- 1.5858473019082209 +- 1.7019761325521565 +- 1.883332346294068 +- 2.000531146045034 +- 2.0117604876185586 +- 2.0114164583836347 +- 2.08151609644291 +- 2.0755356316902325 +- 2.1586047076689914 +- 2.647525326415582 +- 2.708566190102493 +- 2.569771989308265 +- 2.3479900598385326 +- 2.46904646447174 +- 2.0893114940452477 +- 1.512553090493488 +- 1.1431222151615223 +- 0.9611463171601294 +- 0.8043113805836535 +- 0.7777000215816146 +- 0.8286872113780844 +- 0.9636880537345701 +- 1.283804488982588 +- 1.3983540375680914 +- 1.5637361932259155 +- 1.632724352856586 +- 1.6776573312049885 +- 1.8178368992229572 +- 1.9510017933825743 +- 2.0217107891386097 +- 2.1389686657823193 +- 2.2181952920229824 +- 2.3726707545218444 +- 2.4205206440272367 +- 2.4279623388340132 +- 2.3762623809882215 +- 2.1839196667114997 +- 2.243148408590877 +- 1.9097145404920948 +- 1.4261170194791946 +- 1.1411345390357779 +- 0.9513273935981451 +- 0.7982398455357232 +- 0.7759653849967799 +- 0.8331114961689857 +- 0.9757132586364294 +- 1.3073484186916045 +- 1.4466582437135782 +- 1.4553836679125869 +- 1.586933584273961 +- 1.78650560393015 +- 1.8249141533434645 +- 2.0641593666999483 +- 2.1004531880626476 +- 2.1214737290511074 +- 2.153359034710975 +- 2.397453724991797 +- 2.526551075113632 +- 2.592350613816614 +- 2.373097937648161 +- 2.196900330030783 +- 2.2091647409224193 +- 1.9703246740887943 +- 1.4570485022972348 +- 1.164236002117715 +- 1.019605311920649 +- 0.8751733209239894 +- 0.8084125211871999 +- 0.8369433494981547 +- 1.0099683960271817 +- 1.2557564334732607 +- 1.4406282034821742 +- 1.4917321881392238 +- 1.5052956360222083 +- 1.5749070738517386 +- 1.8862610681601075 +- 1.9559647188184182 +- 1.8886260536693198 +- 1.8195793058896483 +- 1.9957950741963881 +- 2.182224511123463 +- 2.3676673744587142 +- 2.4774204288069845 +- 2.350686503470268 +- 2.2999876070991205 +- 2.1192278106404627 +- 1.8177626779637368 +- 1.4570410345823057 +- 1.0678358769876597 +- 0.919674947053887 +- 0.807456886086834 +- 0.7798346926236636 +- 0.8759181962854821 +- 1.010252849736224 +- 1.2715240995824615 +- 1.415756287469826 +- 1.4558402490107683 +- 1.598038856728129 +- 1.6200709622201346 +- 1.7894422867408968 +- 2.2229003206805786 +- 2.0409612613279515 +- 2.0506622064365496 +- 2.061400416248626 +- 2.370660588596438 +- 2.510738235544486 +- 2.620665884139162 +- 2.302810152335889 +- 2.108180207481431 +- 2.1091740757030077 +- 1.7994907605096944 +- 1.3932086904843488 +- 1.0566480873838224 +- 0.918718596958053 +- 0.8537216653888878 +- 0.8514504688046363 +- 0.8701613003307949 +- 0.9512273825947296 +- 1.0696532322833538 +- 1.2971978288291361 +- 1.5755824003530852 +- 1.7088715948536268 +- 2.134970410994249 +- 2.1847985246136785 +- 2.175528072515611 +- 2.118640371693359 +- 2.30422618469426 +- 2.3935092280662755 +- 2.5428522393830972 +- 2.648846647325842 +- 2.6943777343141813 +- 2.4526621433924443 +- 2.3157104283656262 +- 2.1435036362102604 +- 2.0949779373469393 +- 1.6091509720672512 +- 1.2963078404166866 +- 1.0643585681011112 +- 0.9445049099171903 +- 0.8227721286034302 +- 0.8362228789223841 +- 1.0011032515751166 +- 1.0971418770355317 +- 1.2154488464359217 +- 1.5457584564382867 +- 1.8067273652138982 +- 1.957034966952678 +- 1.9795095087108256 +- 2.0771420683630226 +- 2.1292111296505682 +- 2.2098042185284212 +- 2.2640634778684268 +- 2.4282050007841987 +- 2.6324829889071952 +- 2.544831445044947 +- 2.4826332252226395 +- 2.196453816643544 +- 2.205971260510469 +- 1.982883971974138 +- 1.5122631549841776 +- 1.1376178321302097 +- 0.9790889687496295 +- 0.8979303794743565 +- 0.8323373482235221 +- 0.8972713514886742 +- 1.0827672894027867 +- 1.337973127741972 +- 1.5613363275903858 +- 1.4189777533945724 +- 1.532308713433668 +- 1.6336959173301755 +- 1.9334049200506922 +- 2.0086371341670493 +- 2.0051633283247754 +- 2.0765309833866215 +- 2.2311203276635454 +- 2.1480701558087696 +- 2.3690849468819226 +- 2.3898748988039316 +- 2.235703307226002 +- 2.0824621789716375 +- 2.195829704331718 +- 1.8031508297385006 +- 1.295171737712641 +- 1.050336315425041 +- 0.8793239355502472 +- 0.8377699735009259 +- 0.7883685425903167 +- 0.8217789727046908 +- 1.0276038034170292 +- 1.288057612451697 +- 1.4539863366365549 +- 1.5132652004625073 +- 1.4284183700107222 +- 1.4805607230633793 +- 1.6108582912173683 +- 1.7010838149653165 +- 1.7675568276898206 +- 1.7811052393584463 +- 2.0717527103438673 +- 2.0168451920284807 +- 2.3838642788905644 +- 2.445240694081455 +- 2.339435784211577 +- 2.184584828611259 +- 2.2178352217520976 +- 1.6931351821938851 +- 1.3289172770420783 +- 1.111063123197222 +- 0.9618536386315835 +- 0.8408496076030156 +- 0.7799652828152083 +- 0.8532848321790564 +- 0.9826975035727931 +- 1.3149169067591848 +- 1.4060325301778505 +- 1.4053515864112351 +- 1.5769387186725181 +- 1.6607347973729973 +- 1.7782944556742215 +- 2.0235874637810403 +- 1.9866039068298162 +- 2.1309250458506455 +- 2.3706731795881995 +- 2.331148473539375 +- 2.5629452860199695 +- 2.654374813360959 +- 2.522106109754791 +- 2.4096764052296855 +- 2.2855734865242527 +- 1.8632173394147467 +- 1.5919174279786559 +- 1.1746961195999635 +- 0.9854235518660863 +- 0.9267602427493883 +- 0.7976768415978529 +- 0.8284743414416883 +- 0.9804176496562178 +- 1.2028183132823522 +- 1.3180670098389835 +- 1.389071767544212 +- 1.5056761039187152 +- 1.607168720776325 +- 1.6391972152116867 +- 1.6989478450196753 +- 1.9420745426400012 +- 1.8263283504287398 +- 2.0440521757148398 +- 2.2395031444051487 +- 2.415136332627816 +- 2.503908412209127 +- 2.424729010225847 +- 2.2773025374661313 +- 2.1767410082782597 +- 1.9555959225760051 +- 1.4631701786079652 +- 1.1859334270668 +- 1.051869858210405 +- 0.830353410466422 +- 0.7925695993870826 +- 0.8114762832066541 +- 0.9075372867749443 +- 1.2074598001467662 +- 1.405495657329929 +- 1.4394723700674592 +- 1.4591833511563062 +- 1.5740724999489717 +- 1.766237967612241 +- 1.8472995987802245 +- 1.9065126269693837 +- 1.8775113271229948 +- 2.045466435848248 +- 2.2242681515823635 +- 2.3963377476325283 +- 2.4379076859512274 +- 2.2506787022702692 +- 2.158136629548257 +- 2.001547941760772 +- 1.7609803684679157 +- 1.446346741223848 +- 1.0136105167680571 +- 0.9258703568767486 +- 0.9377075213559372 +- 0.9036413716015435 +- 0.9324801103265385 +- 0.9573745847487044 +- 1.1263603756325233 +- 1.2877529900704405 +- 1.5223026942861593 +- 1.633775215678449 +- 1.6523994992590463 +- 1.8857095639755166 +- 1.8588617851688183 +- 2.014119885443547 +- 2.2164808492053703 +- 2.178561784420344 +- 2.218938357610857 +- 2.332074721879064 +- 2.2769937398597198 +- 2.288792146680612 +- 2.149137939412018 +- 1.9720011329140537 +- 1.7526895335212394 +- 1.4112452718381225 +- 1.1606774293392061 +- 1.017869254880088 +- 0.8892152468033812 +- 0.9275171820013047 +- 0.9270558286949644 +- 1.0325527175930964 +- 1.2147342146743494 +- 1.3359900033302043 +- 1.5130495977164922 +- 1.6076311246160573 +- 1.580487500015351 +- 1.717402478008082 +- 1.933816820268429 +- 1.9387459492242494 +- 2.1056344165043597 +- 2.1592424373360966 +- 2.343087951324815 +- 2.5541123987417462 +- 2.57664099867797 +- 2.512241885777367 +- 2.298287428989703 +- 2.2128193045274585 +- 1.8339504284312438 +- 1.352265513637804 +- 1.0149463252862811 +- 0.9033929900630377 +- 0.8222592280042811 +- 0.8301705626603492 +- 0.918145120706404 +- 1.108944555813561 +- 1.3906287074255403 +- 1.5297133547074848 +- 1.577142714863976 +- 1.5431582561351327 +- 1.6949614994569906 +- 1.635519633650899 +- 1.673729105106826 +- 1.7783458899244058 +- 1.8290591816575754 +- 1.9408304339207516 +- 2.1916412623211663 +- 2.4012863627645795 +- 2.5811888308902473 +- 2.3716139943817818 +- 2.2780159977421715 +- 2.008308008787633 +- 1.7921494044934059 +- 1.4110200799181813 +- 1.0627812096969118 +- 0.9781267764664042 +- 0.8688600198154659 +- 0.8533338993017245 +- 0.9644547456600946 +- 1.1888098751953777 +- 1.7065436453431853 +- 1.6056137310822198 +- 1.5418270391186537 +- 1.5710480212880291 +- 1.6789080950524928 +- 1.8391071047976257 +- 1.9385986517533056 +- 2.0224447752304107 +- 1.9826267887533768 +- 2.2406125374351467 +- 2.1343435610325785 +- 2.2475317474096417 +- 2.345984180967496 +- 2.22959605696337 +- 2.0004241893207606 +- 2.112907136735586 +- 1.7923044472260523 +- 1.4031915795798515 +- 1.1238317532360917 +- 0.9336347545283309 +- 0.8394201069420962 +- 0.8222161318088569 +- 0.8623124458317092 +- 1.0772097786338755 +- 1.2260793412589148 +- 1.4169033105341113 +- 1.5313333849835762 +- 1.6260509614022929 +- 1.7127508076090894 +- 1.7125354080421467 +- 1.808693161619098 +- 1.9078725538125774 +- 1.8637720787404268 +- 1.9914928711800108 +- 2.246891843370611 +- 2.546291997514804 +- 2.4317160845663843 +- 2.2266623131390864 +- 2.2969128247013937 +- 2.0938913059639277 +- 1.909240306034908 +- 1.4167254562102716 +- 1.137347531979475 +- 1.0131119797398191 +- 0.9129407025377477 +- 0.9307275679309329 +- 0.9635272793722371 +- 1.1084755550825331 +- 1.295385863066529 +- 1.6009503924313748 +- 1.4759305402569804 +- 1.513081232783277 +- 1.4947913383440545 +- 1.6304677217798587 +- 1.8286410893468983 +- 1.7962615540763263 +- 1.889800335714607 +- 1.9609106950549613 +- 2.0874942792346785 +- 2.4224391229034072 +- 2.5090053713220417 +- 2.1904274923081237 +- 1.9926501268348094 +- 1.9950540806942456 +- 1.9172480211024414 +- 1.414103467298436 +- 1.1055951028206707 +- 0.9115567103908957 +- 0.8852486603614721 +- 0.8790083547550546 +- 0.891136776228185 +- 1.1210623220195772 +- 1.3646985752408183 +- 1.5078357511216305 +- 1.411688087807614 +- 1.3994284886951465 +- 1.5410690809657916 +- 1.6176696893914668 +- 1.8104026425288282 +- 1.7372906214610957 +- 1.8001230271430486 +- 1.9183332373749904 +- 2.171538757055816 +- 2.2645197199180633 +- 2.3906650898948545 +- 2.307291078390241 +- 2.1790519644608306 +- 1.9729724802163724 +- 1.7203803297700684 +- 1.3275615837693775 +- 1.0484315399299817 +- 0.9221679123351476 +- 0.823754024747008 +- 0.7640563450763553 +- 0.7832866172068419 +- 0.8677180164412648 +- 0.9763868777665414 +- 1.262441957724224 +- 1.5256718293885407 +- 1.5803809866056964 +- 1.7699159767110904 +- 1.9368282949839308 +- 1.9287066601349208 +- 1.987684745348414 +- 2.1125718671772735 +- 2.164393791457755 +- 2.2989079069822003 +- 2.2716803799191645 +- 2.3120565996644635 +- 2.416576520780479 +- 2.1453941661468745 +- 2.15716301054985 +- 1.6247937739151452 +- 1.467154876228548 +- 1.0357986255483178 +- 0.8856252207695331 +- 0.8024883239398792 +- 0.7714191846327182 +- 0.7956077186849061 +- 0.8933163049420001 +- 1.0835817008456388 +- 1.280352044131601 +- 1.479716981558257 +- 1.6794818299972558 +- 2.0098185565234274 +- 2.1283218264726407 +- 1.9451148765600856 +- 2.026009498320784 +- 2.052394809459723 +- 2.299888008695199 +- 2.3585692081712497 +- 2.528792207757438 +- 2.714016081017657 +- 2.518773739858604 +- 2.272716214039524 +- 2.0806642357302785 +- 1.741277350295847 +- 1.3651274928266843 +- 1.0290869346598683 +- 0.8824555125837178 +- 0.8003379739462078 +- 0.8040003067157815 +- 0.8366492596977974 +- 0.958274795428754 +- 1.2620344723543382 +- 1.3429294217646819 +- 1.3488637390436933 +- 1.47843524094103 +- 1.5440560915826285 +- 1.7355736786733125 +- 1.8197133053700187 +- 1.7526957468734266 +- 1.8178837256819873 +- 1.9278467599489817 +- 2.1976913579944486 +- 2.3228158700439225 +- 2.4754708206267875 +- 2.366924573718159 +- 2.295296498676579 +- 2.0154132423963476 +- 1.848772683708796 +- 1.2625986073687434 +- 1.0533102180471214 +- 0.889017981617382 +- 0.7941871975735499 +- 0.7819759920520286 +- 0.8024779369804199 +- 0.9763272242036746 +- 1.2360726504848745 +- 1.4995841822976894 +- 1.4660581599278646 +- 1.6063548614795349 +- 1.5668048572693645 +- 1.7441968324097052 +- 1.8967894491575903 +- 1.888705560896115 +- 1.783567847434026 +- 1.908837229834661 +- 2.134853415164661 +- 2.394605089536642 +- 2.2414872109814308 +- 2.24591381079586 +- 2.097711947264266 +- 2.0903985691183027 +- 1.746435886567766 +- 1.4528044220470513 +- 1.1774903212049723 +- 0.9725215697075732 +- 0.8377999689686427 +- 0.8165893885679726 +- 0.8408425649412278 +- 1.0207043137509577 +- 1.397251044600044 +- 1.531146929137545 +- 1.639419446293734 +- 1.567851673331067 +- 1.7577469971825905 +- 1.8241110068714208 +- 1.9059885719861807 +- 1.830405030227482 +- 1.839214734887144 +- 2.02140653241041 +- 2.2034881628091325 +- 2.321481439896448 +- 2.4624792981317065 +- 2.3477043341845953 +- 2.206738897431804 +- 2.0354710546527452 +- 1.7464717237390723 +- 1.4045617203476108 +- 1.1341465304480514 +- 1.0485188884420888 +- 0.8846405366855281 +- 0.8498957592427935 +- 0.799752671288287 +- 0.8723103536890358 +- 1.2487753976153746 +- 1.447144002910673 +- 1.3970485060587818 +- 1.4040068298094202 +- 1.6170729876776238 +- 1.7683013515491206 +- 1.8951935043025145 +- 1.9869111282607175 +- 2.090498817605868 +- 2.1530972345761326 +- 2.195355431596266 +- 2.406786988248448 +- 2.353747491512446 +- 2.2923174531653503 +- 2.183299605371015 +- 2.0427868907419966 +- 1.6832957756519626 +- 1.3696004426726218 +- 1.0836507821844326 +- 0.9729875902554354 +- 0.8470297653910867 +- 0.8324265353025873 +- 0.9013415066252775 +- 1.1499435268150457 +- 1.4297401923932247 +- 1.6219212253152122 +- 1.599855987072652 +- 1.758121131604948 +- 1.8774068790448757 +- 2.0453800916817526 +- 1.9837789763414815 +- 2.0599520529777537 +- 2.0377416858573927 +- 2.098787180942195 +- 2.322291783615984 +- 2.4837312554448157 +- 2.5327865824202322 +- 2.308677194047491 +- 2.282577868143876 +- 2.1949119843174576 +- 1.7479228052351832 +- 1.4310529426472707 +- 1.1252516232593397 +- 0.9664828694712143 +- 0.9425886241079411 +- 0.9617769472502817 +- 1.019645350062396 +- 1.0782092214145125 +- 1.2510433044405789 +- 1.302684377578271 +- 1.5378937982499628 +- 1.742447187298819 +- 1.8004654172917556 +- 1.875421548274549 +- 2.1871579432643964 +- 2.142572969974665 +- 2.20818109075726 +- 2.303784069865464 +- 2.562363764111761 +- 2.7521566602926164 +- 2.6673715359273973 +- 2.607255348803561 +- 2.4146640264695627 +- 2.296753733561656 +- 1.9447005170772682 +- 1.506942519029535 +- 1.1600706112920047 +- 0.9600082150330268 +- 0.904530761109206 +- 0.8728775005190536 +- 0.9251827378064277 +- 0.9668406645934854 +- 1.122023072104026 +- 1.2155606824947693 +- 1.4047933432826238 +- 1.5748539179129821 +- 1.7921836888791822 +- 1.9846934460593253 +- 2.154786566801388 +- 2.115213116418083 +- 2.2175423131892407 +- 2.4842183174605945 +- 2.5901008524461124 +- 2.409548201344456 +- 2.4554606380473616 +- 2.356666617667122 +- 2.210010502567948 +- 2.043500618212848 +- 1.7393051746834733 +- 1.3692000124975041 +- 1.1776816334000664 +- 1.049335236043106 +- 0.9879441085098379 +- 0.9910955603581048 +- 1.0595143314191349 +- 1.297878769706361 +- 1.644797910348211 +- 1.6592393225912754 +- 1.704049990753646 +- 1.7017120967816126 +- 1.6345585900051238 +- 1.7240005643110548 +- 1.8209250635934973 +- 1.9144315844679822 +- 1.826288113890047 +- 1.9431498816890382 +- 2.2413262276031483 +- 2.4117120873547475 +- 2.5250465689956862 +- 2.4973844698579986 +- 2.28731187609116 +- 2.2264725906278993 +- 2.0018901152220088 +- 1.4445317858221975 +- 1.0873195774350493 +- 0.9494677390836191 +- 0.8441390935342564 +- 0.794490490690276 +- 0.8549292995738786 +- 1.0474981999887605 +- 1.4467174022913563 +- 1.539666287364382 +- 1.3999239735568674 +- 1.6046743091644367 +- 1.7025858739757387 +- 1.8614926770814981 +- 1.8805960816125256 +- 1.9602474047847773 +- 2.0018159772076105 +- 2.161149565424575 +- 2.363437469560174 +- 2.4458423661043094 +- 2.4287266794298152 +- 2.3268076984113386 +- 2.3235071781889585 +- 2.1834832028027726 +- 1.8879659657234147 +- 1.4565209704697966 +- 1.143959876669963 +- 0.9799996058808152 +- 0.8585998924405576 +- 0.8184988050754667 +- 0.8149713183819267 +- 0.9476762125690422 +- 1.2755492774381871 +- 1.508182488071167 +- 1.7668261382486907 +- 1.5264642335341252 +- 1.793841442677965 +- 1.7167022416878641 +- 1.7913900484949048 +- 1.9113136081171493 +- 2.0712160283878456 +- 2.1991711018579845 +- 2.246186563378145 +- 2.4209351384041113 +- 2.4412291481866277 +- 2.3004952866134696 +- 2.15727552116612 +- 2.099086675510299 +- 1.8659036605298707 +- 1.3601169825005255 +- 1.1722584330672938 +- 0.9737725129106507 +- 1.0092924255963955 +- 0.88124548777285 +- 0.9634805631457736 +- 1.1217067520563475 +- 1.468560492379365 +- 1.5898063843871013 +- 1.5451296199988205 +- 1.4795142606636509 +- 1.6226260826020313 +- 1.741724489054958 +- 1.7231013679956286 +- 1.6849434706537818 +- 1.701966093634554 +- 1.9081128621436423 +- 1.9895992358097627 +- 2.384980152012807 +- 2.392398181286346 +- 2.1250935701713987 +- 1.9719201845141827 +- 1.9103722623361845 +- 1.7565000984715122 +- 1.3236035933960166 +- 1.076592360479414 +- 0.9905998833910709 +- 0.9222027055395484 +- 0.9073931196158826 +- 1.0500741026907041 +- 1.3289797879432332 +- 1.6870512916740856 +- 1.6890480931585459 +- 1.5756860710456926 +- 1.431257147963059 +- 1.395797571473592 +- 1.5931236661816979 +- 1.6102057306825694 +- 1.557483390946319 +- 1.747045541849324 +- 1.9046945817732277 +- 2.06752984578867 +- 2.3517753973683475 +- 2.381592881474733 +- 2.398338898381501 +- 2.0903415309738183 +- 2.0003745362385668 +- 1.6726166417862613 +- 1.3526599568420783 +- 0.9946944443893814 +- 0.8893588230040294 +- 0.8152188303895441 +- 0.8077423291738733 +- 0.8597982938946097 +- 0.9482950680608196 +- 1.1234887782116554 +- 1.2648706903945208 +- 1.5534132563974492 +- 1.6193036885753145 +- 1.6239014252668045 +- 1.8092164356480729 +- 1.9384172749393493 +- 2.1504134834212207 +- 2.188168641451584 +- 2.2684505432815123 +- 2.3727829225789474 +- 2.611629401061134 +- 2.8160463443600845 +- 2.5763630423762782 +- 2.2285628699731737 +- 2.058408973447592 +- 1.907880520218739 +- 1.5065584192986186 +- 1.047548165348513 +- 0.9377839805190197 +- 0.8165589958940853 +- 0.8385795295120352 +- 0.8381394826583582 +- 0.888001242274911 +- 1.1081404002718722 +- 1.3359145412959699 +- 1.509889099680576 +- 1.647103428779751 +- 1.7309002071326598 +- 1.8689976915906275 +- 1.9755222125824963 +- 1.9661237759302512 +- 2.0439535785213323 +- 2.1152631808863576 +- 2.3723033603943473 +- 2.496960812898895 +- 2.430849148985707 +- 2.3528584044510428 +- 2.1068242979547795 +- 2.0501360061708502 +- 1.9730051420220969 +- 1.502973110233741 +- 1.0875776853387442 +- 0.8931450780871546 +- 0.8142494936633768 +- 0.7383563941407189 +- 0.8030870050599931 +- 0.9853904104764054 +- 1.3733246933838195 +- 1.4845432732416861 +- 1.3688146830943815 +- 1.3869815979477027 +- 1.6872456367988033 +- 1.6473332252472668 +- 1.7305430992382158 +- 1.70173246593122 +- 1.8438214940802105 +- 1.7917128915287452 +- 2.0200815193483344 +- 2.283699934818277 +- 2.4898179504983524 +- 2.1274635091080327 +- 1.9790454025490307 +- 1.9415718605307863 +- 1.6774231297499702 +- 1.2844286239838336 +- 1.0692787134045645 +- 0.9510684167345074 +- 0.808933311990167 +- 0.7570560018346776 +- 0.8084449541769463 +- 0.9718059174774568 +- 1.289567845446249 +- 1.510220603694788 +- 1.4521410641130814 +- 1.5590190845549634 +- 1.7056549561594663 +- 1.6422753513629622 +- 1.7491984637462314 +- 1.7881409706780294 +- 1.8643827989810955 +- 1.8667272216387405 +- 2.005089993152895 +- 2.15672756232754 +- 2.0465214617164724 +- 2.02415763174512 +- 1.8941196190679135 +- 1.8747722045187936 +- 1.728933689273884 +- 1.3922310602733197 +- 1.0504365744232325 +- 0.8864767088871982 +- 0.7854366895744075 +- 0.8130458598340059 +- 0.8663985353404242 +- 0.9397785963410336 +- 1.2983652744475744 +- 1.4057180564479819 +- 1.4174730219209843 +- 1.3579688395950218 +- 1.382217766729607 +- 1.5559929270703188 +- 1.6672863486687681 +- 1.650995538917374 +- 1.5692119813580672 +- 1.6883922339931943 +- 2.0625078765227 +- 2.0797241383377534 +- 2.086794398794312 +- 2.0127599574662733 +- 2.0319443037804015 +- 1.8667462991305679 +- 1.4752776295708285 +- 1.1528725645776434 +- 0.9918234369012267 +- 0.9447775525920471 +- 0.8634218728416466 +- 0.9157269305566883 +- 1.0641881575971794 +- 1.272206459564574 +- 1.6854479879355233 +- 1.8670779299416087 +- 1.552508552486187 +- 1.5978688550672633 +- 1.6067724214229409 +- 1.5942083741272368 +- 1.6672054567505434 +- 1.693421315477477 +- 1.8931316413310075 +- 1.9995301883738974 +- 2.232500784808538 +- 2.4426754420522085 +- 2.3957407474958985 +- 2.240027519020102 +- 2.0868656357385134 +- 1.9509996340285478 +- 1.600131139411552 +- 1.2310402966069387 +- 1.0270534866319558 +- 0.9250774537728877 +- 0.9726125075143575 +- 0.9908300226926069 +- 1.0868409973401607 +- 1.349820243920755 +- 1.7141682610812752 +- 1.8248167229483157 +- 1.7164205983203877 +- 1.557623324918122 +- 1.557238384774796 +- 1.575990102114349 +- 1.4985097988053735 +- 1.5169851999842021 +- 1.7377370034648998 +- 1.8595635518521916 +- 1.9290150218021433 +- 2.22054412755641 +- 2.234683484351612 +- 2.3462552544590354 +- 2.064590350672099 +- 1.8909065098348274 +- 1.4829772534888603 +- 1.341713331295707 +- 1.0693394624461443 +- 0.9073297649872197 +- 0.8687758356242272 +- 0.8934548998392081 +- 0.9745580910316318 +- 1.125312256022527 +- 1.3006124453863188 +- 1.5010083136378318 +- 1.6400861990405287 +- 1.6047781222058595 +- 1.5542602341274572 +- 1.7736691166045753 +- 1.794256601593247 +- 1.9387958789068485 +- 1.990760345548464 +- 2.0512614115518515 +- 2.3512200771825977 +- 2.404401630721474 +- 2.549254850827845 +- 2.2543146719193845 +- 2.207915325626623 +- 2.191898388843521 +- 1.8085205354091103 +- 1.2968434498292225 +- 1.0702997614651233 +- 0.8757001860532367 +- 0.796554351083724 +- 0.8194385723334271 +- 0.7953844634359823 +- 0.870277441893201 +- 1.0034989617855201 +- 1.097094628817221 +- 1.3086619327009619 +- 1.5378965546953696 +- 1.5159119145136146 +- 1.6685005053270703 +- 1.833539904020004 +- 1.9706625545794525 +- 1.9456352648619029 +- 2.0876275438111747 +- 2.276658253021755 +- 2.410335986654174 +- 2.402073571324843 +- 2.2415157301620523 +- 2.0785744559354633 +- 1.9704999566680623 +- 1.8605071445381407 +- 1.3989475544314285 +- 1.0740208939348537 +- 1.0012413271218379 +- 0.9751931980635893 +- 0.9883791686857643 +- 1.2601275559544418 +- 1.4517923199683993 +- 1.792940684187038 +- 1.8239859269852026 +- 1.7343506295538405 +- 1.6216542021737856 +- 1.6531225395782707 +- 1.6994642576061258 +- 1.7619060765732932 +- 1.8395475359703053 +- 1.9314211071395866 +- 1.9578702411793887 +- 2.1893780598816686 +- 2.237258128371251 +- 2.330499845508698 +- 2.1620491974121467 +- 1.9976970870337392 +- 2.001498543261078 +- 1.6975801228119072 +- 1.3025085697032601 +- 1.087425370583305 +- 0.9745707700793921 +- 0.9408045508032435 +- 1.0328343637493957 +- 1.2239994871513653 +- 1.5061875826107292 +- 1.8823883133571768 +- 2.068617205062127 +- 1.808143968333994 +- 1.64818263993617 +- 1.759057802856105 +- 1.65144161266709 +- 1.710647691328678 +- 1.8321477287292365 +- 1.8336966856982364 +- 2.1014865968688174 +- 2.20764284148161 +- 2.5200087909332107 +- 2.5426544019336794 +- 2.2053163086704686 +- 2.142848155296851 +- 2.0684397149824094 +- 1.6483968939930498 +- 1.354479535319826 +- 1.1490351423888627 +- 1.001319375022459 +- 0.9516320553626993 +- 0.9365505793083005 +- 1.0475442526231835 +- 1.1975245121516542 +- 1.4857544196016896 +- 1.5798412706362557 +- 1.66253662058097 +- 1.6797040037306188 +- 1.67468492656277 +- 1.7456663652671147 +- 1.7676215369741124 +- 1.7632856508745236 +- 1.9024337926490267 +- 1.9762311152786338 +- 2.1343377979078726 +- 2.1158741882592937 +- 2.238684458311291 +- 2.0879333018130994 +- 1.8999603339362063 +- 1.9029448913125513 +- 1.629415618587453 +- 1.2840674118509314 +- 1.0757956527732937 +- 0.8289624692255182 +- 0.7894942523393618 +- 0.7418106145686258 +- 0.8034932704012616 +- 0.9393424355288434 +- 1.1796106815678036 +- 1.384700402992274 +- 1.388196263178823 +- 1.482174536043145 +- 1.6851240920923196 +- 1.6944790984123392 +- 1.6699769475991428 +- 1.6077425175479978 +- 1.8831046434598138 +- 2.042758189691835 +- 2.0348559270480324 +- 2.3369900136937987 +- 2.333048013148495 +- 2.2225994711607555 +- 2.181398666811224 +- 2.0886621719744474 +- 1.7913508871510946 +- 1.3808662006015437 +- 1.1805299556603388 +- 0.9574590410543112 +- 1.087267886847056 +- 0.9908020515764809 +- 1.1019406521286406 +- 1.2922202656063275 +- 1.4893731035459747 +- 1.7997550769119253 +- 1.7221946696099126 +- 1.5695961694779308 +- 1.6356695681536604 +- 1.6037668093954216 +- 1.706584070014002 +- 1.697433580795715 +- 1.889708080800848 +- 1.889925153946798 +- 2.1677148147561947 +- 2.498160569629806 +- 2.5921207434439637 +- 2.458402365830913 +- 2.08672201350875 +- 2.0374193646589607 +- 1.887218407012707 +- 1.422504582491612 +- 1.0588402910425934 +- 0.9214222963200449 +- 0.8904029849143283 +- 0.8379126342287123 +- 0.8460865994633047 +- 0.9582211658434885 +- 1.164770618641633 +- 1.3911860270555851 +- 1.5149067458317884 +- 1.6036657981279607 +- 1.5630885367955607 +- 1.701651455408347 +- 1.890786708157522 +- 1.889279861408192 +- 1.8608572300546269 +- 1.8226510859857346 +- 1.9085885040900579 +- 2.174484280852784 +- 2.178009635230329 +- 2.1295630702401787 +- 2.138131935335586 +- 1.9350703502842617 +- 1.7121794215884614 +- 1.3119789450035382 +- 1.0432909966075112 +- 0.8946698698931275 +- 0.8823282824664017 +- 0.8689247860942552 +- 0.9973570678047364 +- 1.0983938759876481 +- 1.3172679605629203 +- 1.4994145524518956 +- 1.759360556042422 +- 1.6489564271693695 +- 1.6834463248282567 +- 1.6740915626091586 +- 1.8387289023849078 +- 1.8809226775781556 +- 2.1948830337630145 +- 2.139478364974511 +- 2.226986213352138 +- 2.4178591918091357 +- 2.4034034871695686 +- 2.3134028526785424 +- 2.0442531069609946 +- 2.0456597906854577 +- 1.7190130998457096 +- 1.3767814502177078 +- 1.1142673054182528 +- 1.0014350213830165 +- 1.0107209144357057 +- 1.0335034860795789 +- 1.1806266864689638 +- 1.3496610119417052 +- 1.7536260542973063 +- 1.8470073121948103 +- 1.5487319574843508 +- 1.5457347687865775 +- 1.5980769345630716 +- 1.4553389018364873 +- 1.474286877047705 +- 1.590378466787534 +- 1.71256167756582 +- 1.7824698935728573 +- 2.0287278388216965 +- 2.2227396164379054 +- 2.2917333400957753 +- 2.098445486451494 +- 1.99606197786613 +- 1.9051953139488371 +- 1.7683245591543086 +- 1.3084932732130297 +- 1.061825147571335 +- 0.8926988280086838 +- 0.9505281345474749 +- 0.9200010158097977 +- 1.0549267773739508 +- 1.3297364391958444 +- 1.5882267036129945 +- 1.6480935387030378 +- 1.5163088934020725 +- 1.4794659399521384 +- 1.5248803682957455 +- 1.5899680984502655 +- 1.7006407455764525 +- 1.672365260401988 +- 1.799275614795642 +- 1.9049435319561518 +- 2.1326682099229193 +- 2.2495197697425993 +- 2.206750453587399 +- 2.3049138161388965 +- 2.1276156413224157 +- 1.8183402353096694 +- 1.6414163450733095 +- 1.268654425136502 +- 1.0612680122667038 +- 0.8988785588799229 +- 0.9153256902507672 +- 0.9271429660313402 +- 1.0212859787956865 +- 1.3091248262095674 +- 1.7825571983899144 +- 1.8560142041409122 +- 1.5935221041505225 +- 1.4261851080165135 +- 1.496542505258302 +- 1.5689357186309338 +- 1.6526838329545062 +- 1.6630447178233168 +- 1.7678644404900157 +- 1.8347118230696258 +- 2.0149721549489588 +- 2.2356637105351838 +- 2.2377543142362404 +- 2.152098298129199 +- 2.105084928545085 +- 2.042971646888312 +- 1.8075705368321435 +- 1.296597567885463 +- 1.0800457242635981 +- 1.0064843652156288 +- 1.0614166978100812 +- 1.091312943194673 +- 1.241893830157862 +- 1.539226035822129 +- 1.8977673662416548 +- 2.0294472964495895 +- 1.801130410592374 +- 1.5527462261116907 +- 1.5453863280557592 +- 1.5085122274738403 +- 1.6416196706727215 +- 1.7136766377794521 +- 1.7333109030132197 +- 1.8898136026436776 +- 2.1614152799394892 +- 2.2274899134740234 +- 2.355829548359554 +- 2.199390440220681 +- 2.1217279912429823 +- 2.01007651613305 +- 1.7042620579056205 +- 1.1736511536124976 +- 1.0641942491804726 +- 0.9371882275864633 +- 0.9400741261010545 +- 1.0171015767408116 +- 1.1734688693513857 +- 1.4344764220421056 +- 1.799068721739556 +- 1.876750710210887 +- 1.8316609668993669 +- 1.7367004316674641 +- 1.6705715869870326 +- 1.56482575160431 +- 1.5176877165100189 +- 1.6257385697481213 +- 1.6783943318643657 +- 1.7899184630556992 +- 1.997627734656563 +- 2.139271842721222 +- 2.164191346137853 +- 2.0965988729975478 +- 2.055386320091017 +- 1.9476250669326807 +- 1.7632453373826429 +- 1.3147871652147038 +- 1.0917074518448577 +- 0.9630716157480347 +- 1.0285981803198017 +- 1.0629905823175312 +- 1.1683889279105029 +- 1.3904511681971305 +- 1.699831671758221 +- 1.9524366140569143 +- 1.8729459212724857 +- 1.6664310798594855 +- 1.583600890780648 +- 1.6719928056122744 +- 1.9310725734119785 +- 1.9711859807885441 +- 2.096160066268607 +- 2.2396445460171113 +- 2.265139661974574 +- 2.3886480851872958 +- 2.416267528850877 +- 2.3714386798739757 +- 2.1520928230540823 +- 1.945506030163977 +- 1.6296078689738758 +- 1.271102450468781 +- 1.08865725571916 +- 0.893315375418844 +- 0.9036339862431625 +- 0.931050113300643 +- 1.068646595982604 +- 1.2703950112597155 +- 1.606368715105552 +- 1.8143985992118217 +- 1.679992845249483 +- 1.7755913336616784 +- 1.8284894580919084 +- 1.8567027410818726 +- 2.1888397001857403 +- 2.1928807220603708 +- 2.1128073108374785 +- 2.2738672224627656 +- 2.5022178485563535 +- 2.663845655907735 +- 2.4980399311088073 +- 2.3007262521687415 +- 2.1580281563446486 +- 2.008347308160697 +- 1.6710153071891505 +- 1.3235927429174401 +- 0.9503917110244217 +- 0.8336362803566154 +- 0.7239676666457737 +- 0.7884580556720965 +- 0.9140805045019932 +- 1.1008640701950936 +- 1.4754614970945996 +- 1.64045957805842 +- 1.6458687948990554 +- 1.481246064225311 +- 1.617404793654292 +- 1.7684494539933147 +- 1.8274981964540695 +- 1.825149402680481 +- 1.9639526874277726 +- 2.196199600776878 +- 2.351262527288802 +- 2.5291863110751773 +- 2.4510442010792115 +- 2.197809969274464 +- 2.1155355708133565 +- 2.0801367623565565 +- 1.737428206262958 +- 1.291244199275826 +- 1.0330537327110267 +- 0.9478738996729853 +- 0.9153122432074662 +- 0.8862973888952683 +- 0.9313944669706832 +- 1.2108930900689328 +- 1.6027197567166045 +- 1.7575113979400283 +- 1.6273122850854862 +- 1.4848199782577367 +- 1.7372148842644393 +- 1.594139779856207 +- 1.6166947321855012 +- 1.783966132651788 +- 1.7970582129723192 +- 1.8615904170893856 +- 2.105295990138034 +- 2.235142851960049 +- 2.3443639170139656 +- 2.3188154445319733 +- 2.237723434544874 +- 1.9267939102158043 +- 1.6234854900129465 +- 1.4160723269226763 +- 1.2221978548352923 +- 1.1218736057148 +- 1.0834655026138749 +- 1.1488301545300106 +- 1.2259710664310142 +- 1.476476558321741 +- 1.8709849990443095 +- 2.095930863014241 +- 1.8028757827494697 +- 1.7781959291210356 +- 1.7051483425215475 +- 1.5742391686607813 +- 1.7604010996982287 +- 1.9387372237733842 +- 1.77917672853563 +- 2.016307883162037 +- 2.201744847365683 +- 2.4139560660966053 +- 2.5064422141182305 +- 2.3526741166059733 +- 2.1429846328959616 +- 1.9306626610809732 +- 1.6483559817338078 +- 1.2210607588593958 +- 1.172546589409731 +- 1.073880686288895 +- 1.1361079810278372 +- 1.1573778140868707 +- 1.3432961684018336 +- 1.6372241618415817 +- 1.8893710033482292 +- 2.0279564748590952 +- 1.9534702118622465 +- 1.7853869696675149 +- 1.585093613632047 +- 1.7296556353568562 +- 1.7589500416211463 +- 1.7645712162985099 +- 1.9286957532830766 +- 2.0090740680742383 +- 2.2946688351818665 +- 2.3920696512139528 +- 2.4303120098602933 +- 2.211587524654329 +- 2.181058137918895 +- 2.1667526021891366 +- 1.7207077321100723 +- 1.238176480135059 +- 1.030152750689263 +- 0.8403310952503362 +- 0.8232866754765131 +- 0.8419670807823637 +- 0.9661039886943629 +- 1.2575377428275059 +- 1.71493613292251 +- 1.7991065581674452 +- 1.5960598027704036 +- 1.5929539022217423 +- 1.492264963365457 +- 1.6234720747104707 +- 1.6979066511137488 +- 1.561558344303409 +- 1.6451905282693537 +- 1.6644968570908214 +- 1.9019181010033006 +- 2.115269244760106 +- 2.139693585669683 +- 2.1615398461824804 +- 2.106469104100029 +- 1.8989336802550851 +- 1.6171534712365854 +- 1.1752211829812984 +- 0.9900517552449775 +- 0.882931094566913 +- 0.960816941901009 +- 0.893938404221803 +- 0.9492084994821598 +- 1.1705701568368834 +- 1.4479730209493733 +- 1.5809604974036664 +- 1.7458876276091835 +- 1.6749199782614987 +- 1.6046211963363581 +- 1.7960348649351814 +- 1.9826176149387196 +- 1.927750592822745 +- 1.9155579854683285 +- 1.9865623262254535 +- 2.094905349149348 +- 2.3451414123342027 +- 2.5225878894800884 +- 2.1860391150539957 +- 1.9701650360476908 +- 2.035498386433849 +- 1.812244136462371 +- 1.369231691650383 +- 1.2483518602653811 +- 1.2641051045667142 +- 1.365787340565522 +- 1.4580665176739778 +- 1.6677253848427271 +- 1.8316504016681308 +- 2.1841763347002003 +- 2.4216108191249512 +- 2.2408154314596005 +- 1.957250999404348 +- 1.7287062727417193 +- 1.7676103405631758 +- 1.8186928854913904 +- 1.7573234117230325 +- 1.6848184081832411 +- 1.7727704214865396 +- 1.9748881018413982 +- 2.243153549912428 +- 2.1749197035756165 +- 2.1200296911921996 +- 2.134855981614253 +- 1.8077262814853798 +- 1.6669108598365878 +- 1.4323891383526535 +- 1.3307234531045167 +- 1.2510179999585522 +- 1.2861460935846745 +- 1.3592330144835336 +- 1.559639659041446 +- 1.820534472812768 +- 2.1671941045991345 +- 2.4834454799706718 +- 2.1017880092118038 +- 1.9328569584098634 +- 1.6936789827469945 +- 1.5772712253563634 +- 1.6043920666754135 +- 1.5767177076771834 +- 1.6725634871190123 +- 1.8589742560263671 +- 1.9460672382410966 +- 2.1106512038811167 +- 2.22758706209779 +- 2.042820685004143 +- 1.972184993466868 +- 1.9507650802623957 +- 1.7207459319016205 +- 1.3725323099265376 +- 1.2759421241540714 +- 1.1628449622889498 +- 1.1624967892445577 +- 1.3022235539453337 +- 1.5332946667977465 +- 1.7768187409965035 +- 2.305009777696095 +- 2.3087053684666916 +- 2.1061006743352344 +- 1.8319796020789512 +- 1.7532184224679896 +- 1.5933101937440346 +- 1.4912262257480775 +- 1.5466967249867762 +- 1.6177331017151892 +- 1.7866517340976948 +- 1.9936940089592219 +- 2.183763632441075 +- 2.146195640715889 +- 2.020851809699275 +- 1.96437822144886 +- 1.8968336790016125 +- 1.5135098494111512 +- 1.312198268752805 +- 1.08584344855338 +- 1.069497243529196 +- 1.0683250812669258 +- 1.120296853286915 +- 1.2840624686380453 +- 1.5346288877125123 +- 1.9287368989605242 +- 2.1366688185915383 +- 2.093263327526832 +- 1.7827126797053348 +- 1.7718871632203217 +- 1.8961440802289296 +- 1.779348338091596 +- 1.7735746324551276 +- 1.6699388985072554 +- 1.7691795859431185 +- 1.9193775823972907 +- 2.1255893582089875 +- 2.1743201990911585 +- 2.0425174630908725 +- 2.0703235361482273 +- 2.0474024409189826 +- 1.9412331345573102 +- 1.5635066159307898 +- 1.3897605242653652 +- 1.3172226897497628 +- 1.437846576507999 +- 1.5354082653606627 +- 1.8643143662533004 +- 2.0941388670933843 +- 2.546617691256736 +- 2.618061988080813 +- 2.4341664044081743 +- 2.218460657398819 +- 2.0552226487769154 +- 1.898242077689497 +- 1.8076884251781289 +- 1.7546063345781728 +- 1.7869283117034975 +- 1.8933132428000448 +- 2.00272038297094 +- 2.2351107324690846 +- 2.178035805299104 +- 2.0120045922591343 +- 2.110563518805385 +- 2.0513370994333417 +- 1.8756764712271683 +- 1.5315741777678689 +- 1.4428655071370853 +- 1.5048622168330485 +- 1.6019977418145277 +- 1.7606802784709832 +- 1.998740654678336 +- 2.3847635530999334 +- 2.96725902071455 +- 3.0739238449212296 +- 2.6965116900009614 +- 2.205359827420687 +- 1.9278168706478864 +- 1.774245676930041 +- 1.5916621135561744 +- 1.6740183327000047 +- 1.6620802429289048 +- 1.7284058508102413 +- 1.9323999344227714 +- 2.1203783980921305 +- 2.1704423626550433 +- 2.060160489566825 +- 1.9645621957158141 +- 1.846701686247835 +- 1.5908325781971526 +- 1.1645979714684886 +- 1.1834315667310693 +- 1.1698564856309206 +- 1.4280605130403041 +- 1.561002411048583 +- 1.785724210289064 +- 2.168258244643934 +- 2.512753201952924 +- 2.7513135418565406 +- 2.381507752165878 +- 2.0971456012834584 +- 1.973791348946239 +- 1.8542192581520223 +- 1.5942112017760994 +- 1.638011715683927 +- 1.7324045489129312 +- 1.9521045064060705 +- 2.0025327346471724 +- 2.3562766631867853 +- 2.175617382685361 +- 2.1852989794089885 +- 2.0130911055503495 +- 1.83888584481086 +- 1.5324329401945957 +- 1.2595375642248057 +- 1.071445075077725 +- 1.0298730144117572 +- 1.0827145823987674 +- 1.224901937953153 +- 1.473079263320831 +- 1.753433196020595 +- 2.155008459009176 +- 2.440692817965179 +- 2.287818889702833 +- 1.7737837718608729 +- 1.6625098245481404 +- 1.722527346164405 +- 1.8241612337343458 +- 1.70349349040638 +- 1.8844672174622172 +- 2.0327416212695484 +- 2.0358930815189438 +- 2.3594838734256935 +- 2.148938652063256 +- 1.978465642846774 +- 1.9888395193448047 +- 1.9423261389564335 +- 1.590308703782934 +- 1.1906468595502044 +- 1.1092178509486028 +- 1.0734231213244547 +- 1.123022251092093 +- 1.2869754320853037 +- 1.4904071220346016 +- 1.9328521313748008 +- 2.446603611821774 +- 2.5019029456861626 +- 2.0464166143092584 +- 1.6638276456577017 +- 1.6189230845713396 +- 1.5977363319030347 +- 1.711973667164239 +- 1.6246283966521664 +- 1.8123479453138476 +- 1.9969646580470308 +- 2.0392116573556724 +- 2.428964839993468 +- 2.2994085120146037 +- 2.172499323356749 +- 1.8814444622161097 +- 1.880650290569595 +- 1.4981144250812901 +- 1.1838920049109227 +- 0.9956146154843525 +- 0.8858799207642879 +- 0.8366061172855457 +- 0.8057367407580133 +- 0.9344359101449198 +- 1.1787131230168042 +- 1.571318493347387 +- 1.6903109924753514 +- 1.6527271205043967 +- 1.431769660920294 +- 1.4791480187132726 +- 1.8012093146741504 +- 1.74575062914227 +- 1.6704995104393618 +- 1.7285060941402552 +- 1.9424293704081774 +- 2.036326755515174 +- 2.2364193636041994 +- 2.254398257943257 +- 2.136410685339219 +- 1.9516908485767999 +- 1.974324709640384 +- 1.6405564399465784 +- 1.2593876868539688 +- 1.110025780594186 +- 0.9791335299997246 +- 1.0292481684385153 +- 1.1004175479229226 +- 1.245012976593104 +- 1.5768646402034425 +- 1.9435869015371108 +- 2.1695998121259654 +- 1.9633812431277133 +- 1.8896627701284003 +- 1.705887659830145 +- 1.6336921557089779 +- 1.5244983871847173 +- 1.4887161679220455 +- 1.4236438889288707 +- 1.5079191760435955 +- 1.7258428266948929 +- 1.7653514322495736 +- 1.8528456943702811 +- 1.9087922196866873 +- 1.917677921399248 +- 1.8012841287554748 +- 1.5547200218482435 +- 1.2268709027026923 +- 1.1321134072094419 +- 1.1067268572143814 +- 1.142464787587132 +- 1.1795383496867864 +- 1.2722019546093226 +- 1.5164633124678726 +- 1.7718285307259927 +- 2.1322842116055436 +- 1.9321890368792147 +- 1.735838699806193 +- 1.6578603831680776 +- 1.5319738585340612 +- 1.5283516637656023 +- 1.5742532562022322 +- 1.5634286644292 +- 1.7104600814708875 +- 1.7505103647107467 +- 2.122145498381836 +- 2.177708706597534 +- 2.122338549334806 +- 2.097433981731267 +- 2.235678379883074 +- 2.107928947715198 +- 1.9648286920888522 +- 1.819263742367089 +- 1.9661018314799792 +- 2.3370893682582263 +- 2.593567044896118 +- 2.8503520413941077 +- 3.2808882621818523 +- 3.8232196006512194 +- 3.831704095741707 +- 3.399839068471769 +- 2.897409141401402 +- 2.5220835612499894 +- 2.12633620793539 +- 1.8119292339597908 +- 1.5695367272572691 +- 1.6255134148639854 +- 1.6553808924519502 +- 1.7034688997064094 +- 1.8820059676400316 +- 2.123040880401128 +- 2.2606627007361144 +- 2.1189016597525727 +- 2.2292959207205634 +- 2.1735180326071406 +- 1.98793940102689 +- 1.7862813268193682 +- 1.958248736034973 +- 2.1326238202719305 +- 2.2236855101998536 +- 2.6163390245880547 +- 2.920243402665664 +- 3.405864031859928 +- 3.493817947962683 +- 3.2872071646707073 +- 2.9291669367245468 +- 2.432473834340148 +- 2.564066668025176 +- 2.3147951588767532 +- 1.9387092386728697 +- 1.896183456750706 +- 1.69174237032787 +- 1.9363253756654206 +- 2.0527096057397807 +- 2.150971387263292 +- 2.1853127754192783 +- 2.1971103160612384 +- 1.9906586397939363 +- 1.862318296992275 +- 1.8381000783778525 +- 1.8219204070339947 +- 1.8620013633548584 +- 2.071090066720425 +- 2.224181260530123 +- 2.505534597978066 +- 2.990647722368854 +- 3.5621430305000183 +- 3.7212663700067994 +- 3.1630075345522046 +- 2.6953306931312424 +- 2.1275669560204067 +- 2.290895619007348 +- 1.974012626219063 +- 1.8207980683167477 +- 1.661384892430415 +- 1.6766348592864626 +- 1.7777874014524109 +- 2.023234462588739 +- 2.114484756317819 +- 2.067567810364228 +- 1.8988707047085431 +- 1.786960522956604 +- 1.5489032005414611 +- 1.3390889393333947 +- 1.37664287780097 +- 1.4340564981857131 +- 1.566467001960855 +- 1.751099031828364 +- 1.9899577016693184 +- 2.45818346858839 +- 3.025755916785735 +- 3.132654816655069 +- 2.743972925468162 +- 2.1376553152592206 +- 1.957552970256548 +- 1.7152407575719275 +- 1.4032363925521034 +- 1.394724699036016 +- 1.395763982391635 +- 1.5752246527191491 +- 1.7758184786504225 +- 1.999634062383005 +- 1.8942100721253794 +- 1.976391963900289 +- 1.9859199832129837 +- 1.9075861011218056 +- 1.8112691315591218 +- 1.361382451510501 +- 1.2569979814211316 +- 1.2201309802284546 +- 1.4010082074301886 +- 1.5966797593107263 +- 1.9022903497111256 +- 2.433514411254095 +- 2.8775454066994866 +- 2.8410137180383725 +- 2.5915015232611203 +- 2.048452771352338 +- 1.7361135729301522 +- 1.5235163546085326 +- 1.4821577061859106 +- 1.5114594585336643 +- 1.373683166219947 +- 1.6598259745517512 +- 1.9458989034843726 +- 2.0666742272325056 +- 2.053218477457014 +- 1.9079540108143138 +- 1.926351276144902 +- 1.7770863260203391 +- 1.541141359637787 +- 1.3175132501683784 +- 1.21083489634509 +- 1.1707818633056408 +- 1.3006811049445957 +- 1.4522016997947074 +- 1.7537063734683103 +- 2.119459091653161 +- 2.6796565544516406 +- 2.964148295124133 +- 2.5649874462886357 +- 2.1792096627616258 +- 1.946163515774187 +- 1.5618303189582823 +- 1.5283315919840337 +- 1.3454136733403523 +- 1.367440589509622 +- 1.4959904574371579 +- 1.827598493484719 +- 2.0806411576738824 +- 2.052579571955766 +- 1.9052205456385725 +- 1.7425188482704626 +- 1.7494460400444427 +- 1.5600472120963558 +- 1.3067779702410744 +- 1.1759864754142522 +- 1.1238062834197378 +- 1.1708277031174021 +- 1.3112274349428605 +- 1.5727708334755182 +- 2.034180125861049 +- 2.5500498103648837 +- 2.8101977246398815 +- 2.4549298861916884 +- 1.865488605158862 +- 1.663357706952104 +- 1.4773211998773548 +- 1.4073594930941988 +- 1.4396987916886532 +- 1.4689056883970255 +- 1.6266708154821374 +- 1.9612479771905407 +- 2.0999323250595725 +- 2.1649415625686808 +- 2.0912557790343533 +- 1.8543627305413521 +- 1.874889410064893 +- 1.5288406132668468 +- 1.2674872850492365 +- 1.1058295768526232 +- 1.0755517843531717 +- 1.1796554122337923 +- 1.3027816364636522 +- 1.463114165938725 +- 1.8401917935509389 +- 2.2663718123275567 +- 2.558666004604978 +- 2.253715001949747 +- 1.9606779376489822 +- 1.9262820865746584 +- 1.6628439724779847 +- 1.5132430954947003 +- 1.4227360113492418 +- 1.4509224196772097 +- 1.5257369101046707 +- 1.8297308386171929 +- 2.042595963191045 +- 2.0035896407338134 +- 1.8909057633443405 +- 1.9153135876496585 +- 1.7427195206357915 +- 1.5520474770729968 +- 1.2537920002041516 +- 1.0540438654445636 +- 1.0574795267635237 +- 1.1238751110430687 +- 1.1755547055973659 +- 1.3189563537588584 +- 1.5535319463144446 +- 1.9660096382054193 +- 2.149688279898785 +- 2.004957709106322 +- 1.8351879196289904 +- 1.648396443498525 +- 1.6269091709902073 +- 1.6949564458953466 +- 1.6911071327426557 +- 1.7216995433219098 +- 1.8015679859653184 +- 2.195280718891625 +- 2.2475298243263553 +- 2.2190591619868436 +- 2.1122410056623306 +- 1.9926891840790204 +- 1.9448827648813307 +- 1.5581245135044637 +- 1.2140451961617424 +- 1.0199692355826857 +- 0.9813261860748056 +- 1.0574514124605923 +- 1.147753985766902 +- 1.3873136056520345 +- 1.7409298201630032 +- 2.139254814316191 +- 2.403442658635156 +- 2.290864589570501 +- 2.0887549038944835 +- 1.7729812112690233 +- 1.49416764227977 +- 1.7122718387091589 +- 1.7130397144654848 +- 1.7098449788528032 +- 1.8082300234464355 +- 1.9363109708687583 +- 2.167890122163427 +- 2.0307883609711093 +- 1.8947307169024352 +- 1.8411246063539635 +- 1.9874477122791563 +- 1.631746268069466 +- 1.2888227592632113 +- 1.2269561783782188 +- 1.3009035882035551 +- 1.4103444325001508 +- 1.5833056010265572 +- 1.8146043811366392 +- 2.307012691192916 +- 2.7836024486291664 +- 3.0749595588112477 +- 2.495425801542624 +- 2.0060853481800023 +- 1.6855744083555553 +- 1.4756140380436695 +- 1.4731346251477688 +- 1.514912375167471 +- 1.5868077814168544 +- 1.7187473415195562 +- 1.8627872709445061 +- 2.066132781519738 +- 2.1995228531232947 +- 2.033518149742544 +- 2.106886081161011 +- 1.946114392191109 +- 1.5952507228616764 +- 1.4431634354905938 +- 1.3028116579146498 +- 1.3081833624664212 +- 1.4987640921749397 +- 1.7074182616860243 +- 1.968626683116664 +- 2.3418294034769715 +- 2.9408287504478317 +- 3.307579310843363 +- 2.8378733618243546 +- 2.1680004275708393 +- 1.9097231961562509 +- 1.7595861940870399 +- 1.6024533984096776 +- 1.758366788518204 +- 1.7179023543779584 +- 1.7352096649329238 +- 1.9043279014277876 +- 2.000514894071336 +- 2.0428098190238644 +- 2.0860059659652004 +- 1.9950435731290208 +- 1.9415627671296567 +- 1.8286756557364379 +- 1.5496425217651502 +- 1.4810638609989553 +- 1.5073616896781 +- 1.6761095035437876 +- 1.8488679863186548 +- 2.2398309625535613 +- 2.8439722009941266 +- 3.4215472052198996 +- 3.7530720813805276 +- 3.297340177289371 +- 2.6599473465050787 +- 2.223055602610212 +- 2.0513573964990313 +- 1.8303900024511104 +- 1.6559762630666206 +- 1.6490378792515508 +- 1.8837221473518282 +- 1.7379632000555911 +- 1.9282342238647414 +- 1.954875293687149 +- 2.0212104944195066 +- 2.1779227376250274 +- 2.276399774878399 +- 1.9796565410171219 +- 1.7561182176611818 +- 1.6943828407239472 +- 1.7453935374947613 +- 1.9523841130710742 +- 2.1366415005646386 +- 2.4978198886310774 +- 3.0002499910044995 +- 3.710636928902679 +- 3.9652345189366858 +- 3.354749204229347 +- 2.61554630099843 +- 2.197821512746226 +- 1.6604852081299055 +- 1.440332493044788 +- 1.5075220801471367 +- 1.3854475000475541 +- 1.3239945049503885 +- 1.6201068706742288 +- 1.7545153821870072 +- 1.9565336947092322 +- 1.8796277322420016 +- 2.044207381925933 +- 1.8791369668632192 +- 1.7185088806481912 +- 1.4629773720598203 +- 1.40954729682245 +- 1.5551481267468652 +- 1.8207441580360852 +- 2.1054245185030505 +- 2.418820599563801 +- 2.7708305961698985 +- 3.4549581775909397 +- 3.8992704702044065 +- 3.6192107976672587 +- 2.9341249213452816 +- 2.4476728916998574 +- 2.2548888685061494 +- 1.9906029756503558 +- 1.7775981660458462 +- 1.7187280190172967 +- 1.784428205064209 +- 1.8022733378405655 +- 1.974733228799499 +- 2.123316509225646 +- 2.4584543510427923 +- 2.2840597590530307 +- 2.3585022637216335 +- 2.081849047612313 +- 2.0093832458834266 +- 1.9461642557059982 +- 2.146789872185844 +- 2.4278951395136157 +- 2.749465121251323 +- 3.0888145317287847 +- 3.4874561218004465 +- 3.9352388785227688 +- 4.36135360059635 +- 4.243338021299596 +- 3.3537355756657705 +- 2.6337513009749793 +- 2.089314852993206 +- 2.0048962011999403 +- 1.8056747880286073 +- 1.8818688524612075 +- 1.8133270754265247 +- 1.754086297019891 +- 2.0613948528795154 +- 2.143982935389994 +- 2.0017213017986504 +- 2.0644186945819767 +- 2.062928030416294 +- 1.9635317096435576 +- 1.793363370188288 +- 1.691241019404972 +- 1.76300757168548 +- 1.9823999478231593 +- 2.2889154707630865 +- 2.5789200104502554 +- 2.943238194320952 +- 3.3946970383806256 +- 3.721539441353799 +- 3.5057171478250155 +- 3.1030562019598533 +- 2.7123612587159145 +- 2.3326224398971585 +- 2.1848733509687506 +- 1.8692861251837494 +- 1.8526329068775766 +- 1.7214549072894807 +- 1.7692955299465691 +- 2.116902213485445 +- 2.332017721558091 +- 2.2988897197464215 +- 2.339499038742875 +- 2.2542765890721284 +- 2.400008613438139 +- 2.202973178799068 +- 2.1226023535239817 +- 2.1001788108064376 +- 2.257731433153454 +- 2.4600002665011393 +- 2.86568087611288 +- 3.3877167851819947 +- 3.9925358826147987 +- 4.344703649468181 +- 3.7001592533844723 +- 2.8812158057055433 +- 2.355992854852975 +- 1.928993526278797 +- 1.7380949350275894 +- 1.6310907685191565 +- 1.7423694503830127 +- 1.7004184948898997 +- 1.9764176637538429 +- 2.1662681511638002 +- 2.140880017617801 +- 2.109266051647631 +- 2.164376433936048 +- 2.1966321377591265 +- 2.147834194510915 +- 1.9703694912007077 +- 1.9911698442118013 +- 2.044925067408193 +- 2.074155094364093 +- 2.1277429849605456 +- 2.3854301825102358 +- 2.6289963613375917 +- 3.2195654220376038 +- 3.383189396616641 +- 3.103973874514827 +- 2.572767479781162 +- 2.153229055372826 +- 2.0454170456278775 +- 1.751163329018203 +- 1.6431088622574523 +- 1.6560730368194487 +- 1.6886983190816296 +- 1.7340239201120666 +- 1.951168418716662 +- 2.0517969177318256 +- 2.1440923951905884 +- 2.339203147382317 +- 2.5896557517503225 +- 2.3442728532136794 +- 2.16124614309329 +- 2.163569100472337 +- 2.216898658322303 +- 2.3477218662026105 +- 2.619035760755415 +- 2.90976650110949 +- 3.3128483443241037 +- 4.174070007971138 +- 4.5094285915876915 +- 4.065274348711308 +- 3.559438532622882 +- 2.99264126658594 +- 2.4988472671389665 +- 2.1930032667193573 +- 1.6771707657206616 +- 1.5297815571757032 +- 1.5516031575906688 +- 1.6288135011192466 +- 1.9271155698020772 +- 2.01130184049609 +- 2.2237156358800654 +- 2.5216931232549835 +- 2.81903794595239 +- 2.8305996374933224 +- 2.9346430748784353 +- 2.9415926785022353 +- 3.1163539537849245 +- 3.3851361717524258 +- 3.5685174352081805 +- 3.934546137851593 +- 4.456958307446757 +- 5.350684449225794 +- 5.758640170177278 +- 4.919010559656838 +- 3.7746869803240606 +- 3.007665952786724 +- 2.613972336156785 +- 2.212418272869874 +- 1.806665252906612 +- 1.5372706208065556 +- 1.6374439573658572 +- 1.755272898888941 +- 2.024337119238969 +- 1.9495409979749223 +- 2.0310760420201066 +- 2.1999729604286755 +- 2.372789162334507 +- 2.078644108231505 +- 1.840363380734814 +- 1.6367332636491925 +- 1.7263323268114583 +- 1.9171530474371687 +- 2.0496427794912067 +- 2.3820003107908754 +- 2.8081735710402027 +- 3.5708591122483724 +- 4.042996623233472 +- 4.248359021095978 +- 4.415994721033796 +- 3.933638536864559 +- 3.569152988790522 +- 3.001612498419101 +- 2.350220619724822 +- 2.0012653067761854 +- 1.9279155058738533 +- 2.0131269706557706 +- 2.2065794038568245 +- 2.3456565395042204 +- 2.608287368151794 +- 2.968618271453958 +- 3.2508504688845314 +- 3.126413729089958 +- 3.1383732282289545 +- 3.312568903363236 +- 3.578348304619074 +- 4.044916255478937 +- 4.509441407104914 +- 4.901498389924776 +- 5.30204111719898 +- 5.764707524112894 +- 6.4896910986395655 +- 5.601289372589469 +- 4.390788193355728 +- 3.1310165044045233 +- 2.580553427502527 +- 2.1321018486281216 +- 1.7167284857198704 +- 1.709747598127009 +- 1.6917289968355163 +- 1.739490596827417 +- 1.9008825159615148 +- 1.9853426918484494 +- 2.1596845260229465 +- 2.390870701840644 +- 2.3960380283959193 +- 2.1322052476611155 +- 2.0995245530277957 +- 2.1480424672248795 +- 2.4426879140001874 +- 2.8312895411256624 +- 3.274470707773154 +- 3.7582958196324316 +- 4.32930674942217 +- 4.922384175002696 +- 5.482078917551124 +- 5.026947481497803 +- 3.966219985029666 +- 3.0221775229143013 +- 2.4287071534311555 +- 1.9041762094587302 +- 1.8814992780746245 +- 1.7887416987095375 +- 1.8383104741318372 +- 1.9981727303890886 +- 1.9782776962376445 +- 1.9485902493968477 +- 1.9548388229093172 +- 2.0398182410829677 +- 2.069689607334767 +- 2.120058749610481 +- 2.0274035177271057 +- 2.186638002504001 +- 2.402317759558811 +- 2.7884552882210296 +- 3.299043964334829 +- 3.7204080412220564 +- 4.32376137569016 +- 5.162155080623008 +- 5.76185261695241 +- 4.976419630082915 +- 3.761105394332751 +- 2.8165186306333614 +- 2.346271045551584 +- 1.9765333098473568 +- 1.6900425563620065 +- 1.4061660172496453 +- 1.39836011357035 +- 1.668808592857571 +- 1.8111506451251003 +- 1.7952504878885884 +- 1.956511178521819 +- 2.2748675798358025 +- 2.433766842730432 +- 2.619391327768267 +- 2.6167489422643224 +- 2.7710591077550673 +- 2.947190940703336 +- 3.2978973632465842 +- 3.6270600789535603 +- 4.12999951505383 +- 4.592181873464793 +- 5.625219771078707 +- 6.199029763387887 +- 5.777283906842441 +- 4.720210979570414 +- 3.7826983967534784 +- 3.156336474786271 +- 2.795715430606894 +- 2.3616065398556 +- 2.06721190152182 +- 2.127124552787836 +- 2.329423140658751 +- 2.5910264510641556 +- 2.865809821452851 +- 2.9225849922632756 +- 3.144123829514034 +- 3.0760053864625587 +- 3.0672957125560565 +- 3.170948784262465 +- 3.3461629905764965 +- 3.5733000061332545 +- 3.960785597554125 +- 4.300387404481047 +- 4.763311480982924 +- 5.499174479068555 +- 6.3109467872158405 +- 6.76452329969248 +- 5.971324315656199 +- 4.713873674472292 +- 3.729081139246663 +- 2.942510899764171 +- 2.4479327280966086 +- 2.097990244948569 +- 1.7728835730925738 +- 1.5516383013218462 +- 1.7100545162446137 +- 2.194153606522623 +- 2.208781413051851 +- 2.379386631449977 +- 2.5418233226315845 +- 2.5097301047320206 +- 2.4396296178670185 +- 2.5002244578355626 +- 2.453787417680486 +- 2.448291055348153 +- 2.6278995732412693 +- 2.9826222916818868 +- 3.534293245844095 +- 4.053630656352185 +- 4.752025995745574 +- 5.383368152568578 +- 4.877732129729099 +- 3.674309496577547 +- 2.780087309310268 +- 2.3417135810256564 +- 2.0464967667872855 +- 1.5995125595525739 +- 1.5617786064898111 +- 1.4594039005543082 +- 1.712197768228931 +- 1.9490359870957898 +- 2.1078156589179 +- 2.2789016226889602 +- 2.4460692076869983 +- 2.4855343128188423 +- 2.563351770065446 +- 2.5798131684416963 +- 2.584338586406377 +- 2.743529932794491 +- 3.072471431517004 +- 3.471201875210257 +- 3.9802536562443596 +- 4.7847369131821305 +- 5.875257675376796 +- 6.376610825894338 +- 5.760800318736251 +- 4.5252819472937045 +- 3.5278058184071774 +- 2.9175306757238753 +- 2.5594888504513365 +- 2.376097056495134 +- 1.9070938952492713 +- 1.7658499893526935 +- 1.7275479122104251 +- 1.8859799759342282 +- 2.0235809005523535 +- 2.3225711919052787 +- 2.4789010398617273 +- 2.5642229780289685 +- 2.6452692298893417 +- 2.747970915734053 +- 2.977719106947587 +- 3.150196742081299 +- 3.4489081931837373 +- 4.01694179161673 +- 4.532981661139235 +- 5.130154874826026 +- 5.913085335925295 +- 6.312856196810471 +- 5.6120024125174846 +- 4.106041897580313 +- 3.1600005499036707 +- 2.4496993860683483 +- 2.304870451188873 +- 1.7586170192929578 +- 1.6427168125181613 +- 1.621544207166816 +- 1.5409507976605592 +- 1.8793918054794099 +- 2.051419551837663 +- 2.1827055065213394 +- 2.2931438733465797 +- 2.3370531427869192 +- 2.6278521687534653 +- 2.6632834122301765 +- 2.808138005145275 +- 2.996101366966652 +- 3.3525406989275237 +- 3.71878051149021 +- 4.2818585009394905 +- 5.014673238169313 +- 5.516983392543428 +- 6.143551421838176 +- 5.560141440961518 +- 4.3841521904281 +- 3.5684512367999117 +- 3.004978623302517 +- 2.3859169489345238 +- 1.9370353980760524 +- 1.7325584876361195 +- 1.8180477370859582 +- 1.8398518963433506 +- 1.8594966284663004 +- 2.0851218799860276 +- 2.241587113436068 +- 2.4411107331303468 +- 2.6239267095532406 +- 2.661363297532603 +- 2.508086871799346 +- 2.40152874038694 +- 2.4451642268870515 +- 2.4550151584940214 +- 2.742941388103856 +- 3.10212111350879 +- 3.6136842418456894 +- 4.28976625156681 +- 4.634946358524601 +- 4.204173097855305 +- 3.367027896306297 +- 2.9682088712142027 +- 2.3961289813870787 +- 1.9226184143047833 +- 1.640505013021539 +- 1.3996205916545337 +- 1.4905730874671705 +- 1.8569710759347267 +- 2.0675493788610515 +- 2.5282230661356375 +- 2.5749388789355074 +- 2.781399605067554 +- 3.1056204932089213 +- 3.128422044428276 +- 3.327242018383893 +- 3.483094674635214 +- 3.7558333045033567 +- 3.958680814419858 +- 4.360859494676322 +- 4.806725010082954 +- 5.31001162312447 +- 6.105120507442148 +- 6.43267575493403 +- 5.87707964999216 +- 4.66936964153549 +- 3.988297447743899 +- 3.137440599685438 +- 2.7507169466188364 +- 2.353391968318646 +- 2.348327426744061 +- 2.1385727856027263 +- 2.3804203530543693 +- 2.637367826612175 +- 2.599498177612903 +- 2.7967659524003303 +- 2.801642305771022 +- 2.946490240018199 +- 2.9463706253177024 +- 2.8103356874400682 +- 2.742464195827784 +- 2.9744574676618982 +- 3.1820783589122583 +- 3.420486640102157 +- 3.84882613985128 +- 4.638408371861211 +- 5.393608397132033 +- 5.945593698285375 +- 5.485751713316028 +- 4.796905918152013 +- 4.017840950137692 +- 3.556529366886259 +- 3.111536149901736 +- 2.7310681769748464 +- 2.3679202045657783 +- 2.339623936933838 +- 2.4808266486467443 +- 2.5045580694211917 +- 2.9256832276095732 +- 3.128017435914042 +- 3.427026358258693 +- 3.634914273351044 +- 3.7827412183205666 +- 4.185810794711491 +- 4.285668872050375 +- 4.5310971583657045 +- 4.924398995152843 +- 5.281571602558658 +- 5.789096513871989 +- 6.245205549746351 +- 7.109347497316247 +- 7.801622301285502 +- 7.009287810879931 +- 5.444725683673506 +- 4.1925107747502635 +- 3.4731616413965063 +- 2.676394700125414 +- 2.2291257808427325 +- 1.6232717945021393 +- 1.564499789982627 +- 1.734743238973285 +- 1.7857424710757916 +- 1.9642897389417788 +- 2.238060756634699 +- 2.619754200405297 +- 2.8847698085879316 +- 3.171665123070133 +- 3.250404194961323 +- 3.3000028374947226 +- 3.5878951109103263 +- 4.094747222138331 +- 4.530407477640944 +- 5.0085243633827 +- 5.559239362220608 +- 6.34395214303651 +- 6.785483618365273 +- 6.032643157416895 +- 4.651595488932006 +- 3.4902479899830237 +- 2.6681134041414105 +- 2.1161284751785625 +- 1.8231348182457492 +- 1.473214006315156 +- 1.4788142234487498 +- 1.6597867661028394 +- 1.9246344364891113 +- 2.0414601192884936 +- 2.193605282001938 +- 2.473624187330339 +- 2.8107354635002606 +- 2.974063621057393 +- 3.09934203522777 +- 3.3883676218684395 +- 3.584476597404372 +- 3.9324919875629734 +- 4.1861643763884375 +- 4.689281192703472 +- 5.44668947777407 +- 6.101189100524761 +- 6.7364010535306775 +- 6.479618668290175 +- 5.3336074309614245 +- 4.33702811775441 +- 3.3833495194863943 +- 2.674643416628873 +- 2.0431131261115527 +- 1.7228017399714526 +- 1.7856960875771928 +- 1.5500083986256064 +- 2.0545460425720106 +- 2.1023997967803116 +- 2.164314106017278 +- 2.2606755915595986 +- 2.5827937141931376 +- 2.404247670141242 +- 2.6169278958735873 +- 2.725414342225832 +- 2.762924107331032 +- 2.9903477428927694 +- 3.29721493614258 +- 3.545942360661493 +- 3.9956849832204844 +- 4.402658164720183 +- 4.751050101728165 +- 4.685864296157448 +- 4.142971025997609 +- 3.585226363708286 +- 3.1139499914662636 +- 3.0036322067597063 +- 2.652516059483492 +- 2.0267659637172413 +- 1.7134854110548663 +- 1.9054741961837325 +- 2.1176731489501894 +- 2.3247037602336134 +- 2.484374670453258 +- 2.797997339661706 +- 2.840646134607812 +- 2.7895250639434295 +- 2.7799782532532844 +- 2.8763402003426535 +- 3.0528221836611347 +- 3.245331530105475 +- 3.522990013116868 +- 3.831506822212676 +- 4.322196425274102 +- 5.132706355723228 +- 5.46067784693982 +- 5.317840097717516 +- 4.417042678711708 +- 3.7222717276084576 +- 3.235684775417612 +- 2.7357260497896916 +- 2.520552365900492 +- 2.5322863182363524 +- 2.418516608787952 +- 2.7640578968964764 +- 2.8909428614247377 +- 3.1532639263695037 +- 3.317176448039043 +- 3.574890885636744 +- 3.9667737250879567 +- 3.896054686853411 +- 4.041039467083483 +- 4.115897049740993 +- 4.044596934393316 +- 4.112262423160894 +- 4.380150001576119 +- 4.8561158775679205 +- 5.474749522430695 +- 6.209757162538199 +- 6.633379264728793 +- 6.32326169530041 +- 5.46890536664113 +- 4.616669169095182 +- 3.9078588305486837 +- 3.3003186446712585 +- 2.755759333656829 +- 2.315671651248062 +- 2.3042337867266838 +- 2.4509415707791784 +- 2.727529101438515 +- 2.851712734787049 +- 3.16582437380962 +- 3.239460992008842 +- 3.2978196343408612 +- 3.3108541113328287 +- 3.2680860558610494 +- 3.249805807106446 +- 3.1176231872764424 +- 3.1336826324317517 +- 3.289427348576344 +- 3.5168387989122825 +- 3.9134224388751937 +- 4.643266392800389 +- 4.967679625488098 +- 4.494118307656066 +- 4.039164724655079 +- 3.610020030880053 +- 3.22578423308047 +- 2.843677328960224 +- 2.5050144947202555 +- 2.541241775607133 +- 2.4528962626652 +- 2.7187172261845927 +- 3.1054801592286996 +- 3.219448591217203 +- 3.433518375275569 +- 3.8182233132365604 +- 3.77707513469763 +- 3.5910391766918384 +- 3.5679089342847576 +- 3.4545216809737833 +- 3.5236031753868415 +- 3.632205153973222 +- 3.817058384889975 +- 4.108807537898484 +- 4.711262137164694 +- 5.398620406868222 +- 5.872046528501916 +- 5.483567650932955 +- 4.595268332269694 +- 4.046787902810048 +- 3.578773814642377 +- 3.132212258482607 +- 2.7358898538458813 +- 2.535069182453685 +- 2.5031224681546203 +- 2.7248383084307584 +- 3.233181054380827 +- 3.4764302052153253 +- 3.593729705603123 +- 3.5336509065724324 +- 3.7193377991045744 +- 3.7554250897625705 +- 3.6602816637513453 +- 3.763817088677487 +- 3.78168879783048 +- 3.9348564962111463 +- 4.114957562919195 +- 4.4353610581639025 +- 4.775022043331203 +- 5.361839571353503 +- 5.686746533884699 +- 5.393716801133301 +- 4.3914661786028955 +- 4.02825544552135 +- 3.4657910445873576 +- 3.0669086694029235 +- 2.594252876932525 +- 2.2010782113542318 +- 2.1615335169060876 +- 2.3062235100018174 +- 2.618695187097667 +- 3.1067911026856603 +- 3.513411670743354 +- 3.6702653117541253 +- 3.7144182660187797 +- 3.9157649898451674 +- 3.774081917028047 +- 3.7820579803639656 +- 3.7795540435938926 +- 3.985787873620247 +- 4.2962335935260505 +- 4.611740581153566 +- 5.043283280658586 +- 5.526339204862402 +- 6.132951696228175 +- 5.73762854977182 +- 5.076662859166563 +- 4.271551777936071 +- 3.620413492734359 +- 3.0318974438129067 +- 2.602872401694851 +- 2.1958997025098332 +- 1.9889039139247133 +- 2.1398376883079666 +- 2.3236924730600808 +- 2.640181792632939 +- 2.9323467927018814 +- 3.1749371186794866 +- 3.393069488840941 +- 3.5505368624208424 +- 3.6406370991012666 +- 3.7709725369122387 +- 3.9517645716620295 +- 4.156085429490728 +- 4.49633913584533 +- 4.836601107295923 +- 5.332034476302268 +- 5.906385892523071 +- 6.376668416343544 +- 6.061459254696202 +- 5.232018539113738 +- 4.1291088800895945 +- 3.5088604567718904 +- 2.999361003961128 +- 2.454950097432683 +- 2.1690368365188686 +- 2.0230580036334294 +- 2.1607045523222173 +- 2.2497309628642217 +- 2.4767947410280198 +- 2.748908680751086 +- 2.759083944999676 +- 3.064945721197463 +- 3.278589420100956 +- 3.403336028218597 +- 3.7001244164269287 +- 3.8571719627662304 +- 4.109227488713574 +- 4.606051795666961 +- 5.026508731120898 +- 5.579551731039151 +- 6.472638857755884 +- 6.8092801004893415 +- 6.1469094902080315 +- 5.043198467310002 +- 4.2052034158412726 +- 3.343270423425255 +- 2.629437916565566 +- 2.121117825886914 +- 1.8269639802290458 +- 2.0081602899194073 +- 2.149637808876842 +- 2.4569648388955647 +- 2.5989283806549524 +- 2.869186747008063 +- 3.2955707041436515 +- 3.5242986240396714 +- 3.755682403579061 +- 3.6375641755543278 +- 3.593401419509847 +- 4.049165849428878 +- 4.120347566052157 +- 4.268208296015663 +- 4.592737212179062 +- 4.980925989792661 +- 5.564504908750963 +- 6.063133456359468 +- 5.843661872364152 +- 4.922219781093126 +- 3.9252923734708896 +- 3.248235615639085 +- 2.6777046181730397 +- 2.1992559078177147 +- 1.9862538140328558 +- 1.9820330936763573 +- 1.920330175278632 +- 2.1107328823021665 +- 2.563140711412171 +- 3.0397696687665894 +- 3.437178258828125 +- 3.7482679067353213 +- 4.090967903716845 +- 4.423840781430441 +- 4.413516198711274 +- 4.5698013768900845 +- 4.622961003090466 +- 4.625396840712026 +- 4.715145333690277 +- 5.03799285229376 +- 5.398176753087433 +- 5.912901030844449 +- 5.821078424648687 +- 5.370007066081347 +- 4.6431368528171 +- 4.074108009655474 +- 3.489283257587674 +- 2.8814149275825502 +- 2.397302030249539 +- 2.1809213006778907 +- 2.274036217287484 +- 2.434449524070557 +- 2.9144722095535807 +- 3.3956791748106023 +- 3.5861902997192265 +- 4.024957730417078 +- 4.224371444027421 +- 4.2982414366189845 +- 4.221569631470394 +- 4.506170442358543 +- 4.716443351672303 +- 5.073376672378725 +- 5.263916457169854 +- 5.648816490076767 +- 6.1021642783332855 +- 6.870546225414718 +- 6.881035233617809 +- 5.90098403354022 +- 4.904908367079596 +- 4.116406639263751 +- 3.631444693711645 +- 3.4337045788653566 +- 2.8545214467765856 +- 2.3484128624667466 +- 2.3444273408315413 +- 2.643988776234908 +- 3.1343850454132935 +- 3.8049201731867726 +- 4.711087821641616 +- 4.774615523616384 +- 4.909112044047828 +- 4.9564518885080044 +- 4.958498578753209 +- 5.0173916839910495 +- 5.345070365457212 +- 5.4595202816879045 +- 5.746371650323152 +- 6.285433051268889 +- 6.848550895610488 +- 7.77622995386066 +- 7.517653275908204 +- 6.177796793588822 +- 4.982748699904086 +- 4.127194576092203 +- 3.5834724319765496 +- 2.9883283225939423 +- 2.330155304097577 +- 1.9414433365165766 +- 2.081182102572494 +- 2.43224828537723 +- 2.7857699479665827 +- 3.4640172474888926 +- 3.9928317740256407 +- 4.434090472385486 +- 4.8633626981899996 +- 5.135071127788551 +- 5.213842795952414 +- 5.298807065656784 +- 5.481318093804084 +- 5.774871381258619 +- 6.111775942311284 +- 6.600206033112958 +- 7.305321767969647 +- 7.881052303619496 +- 7.631972024468281 +- 6.474040016135883 +- 5.010274715622013 +- 4.317023132298856 +- 3.6640801223429835 +- 2.9936493287960584 +- 2.360340253209777 +- 2.2726994605008244 +- 2.2989737296100214 +- 2.539461371193887 +- 3.078463524075677 +- 3.6319959729372546 +- 4.151963077937467 +- 4.525573611237977 +- 4.627278959035121 +- 4.583227650273493 +- 4.546357511964452 +- 4.565789368263845 +- 4.62939392654977 +- 4.864859613885565 +- 5.04309085288866 +- 5.350191728864234 +- 6.107683279113538 +- 6.653779595519558 +- 6.636068875848771 +- 5.692689086411617 +- 4.452413069039431 +- 3.9161769067567844 +- 3.1808106434889134 +- 2.65334385265335 +- 2.3760711556513328 +- 2.1559207591003626 +- 2.1679841099266612 +- 2.613723852511988 +- 3.3403673144539945 +- 3.927498790347287 +- 4.331197279863826 +- 4.950170733841331 +- 5.240241325744385 +- 5.222113626910923 +- 5.246073974167243 +- 5.591599986554904 +- 5.740125558844512 +- 5.9826714067956095 +- 6.320766933486884 +- 6.696693682600072 +- 7.319367923554724 +- 8.192516280293475 +- 7.928615675731243 +- 6.64437764175151 +- 5.454914468516346 +- 4.496654541496132 +- 3.783373435067811 +- 3.2855104231551904 +- 2.806198114791709 +- 2.53513322395599 +- 2.3142944685190776 +- 2.4305652782830887 +- 3.1944334364851543 +- 3.4383406296547183 +- 4.068088537840789 +- 4.578746597342981 +- 5.044928353538109 +- 5.58821730840685 +- 5.5429855331204205 +- 5.89579058986596 +- 5.980108758193664 +- 6.3312793955636755 +- 6.739700755416648 +- 7.17524551482485 +- 7.744918698991831 +- 8.756550118099307 +- 8.26125953131478 +- 6.811319970430635 +- 5.264670977478545 +- 4.126100001346635 +- 3.498906043399957 +- 3.0044156648015785 +- 2.561643165440801 +- 2.2342165986951894 +- 2.3941714612600125 +- 2.816964357063019 +- 3.4545625943592926 +- 4.026997625582994 +- 4.465100026898599 +- 4.64612215948618 +- 4.626484809565175 +- 4.751601821082911 +- 4.5225459548136735 +- 4.622154625392423 +- 4.610697582118724 +- 4.871017818431189 +- 5.135319015830233 +- 5.404365036215981 +- 5.908154747831009 +- 6.6130753451729944 +- 6.349332532738527 +- 5.700530122423189 +- 4.861260659618438 +- 4.2000318826742 +- 3.772942016526227 +- 3.304363032940796 +- 2.9589773999412445 +- 2.4826584184910674 +- 2.4698339175027333 +- 2.9396338752112756 +- 3.8525820934729484 +- 4.524177476896672 +- 4.713131632133973 +- 4.924206612024335 +- 5.331914691961308 +- 5.5710851148219716 +- 5.474158301787511 +- 5.485767643180864 +- 5.3764661874351605 +- 5.557807131560131 +- 5.731468321474596 +- 5.932473904624513 +- 6.508891858404719 +- 7.0245310859261 +- 6.8424200354292335 +- 6.609721273965469 +- 6.029172638690087 +- 5.948850052954329 +- 5.5748773643597485 +- 5.1957502560769795 +- 4.745160701571288 +- 4.560261039183797 +- 4.5136626760599965 +- 5.009692239854297 +- 5.485459594650425 +- 6.075882799457045 +- 6.477043757689142 +- 6.536502856474847 +- 6.750918766081843 +- 6.979642980346697 +- 7.114213363188789 +- 7.116307773572554 +- 7.316725539372572 +- 7.552348172970084 +- 7.865554199087873 +- 8.429554730487018 +- 9.162076629952974 +- 10.253273858155696 +- 9.937349144896256 +- 8.348333078627094 +- 7.008695807498156 +- 6.0675072242367385 +- 5.183465726023817 +- 4.319345009166805 +- 3.819685999193354 +- 3.368609127951958 +- 3.19440867015699 +- 3.917785071380733 +- 4.486364913797261 +- 5.12761776653552 +- 5.732604702389116 +- 6.330209765201289 +- 6.5840546701416045 +- 6.739621110832116 +- 6.8292580860033825 +- 7.097066054847528 +- 7.340751636232041 +- 7.780007503401328 +- 8.299655763772487 +- 8.83339315907481 +- 9.435490720515958 +- 10.16513353982821 +- 9.765028301655311 +- 8.569806117652288 +- 6.985537566958155 +- 5.5791809490407385 +- 4.643400151740746 +- 3.8592034186090833 +- 3.366228951613635 +- 3.1011019442577137 +- 3.4498901099575208 +- 3.9420378234304554 +- 4.826074212813494 +- 5.557975334296567 +- 5.623672286553228 +- 6.1655430271788205 +- 6.380510269661776 +- 6.506118613180355 +- 6.82664371072401 +- 7.114273814674617 +- 7.337349435421664 +- 7.666277341616858 +- 8.371948342337433 +- 8.800116070627551 +- 9.566677221875253 +- 10.387681339939572 +- 10.147708407052496 +- 8.624674838333897 +- 7.077569903697977 +- 5.554245520599494 +- 4.760047557055887 +- 4.24164337717377 +- 3.7148078053353712 +- 2.9526311823361167 +- 2.9183892042854525 +- 3.329285218247424 +- 4.2176180133254375 +- 5.221064325267911 +- 6.0796107318887636 +- 6.862866831908672 +- 7.140560931517858 +- 7.417743380917452 +- 7.476547944031368 +- 7.7505774592710095 +- 7.8852706510116 +- 8.013590584146277 +- 8.208756958050238 +- 8.57927466978674 +- 9.146104066821929 +- 9.985233731011496 +- 9.827537133531397 +- 8.692632617393032 +- 7.229917458710015 +- 5.898205231642846 +- 5.040736703778682 +- 4.27559559923717 +- 3.548347649210057 +- 3.402860260826192 +- 3.0849700986905635 +- 3.4049383907099644 +- 4.192585047838619 +- 5.221799910174358 +- 5.999235346794661 +- 6.641301495371891 +- 7.109940491477141 +- 7.352736539842047 +- 7.383539406934026 +- 7.5830855496280085 +- 8.09262528022445 +- 8.399449832909678 +- 8.613441550647279 +- 8.998921806154344 +- 9.501529075890824 +- 10.299696366299383 +- 10.129965919118082 +- 8.52697690888247 +- 6.393901130017506 +- 5.144684544408239 +- 4.189620511548789 +- 3.2382184882953013 +- 2.587773894734878 +- 2.391666676514389 +- 2.168811330537012 +- 2.3666127034021662 +- 3.2607012080610493 +- 4.11620618949429 +- 5.064761985233608 +- 5.7414294309972025 +- 6.132213070575348 +- 6.273270673918855 +- 6.440422538747329 +- 6.625043098225848 +- 7.011211072287171 +- 7.221979152263309 +- 7.617799553104669 +- 8.117905390202143 +- 8.813392878676481 +- 9.396061263606546 +- 9.236775951935662 +- 7.745094616123994 +- 6.120861889601957 +- 4.712432719574358 +- 3.9067327674337586 +- 3.2734601591437347 +- 2.712956126782354 +- 2.4330516084528826 +- 2.2913602448738164 +- 2.5573526880461963 +- 3.436343105474224 +- 4.1334980273035224 +- 4.507513563940084 +- 4.983772397817721 +- 5.298842825700616 +- 5.364294759223728 +- 5.394168394094515 +- 5.729762398118714 +- 6.156269707977071 +- 6.5242705378562444 +- 7.001541523301987 +- 7.56986026896348 +- 8.264593348249972 +- 9.085483334085573 +- 8.820253492317603 +- 7.498367311670974 +- 6.029840949972143 +- 4.936821034585414 +- 4.255638837523155 +- 3.5908023061468475 +- 3.0375580950088406 +- 2.4694009649310305 +- 2.4068505726260327 +- 2.786150380590407 +- 3.6078753591405706 +- 4.142022664447647 +- 4.744379411580663 +- 5.380967774870844 +- 5.582029638709378 +- 6.002940950824718 +- 6.000713007564613 +- 6.35232296137046 +- 6.471171060124491 +- 6.785922994150914 +- 7.220266137139425 +- 7.619621181541868 +- 8.158859216804068 +- 9.10646746604378 +- 9.196863978295385 +- 8.119819533264101 +- 6.731973042066125 +- 5.847301238039508 +- 5.025591365173082 +- 4.633554884157771 +- 4.386972286743938 +- 3.8931257527066094 +- 3.7361449571015406 +- 4.141760740738314 +- 4.861354393462875 +- 5.417384848959515 +- 5.94209816803787 +- 6.382975515599352 +- 6.256661014864658 +- 6.456195570991826 +- 6.545800742301647 +- 6.909673461158714 +- 6.9953272719116635 +- 7.277898349988558 +- 7.725988176958317 +- 8.131996887428407 +- 8.84981871652333 +- 9.634188122919793 +- 9.678340509290882 +- 8.643270207774625 +- 7.305297820541025 +- 6.2400519654929205 +- 5.6173653174384 +- 4.837994317148003 +- 3.9661272160604018 +- 3.593198061381904 +- 3.448618838172499 +- 3.8994997685225874 +- 5.021985559345015 +- 5.635326888465876 +- 6.255520023095306 +- 6.984209003305373 +- 7.144104700358327 +- 7.370278459619116 +- 7.512510524284151 +- 7.813758264653555 +- 8.092480657246838 +- 8.396748428908614 +- 8.60961656559417 +- 8.888412335848782 +- 9.457291285054074 +- 10.03352176054764 +- 9.928116716231937 +- 9.08544399646329 +- 7.7298483813661925 +- 6.563952203096422 +- 5.502148330337494 +- 4.74568111990891 +- 4.225356757940286 +- 4.079795715352784 +- 4.084719881266639 +- 4.692142406530262 +- 5.680008681429173 +- 6.179842955532703 +- 6.481283800093145 +- 6.837254807260299 +- 6.930375652849587 +- 6.900194140389382 +- 6.590456031492884 +- 6.766308424831125 +- 6.8654628817643495 +- 7.258772825630486 +- 7.7241694090951745 +- 8.288172791966687 +- 8.950681576953526 +- 9.78943705688491 +- 10.188823503377265 +- 9.401352620193967 +- 8.478533400378394 +- 7.216476130337924 +- 6.412389389253295 +- 5.769033973594095 +- 5.289365177116975 +- 5.0824547739270995 +- 5.145323975797414 +- 5.910429315692865 +- 6.921343851222035 +- 7.435209234460521 +- 8.37511496790084 +- 9.060973622603136 +- 9.37518892764456 +- 9.313527845033692 +- 9.257289849604591 +- 9.461670087422567 +- 9.514492146789733 +- 9.542182264827975 +- 9.670362536271691 +- 10.16843481226958 +- 10.99267948936055 +- 11.988076692116323 +- 12.332962437672238 +- 11.634747719254822 +- 10.870490033944009 +- 10.070780647221271 +- 9.062780678352897 +- 8.18106611493942 +- 7.392668737126686 +- 6.744233114124543 +- 6.661293087651254 +- 7.311507773911601 +- 8.339179740934215 +- 9.394702860343251 +- 9.946077466242564 +- 10.42512145353644 +- 11.41107246820191 +- 11.691743639290365 +- 11.826066872809175 +- 11.946574731185057 +- 12.12780752581192 +- 12.312918412107685 +- 12.173396301866376 +- 12.475007347084622 +- 13.023372731703033 +- 13.655031889155733 +- 13.906969544368295 +- 12.746980847152459 +- 10.983232105245039 +- 9.604743083901441 +- 7.934479883097881 +- 7.008745259561056 +- 6.194016174991261 +- 5.662635781426595 +- 5.517885657690199 +- 6.22204540129963 +- 7.671859455343867 +- 8.763613633904578 +- 9.806830243680547 +- 10.303010746106464 +- 10.662372204934814 +- 10.958223297199437 +- 11.039352165339244 +- 11.079539451257194 +- 11.25727499162954 +- 11.414905405943843 +- 11.515430392529199 +- 11.783414265972525 +- 12.265422117671443 +- 13.092324242196955 +- 13.158128597403138 +- 12.221029746428991 +- 10.7679204145567 +- 9.517556831628431 +- 8.636013565052034 +- 7.68641536117819 +- 6.224795860027808 +- 5.367123001922531 +- 5.133513281594145 +- 5.529373584057505 +- 6.791183043934621 +- 7.539799067012631 +- 8.395392854853979 +- 9.05011667987957 +- 9.755559253401692 +- 10.24990214377465 +- 10.170739637723553 +- 10.30886701282003 +- 10.436438922807556 +- 10.533579522147367 +- 10.904613565623274 +- 11.522371843095167 +- 12.462869612250264 +- 13.41282826636539 +- 13.202231180050463 +- 12.107291798786115 +- 10.44416551492628 +- 8.799183145495887 +- 7.869041216374222 +- 6.551985989169854 +- 5.669832118017757 +- 4.98855715363316 +- 5.176882360572734 +- 5.747124331197849 +- 6.854904772731956 +- 8.062634481480265 +- 9.246246361858347 +- 9.992300602325635 +- 10.242833049891878 +- 10.068661713880651 +- 9.632436978911725 +- 9.332363579424563 +- 9.011764796832527 +- 8.730677899318449 +- 8.574060129347277 +- 8.611713159372226 +- 8.93410146290157 +- 9.296045012797421 +- 9.528339223608485 +- 8.870473803457548 +- 7.401150333957038 +- 6.436157158632207 +- 5.72158836256894 +- 5.029765960362097 +- 4.259140175999347 +- 3.5559018155458975 +- 3.5628645112214206 +- 3.95135195979297 +- 5.055170595248647 +- 5.7227494839154875 +- 6.3245070250952145 +- 6.6540574871474245 +- 7.082250821723361 +- 7.3343539998493865 +- 7.449417419941611 +- 7.331285111317331 +- 7.485997979192136 +- 7.654286683275466 +- 7.822182823426566 +- 8.108642914825339 +- 8.468616576660798 +- 8.854834880146099 +- 9.028820427522335 +- 8.368234022954857 +- 7.511298161998333 +- 6.366934147700872 +- 5.501638948855267 +- 5.112837433699696 +- 4.526387254880808 +- 4.018853252297078 +- 4.158777747833704 +- 4.132687812323839 +- 4.978188722245966 +- 5.838581979992628 +- 6.091513341336013 +- 6.631710724004608 +- 6.908206833220685 +- 6.983693419089972 +- 6.750651684060993 +- 6.686957815634364 +- 6.802036135204434 +- 6.915833902394788 +- 7.141382305729633 +- 7.4800133599316565 +- 8.038287530803286 +- 8.911031288946246 +- 9.040946776859453 +- 8.231778216679771 +- 7.119252550358379 +- 6.318731701935679 +- 5.443971499978727 +- 4.900828349629 +- 4.0826815816717925 +- 3.4806596844182573 +- 3.4467087005946646 +- 4.181466385473075 +- 5.225425001794017 +- 5.752365599356075 +- 6.492523085398653 +- 6.878494801104512 +- 7.359779469138737 +- 7.554103521993296 +- 7.7788558056117125 +- 7.607760154158201 +- 7.737568208515134 +- 7.927209004439191 +- 8.216461007593788 +- 8.65258024489757 +- 9.271722204773956 +- 9.85808024552842 +- 9.757736862434461 +- 8.896021159230628 +- 7.265509047414348 +- 5.773465497125283 +- 4.926573160533612 +- 4.133579218381954 +- 3.553485830158093 +- 2.9972304396212213 +- 2.949362599547447 +- 3.6034232817008442 +- 4.704250461714128 +- 5.432255599630404 +- 5.9880409784235775 +- 6.695749605886603 +- 6.972696374300508 +- 7.170070740997142 +- 7.058706019977301 +- 6.9496437263308035 +- 7.050481595423563 +- 7.27915435377452 +- 7.6420263611999175 +- 8.211961485019259 +- 8.785591991915044 +- 9.526167539069375 +- 9.777241129460789 +- 9.21034179446433 +- 7.981014309115069 +- 7.074242305930618 +- 6.2515109017928685 +- 5.610324154508564 +- 5.056633502508564 +- 4.578785418482926 +- 4.686479021477771 +- 5.406674549570736 +- 6.408105492056107 +- 7.048114596975088 +- 7.66771598715386 +- 7.928588516955981 +- 8.248532695078366 +- 8.37598644012731 +- 8.159733159903464 +- 8.220541810159514 +- 7.909138950477378 +- 7.8935844324435305 +- 8.13119944452232 +- 8.441606782933514 +- 8.871276059551738 +- 9.48813107466086 +- 9.843020420833344 +- 9.717095982760155 +- 8.950718025041937 +- 8.556750004427276 +- 8.183339968997986 +- 7.822268158898836 +- 7.230112506088274 +- 6.600578781947801 +- 6.4496495145712 +- 7.024715436652829 +- 7.734374275216501 +- 8.167202326535138 +- 8.538744826564534 +- 8.737398722954467 +- 8.814772158787344 +- 8.523307421838652 +- 8.287452104486688 +- 8.2430551598453 +- 8.18130380353254 +- 8.185282150985097 +- 8.289379487230736 +- 8.52759019144088 +- 9.01808379164666 +- 9.361242926120086 +- 9.61832553950297 +- 9.268353091681666 +- 8.894752597269713 +- 8.22466037673626 +- 7.714496491822342 +- 6.937829088737362 +- 6.273531956624995 +- 5.884700050146378 +- 6.105181898845568 +- 6.5678041863938335 +- 7.353321824455254 +- 7.910622516300756 +- 8.184060885394533 +- 8.423173447179884 +- 8.675327527860338 +- 8.830527809253114 +- 8.468268649689394 +- 8.522010835177168 +- 8.6478393882575 +- 8.806846681257879 +- 9.10455982290314 +- 9.60586053685505 +- 10.17341864854856 +- 10.868502070527336 +- 11.094323643934459 +- 10.57351719260657 +- 9.317491836962274 +- 7.742319992232787 +- 6.910668314972811 +- 6.25955805558451 +- 5.314819817050479 +- 4.499716146776097 +- 4.592865499142642 +- 4.999692084933323 +- 6.201779501521717 +- 7.107111680993145 +- 7.5728243019386134 +- 8.08173423832099 +- 8.325033876654555 +- 8.170849822470528 +- 7.9762175688338885 +- 8.137043490642455 +- 8.197663032114482 +- 8.290389523176728 +- 8.641578598103543 +- 9.137562566057392 +- 9.485355962459433 +- 9.931307869925368 +- 10.523800182439322 +- 10.044965676460075 +- 9.219836006656758 +- 8.483522037846587 +- 8.149098985403537 +- 8.183713706835402 +- 7.873702879820366 +- 7.86616418638892 +- 8.120501571830104 +- 8.580930694947229 +- 9.645580731283921 +- 9.99969245974604 +- 10.141834444815615 +- 10.433602716613223 +- 10.67156401898279 +- 10.53189616167953 +- 10.417316204701676 +- 10.384651852908114 +- 10.65775590797906 +- 11.006096893514105 +- 11.290516676872619 +- 12.001257024084365 +- 12.889056325755194 +- 13.98518833802375 +- 14.561537083805767 +- 13.293663195449877 +- 11.256920096652335 +- 10.025682311380868 +- 9.2956438900414 +- 8.305550788670628 +- 7.792226407180021 +- 7.298269153279904 +- 7.366713846927785 +- 7.997873492775384 +- 8.9991504788258 +- 10.21252349444502 +- 11.1018394270919 +- 11.816422822187874 +- 12.055112998879686 +- 12.171431807058637 +- 12.088482454344774 +- 12.118471479476305 +- 12.135982372026591 +- 12.220930501232285 +- 12.245138815368405 +- 12.646355957802946 +- 13.10517054454371 +- 13.804285037160087 +- 14.136538353675842 +- 13.246329722662784 +- 11.457412962177674 +- 10.253420826221678 +- 9.124202023849183 +- 8.237804171201239 +- 7.306988222637137 +- 6.603560399549979 +- 6.51316530502337 +- 7.378723548477168 +- 8.689319251617626 +- 9.825098638102574 +- 10.571273973993216 +- 11.495418750586742 +- 11.90204515059605 +- 11.942774693896126 +- 11.980294289553262 +- 12.105682019362009 +- 12.340331214017247 +- 12.413472523337123 +- 12.585763521701635 +- 13.114635480641553 +- 13.699854636609656 +- 14.348939783886257 +- 14.623233902406787 +- 13.494549171758527 +- 11.679187040263754 +- 10.291237706035833 +- 9.279859379569917 +- 8.127444395046135 +- 7.048370124365469 +- 6.234811962229298 +- 6.2499438389904585 +- 6.788732385197335 +- 8.212193163127555 +- 9.137282817773182 +- 9.955853953661494 +- 10.95464002207165 +- 11.54130652951807 +- 11.881751337108795 +- 11.942799066644936 +- 11.994809003205027 +- 12.043635397623694 +- 12.096572762222424 +- 12.520651776888224 +- 13.02901859562576 +- 13.570795440004446 +- 14.251074358089399 +- 14.41555054374918 +- 12.986138761919808 +- 11.140215201180874 +- 9.541742650749248 +- 8.035533062913888 +- 6.704449113689823 +- 5.739425761027738 +- 4.777911809813516 +- 4.776939318706162 +- 5.585623762581671 +- 7.009302537560879 +- 7.993823378813606 +- 8.896936044054124 +- 9.53339786742354 +- 10.257446109556897 +- 10.562918800718085 +- 10.66565012383222 +- 10.658395107908671 +- 10.579315482846896 +- 10.803919733035746 +- 11.330374159610157 +- 11.671669368616385 +- 12.418579148468773 +- 13.261933974546539 +- 13.593677580658909 +- 12.497611063085863 +- 10.425776699588045 +- 8.60031002705851 +- 6.932687666782312 +- 5.920684423977682 +- 5.024711642522142 +- 4.3141610509635315 +- 4.284288007159537 +- 4.8389075767478635 +- 5.975892510993495 +- 7.106952589152846 +- 8.048399273130244 +- 8.699476051834509 +- 8.694727078796992 +- 8.970167627292655 +- 9.008802010858135 +- 9.11568963573765 +- 9.383458200104663 +- 9.612683447532168 +- 9.901164363850842 +- 10.215622036038674 +- 10.817385276515076 +- 11.523688940237186 +- 11.935507792599735 +- 11.29232206362217 +- 10.028012090681719 +- 8.649491291568332 +- 7.994124711356486 +- 7.306449446931664 +- 6.237446844174683 +- 5.4404337029828245 +- 5.539328127707843 +- 6.157866334294617 +- 7.149882016186721 +- 7.831474496932492 +- 8.707734553838518 +- 8.993591502922886 +- 9.27026821005009 +- 9.495773349883118 +- 9.57443438494745 +- 9.854441415847152 +- 9.934548135744885 +- 10.138178827044754 +- 10.421207004327858 +- 10.734768134676802 +- 11.23252004975401 +- 11.856161253069319 +- 12.388751007823759 +- 11.931407109490719 +- 10.237991915941853 +- 8.683244393668698 +- 7.724722116448028 +- 6.750706847816124 +- 5.779020152961495 +- 5.1572591579899285 +- 5.0586832827069435 +- 5.688805350410376 +- 6.9280673585189865 +- 8.107860490644217 +- 8.752611116879107 +- 9.746145875670415 +- 9.912112767776383 +- 10.132753764126 +- 10.000885519004488 +- 10.086271529685249 +- 10.051572862709422 +- 10.301106290250964 +- 10.635069293990716 +- 10.86363114782834 +- 11.170886176801169 +- 11.666069630987419 +- 11.988485218809528 +- 11.030914201687237 +- 9.51985685502616 +- 8.568917733053365 +- 7.481332416917909 +- 6.29614309169751 +- 5.3988461677074335 +- 5.02591620252271 +- 5.244055733625462 +- 5.4484522194729985 +- 6.0462760024559 +- 6.49577491382406 +- 7.19124775002762 +- 7.577376724222466 +- 7.849691029515995 +- 7.883123829395208 +- 7.848786792909327 +- 7.843639857254518 +- 7.834040486091305 +- 8.086754975062222 +- 8.422626214743484 +- 8.84335033932345 +- 9.491215561305305 +- 9.926163210177831 +- 10.141058317283976 +- 9.667040246965799 +- 8.519694764682026 +- 7.46946804515724 +- 6.798348301599481 +- 6.189510239012861 +- 5.203286782237071 +- 4.569681610889936 +- 4.569147690832963 +- 4.919706175081978 +- 6.291128760746725 +- 7.051502134224172 +- 7.919278270087485 +- 8.230623900741044 +- 8.408914746577327 +- 8.716050885380344 +- 8.764136734335526 +- 8.86788368316032 +- 9.012449319975378 +- 9.303622827163673 +- 9.699060631490868 +- 9.948546474951035 +- 10.305650989203873 +- 11.218539278869878 +- 11.824061605339041 +- 10.981645062285772 +- 9.614977706258829 +- 8.53016567686177 +- 7.706268616082519 +- 6.950498262858554 +- 6.349654896050987 +- 5.672564624472532 +- 5.765717166551043 +- 6.438652205743359 +- 7.47920343798482 +- 8.224860580929954 +- 9.047439522827135 +- 9.508246410474769 +- 9.833532639460465 +- 10.201945074457502 +- 10.468916348698537 +- 10.272498387828538 +- 10.449507086956494 +- 10.609297852228941 +- 10.890161348901703 +- 11.2425337353173 +- 11.947441038367042 +- 12.725119043153043 +- 13.180464718649805 +- 12.27071545890202 +- 11.08522708593876 +- 9.805662087748201 +- 8.819365049373351 +- 7.958631408622846 +- 7.186831365120985 +- 6.971616789689895 +- 7.1713255541981 +- 7.826721395565971 +- 9.000024616356766 +- 9.745158243331785 +- 9.823567111513483 +- 10.146890545232496 +- 10.186797657987386 +- 10.370102977686406 +- 10.382072447241228 +- 10.237691927205415 +- 10.218560147626942 +- 10.178633117517526 +- 10.475125437111409 +- 10.735303201399155 +- 11.229849447811802 +- 12.071836414649194 +- 12.636547446179236 +- 12.302622826231305 +- 11.256318340213719 +- 10.13773485916519 +- 8.891524574458197 +- 8.052378726009001 +- 7.0904628497749975 +- 6.6699365726131745 +- 6.629045370489123 +- 7.196344944552048 +- 8.567416409806048 +- 9.343081251522552 +- 9.871161694318193 +- 10.014012096554696 +- 10.483305104119788 +- 10.726194990407498 +- 10.495820278970195 +- 10.478147019650756 +- 10.496171247171782 +- 10.394154694773604 +- 10.60770382068395 +- 10.845552911639924 +- 11.316535268470531 +- 12.055998792917233 +- 12.518980165952803 +- 11.857320536932704 +- 11.046035725656585 +- 9.918918601872996 +- 8.58066668664823 +- 7.862491421606186 +- 6.826379496211312 +- 5.982714064508827 +- 5.9170819068114415 +- 6.470737479283714 +- 7.641063037824536 +- 8.890072128951152 +- 9.567202797599261 +- 10.270641771993368 +- 10.50271588977469 +- 10.625099305354476 +- 10.763473170884998 +- 10.77966049757087 +- 10.865754131222975 +- 11.066246214226489 +- 11.441112138286357 +- 11.806646099885896 +- 12.377814673942849 +- 13.177269884991171 +- 13.66530636972835 +- 13.155827824271345 +- 11.467706530773984 +- 9.999777650125345 +- 9.367423392862808 +- 8.681648303033521 +- 7.675714065054094 +- 6.750582404396775 +- 6.735449316896402 +- 7.425451481323965 +- 8.719192359625072 +- 9.756272348934182 +- 10.689771637967672 +- 10.844789249183687 +- 11.223307306080766 +- 11.07644413946718 +- 10.998106587429804 +- 11.163908711463634 +- 11.319460352802706 +- 11.426411788750663 +- 11.62193445439367 +- 12.050055672554839 +- 12.485327539675522 +- 13.28065255740927 +- 13.551860759540222 +- 12.957066085965884 +- 11.721713485127681 +- 10.696528179918925 +- 9.584513477417284 +- 8.35762319304243 +- 7.160853336577329 +- 6.503455878239688 +- 6.21412504617215 +- 6.802688228188834 +- 7.595700588284986 +- 8.705178469607151 +- 9.274076812309211 +- 9.667933803080736 +- 10.156309609431371 +- 10.511867274832282 +- 10.619002034559076 +- 11.014142467077715 +- 11.27034577462815 +- 11.238057640654432 +- 11.296464853931846 +- 11.758634414090412 +- 12.516736257230031 +- 13.545980081677781 +- 14.035598232836692 +- 12.973011892418347 +- 11.342485925929115 +- 9.92180039633684 +- 8.513465442909691 +- 7.263487748443469 +- 6.230002523229951 +- 5.37213462504251 +- 5.430553899696388 +- 6.162379582268162 +- 7.696056321101092 +- 8.575522086025929 +- 9.344026989382614 +- 10.133662133851612 +- 10.966872102188209 +- 11.168759507408918 +- 11.062095522263805 +- 11.163728512730742 +- 11.09357938530572 +- 11.04874706507565 +- 11.168755221575774 +- 11.386029201847373 +- 11.727051657512659 +- 12.32241209370939 +- 12.884742513207724 +- 11.9077601548029 +- 10.339336236010844 +- 9.162363256466342 +- 8.153582962440042 +- 7.181012254990716 +- 6.055170014217587 +- 5.0628625702402985 +- 4.869786780316706 +- 5.3055557873495935 +- 6.549827733787985 +- 7.7966207755580825 +- 8.934050023427924 +- 9.965445157023831 +- 10.406540007783288 +- 10.613856237435572 +- 10.686797788866325 +- 10.679420403089622 +- 10.563427741190713 +- 10.63532505421274 +- 10.95145172423605 +- 11.473813092516044 +- 12.06076272434888 +- 12.87263855886008 +- 13.264158763671261 +- 12.49766585654324 +- 10.77778174327957 +- 9.500008208425832 +- 8.258786024384017 +- 7.123796826909542 +- 6.171980975652234 +- 5.600534080991375 +- 5.705710831218322 +- 6.303581796244013 +- 7.140063538157231 +- 8.325802967390324 +- 9.365958175144733 +- 9.793388035491507 +- 10.124355701691528 +- 10.251739199282646 +- 10.48550047186143 +- 10.849036755857904 +- 11.225353261458952 +- 11.264879025170792 +- 11.380248075008891 +- 11.458132048445252 +- 11.734324013137766 +- 12.324474081122425 +- 12.507098089292274 +- 11.904548396577393 +- 10.357235511915123 +- 8.612059445414951 +- 7.401115839154183 +- 6.44330025057834 +- 5.612184329399275 +- 5.036642865418311 +- 4.877255444920813 +- 5.552840683409601 +- 7.155856405074568 +- 8.267026935664873 +- 9.136656339330493 +- 9.913397076186227 +- 10.359217088698916 +- 10.887781941497481 +- 10.748776616091215 +- 10.841018066087027 +- 11.003898789105852 +- 11.308196788453557 +- 11.696798914616643 +- 12.299735169354335 +- 12.884126581909083 +- 13.537914573336154 +- 13.539236409652759 +- 12.43062849694927 +- 10.860544507846644 +- 9.40988080451874 +- 7.959076022612869 +- 7.002197583362629 +- 5.628383077367926 +- 4.715074369019109 +- 4.625644426862776 +- 5.348482348781478 +- 6.3820898487921545 +- 7.414659318133976 +- 8.56867656912552 +- 9.333526281887414 +- 9.580967226780988 +- 9.935178287723723 +- 9.761657128534276 +- 9.868093010027776 +- 10.169424937261049 +- 10.328395088299368 +- 10.691953158607314 +- 11.131874248911087 +- 11.63770717889693 +- 12.179096552396715 +- 12.519840233799325 +- 11.598583003799918 +- 10.055927283544746 +- 8.568885367431317 +- 7.279950480699902 +- 6.341921452559038 +- 5.20057402685613 +- 4.512670165600199 +- 4.482683954934279 +- 4.8245288356330125 +- 5.904772377474479 +- 6.878813877489217 +- 8.119491425918595 +- 8.80614110350633 +- 9.366336998125957 +- 9.712946313079422 +- 9.716138343057942 +- 10.081249639698724 +- 10.127385222848163 +- 10.458488197342772 +- 10.988673990920448 +- 11.638128299717101 +- 12.57884135277417 +- 13.561036428799014 +- 14.187410584989859 +- 12.946162382445962 +- 10.911794695175253 +- 9.069825428742766 +- 8.21802530367816 +- 7.3081796685680755 +- 6.454987667206438 +- 5.5467897621328595 +- 5.262543331407754 +- 5.752360016995875 diff --git a/examples/inputs/floris_v4_template.yaml b/examples/inputs/floris_v4_template.yaml new file mode 100644 index 000000000..0cc74b6dc --- /dev/null +++ b/examples/inputs/floris_v4_template.yaml @@ -0,0 +1,101 @@ + +name: Gauss +description: Onshore template +floris_version: v4.0.0 +logging: + console: + enable: false + level: WARNING + file: + enable: false + level: WARNING +solver: + type: turbine_grid + turbine_grid_points: 1 +flow_field: + air_density: 1.225 + reference_wind_height: -1 + wind_directions: + - 270.0 + wind_shear: 0.33 + wind_speeds: + - 8.0 + wind_veer: 0.0 + turbulence_intensities: + - 0.06 +wake: + model_strings: + combination_model: sosfs + deflection_model: gauss + turbulence_model: crespo_hernandez + velocity_model: gauss + enable_secondary_steering: false + enable_yaw_added_recovery: false + enable_transverse_velocities: false + wake_deflection_parameters: + gauss: + ad: 0.0 + alpha: 0.58 + bd: 0.0 + beta: 0.077 + dm: 1.0 + ka: 0.38 + kb: 0.004 + jimenez: + ad: 0.0 + bd: 0.0 + kd: 0.05 + wake_velocity_parameters: + cc: + a_s: 0.179367259 + b_s: 0.0118889215 + c_s1: 0.0563691592 + c_s2: 0.13290157 + a_f: 3.11 + b_f: -0.68 + c_f: 2.41 + alpha_mod: 1.0 + gauss: + alpha: 0.58 + beta: 0.077 + ka: 0.38 + kb: 0.004 + jensen: + we: 0.05 + wake_turbulence_parameters: + crespo_hernandez: + initial: 0.1 + constant: 0.5 + ai: 0.8 + downstream: -0.32 + enable_active_wake_mixing: false + + wake_velocity_parameters: + cc: + a_f: 3.11 + a_s: 0.179367259 + alpha_mod: 1.0 + b_f: -0.68 + b_s: 0.0118889215 + c_f: 2.41 + c_s1: 0.0563691592 + c_s2: 0.13290157 + gauss: + alpha: 0.58 + beta: 0.077 + ka: 0.38 + kb: 0.004 + jensen: + we: 0.05 +farm: + layout_x: + - 0.0 + layout_y: + - 0.0 + turbine_type: + - operation_model: cosine-loss + # hub_height: 115.0 + # turbine_type: lbw_6MW + # rotor_diameter: 196.0 + # TSR: 9.0 + diff --git a/examples/inputs/residential_load_profile_MW.yaml b/examples/inputs/residential_load_profile_MW.yaml new file mode 100644 index 000000000..0c09215ee --- /dev/null +++ b/examples/inputs/residential_load_profile_MW.yaml @@ -0,0 +1,8760 @@ +- 1.72900268458599 +- 1.9130199774236627 +- 2.1165116291357267 +- 2.347821281232797 +- 2.47514115103145 +- 2.5721067959617447 +- 2.5696691498453337 +- 2.6889919342086164 +- 2.8502406969762037 +- 2.8992428285304004 +- 2.999335408454076 +- 3.1449595306374363 +- 3.3119878677738965 +- 3.526824020079377 +- 3.61821835959974 +- 3.4298534963941196 +- 2.9616547054179176 +- 2.513237219391017 +- 2.159662843128085 +- 1.89978420561684 +- 1.6304524551327364 +- 1.382005607755138 +- 1.2793020229559422 +- 1.4667619023811758 +- 1.7283185823353826 +- 2.045221262046286 +- 2.2586549650846677 +- 2.508065587987768 +- 2.6377227938752306 +- 2.7385117694908363 +- 2.6964483756086572 +- 2.6643416330279672 +- 2.6663616969450694 +- 2.6633944001210033 +- 2.736428284086869 +- 2.792757081334284 +- 2.9605975231610335 +- 3.177675393300571 +- 3.2284611873820426 +- 3.0348608068842284 +- 2.705604428875382 +- 2.4441931479954597 +- 2.248031399133346 +- 2.0680248371691907 +- 1.927628415944984 +- 1.9304791767041067 +- 1.9494574591245601 +- 2.01135276779439 +- 2.2443811810958914 +- 2.325478937824433 +- 2.434249381407676 +- 2.4537044095479605 +- 2.439276753055637 +- 2.506037929010298 +- 2.4827524144062685 +- 2.498859062940995 +- 2.5452075487570447 +- 2.5894911000864407 +- 2.6686009065089435 +- 2.8272879245806712 +- 3.0455567251218967 +- 3.273994804992271 +- 3.410263733730757 +- 3.2286502617526067 +- 2.9055254324039708 +- 2.6051260171444923 +- 2.330424845732936 +- 2.1661132557964318 +- 1.9773924316273903 +- 1.7808811913206157 +- 1.8062361705699361 +- 2.031749746769323 +- 2.358323287096956 +- 2.5534012149223826 +- 2.665977939776675 +- 2.835826615578492 +- 2.942718040966128 +- 2.9887726660991976 +- 2.967308590176498 +- 3.0453231512725543 +- 3.0396060024698004 +- 3.084949397286824 +- 3.1240598324579865 +- 3.2393720487521818 +- 3.3631276315622225 +- 3.5958418076339242 +- 3.6784216439417357 +- 3.4948106647009896 +- 3.0922889462093863 +- 2.7152338969821597 +- 2.4581679671146777 +- 2.230765057494409 +- 2.02868667842128 +- 1.9388928112090473 +- 1.9232706424030466 +- 2.144931021355183 +- 2.428500313773756 +- 2.6025346438638604 +- 2.7000542323407264 +- 2.834729401926796 +- 2.8710095113393765 +- 2.923659292619697 +- 2.846539701279198 +- 2.863591885518665 +- 2.8003166183475985 +- 2.8287199191421966 +- 2.8750637971961415 +- 2.979454533213467 +- 3.141138148583772 +- 3.312774637274295 +- 3.357190504487449 +- 3.211580995738776 +- 2.99900138848364 +- 2.677627502264567 +- 2.4921352685151366 +- 2.395103122411034 +- 2.2477251581737243 +- 2.0787056266325847 +- 2.1309227441402343 +- 2.202846680584501 +- 2.4869573496179767 +- 2.6684453768236276 +- 2.736673554269675 +- 2.8665840215430674 +- 2.892868076880105 +- 2.92528936394803 +- 2.8876319963105432 +- 2.895622371299141 +- 2.9393765538612393 +- 2.9359766844160307 +- 2.9542927595589625 +- 3.0181611357218108 +- 3.1741761689006807 +- 3.3376689558881307 +- 3.436949781305276 +- 3.2986344735086317 +- 2.908610525049869 +- 2.5422469459892256 +- 2.307687653021932 +- 2.1294761442200114 +- 1.7766648138590706 +- 1.5173404845111336 +- 1.5148991508261576 +- 1.6990016706971092 +- 2.0467831672701435 +- 2.2864054978690223 +- 2.392780181664413 +- 2.5618207868802165 +- 2.7558383686480035 +- 2.8151929380532392 +- 2.736770879500408 +- 2.807716821651542 +- 2.8418717012072303 +- 2.8586989814481334 +- 2.9619151990139585 +- 3.095309143997809 +- 3.2200129444679404 +- 3.381533346084886 +- 3.3675090684737095 +- 3.2152821955341295 +- 2.8795369938446798 +- 2.573628440917264 +- 2.221061316845935 +- 1.9457669101697843 +- 1.6303890774029215 +- 1.5206745847607084 +- 1.5576529436648798 +- 1.6085424654368117 +- 1.8550044872761122 +- 2.0523504280056746 +- 2.0945679818904255 +- 2.208586330775478 +- 2.2429298419091777 +- 2.250461975123682 +- 2.2435027401311975 +- 2.2951347200211156 +- 2.435640965411535 +- 2.51774759413267 +- 2.692515910632451 +- 2.8233865540562064 +- 2.9639190711446055 +- 3.245708248115439 +- 3.3290018984531673 +- 3.0658557192598144 +- 2.6079905225118805 +- 2.1768943548558624 +- 1.8805020034527566 +- 1.6124771414830383 +- 1.3810806505754516 +- 1.176930398361577 +- 1.1884098471334144 +- 1.3721007204048796 +- 1.7309168588706136 +- 1.9581043821541235 +- 2.212686298233441 +- 2.3324950635178876 +- 2.415742873957261 +- 2.457601607675208 +- 2.4362039763580774 +- 2.5129541170364806 +- 2.636040843931254 +- 2.7205460065655633 +- 2.7739010714646124 +- 2.914650700623598 +- 3.1176822153179873 +- 3.3513450294707927 +- 3.399890501396806 +- 3.156164239788865 +- 2.634649859227439 +- 2.2643111069747888 +- 1.9622271065456578 +- 1.6671382039476734 +- 1.4390701631732241 +- 1.2722539642025288 +- 1.2268339488679978 +- 1.3472197272623798 +- 1.6939783017614765 +- 1.9938805105519455 +- 2.123578715452688 +- 2.310715286717697 +- 2.59822863220918 +- 2.700556004555577 +- 2.6892074154566887 +- 2.7019752254666924 +- 2.683073411090896 +- 2.7886016774682805 +- 2.9103861943879723 +- 3.0413404227934224 +- 3.2195743504968553 +- 3.4548656643929934 +- 3.5301252267457883 +- 3.321047201613013 +- 2.831946509194337 +- 2.440627918176126 +- 2.0658487787621698 +- 1.8019398898259829 +- 1.502094022165842 +- 1.3503214548864493 +- 1.2536555337553252 +- 1.3419176496401457 +- 1.5873946686254183 +- 1.8350540820038739 +- 2.042698722406311 +- 2.2152737212724927 +- 2.3950948398842913 +- 2.427910744766244 +- 2.4796003859420686 +- 2.546405675846449 +- 2.5634953462903813 +- 2.590838971723861 +- 2.714999589290949 +- 2.8082991865291516 +- 2.9597592439991693 +- 3.2086477042838735 +- 3.2661970548507044 +- 3.018422401966761 +- 2.631978005698183 +- 2.241455850994074 +- 1.9750884882261148 +- 1.7347104324519664 +- 1.4572310545168194 +- 1.2542793281099751 +- 1.1952401245716788 +- 1.3084984417575134 +- 1.564929374507729 +- 1.7891626144134665 +- 1.9913973585399105 +- 2.21203142760529 +- 2.3201204129962947 +- 2.3456817173226354 +- 2.3646550576531142 +- 2.3967810892642145 +- 2.431524970903952 +- 2.486261483091908 +- 2.5399425406727394 +- 2.651225001877921 +- 2.847512501673603 +- 3.0811674927536945 +- 3.1253423002296437 +- 2.9297516349670407 +- 2.5089394589141545 +- 2.2297567226188093 +- 1.9497225903017465 +- 1.6590621098102647 +- 1.390572102331406 +- 1.2421762971181594 +- 1.1975828563279471 +- 1.2076535669264798 +- 1.541271966471521 +- 1.7611012128852874 +- 1.920805427944013 +- 2.1243851886852267 +- 2.297159377010917 +- 2.4012353513228075 +- 2.4854603610798343 +- 2.4964009549466355 +- 2.5515437892337673 +- 2.69569313362237 +- 2.845245423625316 +- 2.9591903932272525 +- 3.092686749764147 +- 3.301938379189076 +- 3.4111470066341427 +- 3.1976029486801614 +- 2.6917105622878856 +- 2.1721098396854637 +- 1.8255807995009812 +- 1.6118614441989938 +- 1.3351932801137154 +- 1.2210034626566977 +- 1.0938461080190354 +- 1.1206122510030596 +- 1.3273382460507654 +- 1.6362102061344983 +- 1.8833787952290573 +- 2.2153479450166325 +- 2.4027935035916848 +- 2.286246108328284 +- 2.3355283162507092 +- 2.389494983073014 +- 2.4243833665320804 +- 2.513065337793302 +- 2.6272734494775905 +- 2.7717831921283396 +- 2.9329909262837233 +- 3.1407476339699323 +- 3.231156582358599 +- 3.0572696472658363 +- 2.7300647086812746 +- 2.345452841137204 +- 2.06271681298511 +- 1.8436891085365537 +- 1.5641647622687913 +- 1.352146927738816 +- 1.2521949748709325 +- 1.4669373492042614 +- 1.7074735440483066 +- 1.875011857584069 +- 2.0162423147957242 +- 2.174307745692872 +- 2.222157752300673 +- 2.2499552986761757 +- 2.2143286173083316 +- 2.250051611546757 +- 2.2564435673721563 +- 2.1912504234185453 +- 2.279611291631736 +- 2.375344708783772 +- 2.486225579499276 +- 2.675466145416945 +- 2.7506628521661147 +- 2.7571115115226568 +- 2.5650485817031234 +- 2.42682997117735 +- 2.2614286044051495 +- 2.14609319379545 +- 2.0360860225965833 +- 1.893590338571114 +- 1.9327022542715568 +- 2.079705862821099 +- 2.1906169312065726 +- 2.2226557651367957 +- 2.315623915355282 +- 2.2792285076820966 +- 2.263591862107251 +- 2.264362874527139 +- 2.36523769773867 +- 2.4124570809906842 +- 2.354662439465601 +- 2.3713505318860753 +- 2.421095386223173 +- 2.539085728697778 +- 2.6937502961719946 +- 2.8821986106588335 +- 2.9839433957063464 +- 2.8649325886603125 +- 2.6747670266726766 +- 2.564990136880307 +- 2.3878543999425825 +- 2.2413570297938126 +- 2.041270113931343 +- 1.9819906682883337 +- 1.9870891927918275 +- 2.208506616519327 +- 2.313728864289652 +- 2.425307436873032 +- 2.532255554913023 +- 2.613171432198093 +- 2.7281132613796495 +- 2.8031161650328413 +- 2.8627375108000934 +- 2.973415317590592 +- 2.9097960515058743 +- 2.9372352410222398 +- 2.9853947826378207 +- 3.036255467634806 +- 3.1705778422920137 +- 3.43400229001769 +- 3.51691423468167 +- 3.369040452477395 +- 3.100846036836585 +- 2.7976227296813656 +- 2.5130230637125 +- 2.3260182436488472 +- 2.024228588050616 +- 1.7993650625753452 +- 1.738826697419726 +- 1.8619599444644175 +- 2.268608663378447 +- 2.603180576160388 +- 2.829411931757551 +- 3.0826654131770064 +- 3.2597062191961843 +- 3.3644336746077634 +- 3.429154157067122 +- 3.4150844089743355 +- 3.4353551853560953 +- 3.4526981172943367 +- 3.5491339029543765 +- 3.6884765504591286 +- 3.8735345909286005 +- 4.003591572291335 +- 4.150659310841914 +- 3.9021742721842294 +- 3.447030723365551 +- 2.976403080841502 +- 2.5398467119844352 +- 2.1192817076825183 +- 1.7511211930325603 +- 1.5320993227641202 +- 1.4525649245610197 +- 1.5992280955395948 +- 2.013028659376356 +- 2.3403737537791467 +- 2.6580980901128677 +- 2.9195607296043122 +- 3.04105042806643 +- 3.1224206919453272 +- 3.153004094719672 +- 3.2324557192528878 +- 3.252333298148131 +- 3.2468025135812195 +- 3.264504675410892 +- 3.415426924077417 +- 3.606427277651943 +- 3.7889685900732544 +- 3.7994620003618813 +- 3.5765817896285466 +- 3.1668685742590634 +- 2.7745018335785807 +- 2.5017737341025077 +- 2.217607344425376 +- 1.9518314058120747 +- 1.7888600323916408 +- 1.7972031003111884 +- 1.8926041157750626 +- 2.103433124209804 +- 2.306155054167011 +- 2.5270770795594526 +- 2.6482600200952633 +- 2.6736051379280785 +- 2.631038447051702 +- 2.5436977745788143 +- 2.6023481473146917 +- 2.620640786287573 +- 2.6665524466049773 +- 2.7210826655433356 +- 2.849557647635529 +- 2.977086497520426 +- 3.1918155694782646 +- 3.33030425750612 +- 3.138272726099948 +- 2.715706374656588 +- 2.4520386861396544 +- 2.2340814546086496 +- 2.0119987671804043 +- 1.8483039582627871 +- 1.699680636462484 +- 1.6441827925521593 +- 1.823309392894912 +- 2.161323586224296 +- 2.491300500143089 +- 2.788668105661538 +- 3.0420178219813505 +- 3.113498042279374 +- 3.1837984037842197 +- 3.2083754860917617 +- 3.249049192940472 +- 3.3171014855510563 +- 3.31553641571024 +- 3.3835486100876424 +- 3.4674279639084635 +- 3.663296464182357 +- 3.934834322368091 +- 4.020005440277633 +- 3.817359289204848 +- 3.474193113349807 +- 2.984052463731222 +- 2.647792387567926 +- 2.3998840072512166 +- 2.0838803057651916 +- 1.8074899161318965 +- 1.6868375749205082 +- 1.7771273863236345 +- 2.0244506729078733 +- 2.3421748993176896 +- 2.6673675664946903 +- 2.8823914572425062 +- 3.09066846294073 +- 3.167374353409994 +- 3.1527190830751652 +- 3.2320606189325605 +- 3.2711023339121152 +- 3.3359670341375933 +- 3.4477276262199568 +- 3.5490358672089037 +- 3.78627177349432 +- 4.062588600308193 +- 4.168465704140167 +- 3.842688175497796 +- 3.2383089655812873 +- 2.8047711839759106 +- 2.489981576027985 +- 2.215685137605995 +- 1.8385641903586438 +- 1.6029027909799218 +- 1.5663329491379399 +- 1.6342443124269217 +- 2.0338022395007487 +- 2.432708071530966 +- 2.676632978566605 +- 2.9088050580184315 +- 3.116984342067457 +- 3.2534350727417545 +- 3.226760797576783 +- 3.3479378249239797 +- 3.3821137531749668 +- 3.4374225560337717 +- 3.5445029848594642 +- 3.698587391806253 +- 3.8630232786054632 +- 4.033814061091876 +- 4.036492975650825 +- 3.742444882183055 +- 3.25409046935895 +- 2.7958352248716083 +- 2.360621140027234 +- 2.029843160267399 +- 1.718883191366045 +- 1.4725472995874074 +- 1.4251949619328186 +- 1.5450609647050615 +- 1.7833292103646194 +- 2.116310953940505 +- 2.3676341272224843 +- 2.5883872624691104 +- 2.7290424237753164 +- 2.950662212534048 +- 2.9694513887313763 +- 2.987552136605235 +- 3.0580807194819752 +- 3.080899469364697 +- 3.156355592961951 +- 3.2288037215013534 +- 3.3746876519562807 +- 3.5003663765895934 +- 3.5392851214246 +- 3.2859994853169248 +- 2.787383272895053 +- 2.38997431178241 +- 2.106463401998295 +- 1.7103071629271092 +- 1.44205175937537 +- 1.2445010787613504 +- 1.1315357814092093 +- 1.2311735200942557 +- 1.5307646752140898 +- 1.817783649677896 +- 2.0641356108185094 +- 2.2545448863589956 +- 2.4245395856407677 +- 2.577434235642066 +- 2.6326666636538345 +- 2.6186765243377126 +- 2.690592369977862 +- 2.781825610984296 +- 2.858414846624756 +- 2.9928446126613477 +- 3.1141142313160985 +- 3.2985785654876016 +- 3.2922316325763896 +- 3.0491232831166566 +- 2.649658509811546 +- 2.319878693139959 +- 1.9549042349460244 +- 1.6959777986409708 +- 1.4278782265777916 +- 1.2463720312802544 +- 1.1389622896905094 +- 1.2108558792064843 +- 1.4453034019817865 +- 1.728656268707041 +- 1.9372096130855798 +- 2.112215331374708 +- 2.3356257086681387 +- 2.4352800445427523 +- 2.40996815986902 +- 2.4241100601858516 +- 2.4585482282329423 +- 2.5048391607618474 +- 2.583818078508568 +- 2.672970115044289 +- 2.813205803328291 +- 3.0744497944949263 +- 3.252624833920139 +- 3.0832152971217783 +- 2.7326596440864375 +- 2.3477917846149765 +- 2.0098648580333327 +- 1.765526720011229 +- 1.5361746291745246 +- 1.3615573644316714 +- 1.2786667342494187 +- 1.3949222711872655 +- 1.5600146119831642 +- 1.8328637004692987 +- 2.0536372996452767 +- 2.249042436327461 +- 2.3262713840767795 +- 2.4430562001186638 +- 2.4780221541659126 +- 2.5565867135116593 +- 2.603978813794741 +- 2.658596715607432 +- 2.716586575309907 +- 2.820929366419906 +- 2.9808643335338707 +- 3.157875103141697 +- 3.2188754313542773 +- 3.0703375389031944 +- 2.793030295299096 +- 2.46733897793559 +- 2.242918302819529 +- 2.1290267200164665 +- 1.8042588533994202 +- 1.5717756737693502 +- 1.5571307273352284 +- 1.6605209784812718 +- 1.8626474175160879 +- 2.069784616612628 +- 2.2400798029446976 +- 2.4092044489210807 +- 2.416053259356797 +- 2.421176845017934 +- 2.417111711772815 +- 2.4377931044053334 +- 2.4193661776659003 +- 2.4418351720457516 +- 2.4713341266020366 +- 2.53235740477082 +- 2.657744691506853 +- 2.761826457731479 +- 2.821973619080622 +- 2.7291472743149203 +- 2.423531602686356 +- 2.1488356886638407 +- 2.0024717536018732 +- 1.8807710265803774 +- 1.7165871826155799 +- 1.5471391273534076 +- 1.531463012211116 +- 1.5903897447636515 +- 1.723011362757797 +- 1.8463374311794176 +- 1.9874733350862142 +- 2.1913317805405312 +- 2.325345638383081 +- 2.3227367627193622 +- 2.2693191486975843 +- 2.2703757685891133 +- 2.237882730055554 +- 2.2309202586828762 +- 2.3342189568033476 +- 2.4737944196937556 +- 2.666961787457767 +- 2.8294965822508713 +- 2.873466888186289 +- 2.7312455386543752 +- 2.3757389675992284 +- 2.1029271454571803 +- 1.8867351467902271 +- 1.7451727129309806 +- 1.559851950664693 +- 1.4542752505926693 +- 1.3798664698841512 +- 1.4741893530887253 +- 1.6823044082270726 +- 1.8701005268553479 +- 1.9903042896136012 +- 2.1680137178111085 +- 2.293084154938345 +- 2.3687525634694566 +- 2.436118599154464 +- 2.4567367719333797 +- 2.5005583699829255 +- 2.5541998070097702 +- 2.6677237777428364 +- 2.7746644992423057 +- 2.9574265245196822 +- 3.180338875564403 +- 3.2373928487825196 +- 2.970195315992312 +- 2.594320217748064 +- 2.178212356576027 +- 1.9571123806068091 +- 1.7720742140328587 +- 1.5285145211597655 +- 1.3984666067363882 +- 1.3639765234515315 +- 1.3620035997612385 +- 1.5333486940028682 +- 1.7221198730610052 +- 1.8879177160267906 +- 2.045216316032007 +- 2.219772561401318 +- 2.306535189384535 +- 2.335042294683953 +- 2.355475240492673 +- 2.4136965892472815 +- 2.453730983042469 +- 2.5347300517240177 +- 2.5875808066150836 +- 2.7012660837023286 +- 2.851544489218146 +- 2.8594725612852208 +- 2.661402496817516 +- 2.254550149597486 +- 1.9187053636787164 +- 1.7332409713505283 +- 1.5019451923088418 +- 1.3247533791350357 +- 1.1356245189112182 +- 1.1957159452001997 +- 1.3306105326809323 +- 1.507799919921272 +- 1.6777713386589228 +- 1.828956620849259 +- 1.9716313005742785 +- 2.050186668125457 +- 2.098605059293592 +- 2.099023521084418 +- 2.1269812008257736 +- 2.1525224388314497 +- 2.1969612246809267 +- 2.3036217003962753 +- 2.4291416855202566 +- 2.5476228558851886 +- 2.7431604285367825 +- 2.782768265928363 +- 2.594620530607601 +- 2.2412533166427577 +- 1.9335990900834983 +- 1.6625378642425672 +- 1.4145510228422262 +- 1.1849885507507283 +- 1.0355254444028197 +- 0.9888814450005157 +- 1.108071372687904 +- 1.3579963874898413 +- 1.5547440412733333 +- 1.7007508876540134 +- 1.792720446807362 +- 1.845173741624062 +- 1.90455773015203 +- 1.9109993187956251 +- 1.9981581611823773 +- 2.0549725947853643 +- 2.1204763176290222 +- 2.2834926052696294 +- 2.4765029208608778 +- 2.6818847293455956 +- 2.889474352343403 +- 2.9347802602732767 +- 2.73208458188357 +- 2.3695069855550916 +- 1.9991684541290238 +- 1.765321164081714 +- 1.592112447526967 +- 1.406305169808558 +- 1.2472611409570553 +- 1.2536237289204135 +- 1.4122192068299961 +- 1.6493701373707719 +- 1.8942297072392469 +- 2.051026890569799 +- 2.1504922380982787 +- 2.21236370407539 +- 2.3105630494791325 +- 2.3685491056215255 +- 2.378795551750271 +- 2.4212502278876467 +- 2.497881170703325 +- 2.6090624017991044 +- 2.7694799052093177 +- 2.933669324320049 +- 3.0681987538978115 +- 3.109409098221194 +- 2.896658646772668 +- 2.522504226344058 +- 2.1748950500023465 +- 1.8923768742928835 +- 1.6428189853524047 +- 1.454102095791124 +- 1.2744918042607523 +- 1.1729551796479947 +- 1.2364177171299817 +- 1.4384342212386425 +- 1.737555927473156 +- 1.9521407466519742 +- 2.1276679338682563 +- 2.2929025756928056 +- 2.3760354811587474 +- 2.429647887495836 +- 2.4947833301266082 +- 2.5436330677470376 +- 2.603225550936514 +- 2.6833812101363366 +- 2.850538166974003 +- 2.965078428227088 +- 3.079441892741966 +- 3.1622999896144903 +- 2.9883385650109964 +- 2.6508936116015875 +- 2.271766660822962 +- 1.968650635433839 +- 1.7886578079486048 +- 1.4693315596794914 +- 1.248330227445748 +- 1.1894771244842424 +- 1.2817375385242362 +- 1.4787453372783956 +- 1.7710480953519727 +- 2.0167160024923283 +- 2.109070526517254 +- 2.2607082583376648 +- 2.35819096471738 +- 2.3688595455233767 +- 2.476216058629285 +- 2.5220921359137454 +- 2.5936395606173415 +- 2.683167679356507 +- 2.803371660037428 +- 2.9148884749682447 +- 3.06052286572653 +- 3.0871549758245482 +- 2.8562192786858813 +- 2.4589522115644216 +- 2.1604195577626366 +- 1.9070125820005253 +- 1.6606303150557054 +- 1.4441675417191615 +- 1.2841831284096255 +- 1.2965034529946455 +- 1.3517944902607595 +- 1.5672452670121109 +- 1.7453380217840841 +- 1.9459127638816136 +- 2.0728623023936867 +- 2.1600023353074373 +- 2.209670223447186 +- 2.2060424000653924 +- 2.248141742218482 +- 2.288676278776677 +- 2.3424828677016443 +- 2.45871721316912 +- 2.5748541544065806 +- 2.7419269808924747 +- 2.896985619595279 +- 2.9323662733602087 +- 2.726489309149729 +- 2.4497954307078 +- 2.1919756115574214 +- 1.9731680696593712 +- 1.779649682765485 +- 1.5816669621037354 +- 1.4679778718921517 +- 1.456794574495778 +- 1.5488006049959522 +- 1.6976887634062463 +- 1.8617731459759839 +- 2.0229588143102637 +- 2.1465962522289623 +- 2.2254390656436005 +- 2.262939701621086 +- 2.2893184657679613 +- 2.2738319025815734 +- 2.2830846758158483 +- 2.3477041730524797 +- 2.4573238951967764 +- 2.5440372204421733 +- 2.7043939347791848 +- 2.892603772229556 +- 2.9257207624864336 +- 2.735557089786501 +- 2.341794657360342 +- 2.0900324940714965 +- 1.8740018888504715 +- 1.6142829806600703 +- 1.350542618463015 +- 1.1353011599615361 +- 1.0770166004622754 +- 1.1816991212251584 +- 1.364514326730716 +- 1.563483193023877 +- 1.8120611170705543 +- 1.9435928260419348 +- 2.0537033122630555 +- 2.205164054017322 +- 2.2374392703284065 +- 2.3008693559147497 +- 2.373601213908774 +- 2.444976036440689 +- 2.5489619109129515 +- 2.6987141884246286 +- 2.8922452630528763 +- 3.0360518330008643 +- 2.9965310722561864 +- 2.7137278828362916 +- 2.344793014116264 +- 2.0464067363150664 +- 1.8041188596632756 +- 1.5392342296339312 +- 1.306647255122798 +- 1.0467064423949628 +- 0.956111893196723 +- 0.9881442823311253 +- 1.2302999716725365 +- 1.5135578522202253 +- 1.7771172136044375 +- 1.9922933174296098 +- 2.1091298952702036 +- 2.2027411415891334 +- 2.2749017091294306 +- 2.2877157651976066 +- 2.3821363209378976 +- 2.445042571973767 +- 2.5343743805205183 +- 2.639469623494812 +- 2.7739121575709134 +- 2.941520532082664 +- 2.986086600500372 +- 2.744076969686176 +- 2.3275922948381087 +- 1.965829324887997 +- 1.754328753866959 +- 1.520402123119356 +- 1.2608713027639862 +- 1.0346729111551205 +- 0.9120102479245221 +- 0.9569938782233487 +- 1.140140343443317 +- 1.3503190967377205 +- 1.6466509299124361 +- 1.810799376690374 +- 1.9590296163981862 +- 2.0738682987599693 +- 2.0740442851598275 +- 2.1605716227573692 +- 2.2080269947363123 +- 2.297483913767362 +- 2.391597168940041 +- 2.5359765792035396 +- 2.6810442429441603 +- 2.866231374269167 +- 2.8465595574082125 +- 2.6736794011566336 +- 2.408039690742637 +- 2.062898556999888 +- 1.8650058381385173 +- 1.602083984187847 +- 1.345041900153589 +- 1.1189990835454746 +- 1.03152986994105 +- 1.1315212757294306 +- 1.261293469015587 +- 1.4630388517345934 +- 1.657502016362549 +- 1.8181353027268636 +- 1.9740820476695098 +- 1.9923010216663932 +- 2.044008054980166 +- 2.1285713345926713 +- 2.209818638942122 +- 2.303124206654214 +- 2.4159524086202975 +- 2.5248223333100834 +- 2.6835989985883693 +- 2.8121141851770277 +- 2.7942568617444206 +- 2.582276967610365 +- 2.1725113028495344 +- 1.7875277794208413 +- 1.5867245093766649 +- 1.3583575069670193 +- 1.2037985341047324 +- 1.0737962273958475 +- 1.0288869073044178 +- 1.0828393119702073 +- 1.2871449965902095 +- 1.4035482111682729 +- 1.5305406713743968 +- 1.6574171098962225 +- 1.727299310971301 +- 1.8203877686463272 +- 1.7650331490048445 +- 1.8225612746540492 +- 1.858060380439542 +- 1.9389748262889819 +- 2.074006460508213 +- 2.236510783093512 +- 2.4335925273662586 +- 2.619466486175783 +- 2.600870100792211 +- 2.4238315702652153 +- 2.055581443192269 +- 1.8231933930765676 +- 1.5905305988113982 +- 1.3653974304422287 +- 1.211003258172796 +- 1.051712609793765 +- 1.0309588517226405 +- 1.0786927872002627 +- 1.184221681548127 +- 1.4540430623990044 +- 1.6627396111254054 +- 1.7544525801205928 +- 1.9382132441193225 +- 2.004187255474958 +- 2.004305812908246 +- 2.0484322640312884 +- 2.1371750352445 +- 2.2351035216408186 +- 2.2817206210422643 +- 2.3668236973846626 +- 2.4685977583264846 +- 2.6607606472873453 +- 2.619119249720763 +- 2.3908016896365725 +- 2.106091639086421 +- 1.806884065172434 +- 1.5771211608201523 +- 1.377738686836901 +- 1.1881630538955725 +- 1.0126152407960676 +- 0.9274893551127567 +- 0.92520713832873 +- 1.0445829940094145 +- 1.2776352673531006 +- 1.4345306262136892 +- 1.6358791273505215 +- 1.7416494024070124 +- 1.8345095221152787 +- 1.8521685914372423 +- 1.8929145274849708 +- 1.9748271369626036 +- 1.9905774240140433 +- 2.0994871262762005 +- 2.220450231405562 +- 2.3905889543000938 +- 2.6120792925365612 +- 2.564285890544952 +- 2.30650822499587 +- 1.9876728620504087 +- 1.6719474706344768 +- 1.4208399945313335 +- 1.1767216912673548 +- 0.9822768017294904 +- 0.8746229190686664 +- 0.9237563418104143 +- 1.0648983419636342 +- 1.2611540389632345 +- 1.423274951136513 +- 1.541756138809292 +- 1.7486054400523194 +- 1.8677403116489855 +- 2.043993584098482 +- 2.0517946143918158 +- 2.0698833701728416 +- 2.1071676145380662 +- 2.1657119798239752 +- 2.2711908041594215 +- 2.4161605234396233 +- 2.594144348364019 +- 2.827427061557452 +- 2.7624946086795035 +- 2.393564843430972 +- 1.9556847822741137 +- 1.6912937453861037 +- 1.445828840119821 +- 1.2154204169772067 +- 1.036193107118 +- 0.9024783165328691 +- 0.8619627355727513 +- 0.9492620718745988 +- 1.1321969814860862 +- 1.3444499528325164 +- 1.4805852147735208 +- 1.6054857903456894 +- 1.7457744491142635 +- 1.8945151395162119 +- 1.9080148635381424 +- 1.9540597127391934 +- 1.9951621651268632 +- 2.075103197385462 +- 2.16334500936435 +- 2.295359036573839 +- 2.416434357996128 +- 2.6438596007769988 +- 2.664479178370557 +- 2.3761081253502776 +- 2.0054005523291987 +- 1.7055683812708293 +- 1.4556622268919694 +- 1.207484406551773 +- 1.0142850932688445 +- 0.9216917297669752 +- 0.897075330184388 +- 0.9519596308121692 +- 1.129779929060676 +- 1.3010252896249996 +- 1.4767506749434627 +- 1.6667147286195647 +- 1.7639688862196403 +- 1.835518069145382 +- 1.8588302625066462 +- 1.924987274554892 +- 1.9373355797172247 +- 2.0092992576807354 +- 2.0708515919850723 +- 2.210229033441717 +- 2.325034341590297 +- 2.4006085811500784 +- 2.3779925211038178 +- 2.1030787990856656 +- 1.7284932721341666 +- 1.4979597480893918 +- 1.3296156394525376 +- 1.1042821114436403 +- 0.8939407287302548 +- 0.7401424289681346 +- 0.6877913767816044 +- 0.717601522490571 +- 0.8722401118678034 +- 1.0123246590402761 +- 1.1016655370059953 +- 1.216603559499534 +- 1.388902624445497 +- 1.4522108879054652 +- 1.4630341855352487 +- 1.5008901078084032 +- 1.5956462982670456 +- 1.6797216486228315 +- 1.7707557819466924 +- 1.8871700149943624 +- 2.0508034215755826 +- 2.160869091039525 +- 2.1851910018999394 +- 1.987032281805072 +- 1.6129486758535612 +- 1.3453591205173985 +- 1.1643523474577828 +- 1.0393972297492817 +- 0.8611727674193114 +- 0.7578602548452201 +- 0.694218528010605 +- 0.7019700180132553 +- 0.8021724332780251 +- 0.9722511416555255 +- 1.1191232019554063 +- 1.260427556942843 +- 1.3423624871637398 +- 1.4030496656721456 +- 1.4241760701075656 +- 1.4917829291380875 +- 1.5780392099161826 +- 1.623469567952844 +- 1.7476894152575955 +- 1.9318796630783641 +- 2.0937335935541292 +- 2.2511947563475014 +- 2.197876371189996 +- 1.9338620413842826 +- 1.6487655431922104 +- 1.3968367366441057 +- 1.2177082527600274 +- 1.111064400015293 +- 0.9575546144291014 +- 0.7826878636955513 +- 0.7366107280164216 +- 0.7414337698475709 +- 0.8500834902812019 +- 1.0467841507394977 +- 1.2149153054741901 +- 1.4038749001868347 +- 1.5518027214789318 +- 1.645033364687469 +- 1.6985796577021586 +- 1.761089058941655 +- 1.7863538335743745 +- 1.8844513475714613 +- 2.00880148179608 +- 2.126576416999819 +- 2.3305525775445646 +- 2.5400279500864564 +- 2.5564721924038785 +- 2.266126679919532 +- 1.847388236663764 +- 1.5339068719671372 +- 1.2703153387349027 +- 1.0599211627129048 +- 0.9016001944988148 +- 0.7823489070385 +- 0.7536224497925625 +- 0.7635323567278819 +- 0.8753009538390947 +- 1.0347803132831275 +- 1.2354348777565212 +- 1.4176122244836045 +- 1.5053031055385209 +- 1.6580643775017034 +- 1.6808068478207707 +- 1.71833313195565 +- 1.8150072679008493 +- 1.9195242011099423 +- 2.0477021285001977 +- 2.2145540864228117 +- 2.4396523953506097 +- 2.573915147961755 +- 2.490224885839177 +- 2.233958328182586 +- 1.8979907301778813 +- 1.6378977939493589 +- 1.4077661336969016 +- 1.1944895130441768 +- 1.0504493065998277 +- 0.864265132624819 +- 0.7872334108136761 +- 0.7982667433013743 +- 0.8638487361616219 +- 1.0415000087074102 +- 1.2036249386704139 +- 1.3674682812018586 +- 1.4294420955252174 +- 1.4949227798563915 +- 1.5109062424314483 +- 1.4920910809063963 +- 1.5265391097018348 +- 1.522792545964416 +- 1.6234856467290786 +- 1.7580300577261496 +- 1.9637613726806906 +- 2.0816280867460897 +- 2.095974335642892 +- 1.8617804882382096 +- 1.6261041515296308 +- 1.4537964922036681 +- 1.3575230357501564 +- 1.217044316575764 +- 1.0946102650751761 +- 1.0206579178732829 +- 1.0200915105502233 +- 1.1732924540810554 +- 1.3309659493145012 +- 1.5039502478750326 +- 1.5986120894252072 +- 1.7182943098190486 +- 1.8651457840234742 +- 1.877120303172064 +- 1.8939404803868436 +- 1.8955364015030616 +- 1.8943497896110941 +- 1.9466539960368918 +- 2.0384835344015437 +- 2.1959219770063676 +- 2.398715962107309 +- 2.564082018015125 +- 2.571403334013859 +- 2.4726034879610603 +- 2.2278338563881213 +- 2.088746255265787 +- 2.028762528408043 +- 1.9503199191500338 +- 1.7723653637721712 +- 1.6357693012558092 +- 1.6017918094707626 +- 1.6914258754039417 +- 1.825277476023315 +- 1.8720364485558563 +- 1.9479807744144244 +- 2.0591967211019235 +- 2.1096189299129118 +- 2.1349112694424437 +- 2.0822378595437403 +- 2.120335204615806 +- 2.1405741659176685 +- 2.187512431088185 +- 2.2361316953845156 +- 2.33775868857417 +- 2.463575666928769 +- 2.584248467962802 +- 2.6127786211942694 +- 2.5096624462154256 +- 2.2263011210715473 +- 2.04887584707119 +- 1.8800356174864783 +- 1.8478275326710814 +- 1.7167451655592694 +- 1.6678380349586366 +- 1.6924091571436992 +- 1.7250971553062264 +- 1.8546088291538445 +- 1.95206870708787 +- 2.01736002155475 +- 2.0517693105145423 +- 2.0497356506407893 +- 2.0082739147171957 +- 1.9501086893347712 +- 1.9700304756192573 +- 1.9520862814350228 +- 1.9895984626602692 +- 2.0430151261943306 +- 2.1677699405749196 +- 2.300099090073895 +- 2.3912309968548517 +- 2.350367581371512 +- 2.2151532262039395 +- 2.1069262844272827 +- 1.943740127668467 +- 1.9123461034889824 +- 1.863453791360491 +- 1.788807830911835 +- 1.7280338845452516 +- 1.650628398808388 +- 1.663150924923003 +- 1.801795761878434 +- 1.9198554548321674 +- 2.1670548286308033 +- 2.2528179942699444 +- 2.362103075362999 +- 2.413220900845493 +- 2.395501927418111 +- 2.4443312456718216 +- 2.501202790092587 +- 2.6067714873298993 +- 2.707429070368698 +- 2.893220369881969 +- 3.105924052579094 +- 3.2340579654077684 +- 3.2035389454761742 +- 2.954053487234454 +- 2.5515896092779045 +- 2.2678409361092133 +- 2.1168940380557646 +- 1.938073191978342 +- 1.658554824105154 +- 1.4487766656956076 +- 1.4714218410655486 +- 1.481833321753418 +- 1.6359218693783837 +- 1.7560723345297937 +- 1.939605657414353 +- 2.1820534596241523 +- 2.324046211378587 +- 2.3387413877817846 +- 2.420302103275178 +- 2.4388057968071943 +- 2.529616928224124 +- 2.6382631590928285 +- 2.799598378464783 +- 2.955284391509083 +- 3.116138590728366 +- 3.3031220098992717 +- 3.2502885779689574 +- 3.0167309720953903 +- 2.638745351679356 +- 2.3491242452291 +- 2.0834626951083024 +- 1.8534804108991259 +- 1.6136756908716678 +- 1.3622275117488403 +- 1.3174023988090175 +- 1.3478261173849289 +- 1.5172751967888363 +- 1.7455603370520123 +- 2.0014595618772892 +- 2.1954889838737155 +- 2.3267413903847127 +- 2.3650372645189464 +- 2.3939561054942398 +- 2.4711219910348805 +- 2.489080817879528 +- 2.556735634269071 +- 2.633372516049098 +- 2.7665679550864586 +- 2.922789894250747 +- 3.046491291874981 +- 2.9409394653988716 +- 2.6108932924214763 +- 2.2381203983246274 +- 1.9333709453633938 +- 1.7294140099106998 +- 1.552430278229914 +- 1.3300244643537258 +- 1.1214117237182861 +- 1.0899806136248706 +- 1.1631279525042078 +- 1.3599556683709015 +- 1.5985621406814041 +- 1.7588995410376862 +- 1.9689188245113487 +- 2.064460781770305 +- 2.030581997279763 +- 2.053905691880622 +- 2.056616308186059 +- 2.039818590411954 +- 2.045174391551996 +- 2.1041216936019156 +- 2.212789112768082 +- 2.3711003747996973 +- 2.554353478215816 +- 2.4207550733428937 +- 2.157477648387756 +- 1.890131459248625 +- 1.664166832872067 +- 1.4550080877291427 +- 1.2830965964418442 +- 1.067858596712787 +- 0.9645569036820314 +- 0.9392028891763134 +- 1.0064163198040605 +- 1.118251756888465 +- 1.2687081439163015 +- 1.3785388321698835 +- 1.5930242441255098 +- 1.625773839993156 +- 1.6996208099043895 +- 1.7188685305731866 +- 1.7548742052733475 +- 1.7520662266133749 +- 1.820232706650242 +- 1.912524544285198 +- 2.055692824201842 +- 2.193892632324737 +- 2.41201218303404 +- 2.38295175200209 +- 2.1872259939890664 +- 1.9209684068336188 +- 1.7873355672420166 +- 1.7364804109917342 +- 1.641449080192536 +- 1.4733091664421276 +- 1.3340049600667137 +- 1.2727611825888245 +- 1.3413819215416767 +- 1.4840280865628972 +- 1.6024473407110646 +- 1.7444384985413606 +- 1.7890447543446142 +- 1.8331112795954485 +- 1.8756190258222905 +- 1.9152696832912897 +- 1.844341442601464 +- 1.8335810901466647 +- 1.8763106453024228 +- 1.959595641152243 +- 2.097842341955212 +- 2.2775611863803706 +- 2.4004215622685816 +- 2.4014574533616506 +- 2.2604335481357314 +- 2.036801556118981 +- 1.8185357641352664 +- 1.7889022142119746 +- 1.69770307889664 +- 1.4595277210442335 +- 1.2889768006776123 +- 1.2302305033362488 +- 1.3384185857890971 +- 1.4319284877657756 +- 1.6253281566160807 +- 1.747103059301199 +- 1.8200213525719509 +- 1.9826963379688052 +- 1.9921600885903148 +- 1.9967217313536947 +- 2.0450475219751585 +- 2.1078068734051985 +- 2.1884319637707645 +- 2.264007709169638 +- 2.3650372226725147 +- 2.5570681611482025 +- 2.7293117214896525 +- 2.612046374663976 +- 2.2948181422683094 +- 1.9445058172964251 +- 1.6017819819998396 +- 1.4656643717094577 +- 1.2689655061404024 +- 1.044267044424016 +- 0.8846612602834119 +- 0.8319217279712376 +- 0.8692300436211382 +- 0.8997340854021424 +- 1.072448760997017 +- 1.2628085762215184 +- 1.4092945915465531 +- 1.5163219835350616 +- 1.6105849453118457 +- 1.5994405262482476 +- 1.6691507750964578 +- 1.7197790503131356 +- 1.8329305916998238 +- 1.94000155439535 +- 2.0619568563938215 +- 2.2254739487623794 +- 2.4733244766250237 +- 2.374626725172008 +- 2.0296591671501423 +- 1.6812227278480132 +- 1.456713274061031 +- 1.3343591674275492 +- 1.1260127300944887 +- 0.9528673648256635 +- 0.8500275444246401 +- 0.7806624391238927 +- 0.8122137406784274 +- 0.9846026771952492 +- 1.204732047097323 +- 1.3301600272797036 +- 1.4421387196693078 +- 1.5397950685018489 +- 1.5624911797128576 +- 1.4884383318624126 +- 1.5365674174366923 +- 1.5457514834042394 +- 1.5664934932144565 +- 1.5942317954681966 +- 1.668498656673484 +- 1.777211041401798 +- 1.9380320869040117 +- 1.9151731698276728 +- 1.6552933129216107 +- 1.458893925791867 +- 1.3416509164628299 +- 1.2443680283656184 +- 1.0982037646898488 +- 1.012139715821894 +- 0.9773719239664357 +- 0.8913402769434889 +- 0.9829381775845586 +- 1.1366377653116642 +- 1.2461513662337567 +- 1.3780031267139068 +- 1.4477352193412718 +- 1.492488959928033 +- 1.448280696192948 +- 1.4022750151315249 +- 1.425459593357311 +- 1.4318606166567032 +- 1.4468657917004877 +- 1.5128417624852724 +- 1.6014089772277504 +- 1.7198964910481307 +- 1.845874987709178 +- 1.81985094402166 +- 1.5864423845967544 +- 1.3329924581503285 +- 1.1708315515889964 +- 1.0196338277392432 +- 0.8833773129665589 +- 0.7755850146649349 +- 0.681448336713006 +- 0.657129727626458 +- 0.7586040031352201 +- 0.8411855962257916 +- 0.9720673234731612 +- 1.1037921632169023 +- 1.2328169232668384 +- 1.2331341466826087 +- 1.238326874746031 +- 1.255859174441025 +- 1.3104581008899665 +- 1.3263403673626541 +- 1.3388683305271905 +- 1.4041342911203523 +- 1.527694508594959 +- 1.7310693503380434 +- 1.9140906717421 +- 1.9372340744937324 +- 1.6537473890090424 +- 1.3760220758160913 +- 1.2465217134991282 +- 1.0432858783625192 +- 0.8949361609736908 +- 0.7368912840286538 +- 0.6420792015800109 +- 0.5969212650592244 +- 0.6177227820759488 +- 0.7646376567591069 +- 0.9564140676629185 +- 1.176577154317528 +- 1.3174063256150927 +- 1.3928437396151905 +- 1.4385128773731204 +- 1.4218287879610658 +- 1.4712522168683724 +- 1.5413689265330008 +- 1.6368431441112947 +- 1.7520505300505527 +- 1.8510401305232453 +- 2.029603316690649 +- 2.2484570144813754 +- 2.1186221091306323 +- 1.9172840446753987 +- 1.6156474320906642 +- 1.2932656813559007 +- 1.0681288541592668 +- 0.91285621547259 +- 0.70990919029447 +- 0.5630650810615241 +- 0.5756719014736852 +- 0.6014159331953045 +- 0.6146960733611592 +- 0.7700076833125937 +- 0.9021904561553941 +- 1.0185486684625948 +- 1.0850145784319256 +- 1.1869431194357316 +- 1.2477698945844427 +- 1.2471698026667155 +- 1.3083097116167839 +- 1.3465782786115699 +- 1.4659414164533797 +- 1.5508972598408524 +- 1.7143808287180533 +- 1.8130156456058761 +- 1.8407513322515683 +- 1.6884606989100994 +- 1.4995025492604814 +- 1.2329423248691627 +- 1.176306795133466 +- 1.1398388435219717 +- 1.0858450967960278 +- 0.932877821816355 +- 0.8777695718313631 +- 0.9199569114335507 +- 1.0042358093837689 +- 1.0387811048458908 +- 1.1749428098530033 +- 1.285033792268814 +- 1.3394087442800608 +- 1.3994264852874274 +- 1.345725779323977 +- 1.3186263204339599 +- 1.3187354234862618 +- 1.2845524236301484 +- 1.3514420904126432 +- 1.4393011801590176 +- 1.544383980561881 +- 1.6370467805131188 +- 1.6203427269785962 +- 1.4592603683570662 +- 1.2950178645163424 +- 1.098594405574549 +- 0.9706833061790648 +- 0.8096824851406764 +- 0.6838292768675432 +- 0.6335943717136118 +- 0.5987300836481934 +- 0.6783443098327524 +- 0.7672959889499791 +- 0.8828711420253856 +- 1.0149758510105575 +- 1.1789282710749924 +- 1.2476999318605575 +- 1.2853516668321916 +- 1.2987665776845834 +- 1.2487838636194712 +- 1.291300458850431 +- 1.4049693831166217 +- 1.5462277276881342 +- 1.7345615505451668 +- 1.9616099814667682 +- 2.0834695128116563 +- 1.9661188286044915 +- 1.7645137636522752 +- 1.6026654778228273 +- 1.444629427044443 +- 1.3104754839711998 +- 1.1362539636459925 +- 0.9176208432139275 +- 0.8704765208206964 +- 0.89082516138437 +- 0.9633109874050861 +- 1.0612731972519978 +- 1.1995485457620376 +- 1.3134390689571098 +- 1.4251225720475313 +- 1.452063283420941 +- 1.4659585084654678 +- 1.4996229707602053 +- 1.5396412915869873 +- 1.6138307709884474 +- 1.6987504168915106 +- 1.81194498965956 +- 1.9473916449941524 +- 2.1706922793781924 +- 2.30151000624008 +- 2.1421941614372817 +- 1.7957796760153795 +- 1.4570898954962748 +- 1.2087014163908216 +- 1.0024368317919983 +- 0.8145703042576145 +- 0.6907591699435527 +- 0.6048289468166078 +- 0.5321956090265907 +- 0.6327678988870423 +- 0.7110956661887526 +- 0.8052089571112061 +- 0.9045676916522297 +- 1.0795088711475407 +- 1.1349646124555257 +- 1.2069255311311664 +- 1.2594682946692453 +- 1.3168987358908149 +- 1.437442104299256 +- 1.5670711702415723 +- 1.7312661479543585 +- 1.9110733471855663 +- 2.1476326958111143 +- 2.2640206058241406 +- 2.0947650591789397 +- 1.7709513519818685 +- 1.4920823531220122 +- 1.2568991546680617 +- 1.0714711220887678 +- 0.8942670157571615 +- 0.7223872696032888 +- 0.6434308534344588 +- 0.62017442215155 +- 0.716307516477873 +- 0.8000875197124552 +- 0.9047664353881766 +- 1.04746206144773 +- 1.149568387271087 +- 1.20513710999408 +- 1.236888158851684 +- 1.2839949098394843 +- 1.3053686905432145 +- 1.3920191215385596 +- 1.4944689934131694 +- 1.6153886313772845 +- 1.7709031846281253 +- 1.9577078490420166 +- 2.0825126145032833 +- 1.9340056966006896 +- 1.6434955010700325 +- 1.3901073488544071 +- 1.1929474120059647 +- 1.0183990382829027 +- 0.8763147881677802 +- 0.7205171312584916 +- 0.6479318895123356 +- 0.6845233856267692 +- 0.7896523343122408 +- 0.8970113306078473 +- 1.058653823211339 +- 1.2650854984815338 +- 1.3524649649638878 +- 1.3699885664734233 +- 1.3768298628617415 +- 1.4256544372690694 +- 1.5242090253991414 +- 1.5770804036957755 +- 1.6483969299408465 +- 1.7791066878160717 +- 1.9643205172106333 +- 2.2101353738865015 +- 2.3210326150216876 +- 2.235472676661141 +- 1.9890058616524782 +- 1.7654403420432934 +- 1.6028829167592613 +- 1.3592361288026478 +- 1.1658138963486646 +- 0.9409114971601765 +- 0.8113330615640648 +- 0.8157181190881552 +- 0.8380457121395636 +- 0.89377367055977 +- 1.0410016904920663 +- 1.1359748385618502 +- 1.3010392191078388 +- 1.4060360833043097 +- 1.4518933310467441 +- 1.4758194683928203 +- 1.566153899591661 +- 1.6739988313212149 +- 1.789245880722899 +- 1.9353087528753419 +- 2.059122383905377 +- 2.2350217377263095 +- 2.3577405269204377 +- 2.197386091761373 +- 1.8800591519575127 +- 1.5663046018653934 +- 1.2823247798146242 +- 1.093164854506708 +- 0.8818646020211465 +- 0.6921560133859023 +- 0.6087474985848579 +- 0.6094420233695566 +- 0.656058156669298 +- 0.758347648555901 +- 0.9056458881241948 +- 1.0271615153332245 +- 1.1864856065878515 +- 1.2488184092930659 +- 1.2053675255074774 +- 1.2802169205350333 +- 1.3745533863199804 +- 1.450193724056047 +- 1.5375206690804688 +- 1.643322324000014 +- 1.8480056929319688 +- 2.0654239192574355 +- 2.190191485187843 +- 2.0062649877084238 +- 1.693757726658404 +- 1.4700877358191133 +- 1.2347640010689995 +- 1.1064789485391353 +- 0.9296607544282671 +- 0.8235067753244069 +- 0.8002449065600119 +- 0.8319606835426752 +- 0.8504392325454192 +- 0.8783178849657183 +- 0.9860392229288537 +- 1.0891624784737315 +- 1.2079788549047052 +- 1.2817249664330626 +- 1.2983348547652542 +- 1.397049356211137 +- 1.4781520080779051 +- 1.5414071415969215 +- 1.6294275979335966 +- 1.7738774282582497 +- 1.921378421572317 +- 2.0930820179205045 +- 2.1835780184102256 +- 2.0172515896939385 +- 1.7674402179269793 +- 1.5981316741438154 +- 1.4213728187283114 +- 1.2497322066998626 +- 1.0910515092117623 +- 0.9034792787383746 +- 0.8033232810605228 +- 0.8011775961340681 +- 0.8887933305205793 +- 0.9523532604146857 +- 1.0028216798499967 +- 1.0803377585952711 +- 1.1640730828871213 +- 1.237226626275332 +- 1.2348277187124437 +- 1.2387172502110617 +- 1.2722742330486312 +- 1.345876801538123 +- 1.4732283513382618 +- 1.6490843422653316 +- 1.8304145634937548 +- 2.053089048692018 +- 2.193273203769265 +- 2.013293979663038 +- 1.7080936714201707 +- 1.5138835746063535 +- 1.2530913839213502 +- 1.097469341786512 +- 0.9425790000895424 +- 0.7620689327311598 +- 0.6878225038174697 +- 0.7220481262350691 +- 0.7356705672003389 +- 0.7900783774891135 +- 0.9096876546943361 +- 0.9838813214983411 +- 1.1299527716151139 +- 1.228317545414312 +- 1.3056083519127144 +- 1.337365089722845 +- 1.4786043321918745 +- 1.6039758801194903 +- 1.7339503949541342 +- 1.8988408356700428 +- 2.0711871538457753 +- 2.3320206574850264 +- 2.3888582707629937 +- 2.167821587458101 +- 1.8643425844144783 +- 1.597801754518533 +- 1.4272508551058538 +- 1.28198662247635 +- 1.098598694810485 +- 0.9587559913238577 +- 0.8799879305661517 +- 0.8724037706441661 +- 0.8801173981848119 +- 0.9324931531119769 +- 1.0641055164685504 +- 1.152916128634083 +- 1.2499181278305813 +- 1.3009973806304709 +- 1.2483758407116448 +- 1.299643152383394 +- 1.3518402390313236 +- 1.4328852763960527 +- 1.5172499919460622 +- 1.6550388145911152 +- 1.7827148701490536 +- 2.0703662200307296 +- 2.136748782070951 +- 2.002322412011715 +- 1.788684837557756 +- 1.6618923987120902 +- 1.449771539629562 +- 1.3148837630854158 +- 1.1336343160191757 +- 0.9943567420685269 +- 0.9343865684830128 +- 0.9000406170264394 +- 0.9657405161796293 +- 1.0797616449687852 +- 1.1896103680922725 +- 1.3476200932499756 +- 1.4241373925845848 +- 1.4377210417780975 +- 1.4440769204360255 +- 1.5471542957403104 +- 1.5838706846133 +- 1.7074059729296205 +- 1.8025362368052222 +- 1.8716605918871003 +- 2.062881173487089 +- 2.249962828330298 +- 2.2706815173228705 +- 2.1334172835852714 +- 1.7576826226951392 +- 1.4803007922653588 +- 1.2581420002262311 +- 1.0260805623021627 +- 0.821953080795346 +- 0.6626522977441001 +- 0.5492028199583664 +- 0.5414677240905186 +- 0.6329544400153213 +- 0.6408997330002604 +- 0.7043367571323156 +- 0.7782385040310665 +- 0.8859877803926824 +- 0.8787646342661531 +- 0.9671334063845805 +- 1.0173636926411944 +- 1.1149335308726416 +- 1.2450729609374587 +- 1.3875401330890205 +- 1.5166874984519616 +- 1.6618771332342597 +- 1.8500262049366034 +- 2.017193828904254 +- 1.8898586358422116 +- 1.6303469681475011 +- 1.3833164002923226 +- 1.2888749701486104 +- 1.143108726449432 +- 0.999936003372043 +- 0.8711382662405561 +- 0.8483250459623607 +- 0.8541288778684174 +- 0.8796633935678063 +- 0.8806113087254973 +- 0.9568214001482205 +- 1.050445991546895 +- 1.0387513932417218 +- 1.0879271518733018 +- 1.0971494623880522 +- 1.1476237313736124 +- 1.217420033530623 +- 1.3412005668791471 +- 1.4803218874953625 +- 1.6275863381163207 +- 1.787538148243679 +- 1.964821763340632 +- 2.009241319882971 +- 1.8808018461836669 +- 1.578417640386221 +- 1.402907883029731 +- 1.2006385841855487 +- 1.0947351768480098 +- 0.9144242270920472 +- 0.7746527922541391 +- 0.6510499818963034 +- 0.6547123348485908 +- 0.6604245539119478 +- 0.7571517729111599 +- 0.7766002356009762 +- 0.8775687242132634 +- 0.9544307113019274 +- 0.9836925190326468 +- 0.9387789575782545 +- 0.9553979001958712 +- 0.9870465548948705 +- 1.0424565755594268 +- 1.1442911044206245 +- 1.2508300527248377 +- 1.4032619341163122 +- 1.5981095313332145 +- 1.6464272966797113 +- 1.5009454969845344 +- 1.3265155807177993 +- 1.2027795103144798 +- 1.029586995843414 +- 0.9038898260485309 +- 0.7861528026839639 +- 0.7261274202097365 +- 0.6663024835080451 +- 0.6388050249054359 +- 0.7266541353761942 +- 0.7629730966955354 +- 0.8222150200122383 +- 0.9208265344575808 +- 0.9956933280105266 +- 1.012728020474745 +- 0.955916091739697 +- 0.9357740751344906 +- 0.9815379769738483 +- 1.0605270848883945 +- 1.1740955235708619 +- 1.3343120290789536 +- 1.5204812961194 +- 1.7500294004466839 +- 1.8435016005319853 +- 1.7174265579857673 +- 1.4931823496557481 +- 1.287373897330702 +- 1.1753005736210382 +- 1.0962504309502459 +- 0.9839938972015747 +- 0.853439055495403 +- 0.8019313710975202 +- 0.8444852658957998 +- 0.8572360704851869 +- 0.9320491647013684 +- 1.0012602944009314 +- 1.0409135842657136 +- 1.0997624729221187 +- 1.1053601845955896 +- 1.071267224249128 +- 1.0531719239266009 +- 1.1106963331669701 +- 1.1373424154051524 +- 1.205458428629855 +- 1.3318650138836399 +- 1.4910718795086189 +- 1.706903967106044 +- 1.8089750018703539 +- 1.6698021103255412 +- 1.4954615389327952 +- 1.3569969799137227 +- 1.2466061213468405 +- 1.156807260877799 +- 1.013418091261531 +- 0.8802317049763536 +- 0.7921648064507709 +- 0.8129723658183099 +- 0.8745150120516506 +- 0.9632599948801371 +- 1.0201531470875276 +- 1.0881057194459638 +- 1.1339224616956793 +- 1.1953974491026644 +- 1.1495167852340613 +- 1.1641157594201919 +- 1.209446442894159 +- 1.2567969008431814 +- 1.3096419836976683 +- 1.4096345663048238 +- 1.5971441666260353 +- 1.7730909597250566 +- 1.9551694456590831 +- 1.9125884898504888 +- 1.7987311238236063 +- 1.7099987159829468 +- 1.5068539869799098 +- 1.4076947574340577 +- 1.3473677101390806 +- 1.3540723548260745 +- 1.3424591130037775 +- 1.4068541884375285 +- 1.5108262051089008 +- 1.542057853756651 +- 1.5851386736837072 +- 1.7130013080845057 +- 1.780422528881656 +- 1.701629269121409 +- 1.665858427704293 +- 1.607393762960548 +- 1.6513414332871514 +- 1.6940299911307486 +- 1.7643149440556003 +- 1.8523497847889163 +- 1.9943310028551071 +- 2.218272985550143 +- 2.2866464179373027 +- 2.1701424308996753 +- 1.906708949699779 +- 1.708026150749328 +- 1.5338235531095787 +- 1.3793423662045092 +- 1.2613853781629119 +- 1.1134880637214088 +- 0.9697124882012716 +- 0.9687437533519712 +- 1.0548962330221783 +- 1.109755563542729 +- 1.182006067704539 +- 1.3107397006992723 +- 1.4127974430224624 +- 1.4843234442667974 +- 1.5527586747769715 +- 1.5948530353285761 +- 1.7294281336605863 +- 1.8368244141282364 +- 1.917332155482687 +- 2.0485905672980755 +- 2.1675964612840692 +- 2.374652544265964 +- 2.399570163505516 +- 2.2379201118459013 +- 2.023784700832336 +- 1.7280738169617054 +- 1.5535430731045974 +- 1.431575811797701 +- 1.2942299230117018 +- 1.14211597380464 +- 1.0597866541937933 +- 1.01932362388411 +- 1.0477353950487478 +- 1.0679666127992413 +- 1.1466678277759264 +- 1.2298962566646399 +- 1.2391675830466766 +- 1.2527181444243356 +- 1.2062469615244753 +- 1.238169214321531 +- 1.2735457904399414 +- 1.3282620563304324 +- 1.4052990688965878 +- 1.5022459504550667 +- 1.6171197297965634 +- 1.7417666418140527 +- 1.8160137849863394 +- 1.710437702215505 +- 1.5416671595037166 +- 1.3213736547407773 +- 1.2314372068441704 +- 1.1353321926313424 +- 1.0125510219261868 +- 0.9515503610525019 +- 0.8117118892330112 +- 0.8441991297010327 +- 0.9554804914344827 +- 0.9594424414418974 +- 1.0106857562377416 +- 1.041383265990485 +- 1.0953952266801712 +- 1.061910459192158 +- 1.074194487688433 +- 1.058935768664724 +- 1.0746211055435269 +- 1.149259998351029 +- 1.217978407401606 +- 1.3535780946957663 +- 1.4871912713508177 +- 1.7107388501435923 +- 1.800148961695531 +- 1.6965095587584467 +- 1.4837836337667756 +- 1.3639561531242719 +- 1.2003688361498748 +- 1.1158400496013845 +- 0.9508345959602089 +- 0.8487977004010149 +- 0.7532575017488418 +- 0.7503170080006315 +- 0.7639572676287819 +- 0.7973616451004276 +- 0.8809406580700507 +- 1.021540520652497 +- 1.0697044272437914 +- 1.1061661682570159 +- 1.1007582095190747 +- 1.1818105819530045 +- 1.2245119312353057 +- 1.3140653867841974 +- 1.3550862410168472 +- 1.4599425276285476 +- 1.5861116133121131 +- 1.7563023129699207 +- 1.7755372439678954 +- 1.6577579916594642 +- 1.411687185449845 +- 1.2154020512900563 +- 1.053370988180619 +- 0.9101451051535747 +- 0.8026237044714429 +- 0.6308092454583026 +- 0.585902294939643 +- 0.5585491014811551 +- 0.604392804357798 +- 0.6806490646866233 +- 0.7169222899870922 +- 0.8157081705581157 +- 0.8371388514438366 +- 0.8968733426604162 +- 0.8485386333864069 +- 0.8745928530874377 +- 0.9057675587333023 +- 0.9769052391458037 +- 1.030602757398405 +- 1.144314820842485 +- 1.258894395366977 +- 1.4453480355602035 +- 1.4766664645250893 +- 1.2611104422313169 +- 0.9890382659014288 +- 0.824509812360347 +- 0.6854468776545721 +- 0.6062685186937816 +- 0.5197572947174979 +- 0.4698830888292305 +- 0.463139598366491 +- 0.44687100534340374 +- 0.5448084718239228 +- 0.6068507244798147 +- 0.7258729517848761 +- 0.8468673245508697 +- 0.95042105483223 +- 1.014840953648691 +- 1.0446667459709627 +- 1.0579442778229127 +- 1.1203565697372986 +- 1.1820088076351143 +- 1.2384725282910813 +- 1.3001226300966395 +- 1.4857415591561693 +- 1.685620482136086 +- 1.713336237938687 +- 1.589101328187132 +- 1.3892320225948689 +- 1.2620496454876085 +- 1.1324469287872385 +- 1.0465595211525105 +- 0.9002202842063093 +- 0.7800846210697528 +- 0.7594809587778881 +- 0.8163840510798326 +- 0.8410245044641083 +- 0.8984310539317166 +- 0.941914560793366 +- 1.0354296622941954 +- 1.0237404695366628 +- 1.0285711085105822 +- 1.0138512004795541 +- 1.0862832728726413 +- 1.1812133627721981 +- 1.2580691042820937 +- 1.3660175952035356 +- 1.5462004168556638 +- 1.75952270275006 +- 1.9521852852794102 +- 1.9224780565828945 +- 1.6286700099198284 +- 1.2810974384773723 +- 1.0464129971829887 +- 0.8900549495600754 +- 0.7532532136073201 +- 0.6296372088529228 +- 0.48419259595339 +- 0.46761794209748164 +- 0.5470745531676657 +- 0.5256384498725477 +- 0.5743546644420792 +- 0.6556261347998066 +- 0.6828394356457647 +- 0.7467333007607424 +- 0.7821800514594982 +- 0.8484071037736443 +- 0.8501754713939957 +- 0.8840685854629384 +- 0.9521847719736505 +- 1.0887574378242104 +- 1.212233431717019 +- 1.360689473893716 +- 1.528115958650251 +- 1.5455832359163566 +- 1.3110858555052103 +- 1.070001057656553 +- 0.8268486901173548 +- 0.6860039872231329 +- 0.6065319329103342 +- 0.536295792003585 +- 0.46231819472617114 +- 0.4265662229765594 +- 0.447583841966572 +- 0.5041217461328216 +- 0.5296071122446152 +- 0.5474312990043141 +- 0.5586896238393088 +- 0.6221470672640587 +- 0.6345485303570507 +- 0.6516919884448618 +- 0.638850426401466 +- 0.7275305513501875 +- 0.8394675583023157 +- 0.9095368174921912 +- 1.0208586330531986 +- 1.158356545727728 +- 1.3225067898527307 +- 1.4093730510447056 +- 1.2964107336788053 +- 1.1245486292755411 +- 0.9979820094174984 +- 0.9413564460992986 +- 0.8967114027030679 +- 0.7836395475484685 +- 0.7061328693771183 +- 0.630025416073138 +- 0.6773336356983939 +- 0.7066717151930364 +- 0.7050195227303927 +- 0.7341951129012333 +- 0.7421123702936938 +- 0.8481593926210436 +- 0.8537247488559984 +- 0.8254877828498106 +- 0.8762658603657065 +- 0.9098719904414259 +- 1.0051954800224876 +- 1.1138244013952654 +- 1.2271025018471577 +- 1.3369252542543963 +- 1.5614536194958162 +- 1.6107136109932876 +- 1.487055188552289 +- 1.341182387299815 +- 1.1461500238687055 +- 1.0500491230666935 +- 0.9764579295043196 +- 0.8679633122939289 +- 0.7039491438358808 +- 0.689804045516287 +- 0.791292253241972 +- 0.9309217318335791 +- 1.0959965262362725 +- 1.242776322991935 +- 1.3094975909081101 +- 1.3904919745545339 +- 1.4586227721432266 +- 1.4367901045370721 +- 1.4382808609632236 +- 1.5086955152654584 +- 1.5813243302848372 +- 1.6771423612611456 +- 1.7786346848085453 +- 1.9149526481470254 +- 2.1372487810384957 +- 2.1855960029857138 +- 1.9133620791090953 +- 1.7297540091388421 +- 1.6075641877586273 +- 1.4951120003123672 +- 1.4445600612493696 +- 1.2910985882788675 +- 1.1713242573284621 +- 1.108526942771466 +- 1.1211803024581526 +- 1.2201322858340076 +- 1.2266631721613013 +- 1.2904379164301476 +- 1.3427468913023661 +- 1.411697895047491 +- 1.3984526919409999 +- 1.3700706673881229 +- 1.4062543158474985 +- 1.4864232304638048 +- 1.532211082543245 +- 1.610689297395404 +- 1.769150729792142 +- 1.9817108643596122 +- 2.249964811232667 +- 2.2452444746639344 +- 2.077357230929311 +- 1.7335851946212164 +- 1.5931575602554306 +- 1.4478763169592102 +- 1.3442327000745684 +- 1.1924009215608924 +- 1.0666333536375696 +- 1.019675949655856 +- 0.9822510376705321 +- 1.021092599181895 +- 1.0575885965548786 +- 1.0840530032926297 +- 1.1326748681916792 +- 1.182699433754847 +- 1.2529148607818736 +- 1.2135426329577224 +- 1.256745138179385 +- 1.3532260798943112 +- 1.5119413601043816 +- 1.6378938763731867 +- 1.7825159323357247 +- 1.9581768162715991 +- 2.192466242385167 +- 2.1447531470799124 +- 1.8748865860182475 +- 1.5766163959109403 +- 1.3298628506284234 +- 1.182642630998138 +- 1.0361895975362865 +- 0.832448398820867 +- 0.7188962572345104 +- 0.6423081129409126 +- 0.6697955916321526 +- 0.6774507341703132 +- 0.7013950162487456 +- 0.7288307625307016 +- 0.8157096426591708 +- 0.9259815181996778 +- 1.0190936152799703 +- 1.0115662869859616 +- 1.0405852521916523 +- 1.1465261779311908 +- 1.2181353790127978 +- 1.352457051687965 +- 1.4802802701604998 +- 1.647583218502657 +- 1.8210847222611444 +- 1.797682122689687 +- 1.4204285406259864 +- 1.134199104837893 +- 0.8764129665818976 +- 0.7606789990193973 +- 0.6663615317409709 +- 0.4961680770011664 +- 0.4237971120937616 +- 0.4062943395076913 +- 0.43261662233855924 +- 0.4937480937770194 +- 0.5210014475169845 +- 0.5220657309038967 +- 0.5594587917489343 +- 0.6076062804341639 +- 0.6385538626320997 +- 0.5677491100937304 +- 0.5411113055803297 +- 0.5973423685913778 +- 0.6857406953425143 +- 0.7791286048034609 +- 0.9029306183294854 +- 1.0358082910804418 +- 1.1867110553299538 +- 1.2177482200142438 +- 1.0703204223240843 +- 0.8731312784261287 +- 0.752239245807489 +- 0.6374658551663317 +- 0.5302594291153669 +- 0.47879595491678545 +- 0.42377903122909855 +- 0.45060486395006727 +- 0.4820651054325508 +- 0.5443016510734102 +- 0.5435368665272351 +- 0.5368792962742158 +- 0.5962350840809713 +- 0.6489407246462175 +- 0.6671608872923391 +- 0.6835802930747945 +- 0.6898264130903473 +- 0.7024471135810855 +- 0.7745453804627105 +- 0.836114576067063 +- 0.9467859097323713 +- 1.0613608788045377 +- 1.2241793836243025 +- 1.248008707016096 +- 1.141375167638254 +- 0.898871392497554 +- 0.7405888588898873 +- 0.673654697862141 +- 0.6479074816422489 +- 0.5987961703370334 +- 0.4808886850123219 +- 0.4293388120742639 +- 0.4582005779055798 +- 0.49582335323896065 +- 0.5543678317769922 +- 0.5373488672714503 +- 0.6011640476608463 +- 0.5922557268364231 +- 0.5332898507607743 +- 0.5101399269461686 +- 0.5226304874801051 +- 0.5483764651534773 +- 0.5872615057563585 +- 0.6750826015760095 +- 0.7708572706101339 +- 0.9298329985966259 +- 1.0926117709393384 +- 1.1541367151119262 +- 1.0024902404495646 +- 0.8325677423427468 +- 0.6939759941606113 +- 0.6709270217963399 +- 0.6837750318104202 +- 0.6355161842254263 +- 0.5560487741739486 +- 0.5175772625289182 +- 0.6361958110292079 +- 0.7226417618695292 +- 0.7657652687947579 +- 0.8206982876634076 +- 0.8469636475290099 +- 0.8397678600517824 +- 0.8208232538195582 +- 0.8036915746985644 +- 0.7674243248563513 +- 0.7862422390326698 +- 0.8255366388978644 +- 0.8884489990164895 +- 0.9599536228142037 +- 1.108777136174658 +- 1.316602542706632 +- 1.3572255387539933 +- 1.1952359425724914 +- 0.9652653262847194 +- 0.8780353638665067 +- 0.80743223879348 +- 0.7135832054488782 +- 0.6343367508231003 +- 0.5592715931073929 +- 0.5766273548941743 +- 0.5657909061338144 +- 0.7030195463568928 +- 0.7622131116248777 +- 0.7754695130786147 +- 0.7472014070376596 +- 0.8631420337810256 +- 0.8520768801564367 +- 0.8016782743003784 +- 0.7570109608763195 +- 0.7648616427998894 +- 0.7836275016161695 +- 0.8214242205955564 +- 0.902108179182888 +- 1.004066405791105 +- 1.174907441029871 +- 1.2097558401020159 +- 1.0690399819883838 +- 0.9600374941371045 +- 0.8451342921748257 +- 0.7232649540565305 +- 0.5961152283401783 +- 0.49120618857969994 +- 0.4653099814338536 +- 0.4625097720593672 +- 0.4817910169544405 +- 0.5598377206029466 +- 0.5940946145002001 +- 0.6228174764975379 +- 0.6458335430291858 +- 0.6649631105264637 +- 0.6147400328461242 +- 0.5630210734365422 +- 0.5500741029504859 +- 0.5640133260107623 +- 0.623060482925318 +- 0.7115559268138677 +- 0.8137550536090522 +- 0.9324745184800124 +- 1.1187670048461014 +- 1.091244978391604 +- 0.9252021082819235 +- 0.7140940274036184 +- 0.6073274033665844 +- 0.541532525253997 +- 0.5368870391845204 +- 0.4705871834953665 +- 0.4111135335465709 +- 0.4150066360222473 +- 0.45931093159230485 +- 0.5090864505874928 +- 0.519551354871496 +- 0.5515026469616735 +- 0.5696129293518339 +- 0.5998325169994919 +- 0.5785648682361364 +- 0.5166763477539736 +- 0.5348761909145315 +- 0.548353535409034 +- 0.5645626419429638 +- 0.6442178014563474 +- 0.7334785002833858 +- 0.8629775612316697 +- 0.9926532200930046 +- 1.0001757627953154 +- 0.8707833217149451 +- 0.6982408847026688 +- 0.5686816120934871 +- 0.5053220852260442 +- 0.5036388699519899 +- 0.4745404498151103 +- 0.3945519769004874 +- 0.3811657496747693 +- 0.42884792352882034 +- 0.5016912372788991 +- 0.51539276650191 +- 0.5141178149229103 +- 0.5587393264810725 +- 0.5806995170599978 +- 0.5713203514766831 +- 0.5448494409639725 +- 0.5787543662640273 +- 0.5736977693902666 +- 0.6241059100751947 +- 0.6729363669182963 +- 0.7419533556814395 +- 0.8976415861091777 +- 0.9986564682482904 +- 0.9754572604827648 +- 0.9167046186457283 +- 0.771415718544917 +- 0.6505486588237334 +- 0.5672029717033679 +- 0.5789524993552211 +- 0.5530163327277963 +- 0.515999385068371 +- 0.4935510206097382 +- 0.6347174217777288 +- 0.6783610506135964 +- 0.6682269100927131 +- 0.7379257747277604 +- 0.8261902879133235 +- 0.9259946261131491 +- 0.9106852713273065 +- 0.8894767755685389 +- 0.9253629533275995 +- 0.9167215246240206 +- 0.9539118756574265 +- 1.0173983350177214 +- 1.1111979784461614 +- 1.1886189174320816 +- 1.2923014875711196 +- 1.2940956797879513 +- 1.1595729835631394 +- 1.0888849671355423 +- 0.9640440383323766 +- 0.8880125864279532 +- 0.7746403634654119 +- 0.666117602636685 +- 0.6407792088456323 +- 0.6908336215156838 +- 0.6224073767765878 +- 0.7327385390419925 +- 0.824071906546982 +- 0.886597117702541 +- 0.9086871092366514 +- 0.9883358879646433 +- 0.947792002095168 +- 0.9172699173015083 +- 0.9729535802004997 +- 1.0121969180476247 +- 1.0631758031083784 +- 1.1621743864951608 +- 1.264698406677487 +- 1.4162781510738025 +- 1.5735412895565914 +- 1.5549616980927683 +- 1.3748486974601284 +- 1.1284447576383614 +- 1.0226506244033764 +- 0.9584513341246725 +- 0.8692189272768028 +- 0.7908741074599909 +- 0.7480165676112257 +- 0.653565458993178 +- 0.7028294126565506 +- 0.7596420367152508 +- 0.740796181270894 +- 0.7821732348360342 +- 0.8602152904489112 +- 0.9128267830185545 +- 0.9334042544033437 +- 0.9136296479566629 +- 0.9107442749327885 +- 0.9654129919319009 +- 1.0669119755575607 +- 1.1572694096003948 +- 1.2337138464163369 +- 1.3762192688542183 +- 1.5735613855211554 +- 1.5123309979222386 +- 1.2994720451033035 +- 1.1173939018513475 +- 0.9869591740966838 +- 0.8763020551682688 +- 0.7931007263407662 +- 0.8223150659981037 +- 0.6876372645978153 +- 0.6399243030472259 +- 0.6580326805231238 +- 0.7447115323617962 +- 0.7533804149042016 +- 0.8604029716528945 +- 0.8978379136742453 +- 0.9679087185920998 +- 0.9266861459467661 +- 0.8536127463737186 +- 0.8983553193336685 +- 0.9481894275088681 +- 1.029832822421726 +- 1.1235147822204004 +- 1.2286139041046054 +- 1.35087616603471 +- 1.5489052212712433 +- 1.4975951107667993 +- 1.225265284190315 +- 1.0305689324772749 +- 0.9127905965285751 +- 0.8085749400522292 +- 0.748484117720563 +- 0.725200112155632 +- 0.5862531343273534 +- 0.5447186344226684 +- 0.5813010001398325 +- 0.6076859080717509 +- 0.6539638154646799 +- 0.7363668524951772 +- 0.7761235533390599 +- 0.9390187567800806 +- 0.9805648363261504 +- 0.9289181673846718 +- 0.9632232204929188 +- 0.9854824832449138 +- 1.0267233123236044 +- 1.1241818741347382 +- 1.2162673044101513 +- 1.361077776222171 +- 1.549853209089656 +- 1.5069689743858663 +- 1.279320228153751 +- 1.053009892844818 +- 0.875029740981986 +- 0.7807258696476401 +- 0.6668726727492543 +- 0.5528312319834845 +- 0.47820691172848656 +- 0.44113744212537365 +- 0.4607641741943958 +- 0.5033919487924534 +- 0.5531098563448245 +- 0.5871176683776762 +- 0.6573747606971795 +- 0.6570653507792491 +- 0.6749206256105101 +- 0.6375216561693244 +- 0.6605715473782475 +- 0.6931041663746685 +- 0.776790861671871 +- 0.8692729151779587 +- 1.0513321905448163 +- 1.2194206513936168 +- 1.461500312884315 +- 1.4325839619811298 +- 1.1806160369487768 +- 0.9820179313710403 +- 0.8274133221146105 +- 0.722882916073909 +- 0.696904294592509 +- 0.6191641289683113 +- 0.5380318659871874 +- 0.48113566951943915 +- 0.5285627877195493 +- 0.5845211705651802 +- 0.6173346180041248 +- 0.6844431428279398 +- 0.6901281683092783 +- 0.7106184102690077 +- 0.654874880863537 +- 0.6229145461306876 +- 0.6194519996357475 +- 0.6478881868006522 +- 0.7003194103803205 +- 0.7550121168402438 +- 0.8365638338055575 +- 0.9755164124814846 +- 1.0964992635396977 +- 1.0509671511744256 +- 0.9329405080040878 +- 0.7645456567675113 +- 0.6575769707832109 +- 0.5453253912331896 +- 0.5466667704674538 +- 0.5276514202300236 +- 0.4662289955894108 +- 0.46756710891327063 +- 0.569757532383325 +- 0.6041597193281719 +- 0.6244147657811374 +- 0.6204718925194643 +- 0.661877579104222 +- 0.6432428564978887 +- 0.5853561667724808 +- 0.5571148599861461 +- 0.5229790330348224 +- 0.5341686164605808 +- 0.5670374509773274 +- 0.6031807395218528 +- 0.6863933975255668 +- 0.7590304978256052 +- 0.8967965219074147 +- 0.9631070568081332 +- 0.8987912869388694 +- 0.8573486565470957 +- 0.8124608315228535 +- 0.7663151394029161 +- 0.7205118042263311 +- 0.6715690820435808 +- 0.6470112427445952 +- 0.6119370028188739 +- 0.6249742186014778 +- 0.6798637779962351 +- 0.681557831065888 +- 0.7390757622112262 +- 0.769566159373498 +- 0.8752152251874797 +- 0.8300467355329657 +- 0.7553116392678886 +- 0.747942297874279 +- 0.769817273750671 +- 0.8423751522081331 +- 0.9157662363990265 +- 1.016042063117352 +- 1.1638139503235323 +- 1.2884244283638062 +- 1.2051958594810321 +- 1.0649048093279245 +- 0.907464455076425 +- 0.7995604570493947 +- 0.7591431684111051 +- 0.7218323768907922 +- 0.6531241069152293 +- 0.534297613065697 +- 0.5286019752527813 +- 0.5689269827283919 +- 0.6331523914682572 +- 0.6608941342077994 +- 0.6702915175707831 +- 0.7391395404139782 +- 0.7883829602431452 +- 0.8197898247329131 +- 0.7136321987152914 +- 0.7055053991600592 +- 0.7107334063218992 +- 0.7265677021386194 +- 0.7809249674718176 +- 0.8512876860410071 +- 0.9922598522045624 +- 1.1690674650744017 +- 1.0904169452850778 +- 0.8543369294683743 +- 0.7539760538371455 +- 0.641620896098839 +- 0.5902996860701981 +- 0.5507004380689429 +- 0.5406278365410849 +- 0.4840167823861901 +- 0.48102770879116935 +- 0.5209943485215953 +- 0.5779828851509937 +- 0.6241284685696533 +- 0.6595343048745288 +- 0.6066323141466984 +- 0.5960194744525451 +- 0.5803465627236366 +- 0.5080777250398055 +- 0.49416840070659923 +- 0.49429142357105693 +- 0.5052341808714964 +- 0.5313826573235978 +- 0.569392448838842 +- 0.7044998146259469 +- 0.8200454021013105 +- 0.8561485515575686 +- 0.7843547898880331 +- 0.6949417212686038 +- 0.6729147942384271 +- 0.5970177151805691 +- 0.5383243370485629 +- 0.45698067213460397 +- 0.4238617101502373 +- 0.454272248415642 +- 0.4604571623464845 +- 0.5028141449400104 +- 0.5691150904229503 +- 0.6323455898438921 +- 0.6726485016106472 +- 0.7068405499245234 +- 0.6582093389287228 +- 0.5920916338999184 +- 0.5866566392592419 +- 0.6149970296643803 +- 0.6689570504006234 +- 0.769783017388959 +- 0.8703748399366065 +- 1.0227006610372509 +- 1.194668243834957 +- 1.170847755050611 +- 1.0498618148316956 +- 0.8683819600861468 +- 0.7237457326996283 +- 0.7045046851423508 +- 0.6074466697165627 +- 0.5678115875490333 +- 0.5040866204608863 +- 0.4940687315254787 +- 0.5211726245142155 +- 0.5579809308378973 +- 0.5984908474924525 +- 0.6118598993073573 +- 0.6174386414302174 +- 0.6289482738328976 +- 0.6214459046463814 +- 0.5792946352842793 +- 0.5739391871380544 +- 0.5818491035867235 +- 0.6105666208395836 +- 0.6490667411533575 +- 0.6942165795289567 +- 0.8024850150277255 +- 0.9305388909746324 +- 0.9483289641893107 +- 0.9101871926441586 +- 0.7952445516921303 +- 0.7393786765332577 +- 0.7135811156078055 +- 0.6382861375178456 +- 0.6197056060260983 +- 0.5567258270158312 +- 0.5791949020385391 +- 0.6109333290881381 +- 0.6735769030848002 +- 0.7715097040791077 +- 0.7333091916992486 +- 0.7464683321315617 +- 0.7397797379872412 +- 0.7216652982864781 +- 0.6602161520363304 +- 0.6511646858649678 +- 0.6469001389097299 +- 0.6758024977788651 +- 0.7424349815738333 +- 0.8231188765895626 +- 0.9400746480579615 +- 1.1006330332148468 +- 1.1317399612559698 +- 1.066241205481653 +- 0.9768503846467221 +- 0.8567290643835603 +- 0.8031516810905994 +- 0.746105808805942 +- 0.7164668874431623 +- 0.6279835110567749 +- 0.5999961445769268 +- 0.6238484025818857 +- 0.658652085171858 +- 0.6356980857099905 +- 0.6405072436611596 +- 0.6598375012902739 +- 0.7115339979653186 +- 0.67020152381399 +- 0.6154112991026539 +- 0.6582484366830502 +- 0.7174716788727504 +- 0.7670853943398408 +- 0.8294924632099292 +- 0.875121873041651 +- 0.9463211694168442 +- 1.0037386228522143 +- 0.9627282872948598 +- 0.8319531869656925 +- 0.659842983363443 +- 0.6283389782161161 +- 0.5727069676922114 +- 0.5060396672288386 +- 0.49513599592433205 +- 0.4420564993374188 +- 0.4538512165112478 +- 0.43417578051674205 +- 0.5308620342189261 +- 0.5232042729936617 +- 0.5147510105123803 +- 0.5399289922804619 +- 0.5448014294238696 +- 0.5031732858561687 +- 0.44229504348515497 +- 0.48363512642200795 +- 0.5068747232136005 +- 0.5135780184044694 +- 0.5676929362122514 +- 0.6677550368507384 +- 0.7692591902264843 +- 0.8679389387976335 +- 0.8567860056301363 +- 0.7393687078132433 +- 0.6416526900423927 +- 0.5352252050917293 +- 0.518822320628899 +- 0.49052227228355705 +- 0.44788609175019384 +- 0.37441955265664 +- 0.39167878149765284 +- 0.4324338725083314 +- 0.4941676331789329 +- 0.555484378627881 +- 0.5572326174034525 +- 0.6073577072509591 +- 0.6523580721797813 +- 0.6722732352843841 +- 0.6259070552687652 +- 0.6301491132749016 +- 0.6812252664741295 +- 0.7324587411180259 +- 0.8322022428124562 +- 0.8914296144638361 +- 1.0198788804368053 +- 1.1485866776238711 +- 1.0853382181409585 +- 0.9189292115676481 +- 0.7397252699582794 +- 0.6192678530054148 +- 0.6063896909097 +- 0.5680067350503453 +- 0.5420038403926317 +- 0.5501903164493135 +- 0.5338492775813565 +- 0.565547406741895 +- 0.6181094222891044 +- 0.6498306804851619 +- 0.7103968350499354 +- 0.7157471661930799 +- 0.707396354384454 +- 0.6626745556976088 +- 0.5996258949139296 +- 0.6105382837578339 +- 0.6433960344978933 +- 0.6581228881738037 +- 0.6843288912054679 +- 0.7671139367696597 +- 0.8862264657643685 +- 0.9967358567977449 +- 0.9938720936660888 +- 0.8351959256810387 +- 0.7014492235245262 +- 0.6582803015842528 +- 0.6216616081458972 +- 0.6241936187233101 +- 0.5695332062034888 +- 0.5428887213187811 +- 0.5240683363773648 +- 0.5562840549140806 +- 0.5898443075645746 +- 0.6604783595642345 +- 0.688234915103563 +- 0.7258891569945387 +- 0.7621727825586748 +- 0.7530187630036113 +- 0.6985913833334513 +- 0.7291102426005621 +- 0.7185704217878774 +- 0.745664688319674 +- 0.7860716298259393 +- 0.8771025907872976 +- 0.9848381792641953 +- 1.041289737484901 +- 1.003433215191308 +- 0.8777040635805272 +- 0.7212259222575339 +- 0.6466675632294588 +- 0.6093292974292288 +- 0.5470505434752606 +- 0.5035307108644888 +- 0.46686992140620753 +- 0.4433125591047494 +- 0.4570873359492318 +- 0.506587315649644 +- 0.563663282540991 +- 0.5572394699644018 +- 0.5758888603055015 +- 0.5887112343105319 +- 0.5882337230244871 +- 0.5065937281216712 +- 0.4975361903528035 +- 0.466685474747775 +- 0.4683610338258974 +- 0.47694220486850963 +- 0.5193864170694972 +- 0.5892715133343229 +- 0.6779327890348457 +- 0.6511802070144032 +- 0.570739731023995 +- 0.5227734041465402 +- 0.5054025208921993 +- 0.45087588735661543 +- 0.44236065073222663 +- 0.40698730913031955 +- 0.3750606564385044 +- 0.39673259248238835 +- 0.4665144363448849 +- 0.5080052697859865 +- 0.5339837398744258 +- 0.5222111096038532 +- 0.5133730377434034 +- 0.5053109156992331 +- 0.480838602945419 +- 0.4215369090466799 +- 0.38900770463937356 +- 0.41755748656376557 +- 0.48435058612977067 +- 0.5108523860243642 +- 0.5867387625329129 +- 0.699501436016568 +- 0.7982345758435808 +- 0.7628410917893327 +- 0.6666544791307022 +- 0.5646081158539091 +- 0.5553689938551382 +- 0.4733892867011405 +- 0.4784732965712105 +- 0.45188518317246124 +- 0.4201427234289246 +- 0.45089639727151276 +- 0.49903914294108553 +- 0.5267281884517662 +- 0.5832531305262678 +- 0.5412102981864352 +- 0.493846365778706 +- 0.46834579022994877 +- 0.4560286259674675 +- 0.34337080994549257 +- 0.3302344647680375 +- 0.369953409238061 +- 0.43987371700623074 +- 0.5109978337534706 +- 0.5902691379818317 +- 0.7058578214774791 +- 0.7793892985609715 +- 0.7471616374890406 +- 0.6760251360550945 +- 0.5768199132458565 +- 0.5210967718257734 +- 0.46305833727342194 +- 0.4624577683988471 +- 0.41401866578898205 +- 0.40470341944801413 +- 0.49112655343847206 +- 0.5060953820283564 +- 0.5377276355006455 +- 0.538187262210024 +- 0.4884678114145938 +- 0.4926310158119391 +- 0.4671217034240349 +- 0.4385704927260249 +- 0.3911750926140497 +- 0.41912222136693594 +- 0.46480468141407416 +- 0.49794378578933013 +- 0.5215629170537052 +- 0.6376677949421864 +- 0.7561776918475444 +- 0.8672940789328554 +- 0.7886732199185752 +- 0.6673987127297987 +- 0.5517808326787875 +- 0.4690325054827333 +- 0.4240376837118095 +- 0.4173148675974491 +- 0.41932253458564783 +- 0.411758213911087 +- 0.4319721555388858 +- 0.4756770843556946 +- 0.5176511262269999 +- 0.5364081964160683 +- 0.5136660452536148 +- 0.4665403095023293 +- 0.47940754177326 +- 0.4558139884237149 +- 0.3214347242412348 +- 0.30507995789771747 +- 0.33050485674572144 +- 0.3752388843777013 +- 0.41540663943053235 +- 0.4837983062965482 +- 0.5792700037596717 +- 0.6761511378800921 +- 0.6672937133237736 +- 0.5788980698643049 +- 0.5272661035475927 +- 0.48085505836382947 +- 0.42935467049710113 +- 0.44462471087019506 +- 0.4715964198714615 +- 0.40856718393683206 +- 0.39482350637314734 +- 0.4733459926990015 +- 0.4978038880351759 +- 0.5221432388232755 +- 0.5530658259002583 +- 0.5677063288431878 +- 0.5392203845071094 +- 0.520419308847531 +- 0.46795547747534116 +- 0.4241115520188318 +- 0.38537539645068614 +- 0.4299785284378777 +- 0.4393734044823579 +- 0.48841349503696985 +- 0.5804847330283167 +- 0.6851706952015855 +- 0.7146906053368325 +- 0.6299507139076213 +- 0.5471276290577005 +- 0.47945103758575225 +- 0.43282841452839305 +- 0.4389187636074321 +- 0.4058699793908453 +- 0.3854168755990346 +- 0.4089380487755948 +- 0.44104064044038416 +- 0.5400508865077809 +- 0.5628056022127926 +- 0.5778892525544767 +- 0.6578855427485092 +- 0.7033482177524009 +- 0.6959491371766481 +- 0.6292595001160743 +- 0.5916741254213913 +- 0.6004233231794935 +- 0.6269208897527577 +- 0.6670882754159378 +- 0.7439841521981747 +- 0.8596151664096255 +- 0.8977651227383622 +- 0.9469367619887261 +- 0.8564885427024587 +- 0.7601961215472246 +- 0.6514911170376194 +- 0.5952299772875066 +- 0.5372360739184509 +- 0.5200034714505201 +- 0.4368567314150056 +- 0.41538584103588433 +- 0.4596588320510985 +- 0.49825286646096795 +- 0.49893138506339335 +- 0.548920127393264 +- 0.5482579655091038 +- 0.5538779359939059 +- 0.500929477964281 +- 0.463145861928525 +- 0.4409219877745483 +- 0.43948139846821943 +- 0.503852461320175 +- 0.5404090868923798 +- 0.6454666247065765 +- 0.73884719129859 +- 0.8236104156865265 +- 0.7814353920921746 +- 0.6740773342714164 +- 0.5654595156571985 +- 0.4788727645834549 +- 0.45825256926971253 +- 0.44584486647254284 +- 0.4251214116321588 +- 0.3795748480642811 +- 0.39867664230438454 +- 0.4673876457920821 +- 0.5010022453529227 +- 0.5230292343943647 +- 0.5667092563649302 +- 0.5397441318700259 +- 0.5196430729643512 +- 0.5036846366549866 +- 0.4013653137467196 +- 0.34233558120200264 +- 0.3280207190288804 +- 0.360315039818988 +- 0.41124398262449785 +- 0.4918069686716246 +- 0.5763800602421839 +- 0.6437007193563382 +- 0.633416569080625 +- 0.6000485432204316 +- 0.5265283311943417 +- 0.45321193041642277 +- 0.4357073359500109 +- 0.4179276509445139 +- 0.44169134766658297 +- 0.4379372885530234 +- 0.42068681366933924 +- 0.47694371573498895 +- 0.5251331527402064 +- 0.5498617433330034 +- 0.5524325880380996 +- 0.4856529515735203 +- 0.4548472323376692 +- 0.451044595450486 +- 0.3506484714809401 +- 0.3144254673908749 +- 0.2847208358062905 +- 0.31108303215302524 +- 0.33870997716119394 +- 0.39317145435260653 +- 0.49085655194906974 +- 0.5405764521756102 +- 0.5249196433768846 +- 0.5169869492918188 +- 0.482748038449309 +- 0.4256128102294725 +- 0.4803038461947527 +- 0.42503195992784326 +- 0.46708616966714184 +- 0.42476082119598507 +- 0.5195906370992824 +- 0.5157512658255035 +- 0.5852977296119687 +- 0.5625302029048165 +- 0.5553261956635064 +- 0.5161212165746479 +- 0.5631261019121654 +- 0.501896257974944 +- 0.41032238270702787 +- 0.35517274476293026 +- 0.3680021995236577 +- 0.42146751381720393 +- 0.4636246637189856 +- 0.5247097127487339 +- 0.6186645051314866 +- 0.7237134557025681 +- 0.7039491189107047 +- 0.613017396903297 +- 0.49896377487570137 +- 0.48077430365670243 +- 0.5171828798297619 +- 0.43998284604181365 +- 0.4065861870410523 +- 0.4538700176445721 +- 0.456284946138638 +- 0.4526074548226774 +- 0.5053166808376273 +- 0.5080679143619263 +- 0.4997456082003833 +- 0.497591344932222 +- 0.49175894220021577 +- 0.4311281487654967 +- 0.3399164740369682 +- 0.31843442216931256 +- 0.3171615245137336 +- 0.3367811294694469 +- 0.3680909306414353 +- 0.4302301877496572 +- 0.5251389142291485 +- 0.6301381598757817 +- 0.5902625412313187 +- 0.5143897559461733 +- 0.41142445440890835 +- 0.4189336114453816 +- 0.4372382473057945 +- 0.4105957668662224 +- 0.35507523000761443 +- 0.3507117404480255 +- 0.3687246569512446 +- 0.46744435030925896 +- 0.5007084530289839 +- 0.5696906440586671 +- 0.5481451751049945 +- 0.5410139780596509 +- 0.5286899427454129 +- 0.45848450099875787 +- 0.3760237620982151 +- 0.28639982520651375 +- 0.28938474998591607 +- 0.3373902115881464 +- 0.3711476536776012 +- 0.4364101873581651 +- 0.5545361549940332 +- 0.6506424118383044 +- 0.6792309922271996 +- 0.6370428822277875 +- 0.5230650940277124 +- 0.4403772327518702 +- 0.4316841601067381 +- 0.4587744818399788 +- 0.4222897756107492 +- 0.3732220144776046 +- 0.4108509631751206 +- 0.48063960440826026 +- 0.5462576880237082 +- 0.5408230258273772 +- 0.528438309803505 +- 0.5074656773837725 +- 0.4851688168095482 +- 0.436679861745129 +- 0.3647468861218848 +- 0.2603829215446131 +- 0.2524593886982013 +- 0.2676173330411123 +- 0.30272906370231256 +- 0.362565588506016 +- 0.4649986908117514 +- 0.5324308862507925 +- 0.5457400161574614 +- 0.5222289979316378 +- 0.4381147376072732 +- 0.39477848682879524 +- 0.3800733767944598 +- 0.40122298075712537 +- 0.41149297135803864 +- 0.39264263228974916 +- 0.3924747435222279 +- 0.41496642661544114 +- 0.5122868508071371 +- 0.5317784171544 +- 0.5333096150013881 +- 0.5024247316596387 +- 0.4588775549118771 +- 0.43947430760831957 +- 0.3461162195743284 +- 0.31684987047042656 +- 0.3266186449447368 +- 0.379187726094269 +- 0.4330809098081635 +- 0.5335284581965923 +- 0.6172688101712794 +- 0.6972707146777858 +- 0.7016804035368199 +- 0.5721065389742667 +- 0.4671798027712002 +- 0.4123750504473705 +- 0.41217881286148994 +- 0.3760787767000491 +- 0.35444317121255803 +- 0.3270549546775388 +- 0.3484502127758052 +- 0.3775421893718942 +- 0.4639457976785178 +- 0.4851221170998696 +- 0.47134429244279036 +- 0.48238758493345024 +- 0.45835004828587317 +- 0.4284109424908395 +- 0.3156817443043353 +- 0.2511452861737324 +- 0.2424223431652571 +- 0.29112806676763386 +- 0.3581836993533599 +- 0.42632931099686955 +- 0.5258262958820796 +- 0.5358098829342007 +- 0.526539903361133 +- 0.49973338872564965 +- 0.45143062180826393 +- 0.43068878558740936 +- 0.4122725021273654 +- 0.42692039587700975 +- 0.41537895290561155 +- 0.4439564740041682 +- 0.4674995499733778 +- 0.5165489818445647 +- 0.5144346414503863 +- 0.5311828791573585 +- 0.49910886363333096 +- 0.48237650561375295 +- 0.5053463875387164 +- 0.4355004662470484 +- 0.3760399326399477 +- 0.3249288374729678 +- 0.35687825574669335 +- 0.384635210225717 +- 0.4497027664222591 +- 0.50567283359239 +- 0.586555596272741 +- 0.6254081660503438 +- 0.6053997860098927 +- 0.5321993001256112 +- 0.4779203408766548 +- 0.4530399396640792 +- 0.48124212615666506 +- 0.514371860649384 +- 0.44883263363323567 +- 0.4446887512800387 +- 0.4467471230449981 +- 0.5035369872014043 +- 0.6080529555168963 +- 0.5717592151076683 +- 0.550496508278979 +- 0.51785264545894 +- 0.5126675461760442 +- 0.4947610737843332 +- 0.38537391938510024 +- 0.34773729219413274 +- 0.3471073347203331 +- 0.37925367048652975 +- 0.39067218763942313 +- 0.4385004781366953 +- 0.5018672701467005 +- 0.5686935395619216 +- 0.6173330307204958 +- 0.5685990120598946 +- 0.5057051432383827 +- 0.4447073730848841 +- 0.4376527997444847 +- 0.4115795294997049 +- 0.4062573934450848 +- 0.409506634828405 +- 0.4551138829542479 +- 0.4756037348195481 +- 0.5271774739308053 +- 0.49099992556087474 +- 0.5103105720487656 +- 0.5005454885723585 +- 0.5041442265671049 +- 0.4763749784319545 +- 0.38969460669522943 +- 0.3596004193929109 +- 0.3511967603205641 +- 0.3299992836182774 +- 0.35305530981390615 +- 0.421878304488054 +- 0.4592805962941961 +- 0.5534524464329322 +- 0.5816639153911678 +- 0.6301483828405866 +- 0.5620645558949326 +- 0.5365798171396509 +- 0.48869546994263857 +- 0.511402409251467 +- 0.5125764613757426 +- 0.5705696116772062 +- 0.6010360829357453 +- 0.5601050580356216 +- 0.6034009669638007 +- 0.6669093081555413 +- 0.6367034258828504 +- 0.6466063116304357 +- 0.6595663406798908 +- 0.5947950536095447 +- 0.5251575347895814 +- 0.49187639061594424 +- 0.4914893463901832 +- 0.5189847439179648 +- 0.5521529325607107 +- 0.5865085748963865 +- 0.6476799525836647 +- 0.7607892131373045 +- 0.7736285481952914 +- 0.6907651085430966 +- 0.6124732053621753 +- 0.5786984019219673 +- 0.5581506631223841 +- 0.5024894905107631 +- 0.4824371395196863 +- 0.4714419912743567 +- 0.46473374989406757 +- 0.4663083533536961 +- 0.5266774812171802 +- 0.5618366784383528 +- 0.49234869230073036 +- 0.5059786073233951 +- 0.5040913380563965 +- 0.4750767969700796 +- 0.4051715373947794 +- 0.36410582993478285 +- 0.3613367524919788 +- 0.361874431593325 +- 0.39114414142508913 +- 0.4327106189576778 +- 0.5186151682380872 +- 0.5751154263588535 +- 0.6127762908481483 +- 0.525744890365055 +- 0.44593818882111624 +- 0.41854918286733483 +- 0.40893011802199397 +- 0.3836468793125923 +- 0.38060179707125413 +- 0.37780537039871614 +- 0.4346159714764982 +- 0.4894512516716236 +- 0.5269754528115316 +- 0.5845554896730762 +- 0.571077268796275 +- 0.5185914692629048 +- 0.501121866358172 +- 0.4202868052660718 +- 0.33071659075809695 +- 0.3012097866039178 +- 0.26725538707891583 +- 0.3013689013378234 +- 0.3317205600909427 +- 0.4155661457161339 +- 0.5266337011802403 +- 0.6109734074419576 +- 0.5769139622795793 +- 0.47385522410139286 +- 0.41195494329657495 +- 0.3927072201031917 +- 0.38928815197546995 +- 0.39497170232362566 +- 0.40453342647515433 +- 0.42841670542057175 +- 0.4484821883164982 +- 0.4645767350294612 +- 0.5090896532693142 +- 0.5823018335314644 +- 0.5624526537437597 +- 0.5084320260675422 +- 0.510960035083185 +- 0.4141641696005737 +- 0.3336664895967196 +- 0.25911940059057775 +- 0.2187268471144773 +- 0.23801960727570054 +- 0.2587672613006693 +- 0.31232220005716627 +- 0.3957093413358958 +- 0.433782423637252 +- 0.4498751026647783 +- 0.43463853314972584 +- 0.4436656761391153 +- 0.39335488738328667 +- 0.3964279604991608 +- 0.44193688029697753 +- 0.4557827845807526 +- 0.4702743062737211 +- 0.5048471587443758 +- 0.5355586449515388 +- 0.5723616423076117 +- 0.5801855289134379 +- 0.5549657641021487 +- 0.5233922110357349 +- 0.4663096084982855 +- 0.4095058741163886 +- 0.29134690005165653 +- 0.2536047610857527 +- 0.22636787312287296 +- 0.23549785250364197 +- 0.24090692646082507 +- 0.27527513483794464 +- 0.314204770634551 +- 0.3873144753874166 +- 0.4336345982375997 +- 0.4181629663492195 +- 0.38575439011149876 +- 0.38821898657213627 +- 0.3876940917653489 +- 0.46242516419096896 +- 0.39071438229608974 +- 0.39471458476412946 +- 0.4391025307115076 +- 0.4757682706192725 +- 0.5081928749250539 +- 0.5166531159565755 +- 0.5046578400072499 +- 0.48680017162441147 +- 0.45986866572184276 +- 0.3802346167471451 +- 0.285650850117741 +- 0.2454966456499844 +- 0.21832060747492218 +- 0.22329856003936144 +- 0.25665851637256704 +- 0.3143882664893432 +- 0.40037362943618476 +- 0.47902821122563616 +- 0.5028631070960421 +- 0.4838243558243668 +- 0.4470886908748936 +- 0.4298880706544255 +- 0.41746981339252176 +- 0.4191055359244437 +- 0.39831015257794183 +- 0.37844535712669625 +- 0.39981379900746733 +- 0.45992239186004413 +- 0.5027891477187749 +- 0.5228207182858985 +- 0.5146813225919711 +- 0.4883342593482876 +- 0.4822844919207401 +- 0.46945498805379376 +- 0.3610540909579257 +- 0.3163779381859097 +- 0.30560968683007234 +- 0.3242167183427584 +- 0.35306154034767917 +- 0.4029627813277874 +- 0.48971046992052836 +- 0.5690522531151591 +- 0.5628105488231601 +- 0.5329278227579538 +- 0.45743324758413945 +- 0.4354295829991766 +- 0.4400108223571103 +- 0.360852022453387 +- 0.3617704612301614 +- 0.38594311932764475 +- 0.45874784363447885 +- 0.47181029163754906 +- 0.5530976191809632 +- 0.5570395814790019 +- 0.5277620239943184 +- 0.5128890166505489 +- 0.47873004744804426 +- 0.4086796148638761 +- 0.3103741290412496 +- 0.25044422042491454 +- 0.218871532368995 +- 0.23715731485662028 +- 0.2508454732367205 +- 0.2907006299906614 +- 0.3465766898472415 +- 0.40559586875068987 +- 0.41762291267816815 +- 0.3808498657612548 +- 0.3828910112935376 +- 0.40240873958470547 +- 0.4456759286235867 +- 0.4294978149716943 +- 0.39779052380322655 +- 0.4211539160215911 +- 0.45857720418776043 +- 0.5399724189336382 +- 0.6340746227294004 +- 0.6081182560755259 +- 0.5806802702679188 +- 0.536988325367193 +- 0.48346947690723596 +- 0.4399643757852361 +- 0.3365963849242665 +- 0.2822293934281149 +- 0.21632329081875404 +- 0.21275766362006224 +- 0.22114328396691293 +- 0.2593122131348128 +- 0.3181265773802284 +- 0.4104172248868934 +- 0.3988245965628858 +- 0.4363501677411277 +- 0.4136344683420022 +- 0.38935954807074663 +- 0.39381328864616577 +- 0.44196626300177866 +- 0.41210678254712374 +- 0.4386366564440299 +- 0.46274870477164703 +- 0.5060910368381474 +- 0.5023893134104587 +- 0.5485890609453408 +- 0.5120088800691097 +- 0.46180792912672275 +- 0.4588720809708406 +- 0.4245646986664184 +- 0.31501850958200145 +- 0.26177571306198943 +- 0.22649284262707467 +- 0.23239917347596856 +- 0.2462078454299538 +- 0.26195616124692145 +- 0.3217000945190517 +- 0.4126867769220695 +- 0.4199492228353478 +- 0.3734575124200087 +- 0.3680424762816836 +- 0.37593834150040517 +- 0.3604589977255077 +- 0.3694756984693231 +- 0.390284463774115 +- 0.4035820986263949 +- 0.42110788301736535 +- 0.4447366054079018 +- 0.48304493403788473 +- 0.5018274957181922 +- 0.49586921077561025 +- 0.48011303365123437 +- 0.5028500999612131 +- 0.3916858178460228 +- 0.3433094431295386 +- 0.2787837116968832 +- 0.24443721121156553 +- 0.24750146454291883 +- 0.24385069497196732 +- 0.27679846039035755 +- 0.3139270898586833 +- 0.3617066075314864 +- 0.40890753031855726 +- 0.4668559311763482 +- 0.45582401525973604 +- 0.4817304980235363 +- 0.475987980827492 +- 0.5105112577110412 +- 0.47236389262495515 +- 0.4743091688107724 +- 0.5216169344395487 +- 0.5190439946598527 +- 0.569527206885424 +- 0.5674382654007833 +- 0.5316233509359639 +- 0.5157478111723616 +- 0.45612310117388843 +- 0.38615324882256763 +- 0.29176751401269746 +- 0.2584752693288284 +- 0.2507377491294702 +- 0.27284121966782343 +- 0.28525590907139037 +- 0.33441045630966637 +- 0.40116213863551803 +- 0.4239527339127373 +- 0.4567521737994523 +- 0.4434983229500371 +- 0.4476420867561322 +- 0.4290564841529936 +- 0.4486670055422333 +- 0.45365516034155684 +- 0.4776524445132687 +- 0.45946174314887905 +- 0.48633088599687246 +- 0.5458007218967459 +- 0.6181715427106426 +- 0.588942770847095 +- 0.5625644751891785 +- 0.4985431262970146 +- 0.4590918336070561 +- 0.37541514215310273 +- 0.30444137485756273 +- 0.2790242193857862 +- 0.28224100586116846 +- 0.32416051671878254 +- 0.3131701752503758 +- 0.37661530936534526 +- 0.506576228776021 +- 0.5570943010912898 +- 0.5461569304974018 +- 0.43064253034626265 +- 0.4069014857570547 +- 0.40378306954467724 +- 0.4370573014539268 +- 0.4426887696260831 +- 0.3963194551304229 +- 0.4241292566094804 +- 0.4339983185647074 +- 0.4576300951552811 +- 0.5243795530744993 +- 0.5687169108399819 +- 0.5418043039599885 +- 0.49202641712750783 +- 0.46775128648415365 +- 0.4517594601473162 +- 0.33156941514896343 +- 0.26439039719153956 +- 0.2566330726439688 +- 0.25327775360778226 +- 0.24754897794094916 +- 0.2768970162701163 +- 0.3164821399418746 +- 0.392778247525856 +- 0.4335425438573774 +- 0.3864654545024423 +- 0.4007255572992463 +- 0.42352495655928685 +- 0.39252262395320164 +- 0.43318784269050786 +- 0.41306525427709323 +- 0.44917576488164185 +- 0.4764347499855015 +- 0.5180991219186615 +- 0.5778046360483573 +- 0.6202212990603772 +- 0.5570246636385572 +- 0.5660135771547851 +- 0.5106411321847703 +- 0.4239055630322542 +- 0.3251284750596764 +- 0.25722392919779163 +- 0.22458381734082863 +- 0.21693168084816422 +- 0.21143942228110657 +- 0.2624185668545348 +- 0.33557822598389164 +- 0.4020525637326958 +- 0.4421617268569074 +- 0.39367770546149977 +- 0.3595313051699963 +- 0.38482000141007633 +- 0.4045375946248787 +- 0.4397010818710962 +- 0.4073252772996007 +- 0.4280890458162211 +- 0.4329930340011486 +- 0.48805626525073087 +- 0.5343588651267374 +- 0.5667368985004039 +- 0.49966471533579004 +- 0.45606666863560485 +- 0.4572082224848397 +- 0.40135722806048946 +- 0.3441607004194896 +- 0.2669889726498383 +- 0.23559792310211608 +- 0.24194327631798002 +- 0.24753951020351764 +- 0.31405917464572863 +- 0.3866175667000385 +- 0.4453012122327704 +- 0.46583068330847704 +- 0.43106710161174483 +- 0.34857779861040283 +- 0.3658874465207714 +- 0.39768726703971624 +- 0.3905316040029703 +- 0.3580865267725723 +- 0.38639754252180486 +- 0.3957082101649564 +- 0.4345889693514666 +- 0.5105062472944322 +- 0.5282936793077276 +- 0.5067984281404319 +- 0.46857237416981823 +- 0.4514850899654388 +- 0.3972333253532494 +- 0.341520567781166 +- 0.2663653974133875 +- 0.25912621646459927 +- 0.24704553214709066 +- 0.2649590419075634 +- 0.2994755686034994 +- 0.3905605065456083 +- 0.45992574470884284 +- 0.45908714859371735 +- 0.4334712075177764 +- 0.3795680713984166 +- 0.34817581172013873 +- 0.3734548370959512 +- 0.3816584282533019 +- 0.39377691419529565 +- 0.3876109330918272 +- 0.43323628062537756 +- 0.46656660138497363 +- 0.5310225538613316 +- 0.5891858411062593 +- 0.6052720367655612 +- 0.5262269780371837 +- 0.45769545305338 +- 0.4136530580755738 +- 0.31759421793561426 +- 0.2394854849662659 +- 0.21680224704687373 +- 0.2009661608520928 +- 0.2203296289363477 +- 0.23255634272404396 +- 0.2781149060635356 +- 0.3294360285470758 +- 0.33202894885764617 +- 0.4015727373002208 +- 0.41184303244236603 +- 0.4370786813167544 +- 0.506992749265105 +- 0.47735099369088063 +- 0.5075339087338773 +- 0.5506711388131514 +- 0.5386319460778062 +- 0.5437792371862071 +- 0.6163054690676528 +- 0.6158958971234606 +- 0.5803686797492862 +- 0.5341190163904829 +- 0.5095178529127752 +- 0.38945495951095027 +- 0.3130209916428544 +- 0.26159942808403663 +- 0.2441069245533393 +- 0.23955959952337288 +- 0.25085032388633505 +- 0.28138715263498487 +- 0.34287928877760576 +- 0.35382319130599166 +- 0.3940103495243208 +- 0.4084097591202219 +- 0.4149468188513167 +- 0.45310508278532685 +- 0.5026458650847629 +- 0.49462169370133086 +- 0.4829900437837201 +- 0.505718426351838 +- 0.5340694614810613 +- 0.5841653486078316 +- 0.6744805771185679 +- 0.677757539896975 +- 0.6270177944932163 +- 0.5455614752071896 +- 0.5140062101630081 +- 0.4403006074918988 +- 0.3368590342084051 +- 0.2636197853800635 +- 0.2539836504156835 +- 0.2612892389037835 +- 0.2658160706096605 +- 0.2728581080131301 +- 0.3790304340985272 +- 0.4285042676765668 +- 0.4615203724438247 +- 0.429568368180809 +- 0.4181790673615222 +- 0.4185483601493623 +- 0.4504522897070961 +- 0.5011032911964105 +- 0.5062560256410551 +- 0.476731663349799 +- 0.49782337546979283 +- 0.5519611398327899 +- 0.6067854704447224 +- 0.6209007285649858 +- 0.6273296117943061 +- 0.5424352733531579 +- 0.5129036633084707 +- 0.4207641378574394 +- 0.3183367212031076 +- 0.24821756280190474 +- 0.22265422859435696 +- 0.21590514580604844 +- 0.21991272184166985 +- 0.26097557576337804 +- 0.34054954478575156 +- 0.39467458203835143 +- 0.40098246046121977 +- 0.41868939519430426 +- 0.35849218654926024 +- 0.37225075972989285 +- 0.3935849395224076 +- 0.42973157451181465 +- 0.4377980892795042 +- 0.4159592113566478 +- 0.44268990083473636 +- 0.5172961026314407 +- 0.5686812377300907 +- 0.5995904074367202 +- 0.5503812524787737 +- 0.5306155103719873 +- 0.5127608103273265 +- 0.4127791560262369 +- 0.32016188341032176 +- 0.2492154277237902 +- 0.21718689017048887 +- 0.21217615928869654 +- 0.21461875775458902 +- 0.25125245861732004 +- 0.3007999950359378 +- 0.3992563582912109 +- 0.3875834935306728 +- 0.41119595906426515 +- 0.39845589663681547 +- 0.3974791189086096 +- 0.3801688701127184 +- 0.44092134072443495 +- 0.40305073155950055 +- 0.45297928360140977 +- 0.49722593669229254 +- 0.5307042565347595 +- 0.5674011495845739 +- 0.5554692682810102 +- 0.5444601992520134 +- 0.5097312864173215 +- 0.5114171053460556 +- 0.40070022027276103 +- 0.3221169885117568 +- 0.25647856072942304 +- 0.22110848516613302 +- 0.2316514709136545 +- 0.22420553824196562 +- 0.24608896346043171 +- 0.31735440103404194 +- 0.3892053015526797 +- 0.4652463425226483 +- 0.44499218048830547 +- 0.3925948669421844 +- 0.3782089655555987 +- 0.4058785829683433 +- 0.4165787902106656 +- 0.4284475519878681 +- 0.4711988630201365 +- 0.49419514086979693 +- 0.5006494187935667 +- 0.5698418432644167 +- 0.6337804401702489 +- 0.5987957169994972 +- 0.5268340955057783 +- 0.4899511485420898 +- 0.4458215358758339 +- 0.30797069786247133 +- 0.24991109357022825 +- 0.20629660077734463 +- 0.2043590871789573 +- 0.20428245349997654 +- 0.23786157767635624 +- 0.30842167004427606 +- 0.36924772362572406 +- 0.4079111094194727 +- 0.37822332314354 +- 0.378260768236493 +- 0.4060159443033959 +- 0.4085011704830166 +- 0.4281166984458442 +- 0.4497351562161379 +- 0.4682642010213116 +- 0.5107302659623612 +- 0.5546144797998164 +- 0.5923329880721984 +- 0.5711225952656613 +- 0.5998168855052046 +- 0.5480775390546513 +- 0.49945906733742307 +- 0.44447698479191833 +- 0.36415119774501215 +- 0.23899667764595933 +- 0.20931232479296832 +- 0.20788311670734091 +- 0.20980139215332308 +- 0.22023644085529082 +- 0.2583855967384321 +- 0.3035803250844487 +- 0.3492060762982042 +- 0.3886086031868881 +- 0.4153858643392716 +- 0.4326314682802953 +- 0.45642794244932405 +- 0.4598098460319936 +- 0.49709909603169894 +- 0.525833843932607 +- 0.5475763681443175 +- 0.5838420438498497 +- 0.6308305069994536 +- 0.6498269484008878 +- 0.6240396423020171 +- 0.5685862721760196 +- 0.5508588364202315 +- 0.41680604469174776 +- 0.33868445121487867 +- 0.24575872741457125 +- 0.24702381549661687 +- 0.23596770892476163 +- 0.2381687568471402 +- 0.26003208936249966 +- 0.30637013499890037 +- 0.35412332816526904 +- 0.3547171739768541 +- 0.3694886796242279 +- 0.415141853011959 +- 0.4234739925930379 +- 0.4475491098977343 +- 0.5175155462694347 +- 0.5182807365690021 +- 0.513783607370912 +- 0.5703981926410735 +- 0.6294756668453301 +- 0.6614004624397135 +- 0.6461772928734791 +- 0.6134067714844564 +- 0.5342211094371919 +- 0.5441097400514564 +- 0.45332924489843907 +- 0.32519740827087223 +- 0.30278879912144857 +- 0.26243066158439016 +- 0.24699265774953202 +- 0.2343988716166565 +- 0.23687642101847042 +- 0.28316802361540355 +- 0.3491073188519464 +- 0.3747187919701793 +- 0.3890871047232753 +- 0.41290509900561806 +- 0.45443879481665983 +- 0.4929025389711811 +- 0.5019931159083448 +- 0.47264337038308346 +- 0.49243370847420165 +- 0.5107282817831765 +- 0.5584970852440839 +- 0.5859448769401795 +- 0.5651306509100127 +- 0.5860949709026765 +- 0.5338273248551181 +- 0.49231192410933555 +- 0.43505245046457625 +- 0.3287149091731434 +- 0.2743847702855509 +- 0.22602304225408348 +- 0.2059104371271847 +- 0.19767188192663057 +- 0.20775901452341292 +- 0.25448512503652193 +- 0.32974390957168903 +- 0.38734562827835 +- 0.3774859730478955 +- 0.39329381868676694 +- 0.4229069483313292 +- 0.4528558235625633 +- 0.4823360012009241 +- 0.507667449070836 +- 0.4968263714391215 +- 0.5138052635955999 +- 0.5675699096019845 +- 0.6027586545681461 +- 0.6060591957933497 +- 0.585894206697827 +- 0.544334658764567 +- 0.5262739984004087 +- 0.4332083988367571 +- 0.3462408267986675 +- 0.2512009880628941 +- 0.2265696393741737 +- 0.20227367075259078 +- 0.2022177430399118 +- 0.2245865914588877 +- 0.2615570985637655 +- 0.3474717472325389 +- 0.3873837576879552 +- 0.3529023420253835 +- 0.3873451268153208 +- 0.435361894450992 +- 0.45988418392043595 +- 0.46044806866323795 +- 0.4919655206496782 +- 0.5053917867501093 +- 0.5098437657209746 +- 0.5325838348890153 +- 0.5819035330195443 +- 0.5926266207104269 +- 0.5727983008138321 +- 0.5410903350119668 +- 0.5135355914424402 +- 0.45587649071564684 +- 0.34129003759078275 +- 0.26509626389492713 +- 0.22910239652335834 +- 0.22312293393277258 +- 0.2247757932561767 +- 0.26114685970462365 +- 0.2904250384346365 +- 0.34171372713932147 +- 0.40520000702113973 +- 0.38267814822502855 +- 0.3912306410839914 +- 0.4136654780857965 +- 0.4400149343483738 +- 0.487625128887015 +- 0.4957851619443499 +- 0.5117721526025449 +- 0.5289228431351056 +- 0.5338736113890485 +- 0.6013258926633094 +- 0.6131472786256454 +- 0.5857387118469151 +- 0.5620711552619346 +- 0.5115425928228099 +- 0.45509528202401206 +- 0.35481754763750756 +- 0.27591739436173796 +- 0.24517601648505646 +- 0.24099927014035802 +- 0.23779097070179808 +- 0.24299234710032716 +- 0.2873867009795058 +- 0.3734575712240063 +- 0.3815465321281634 +- 0.3611134627555742 +- 0.3973509907975133 +- 0.4355672854612708 +- 0.4305628024680261 +- 0.4622465719476025 +- 0.4546498768995808 +- 0.45545644016744885 +- 0.4778144487302097 +- 0.533958139985263 +- 0.5704186912601419 +- 0.5619881702193943 +- 0.5415685360451173 +- 0.5047531693526397 +- 0.5026208670942519 +- 0.4024062064832037 +- 0.33019668537235836 +- 0.26529719115532413 +- 0.24537846693205875 +- 0.25624489714810345 +- 0.25342997961728014 +- 0.2702852772380647 +- 0.3244719953017751 +- 0.3538686210950823 +- 0.4265841173124562 +- 0.4443703115901268 +- 0.4350317903846543 +- 0.4771656075425171 +- 0.4506662319596008 +- 0.4658571800514819 +- 0.5032804765573283 +- 0.5086041732025198 +- 0.5482064312132442 +- 0.6022306016203869 +- 0.6395728028049152 +- 0.6362057351972064 +- 0.6173154954856924 +- 0.5504615192220531 +- 0.4943387934261431 +- 0.42595100843540623 +- 0.326576565333217 +- 0.25665479176483896 +- 0.23598052753696966 +- 0.24377861671255754 +- 0.21825704337891083 +- 0.23062566105054097 +- 0.25132702615051533 +- 0.29583545079966 +- 0.3391365614732232 +- 0.3826575739131106 +- 0.43893605974496136 +- 0.4639528721604637 +- 0.45240946348616456 +- 0.5016578924135053 +- 0.5176616039388272 +- 0.511968862991637 +- 0.5327083428877872 +- 0.567783053819791 +- 0.6322049699031971 +- 0.6612991070778919 +- 0.6501545871524145 +- 0.5735326927006437 +- 0.5486359471150717 +- 0.45660147701176684 +- 0.35327328092263577 +- 0.27517322813564665 +- 0.25220521993327943 +- 0.21279095797225503 +- 0.21267892306842043 +- 0.23265346444665905 +- 0.26907250409018335 +- 0.38989358336448154 +- 0.402780756107569 +- 0.3902964276135531 +- 0.42929097113301473 +- 0.46328772744033836 +- 0.4671752211675163 +- 0.4816186912239508 +- 0.5049257602192775 +- 0.5268711146263161 +- 0.5384934000105582 +- 0.6071469565755147 +- 0.604626387063026 +- 0.6014672867517982 +- 0.634689157490223 +- 0.52557953288563 +- 0.5475625051045906 +- 0.4864051299798686 +- 0.35712879164033745 +- 0.2811271748913815 +- 0.2306753125525643 +- 0.22742928446085647 +- 0.23426372132453005 +- 0.26635239637186026 +- 0.32406622009139724 +- 0.4077677736141522 +- 0.42355141653603207 +- 0.3969949626705832 +- 0.38269244448969575 +- 0.3744357685355924 +- 0.43188029426453445 +- 0.4349142874342064 +- 0.4210095601792917 +- 0.4748922979797315 +- 0.4958136929752694 +- 0.5459274336370386 +- 0.5969849040061902 +- 0.6355096890823302 +- 0.6619406919629789 +- 0.5993324484483281 +- 0.5501022178581709 +- 0.4764794424075821 +- 0.37793035981663514 +- 0.30225752536586487 +- 0.2450481696514706 +- 0.2310790706024245 +- 0.2124891906697904 +- 0.21716678005841802 +- 0.28624244638271024 +- 0.37804640859510436 +- 0.40032312683262905 +- 0.3616830733149243 +- 0.4179643146405047 +- 0.4380576078056719 +- 0.46494748275324643 +- 0.5065409510714658 +- 0.5412136627824612 +- 0.48638597200970674 +- 0.5429102232644736 +- 0.5919163091233881 +- 0.6651718485791154 +- 0.6562936379139183 +- 0.6086280075758949 +- 0.5867034831180225 +- 0.5618940669001152 +- 0.5121116856191045 +- 0.3589334953810566 +- 0.27566408185590013 +- 0.2321345033905263 +- 0.21878190877643763 +- 0.19174644141211356 +- 0.21069897839262963 +- 0.27142090529699403 +- 0.3535676699857224 +- 0.3784251829969336 +- 0.3864023917538189 +- 0.36976878367154853 +- 0.43949767602603634 +- 0.4622534241655326 +- 0.46319356662628264 +- 0.5020314977948587 +- 0.5485017386947261 +- 0.5762572660325388 +- 0.6235231499648894 +- 0.6396148326454147 +- 0.6320375357461233 +- 0.6296462413894395 +- 0.570248076272677 +- 0.5626612537096117 +- 0.5159920045569267 +- 0.40690669051278033 +- 0.2869897338368722 +- 0.2595003365768808 +- 0.24351222840418812 +- 0.21388385484244365 +- 0.22431795017261352 +- 0.2658981272650781 +- 0.3400796958392249 +- 0.42254674338454956 +- 0.40766434131435175 +- 0.40950840852711107 +- 0.46122969656051904 +- 0.5021139303502714 +- 0.5366930672357842 +- 0.5761791371639218 +- 0.557670906343646 +- 0.544608286972446 +- 0.5848322801068504 +- 0.6141119795927381 +- 0.6075901000988437 +- 0.5590920527436364 +- 0.597904200210486 +- 0.562647818498728 +- 0.5215945277062121 +- 0.35709990579883966 +- 0.26687804804764254 +- 0.22803281411577855 +- 0.21305285213544714 +- 0.20060961893138884 +- 0.21758196427625281 +- 0.23200291003828338 +- 0.2827203946315466 +- 0.33567313277363103 +- 0.4156347658818986 +- 0.431394282590531 +- 0.444957437087329 +- 0.49434980415020857 +- 0.49829038848196844 +- 0.550601974389604 +- 0.572949640851632 +- 0.5770116747201106 +- 0.6543569511924494 +- 0.6448189801298755 +- 0.640246970436397 +- 0.6270910628934887 +- 0.5604509030503234 +- 0.534047917657936 +- 0.45501835944292934 +- 0.35468829100491406 +- 0.2854736351526624 +- 0.2343713822104593 +- 0.21042931604367565 +- 0.20936316832133023 +- 0.21627206912223615 +- 0.23875980670906927 +- 0.28174805762609345 +- 0.3236780575402441 +- 0.3796065112040108 +- 0.40424189016124773 +- 0.45116447132175524 +- 0.5155220244093677 +- 0.5712679288848225 +- 0.553347630073551 +- 0.5403755084883785 +- 0.5199937585264179 +- 0.5699515133287292 +- 0.632876975052717 +- 0.6291015590294362 +- 0.6047727991114309 +- 0.5724590202074201 +- 0.5561242227863806 +- 0.4816023380380926 +- 0.3793596730043724 +- 0.3051065768286106 +- 0.2618074679255982 +- 0.24098032984370013 +- 0.2209938421433672 +- 0.2324819586187739 +- 0.2849814732374615 +- 0.3668938668927089 +- 0.44453453192095205 +- 0.3964618254770552 +- 0.42549403313803913 +- 0.470833086573517 +- 0.5001327865112585 +- 0.5029401219046397 +- 0.5028541145959087 +- 0.5203790241107275 +- 0.5188839079225581 +- 0.5396511769172478 +- 0.6618813316038955 +- 0.6771415475256233 +- 0.6424429973270662 +- 0.5869975149596331 +- 0.617261616117935 +- 0.5223278735113119 +- 0.378138272623372 +- 0.2857805537903806 +- 0.24028657929003236 +- 0.20107784514591337 +- 0.19442500539540364 +- 0.2071718028445211 +- 0.24092201343364253 +- 0.320951122245647 +- 0.34958850939202285 +- 0.3909340483064789 +- 0.4081810882141465 +- 0.4194143328012471 +- 0.4544592248057393 +- 0.4877504483456436 +- 0.5054276972846524 +- 0.5347421664455798 +- 0.5545488230057456 +- 0.5931676886304611 +- 0.6051301610068092 +- 0.6069905847085033 +- 0.5940655952470554 +- 0.5459799166778749 +- 0.5607871021477192 +- 0.4774286351230237 +- 0.35652925486979864 +- 0.28528363475894447 +- 0.23783184839953628 +- 0.1995599613839308 +- 0.19399134624919498 +- 0.20827787404224643 +- 0.24392831465910736 +- 0.3268371046729011 +- 0.36166456092839455 +- 0.3638459169781467 +- 0.39673339606849023 +- 0.4466264009825375 +- 0.45622853833586613 +- 0.5160398416749871 +- 0.5251132970156619 +- 0.5303684322627769 +- 0.5383397586777438 +- 0.5993634312479492 +- 0.631637768778408 +- 0.6480876534541535 +- 0.5932744844120402 +- 0.5492250825076957 +- 0.5522911852306048 +- 0.4925811685221986 +- 0.3642621255743087 +- 0.29105900052942874 +- 0.25490132798016224 +- 0.21879333023099734 +- 0.20210313029679997 +- 0.20923583737453869 +- 0.2524920990067954 +- 0.3139391083683152 +- 0.36015705087054356 +- 0.37293304703480595 +- 0.37632390900555207 +- 0.39372676846293464 +- 0.4715652670400269 +- 0.48899117970460454 +- 0.47215651341732995 +- 0.4548948264724121 +- 0.49894876854909703 +- 0.5455561277808657 +- 0.5919168436146786 +- 0.6193551072017461 +- 0.587671625867567 +- 0.5749969017747801 +- 0.5298069526601157 +- 0.4544406694909342 +- 0.36426025864557643 +- 0.2669589692469149 +- 0.22991873676347174 +- 0.2018642215217085 +- 0.1949586731559159 +- 0.21897954907137052 +- 0.252563212434056 +- 0.31788102489561537 +- 0.3539390718674565 +- 0.36396006225269206 +- 0.39950971418203224 +- 0.40501774055503365 +- 0.4473605716852242 +- 0.5557250801701447 +- 0.5102403153319879 +- 0.5126655516091374 +- 0.5153501040621565 +- 0.5926651471491095 +- 0.6276845588861215 +- 0.6551664710347905 +- 0.5757025380839722 +- 0.5270450518703578 +- 0.5272935189257519 +- 0.4498726901274236 +- 0.3483021726210872 +- 0.2641620218459556 +- 0.22967964923951326 +- 0.21343041634722196 +- 0.21286261720115907 +- 0.21754032508269872 +- 0.2378068456486824 +- 0.26741330807083846 +- 0.32429945720728404 +- 0.3938956000882713 +- 0.4272178987134067 +- 0.5337426027485622 +- 0.5461996311534196 +- 0.5438820181289028 +- 0.5296600929233397 +- 0.576056546173565 +- 0.5983773070165689 +- 0.6357130598457743 +- 0.6622116618314605 +- 0.6735944335785453 +- 0.6131655358481111 +- 0.5789276070914066 +- 0.5358759090525651 +- 0.5237444843367348 +- 0.4022877430168128 +- 0.32407696010417164 +- 0.2660896420252778 +- 0.23612622747929757 +- 0.20569303215085755 +- 0.20905571973059603 +- 0.25027581289377915 +- 0.2742854692588829 +- 0.3038622116089804 +- 0.38643961410957167 +- 0.45168184130347455 +- 0.4892587417381695 +- 0.4948773771777064 +- 0.5192855170907557 +- 0.5323027824126421 +- 0.5524510546321053 +- 0.5660158694671067 +- 0.6070512501960497 +- 0.6581207472267988 +- 0.6362078612612367 +- 0.6206583063056599 +- 0.549113454160886 +- 0.5514928151276173 +- 0.4957209929935345 +- 0.3780657887460444 +- 0.28440445803255243 +- 0.24477224218740737 +- 0.22448259486858912 +- 0.20808433705588053 +- 0.22431783787216855 +- 0.27069182235069666 +- 0.334493281935493 +- 0.39033408189759644 +- 0.3547444383486431 +- 0.383077178358417 +- 0.4084239793325439 +- 0.48335123001267305 +- 0.5021592835417623 +- 0.5012908320811938 +- 0.5191327458466554 +- 0.5577800819158863 +- 0.5370175389521924 +- 0.5922712367204807 +- 0.5974687247009829 +- 0.5589258268065005 +- 0.5206155447429094 +- 0.5489574260829295 +- 0.45078770743462515 +- 0.32379293442816026 +- 0.26258407885626023 +- 0.2198309838875618 +- 0.20944249337523146 +- 0.1970921356475792 +- 0.2054447431761727 +- 0.2569009508542573 +- 0.32201440311292423 +- 0.3634965841591387 +- 0.37831630011562684 +- 0.35710459250268056 +- 0.3701401807658448 +- 0.4027145728043421 +- 0.4252709537413291 +- 0.44188920692245515 +- 0.4452763098396116 +- 0.5179381775859668 +- 0.5042112980071202 +- 0.5959660697226411 +- 0.6113101735203638 +- 0.5848589460528942 +- 0.5461462071528147 +- 0.5544588054380244 +- 0.4232837955484713 +- 0.3322293192605196 +- 0.2777657807993055 +- 0.24046340965789587 +- 0.2102124019007539 +- 0.19499132070380207 +- 0.2133212080447641 +- 0.24567437589319827 +- 0.3287292266897962 +- 0.3515081325444626 +- 0.3513378966028088 +- 0.39423467966812953 +- 0.41518369934324934 +- 0.4445736139185554 +- 0.5058968659452601 +- 0.49665097670745406 +- 0.5327312614626614 +- 0.5926682948970499 +- 0.5827871183848438 +- 0.6407363215049924 +- 0.6635937033402397 +- 0.6305265274386977 +- 0.6024191013074214 +- 0.5713933716310632 +- 0.46580433485368666 +- 0.39797935699466397 +- 0.29367402989999086 +- 0.24635588796652158 +- 0.23169006068734707 +- 0.19941921039946323 +- 0.20711858536042208 +- 0.24510441241405445 +- 0.30070457832058806 +- 0.3295167524597459 +- 0.347267941886053 +- 0.3764190259796788 +- 0.40179218019408125 +- 0.4097993038029217 +- 0.42473696125491883 +- 0.4855186356600003 +- 0.45658208760718494 +- 0.5110130439287099 +- 0.5598757861012872 +- 0.603784083156954 +- 0.6259771030522817 +- 0.6061822525564617 +- 0.5693256343665328 +- 0.5441852520695649 +- 0.4888989806440013 +- 0.3657925446519913 +- 0.2964833567667 +- 0.2629674645526012 +- 0.2075883526166055 +- 0.19814239984677065 +- 0.20286907080166353 +- 0.22688432169373607 +- 0.30186495003669156 +- 0.3513739143324823 +- 0.3598680925168648 +- 0.36479583778907654 +- 0.3935181249872429 +- 0.44155949190306026 +- 0.46182489969505613 +- 0.47662815674234593 +- 0.4693778317807487 +- 0.511366608962062 +- 0.5560670378955909 +- 0.5990844369081321 +- 0.6094769214878069 +- 0.5626696755675673 +- 0.5395341573870642 +- 0.500386985440193 +- 0.44024509211697893 +- 0.361586685305962 +- 0.2534026291920143 +- 0.23146758921918714 +- 0.2344268803389843 +- 0.22591034290038586 +- 0.23312002758163464 +- 0.2393436461871761 +- 0.28159009390813083 +- 0.32193824751761013 +- 0.3805756735715398 +- 0.40844380391961227 +- 0.41309987481476157 +- 0.47142739099387915 +- 0.46471544629220457 +- 0.5035299713608867 +- 0.5541202123013426 +- 0.544640446105086 +- 0.5547345894027143 +- 0.583018680469766 +- 0.5692484349649299 +- 0.572198036670153 +- 0.5372844848530045 +- 0.4930002832285134 +- 0.43817238338030984 +- 0.35281131795953063 +- 0.29016935733480154 +- 0.254467313720022 +- 0.2223038117008453 +- 0.23187929550032618 +- 0.2317639571737411 +- 0.2581381793982741 +- 0.30368355366858735 +- 0.3339975008325511 +- 0.37826239942912304 +- 0.4019077811540143 +- 0.3951218750038378 +- 0.4293506195020205 +- 0.48345420506710723 +- 0.48468648730606234 +- 0.5264086041260899 +- 0.5398106093340241 +- 0.5857719878312038 +- 0.6385280996854366 +- 0.6441602496694925 +- 0.6280604714443417 +- 0.5745718572474258 +- 0.5532048261318646 +- 0.45848760710781095 +- 0.338066378409451 +- 0.2537365813215703 +- 0.22584824751575944 +- 0.20556480700107027 +- 0.2075426406650873 +- 0.229536280176601 +- 0.2772361389533903 +- 0.3476571768563851 +- 0.3824283386768712 +- 0.394285678715994 +- 0.38578956403378317 +- 0.42374037486424765 +- 0.40887990841272476 +- 0.4184322762767065 +- 0.44458647248110145 +- 0.45726479541439385 +- 0.4852076084801879 +- 0.5479103155802916 +- 0.6003215906911449 +- 0.6452972077225618 +- 0.5929034985954454 +- 0.5695039994355429 +- 0.5020770021969082 +- 0.44803735112335147 +- 0.35275501997954534 +- 0.26569530242422795 +- 0.24453169411660106 +- 0.21721500495386648 +- 0.21333347482543114 +- 0.24111368641502365 +- 0.29720246879884443 +- 0.4266359113357963 +- 0.40140343277055496 +- 0.3854567597796634 +- 0.3927620053220073 +- 0.4197270237631232 +- 0.45977677619940643 +- 0.4846496629383264 +- 0.5056111938076027 +- 0.4956566971883442 +- 0.5601531343587867 +- 0.5335858902581446 +- 0.5618829368524104 +- 0.586496045241874 +- 0.5573990142408425 +- 0.5001060473301902 +- 0.5282267841838965 +- 0.4480761118065131 +- 0.3507978948949629 +- 0.28095793830902294 +- 0.23340868863208272 +- 0.20985502673552406 +- 0.20555403295221422 +- 0.2155781114579273 +- 0.26930244465846886 +- 0.3065198353147287 +- 0.35422582763352783 +- 0.38283334624589405 +- 0.4065127403505732 +- 0.42818770190227234 +- 0.42813385201053666 +- 0.4521732904047745 +- 0.47696813845314434 +- 0.4659430196851067 +- 0.4978732177950027 +- 0.5617229608426527 +- 0.636572999378701 +- 0.6079290211415961 +- 0.5566655782847716 +- 0.5742282061753484 +- 0.5234728264909819 +- 0.477310076508727 +- 0.3541813640525679 +- 0.28433688299486876 +- 0.2532779949349548 +- 0.22823517563443693 +- 0.23268189198273323 +- 0.24088181984305929 +- 0.2771188887706333 +- 0.32384646576663223 +- 0.4002375981078437 +- 0.3689826350642451 +- 0.37827030819581925 +- 0.37369783458601363 +- 0.40761693044496466 +- 0.45716027233672457 +- 0.44906538851908157 +- 0.47245008392865173 +- 0.4902276737637403 +- 0.5218735698086696 +- 0.6056097807258518 +- 0.6272513428305104 +- 0.5476068730770309 +- 0.49816253170870234 +- 0.4987635201735614 +- 0.47931200527561035 +- 0.353525866824609 +- 0.2763987757051677 +- 0.22788917759772392 +- 0.22131216509036802 +- 0.21975208868876364 +- 0.22278419405704625 +- 0.2802655805048943 +- 0.34117464381020457 +- 0.3769589377804076 +- 0.3529220219519035 +- 0.3498571221737866 +- 0.3852672702414479 +- 0.4044174223478667 +- 0.45260066063220705 +- 0.4343226553652739 +- 0.45003075678576215 +- 0.4795833093437476 +- 0.542884689263954 +- 0.5661299299795158 +- 0.5976662724737136 +- 0.5768227695975603 +- 0.5447629911152077 +- 0.4932431200540931 +- 0.4300950824425171 +- 0.3318903959423444 +- 0.26210788498249543 +- 0.2305419780837869 +- 0.205938506186752 +- 0.19101408626908883 +- 0.19582165430171047 +- 0.2169295041103162 +- 0.24409671944163536 +- 0.315610489431056 +- 0.3814179573471352 +- 0.3950952466514241 +- 0.4424789941777726 +- 0.4842070737459827 +- 0.4821766650337302 +- 0.4969211863371035 +- 0.5281429667943184 +- 0.5410984478644387 +- 0.5747269767455501 +- 0.5679200949797911 +- 0.5780141499161159 +- 0.6041441301951197 +- 0.5363485415367186 +- 0.5392907526374625 +- 0.4061984434787863 +- 0.366788719057137 +- 0.25894965638707945 +- 0.22140630519238327 +- 0.2006220809849698 +- 0.19285479615817955 +- 0.19890192967122652 +- 0.22332907623550002 +- 0.2708954252114097 +- 0.32008801103290024 +- 0.36992924538956423 +- 0.41987045749931395 +- 0.5024546391308569 +- 0.5320804566181602 +- 0.4862787191400214 +- 0.506502374580196 +- 0.5130987023649307 +- 0.5749720021737997 +- 0.5896423020428124 +- 0.6321980519393595 +- 0.6785040202544143 +- 0.629693434964651 +- 0.568179053509881 +- 0.5201660589325696 +- 0.43531933757396174 +- 0.3412818732066711 +- 0.2572717336649671 +- 0.22061387814592945 +- 0.20008449348655194 +- 0.20100007667894537 +- 0.20916231492444934 +- 0.2395686988571885 +- 0.31550861808858455 +- 0.33573235544117047 +- 0.3372159347609233 +- 0.3696088102352575 +- 0.3860140228956571 +- 0.4338934196683281 +- 0.4549283263425047 +- 0.43817393671835664 +- 0.4544709314204968 +- 0.4819616899872454 +- 0.5494228394986121 +- 0.5807039675109806 +- 0.6188677051566969 +- 0.5917311434295397 +- 0.5738241246691448 +- 0.5038533105990869 +- 0.462193170927199 +- 0.31564965184218585 +- 0.26332755451178036 +- 0.2222544954043455 +- 0.19854679939338749 +- 0.19549399801300715 +- 0.20061948424510498 +- 0.24408180605091864 +- 0.3090181626212186 +- 0.37489604557442235 +- 0.36651453998196615 +- 0.4015887153698837 +- 0.3917012143173411 +- 0.4360492081024263 +- 0.4741973622893976 +- 0.47217639022402874 +- 0.4458919618585065 +- 0.47720930745866524 +- 0.5337133537911652 +- 0.5986512723841605 +- 0.5603718027453577 +- 0.561478452698965 +- 0.5244279868160665 +- 0.5225996422795757 +- 0.4366089716419415 +- 0.3632011055117628 +- 0.2943725803012431 +- 0.2431303924268933 +- 0.20944999224216068 +- 0.20414734714199315 +- 0.21021064123530694 +- 0.25517607843773943 +- 0.349312761150011 +- 0.38278673228438626 +- 0.4098548615734335 +- 0.39196291833276675 +- 0.43943674929564763 +- 0.4560277517178552 +- 0.47649714299654516 +- 0.4576012575568705 +- 0.459803683721786 +- 0.5053516331026024 +- 0.5508720407022831 +- 0.580370359974112 +- 0.6156198245329266 +- 0.5869260835461488 +- 0.551684724357951 +- 0.5088677636631863 +- 0.4366179309347681 +- 0.3511404300869027 +- 0.28353663261201284 +- 0.2621297221105222 +- 0.22116013417138203 +- 0.21247393981069837 +- 0.19993816782207174 +- 0.21807758842225894 +- 0.31219384940384365 +- 0.36178600072766826 +- 0.34926212651469546 +- 0.35100170745235504 +- 0.40426824691940594 +- 0.44207533788728015 +- 0.47379837607562864 +- 0.49672778206517937 +- 0.522624704401467 +- 0.5382743086440331 +- 0.5488388578990665 +- 0.601696747062112 +- 0.5884368728781115 +- 0.5730793632913376 +- 0.5458249013427537 +- 0.5106967226854991 +- 0.42082394391299066 +- 0.34240011066815546 +- 0.27091269554610814 +- 0.24324689756385884 +- 0.21175744134777166 +- 0.20810663382564681 +- 0.22533537665631936 +- 0.28748588170376144 +- 0.3574350480983062 +- 0.40548030632880305 +- 0.399963996768163 +- 0.439530282901237 +- 0.4693517197612189 +- 0.5113450229204382 +- 0.49594474408537037 +- 0.5149880132444384 +- 0.5094354214643482 +- 0.5246967952355488 +- 0.580572945903996 +- 0.6209328138612039 +- 0.6331966456050581 +- 0.5771692985118727 +- 0.570644467035969 +- 0.5487279960793644 +- 0.4369807013087958 +- 0.35776323566181767 +- 0.2813129058148349 +- 0.24162071736780358 +- 0.23564715602698527 +- 0.24044423681257043 +- 0.254911337515599 +- 0.2695523053536281 +- 0.3127608261101447 +- 0.32567109439456776 +- 0.3844734495624907 +- 0.43561179682470474 +- 0.4501163543229389 +- 0.4688553870686373 +- 0.5467894858160991 +- 0.5356432424936662 +- 0.552045272689315 +- 0.575946017466366 +- 0.6405909410279402 +- 0.6880391650731541 +- 0.6668428839818493 +- 0.6518138372008903 +- 0.6036660066173907 +- 0.574188433390414 +- 0.48617512926931705 +- 0.3767356297573837 +- 0.2900176528230012 +- 0.2400020537582567 +- 0.2261326902773015 +- 0.2182193751297634 +- 0.23129568445160692 +- 0.24171016614837135 +- 0.2805057680260065 +- 0.30389017062369234 +- 0.35119833582065596 +- 0.39371347947824553 +- 0.44804592221979556 +- 0.4961733615148313 +- 0.538696641700347 +- 0.5288032791045207 +- 0.5543855782973102 +- 0.6210545793651486 +- 0.6475252131115281 +- 0.602387050336114 +- 0.6138651595118404 +- 0.5891666544167805 +- 0.552502625641987 +- 0.510875154553212 +- 0.43482629367086834 +- 0.34230000312437603 +- 0.2944204083500166 +- 0.2623338090107765 +- 0.24698602712745948 +- 0.2477738900895262 +- 0.2648785828547837 +- 0.32446969242659024 +- 0.4111994775870528 +- 0.41480983064781884 +- 0.4260124976884115 +- 0.42542802419540315 +- 0.40863964750128096 +- 0.4310001410777637 +- 0.4552312658983743 +- 0.47860789611699556 +- 0.45657202847251177 +- 0.48578747042225956 +- 0.5603315569007871 +- 0.6029280218386869 +- 0.6312616422489216 +- 0.6243461174644996 +- 0.57182796902279 +- 0.5566181476569748 +- 0.5004725288055022 +- 0.3611329464555494 +- 0.2718298943587623 +- 0.23736693477090479 +- 0.2110347733835641 +- 0.198622622672569 +- 0.21373232489346966 +- 0.2618745499971901 +- 0.36167935057283906 +- 0.3849165718410955 +- 0.34998099338921684 +- 0.40116857729110916 +- 0.42564646849393467 +- 0.46537316927037453 +- 0.4701490204031314 +- 0.49006185119619433 +- 0.5004539943019026 +- 0.5402873913561438 +- 0.5908593673900435 +- 0.6114605915260773 +- 0.6071816698574538 +- 0.5817019246028347 +- 0.5808767945472396 +- 0.5458708007006932 +- 0.47199149143085367 +- 0.36413024261744914 +- 0.28598996916749075 +- 0.2449999014702038 +- 0.2146499731101394 +- 0.20462470126886667 +- 0.20374282959548168 +- 0.23691905314226056 +- 0.3188873193595468 +- 0.37704562201779174 +- 0.4417065345621727 +- 0.3816160583835313 +- 0.44846036066949124 +- 0.42917556042196603 +- 0.4478475121237262 +- 0.47782840202928734 +- 0.5178040070969614 +- 0.5497927754644961 +- 0.5615466408445362 +- 0.6052337846010278 +- 0.6103072870466569 +- 0.5751238216533674 +- 0.53931888029153 +- 0.5247716688775748 +- 0.46647591513246767 +- 0.34002924562513137 +- 0.29306460826682346 +- 0.24344312822766268 +- 0.2523231063990989 +- 0.2203113719432125 +- 0.2408701407864434 +- 0.2804266880140869 +- 0.36714012309484123 +- 0.39745159609677533 +- 0.3862824049997051 +- 0.3698785651659127 +- 0.40565652065050783 +- 0.4354311222637395 +- 0.43077534199890716 +- 0.42123586766344545 +- 0.4254915234086385 +- 0.47702821553591057 +- 0.4973998089524407 +- 0.5962450380032017 +- 0.5980995453215865 +- 0.5312733925428497 +- 0.4929800461285457 +- 0.47759306558404613 +- 0.43912502461787806 +- 0.33090089834900416 +- 0.2691480901198535 +- 0.24764997084776771 +- 0.2305506763848871 +- 0.22684827990397066 +- 0.26251852567267603 +- 0.3322449469858083 +- 0.4217628229185214 +- 0.42226202328963647 +- 0.39392151776142315 +- 0.35781428699076473 +- 0.348949392868398 +- 0.39828091654542447 +- 0.40255143267064236 +- 0.38937084773657976 +- 0.436761385462331 +- 0.4761736454433069 +- 0.5168824614471675 +- 0.5879438493420869 +- 0.5953982203686833 +- 0.5995847245953753 +- 0.5225853827434546 +- 0.5000936340596417 +- 0.41815416044656534 +- 0.3381649892105196 +- 0.24867361109734534 +- 0.22233970575100734 +- 0.20380470759738603 +- 0.20193558229346834 +- 0.21494957347365243 +- 0.2370737670152049 +- 0.28087219455291385 +- 0.3162176725986302 +- 0.3883533140993623 +- 0.4048259221438286 +- 0.4059753563167011 +- 0.4523041089120182 +- 0.48460431873483734 +- 0.5376033708553052 +- 0.547042160362896 +- 0.5671126358203781 +- 0.5931957306447369 +- 0.6529073502652835 +- 0.7040115860900211 +- 0.6440907605940696 +- 0.5571407174932934 +- 0.514602243361898 +- 0.47697013005468475 +- 0.37663960482465464 +- 0.26188704133712826 +- 0.23444599512975492 +- 0.20413974897352133 +- 0.2096448823780088 +- 0.20953487066458956 +- 0.22200031056872774 +- 0.27703510006796805 +- 0.33397863532399247 +- 0.377472274920144 +- 0.41177585719493776 +- 0.43272505178316495 +- 0.46724942289765686 +- 0.49388055314562407 +- 0.4915309439825628 +- 0.5109883946303331 +- 0.5288157952215894 +- 0.5930758400985868 +- 0.6242402032247237 +- 0.6077122872464268 +- 0.5882146011127607 +- 0.5267060744886949 +- 0.5125340015427126 +- 0.4932512855055242 +- 0.37574327755843523 +- 0.27189442133468605 +- 0.22328626952178865 +- 0.2035623734158442 +- 0.1845890985351797 +- 0.20077175126499827 +- 0.24634760261910135 +- 0.34333117334595487 +- 0.37113581831042153 +- 0.34220367077359537 +- 0.3467453994869257 +- 0.42181140919970084 +- 0.4118333063118167 +- 0.43263577480955395 +- 0.425433116482805 +- 0.4609553735200526 +- 0.4479282228821863 +- 0.5050203798370836 +- 0.5709249837045692 +- 0.6224544876245881 +- 0.5318658772770082 +- 0.4947613506372577 +- 0.4853929651326966 +- 0.41935578243749255 +- 0.3211071559959584 +- 0.2673196783511411 +- 0.23776710418362684 +- 0.20223332799754176 +- 0.1892640004586694 +- 0.20211123854423657 +- 0.2429514793693642 +- 0.32239196136156223 +- 0.377555150923697 +- 0.36303526602827035 +- 0.38975477113874085 +- 0.42641373903986657 +- 0.41056883784074055 +- 0.43729961593655786 +- 0.44703524266950734 +- 0.4660956997452739 +- 0.4666818054096851 +- 0.5012724982882237 +- 0.539181890581885 +- 0.5116303654291181 +- 0.50603940793628 +- 0.47352990476697837 +- 0.4686930511296984 +- 0.432233422318471 +- 0.3480577650683299 +- 0.2626091436058081 +- 0.22161917722179955 +- 0.19635917239360187 +- 0.20326146495850148 +- 0.21659963383510605 +- 0.2349446490852584 +- 0.3245913186118936 +- 0.35142951411199547 +- 0.3543682554802461 +- 0.33949220989875545 +- 0.34555444168240174 +- 0.3889982317675797 +- 0.41682158716719203 +- 0.4127488847293435 +- 0.3923029953395168 +- 0.42209805849829857 +- 0.515626969130675 +- 0.5199310345844383 +- 0.521698599698578 +- 0.5031899893665683 +- 0.5079860759451004 +- 0.46668657478264197 +- 0.36881940739270713 +- 0.28821814114441086 +- 0.24795585922530666 +- 0.23619438814801177 +- 0.21585546821041166 +- 0.22893173263917208 +- 0.26604703939929486 +- 0.3180516148911435 +- 0.4213619969838808 +- 0.4667694824854022 +- 0.38812713812154676 +- 0.3994672137668158 +- 0.4016931053557352 +- 0.3985520935318092 +- 0.41680136418763586 +- 0.4233553288693693 +- 0.4732829103327519 +- 0.49988254709347435 +- 0.5581251962021345 +- 0.6106688605130521 +- 0.5989351868739746 +- 0.5600068797550255 +- 0.5217164089346283 +- 0.48774990850713695 +- 0.400032784852888 +- 0.3077600741517347 +- 0.25676337165798896 +- 0.23126936344322194 +- 0.24315312687858937 +- 0.24770750567315172 +- 0.2717102493350402 +- 0.33745506098018874 +- 0.4285420652703188 +- 0.4562041807370789 +- 0.42910514958009693 +- 0.3894058312295305 +- 0.389309596193699 +- 0.39399752552858724 +- 0.3746274497013434 +- 0.37924629999605053 +- 0.43443425086622495 +- 0.4648908879630479 +- 0.48225375545053584 +- 0.5551360318891025 +- 0.558670871087903 +- 0.5865638136147588 +- 0.5161475876680247 +- 0.47272662745870686 +- 0.3707443133722151 +- 0.33542833282392676 +- 0.2673348656115361 +- 0.22683244124680493 +- 0.2171939589060568 +- 0.22336372495980203 +- 0.24363952275790796 +- 0.28132806400563176 +- 0.3251531113465797 +- 0.37525207840945796 +- 0.41002154976013216 +- 0.40119453055146487 +- 0.3885650585318643 +- 0.4434172791511438 +- 0.44856415039831177 +- 0.4846989697267121 +- 0.497690086387116 +- 0.5128153528879629 +- 0.5878050192956494 +- 0.6011004076803685 +- 0.6373137127069612 +- 0.5635786679798461 +- 0.5519788314066557 +- 0.5479745972108803 +- 0.45213013385227757 +- 0.3242108624573056 +- 0.2675749403662808 +- 0.21892504651330918 +- 0.199138587770931 +- 0.20485964308335677 +- 0.1988461158589956 +- 0.21756936047330025 +- 0.25087474044638003 +- 0.27427365720430524 +- 0.32716548317524047 +- 0.3844741386738424 +- 0.37897797862840366 +- 0.41712512633176757 +- 0.458384976005001 +- 0.4926656386448631 +- 0.4864088162154757 +- 0.5219068859527937 +- 0.5691645632554387 +- 0.6025839966635435 +- 0.6005183928312108 +- 0.5603789325405131 +- 0.5196436139838658 +- 0.4926249891670156 +- 0.4651267861345352 +- 0.3497368886078571 +- 0.2685052234837134 +- 0.25031033178045947 +- 0.24379829951589732 +- 0.24709479217144106 +- 0.31503188898861045 +- 0.3629480799920998 +- 0.4482351710467595 +- 0.45599648174630064 +- 0.4335876573884601 +- 0.4054135505434464 +- 0.4132806348945677 +- 0.42486606440153146 +- 0.4404765191433233 +- 0.4598868839925763 +- 0.48285527678489665 +- 0.48946756029484717 +- 0.5473445149704171 +- 0.5593145320928128 +- 0.5826249613771745 +- 0.5405122993530367 +- 0.4994242717584348 +- 0.5003746358152695 +- 0.4243950307029768 +- 0.32562714242581503 +- 0.27185634264582625 +- 0.24364269251984802 +- 0.23520113770081089 +- 0.25820859093734894 +- 0.3059998717878413 +- 0.3765468956526823 +- 0.4705970783392942 +- 0.5171543012655317 +- 0.4520359920834985 +- 0.4120456599840425 +- 0.43976445071402626 +- 0.4128604031667725 +- 0.4276619228321695 +- 0.4580369321823091 +- 0.4584241714245591 +- 0.5253716492172044 +- 0.5519107103704025 +- 0.6300021977333027 +- 0.6356636004834199 +- 0.5513290771676171 +- 0.5357120388242127 +- 0.5171099287456024 +- 0.41209922349826245 +- 0.3386198838299565 +- 0.2872587855972157 +- 0.25032984375561473 +- 0.23790801384067484 +- 0.23413764482707514 +- 0.2618860631557959 +- 0.29938112803791356 +- 0.3714386049004224 +- 0.3949603176590639 +- 0.4156341551452425 +- 0.4199260009326547 +- 0.4186712316406925 +- 0.4364165913167787 +- 0.4419053842435281 +- 0.4408214127186309 +- 0.47560844816225667 +- 0.49405777881965846 +- 0.5335844494769681 +- 0.5289685470648234 +- 0.5596711145778227 +- 0.5219833254532749 +- 0.4749900834840516 +- 0.4757362228281378 +- 0.4073539046468633 +- 0.32101685296273286 +- 0.2689489131933234 +- 0.20724061730637955 +- 0.19737356308484044 +- 0.18545265364215646 +- 0.2008733176003154 +- 0.23483560888221086 +- 0.2949026703919509 +- 0.3461751007480685 +- 0.34704906579470574 +- 0.37054363401078627 +- 0.4212810230230799 +- 0.4236197746030848 +- 0.4174942368997857 +- 0.40193562938699945 +- 0.47077616086495344 +- 0.5106895474229588 +- 0.5087139817620081 +- 0.5842475034234497 +- 0.5832620032871237 +- 0.5556498677901889 +- 0.545349666702806 +- 0.5221655429936118 +- 0.44783772178777365 +- 0.34521655015038594 +- 0.2951324889150847 +- 0.2393647602635778 +- 0.271816971711764 +- 0.24770051289412023 +- 0.27548516303216014 +- 0.3230550664015819 +- 0.3723432758864937 +- 0.4499387692279813 +- 0.43054866740247816 +- 0.3923990423694827 +- 0.4089173920384151 +- 0.4009417023488554 +- 0.4266460175035005 +- 0.42435839519892876 +- 0.472427020200212 +- 0.4724812884866995 +- 0.5419287036890487 +- 0.6245401424074515 +- 0.6480301858609909 +- 0.6146005914577283 +- 0.5216805033771875 +- 0.5093548411647402 +- 0.47180460175317673 +- 0.355626145622903 +- 0.26471007276064834 +- 0.23035557408001123 +- 0.22260074622858209 +- 0.20947815855717808 +- 0.21152164986582617 +- 0.23955529146087212 +- 0.2911926546604082 +- 0.3477965067638963 +- 0.3787266864579471 +- 0.4009164495319902 +- 0.3907721341988902 +- 0.42541286385208676 +- 0.4726966770393805 +- 0.472319965352048 +- 0.4652143075136567 +- 0.45566277149643364 +- 0.47714712602251447 +- 0.543621070213196 +- 0.5445024088075823 +- 0.5323907675600447 +- 0.5345329838338965 +- 0.4837675875710654 +- 0.42804485539711534 +- 0.32799473625088454 +- 0.2608227491518778 +- 0.22366746747328187 +- 0.22058207061660043 +- 0.2172311965235638 +- 0.2493392669511841 +- 0.27459846899691204 +- 0.32931699014073007 +- 0.3748536381129739 +- 0.4398401390106055 +- 0.4122391067923424 +- 0.4208615812070642 +- 0.41852289065228965 +- 0.45968222559622696 +- 0.4702306693945389 +- 0.5487207584407536 +- 0.5348695912436278 +- 0.5567465533380345 +- 0.6044647979522839 +- 0.6008508717923922 +- 0.5783507131696356 +- 0.5110632767402487 +- 0.5114149476713644 +- 0.4297532749614274 +- 0.34419536255442695 +- 0.2785668263545632 +- 0.25035875534575414 +- 0.2526802286089264 +- 0.2583758715198947 +- 0.29515667161724096 +- 0.3374152529854263 +- 0.4384065135743266 +- 0.4617518280487026 +- 0.3871829893710877 +- 0.38643369219664436 +- 0.3995192336407679 +- 0.3638347254591218 +- 0.3685717192619262 +- 0.3975946166968835 +- 0.428140419391455 +- 0.44561747339321434 +- 0.5071819597054241 +- 0.5556849041094764 +- 0.5729333350239438 +- 0.5246113716128735 +- 0.4990154944665325 +- 0.4762988284872093 +- 0.44208113978857716 +- 0.3271233183032574 +- 0.26545628689283374 +- 0.22317470700217096 +- 0.23763203363686872 +- 0.2300002539524494 +- 0.2637316943434877 +- 0.3324341097989611 +- 0.3970566759032486 +- 0.41202338467575944 +- 0.37907722335051813 +- 0.3698664849880346 +- 0.38122009207393637 +- 0.3974920246125664 +- 0.4251601863941131 +- 0.418091315100497 +- 0.4498189036989105 +- 0.47623588298903796 +- 0.5331670524807298 +- 0.5623799424356498 +- 0.5516876133968498 +- 0.5762284540347241 +- 0.5319039103306039 +- 0.45458505882741734 +- 0.41035408626832737 +- 0.3171636062841255 +- 0.26531700306667594 +- 0.2247196397199807 +- 0.2288314225626918 +- 0.23178574150783504 +- 0.2553214946989216 +- 0.32728120655239185 +- 0.4456392995974786 +- 0.46400355103522806 +- 0.39838052603763063 +- 0.3565462770041284 +- 0.3741356263145755 +- 0.39223392965773346 +- 0.41317095823862654 +- 0.4157611794558292 +- 0.4419661101225039 +- 0.45867795576740644 +- 0.5037430387372397 +- 0.5589159276337959 +- 0.5594385785590601 +- 0.5380245745322998 +- 0.5262712321362712 +- 0.510742911722078 +- 0.4518926342080359 +- 0.3241493919713658 +- 0.27001143106589953 +- 0.2516210913039072 +- 0.2653541744525203 +- 0.2728282357986683 +- 0.3104734575394655 +- 0.38480650895553226 +- 0.4744418415604137 +- 0.5073618241123974 +- 0.4502826026480935 +- 0.38818655652792267 +- 0.3863465820139398 +- 0.37712805686846007 +- 0.4104049176681804 +- 0.42841915944486303 +- 0.4333277257533049 +- 0.4724534006609194 +- 0.5403538199848723 +- 0.5568724783685058 +- 0.5889573870898885 +- 0.5498476100551702 +- 0.5304319978107456 +- 0.5025191290332625 +- 0.4260655144764051 +- 0.2934127884031244 +- 0.26604856229511814 +- 0.2342970568966158 +- 0.2350185315252636 +- 0.2542753941852029 +- 0.29336721733784643 +- 0.3586191055105264 +- 0.449767180434889 +- 0.4691876775527217 +- 0.4579152417248417 +- 0.43417510791686603 +- 0.41764289674675814 +- 0.3912064379010775 +- 0.3794219291275047 +- 0.4064346424370303 +- 0.4195985829660914 +- 0.4474796157639248 +- 0.49940693366414074 +- 0.5348179606803055 +- 0.5410478365344632 +- 0.5241497182493869 +- 0.5138465800227543 +- 0.48690626673317017 +- 0.4408113343456607 +- 0.32869679130367596 +- 0.27292686296121443 +- 0.24076790393700867 +- 0.2571495450799504 +- 0.2657476455793828 +- 0.2920972319776257 +- 0.34761279204928264 +- 0.42495791793955523 +- 0.48810915351422857 +- 0.46823648031812143 +- 0.41660776996487137 +- 0.395900222695162 +- 0.4179982014030686 +- 0.4827681433529946 +- 0.49279649519713603 +- 0.5240400165671517 +- 0.5599111365042778 +- 0.5662849154936435 +- 0.5971620212968239 +- 0.6040668822127192 +- 0.5928596699684939 +- 0.5380232057635206 +- 0.48637650754099426 +- 0.40740196724346894 +- 0.3177756126171952 +- 0.27216431392979 +- 0.223328843854711 +- 0.22590849656079062 +- 0.23276252832516076 +- 0.267161648995651 +- 0.3175987528149289 +- 0.401592178776388 +- 0.4535996498029554 +- 0.41999821131237075 +- 0.4438978334154196 +- 0.4571223645229771 +- 0.46417568527046815 +- 0.5472099250464351 +- 0.5482201805150927 +- 0.5282018277093696 +- 0.5684668056156914 +- 0.6255544621390884 +- 0.6659614139769338 +- 0.6245099827772018 +- 0.5751815630421854 +- 0.5395070390861622 +- 0.5020868270401743 +- 0.4177538267972876 +- 0.33089818572936003 +- 0.23759792775610541 +- 0.20840907008915385 +- 0.18099191666144343 +- 0.19711451391802412 +- 0.2285201261254983 +- 0.2752160175487734 +- 0.3688653742736499 +- 0.410114894514605 +- 0.41146719872476384 +- 0.3703115160563277 +- 0.404351198413573 +- 0.44211236349832866 +- 0.4568745491135174 +- 0.4562873506701203 +- 0.49098817185694316 +- 0.5490499001942195 +- 0.5878156318222005 +- 0.6322965777687943 +- 0.6127610502698029 +- 0.549452492318616 +- 0.5288838927033391 +- 0.5200341905891391 +- 0.4343570515657395 +- 0.3228110498189565 +- 0.2582634331777567 +- 0.23696847491824632 +- 0.22882806080186655 +- 0.22157434722381708 +- 0.2328486167426708 +- 0.3027232725172332 +- 0.4006799391791511 +- 0.4393778494850071 +- 0.40682807127137155 +- 0.3712049945644342 +- 0.4343037210661098 +- 0.39853494496405173 +- 0.4041736830463753 +- 0.445991533162947 +- 0.4492645532430798 +- 0.4653976042723464 +- 0.5263239975345085 +- 0.5587857129900122 +- 0.5860909792534914 +- 0.5797038611329933 +- 0.5594308586362186 +- 0.48169847755395107 +- 0.4058713725032366 +- 0.35401808173066907 +- 0.3055494637088231 +- 0.2804684014287 +- 0.2708663756534687 +- 0.28720753863250265 +- 0.30649276660775354 +- 0.36911913958043524 +- 0.46774624976107737 +- 0.5239827157535603 +- 0.4507189456873674 +- 0.4445489822802589 +- 0.42628708563038686 +- 0.3935597921651953 +- 0.44010027492455717 +- 0.48468430594334605 +- 0.4447941821339075 +- 0.5040769707905093 +- 0.5504362118414208 +- 0.6034890165241513 +- 0.6266105535295576 +- 0.5881685291514933 +- 0.5357461582239904 +- 0.4826656652702433 +- 0.41208899543345195 +- 0.30526518971484895 +- 0.2931366473524328 +- 0.26847017157222375 +- 0.2840269952569593 +- 0.28934445352171767 +- 0.3358240421004584 +- 0.4093060404603954 +- 0.4723427508370573 +- 0.5069891187147738 +- 0.4883675529655616 +- 0.4463467424168787 +- 0.39627340340801176 +- 0.43241390883921405 +- 0.4397375104052866 +- 0.44114280407462747 +- 0.48217393832076916 +- 0.5022685170185596 +- 0.5736672087954666 +- 0.5980174128034882 +- 0.6075780024650733 +- 0.5528968811635823 +- 0.5452645344797238 +- 0.5416881505472841 +- 0.4301769330275181 +- 0.30954412003376475 +- 0.25753818767231573 +- 0.21008277381258406 +- 0.20582166886912828 +- 0.21049177019559093 +- 0.24152599717359072 +- 0.31438443570687646 +- 0.4287340332306275 +- 0.4497766395418613 +- 0.3990149506926009 +- 0.39823847555543557 +- 0.37306624084136425 +- 0.4058680186776177 +- 0.4244766627784372 +- 0.3903895860758522 +- 0.41129763206733844 +- 0.41612421427270535 +- 0.47547952525082515 +- 0.5288173111900265 +- 0.5349233964174207 +- 0.5403849615456201 +- 0.5266172760250073 +- 0.4747334200637713 +- 0.40428836780914634 +- 0.2938052957453246 +- 0.24751293881124437 +- 0.22073277364172825 +- 0.24020423547525224 +- 0.22348460105545076 +- 0.23730212487053995 +- 0.29264253920922084 +- 0.3619932552373433 +- 0.3952401243509166 +- 0.43647190690229587 +- 0.4187299945653747 +- 0.40115529908408953 +- 0.44900871623379535 +- 0.4956544037346799 +- 0.48193764820568624 +- 0.4788894963670821 +- 0.49664058155636337 +- 0.523726337287337 +- 0.5862853530835507 +- 0.6306469723700221 +- 0.5465097787634989 +- 0.4925412590119227 +- 0.5088745966084622 +- 0.45306103411559273 +- 0.34230792291259576 +- 0.3120879650663453 +- 0.31602627614167855 +- 0.3414468351413805 +- 0.36451662941849444 +- 0.4169313462106818 +- 0.4579126004170327 +- 0.5460440836750501 +- 0.6054027047812378 +- 0.5602038578649001 +- 0.489312749851087 +- 0.4321765681854298 +- 0.44190258514079395 +- 0.4546732213728476 +- 0.43933085293075813 +- 0.4212046020458103 +- 0.4431926053716349 +- 0.49372202546034955 +- 0.560788387478107 +- 0.5437299258939041 +- 0.5300074227980499 +- 0.5337139954035632 +- 0.45193157037134496 +- 0.41672771495914696 +- 0.35809728458816337 +- 0.33268086327612917 +- 0.31275449998963806 +- 0.3215365233961686 +- 0.3398082536208834 +- 0.3899099147603615 +- 0.455133618203192 +- 0.5417985261497836 +- 0.6208613699926679 +- 0.5254470023029509 +- 0.48321423960246584 +- 0.4234197456867486 +- 0.39431780633909086 +- 0.40109801666885336 +- 0.39417942691929586 +- 0.41814087177975306 +- 0.4647435640065918 +- 0.48651680956027415 +- 0.5276628009702792 +- 0.5568967655244474 +- 0.5107051712510358 +- 0.493046248366717 +- 0.4876912700655989 +- 0.4301864829754051 +- 0.3431330774816344 +- 0.31898553103851784 +- 0.29071124057223746 +- 0.2906241973111394 +- 0.32555588848633343 +- 0.3833236666994366 +- 0.4442046852491259 +- 0.5762524444240238 +- 0.5771763421166729 +- 0.5265251685838086 +- 0.4579949005197378 +- 0.4383046056169974 +- 0.39832754843600865 +- 0.3728065564370194 +- 0.38667418124669406 +- 0.4044332754287973 +- 0.4466629335244237 +- 0.49842350223980547 +- 0.5459409081102687 +- 0.5365489101789722 +- 0.5052129524248188 +- 0.491094555362215 +- 0.4742084197504031 +- 0.3783774623527878 +- 0.3280495671882013 +- 0.271460862138345 +- 0.267374310882299 +- 0.26708127031673146 +- 0.28007421332172877 +- 0.3210156171595113 +- 0.38365722192812807 +- 0.48218422474013106 +- 0.5341672046478846 +- 0.523315831881708 +- 0.4456781699263337 +- 0.4429717908050804 +- 0.4740360200572324 +- 0.444837084522899 +- 0.4433936581137819 +- 0.41748472462681385 +- 0.44229489648577963 +- 0.4798443955993227 +- 0.5313973395522469 +- 0.5435800497727896 +- 0.5106293657727181 +- 0.5175808840370568 +- 0.5118506102297457 +- 0.48530828363932754 +- 0.39087665398269744 +- 0.3474401310663413 +- 0.3293056724374407 +- 0.35946164412699977 +- 0.38385206634016567 +- 0.4660785915633251 +- 0.5235347167733461 +- 0.636654422814184 +- 0.6545154970202033 +- 0.6085416011020436 +- 0.5546151643497047 +- 0.5138056621942289 +- 0.47456051942237426 +- 0.4519221062945322 +- 0.4386515836445432 +- 0.4467320779258744 +- 0.4733283107000112 +- 0.500680095742735 +- 0.5587776831172712 +- 0.544508951324776 +- 0.5030011480647836 +- 0.5276408797013462 +- 0.5128342748583354 +- 0.4689191178067921 +- 0.3828935444419672 +- 0.3607163767842713 +- 0.37621555420826214 +- 0.4004994354536319 +- 0.4401700696177458 +- 0.499685163669584 +- 0.5961908882749833 +- 0.7418147551786375 +- 0.7684809612303074 +- 0.6741279225002403 +- 0.5513399568551718 +- 0.4819542176619716 +- 0.44356141923251025 +- 0.3979155283890436 +- 0.41850458317500117 +- 0.4155200607322262 +- 0.43210146270256033 +- 0.48309998360569284 +- 0.5300945995230326 +- 0.5426105906637608 +- 0.5150401223917063 +- 0.49114054892895354 +- 0.46167542156195873 +- 0.39770814454928816 +- 0.29114949286712216 +- 0.2958578916827673 +- 0.29246412140773015 +- 0.35701512826007603 +- 0.39025060276214574 +- 0.446431052572266 +- 0.5420645611609834 +- 0.628188300488231 +- 0.6878283854641352 +- 0.5953769380414695 +- 0.5242864003208646 +- 0.49344783723655977 +- 0.46355481453800557 +- 0.39855280044402486 +- 0.4095029289209817 +- 0.4331011372282328 +- 0.4880261266015176 +- 0.5006331836617931 +- 0.5890691657966963 +- 0.5439043456713403 +- 0.5463247448522471 +- 0.5032727763875874 +- 0.459721461202715 +- 0.38310823504864894 +- 0.3148843910562014 +- 0.2678612687694312 +- 0.2574682536029393 +- 0.27067864559969185 +- 0.30622548448828824 +- 0.36826981583020774 +- 0.4383582990051488 +- 0.538752114752294 +- 0.6101732044912948 +- 0.5719547224257082 +- 0.4434459429652182 +- 0.4156274561370351 +- 0.43063183654110126 +- 0.45604030843358645 +- 0.425873372601595 +- 0.4711168043655543 +- 0.5081854053173871 +- 0.5089732703797359 +- 0.5898709683564234 +- 0.537234663015814 +- 0.4946164107116935 +- 0.4972098798362012 +- 0.48558153473910837 +- 0.3975771759457335 +- 0.2976617148875511 +- 0.2773044627371507 +- 0.2683557803311137 +- 0.28075556277302327 +- 0.32174385802132593 +- 0.3726017805086504 +- 0.4832130328437002 +- 0.6116509029554436 +- 0.6254757364215406 +- 0.5116041535773146 +- 0.4159569114144254 +- 0.4047307711428349 +- 0.39943408297575866 +- 0.42799341679105973 +- 0.4061570991630416 +- 0.4530869863284619 +- 0.4992411645117577 +- 0.5098029143389181 +- 0.607241209998367 +- 0.5748521280036509 +- 0.5431248308391873 +- 0.47036111555402743 +- 0.47016257264239875 +- 0.37452860627032253 +- 0.2959730012277307 +- 0.24890365387108812 +- 0.22146998019107197 +- 0.20915152932138642 +- 0.20143418518950332 +- 0.23360897753622994 +- 0.29467828075420105 +- 0.39282962333684673 +- 0.42257774811883786 +- 0.4131817801260992 +- 0.3579424152300735 +- 0.36978700467831815 +- 0.4503023286685376 +- 0.4364376572855675 +- 0.41762487760984046 +- 0.4321265235350638 +- 0.48560734260204436 +- 0.5090816888787935 +- 0.5591048409010498 +- 0.5635995644858143 +- 0.5341026713348047 +- 0.48792271214419997 +- 0.493581177410096 +- 0.4101391099866446 +- 0.3148469217134922 +- 0.2775064451485465 +- 0.24478338249993115 +- 0.2573120421096288 +- 0.27510438698073064 +- 0.311253244148276 +- 0.39421616005086063 +- 0.4858967253842777 +- 0.5423999530314914 +- 0.49084531078192833 +- 0.4724156925321001 +- 0.4264719149575362 +- 0.40842303892724446 +- 0.3811245967961793 +- 0.3721790419805114 +- 0.3559109722322177 +- 0.37697979401089887 +- 0.4314607066737232 +- 0.4413378580623934 +- 0.4632114235925703 +- 0.47719805492167183 +- 0.479419480349812 +- 0.4503210321888687 +- 0.3886800054620609 +- 0.30671772567567307 +- 0.28302835180236047 +- 0.27668171430359534 +- 0.285616196896783 +- 0.2948845874216966 +- 0.31805048865233065 +- 0.37911582811696815 +- 0.44295713268149817 +- 0.5330710529013859 +- 0.4830472592198037 +- 0.43395967495154825 +- 0.4144650957920194 +- 0.3829934646335153 +- 0.38208791594140057 +- 0.39356331405055806 +- 0.3908571661073 +- 0.42761502036772187 +- 0.4376275911776867 +- 0.530536374595459 +- 0.5444271766493834 +- 0.5305846373337015 +- 0.5243584954328168 +- 0.5589195949707685 +- 0.5269822369287995 +- 0.49120717302221306 +- 0.45481593559177225 +- 0.4915254578699948 +- 0.5842723420645566 +- 0.6483917612240295 +- 0.7125880103485269 +- 0.8202220655454631 +- 0.9558049001628048 +- 0.9579260239354267 +- 0.8499597671179423 +- 0.7243522853503505 +- 0.6305208903124974 +- 0.5315840519838475 +- 0.4529823084899477 +- 0.3923841818143173 +- 0.40637835371599634 +- 0.41384522311298755 +- 0.42586722492660234 +- 0.4705014919100079 +- 0.530760220100282 +- 0.5651656751840286 +- 0.5297254149381432 +- 0.5573239801801408 +- 0.5433795081517852 +- 0.4969848502567225 +- 0.44657033170484206 +- 0.48956218400874324 +- 0.5331559550679826 +- 0.5559213775499634 +- 0.6540847561470137 +- 0.730060850666416 +- 0.851466007964982 +- 0.8734544869906707 +- 0.8218017911676768 +- 0.7322917341811367 +- 0.608118458585037 +- 0.641016667006294 +- 0.5786987897191883 +- 0.4846773096682174 +- 0.4740458641876765 +- 0.4229355925819675 +- 0.48408134391635516 +- 0.5131774014349452 +- 0.537742846815823 +- 0.5463281938548196 +- 0.5492775790153096 +- 0.4976646599484841 +- 0.46557957424806873 +- 0.4595250195944631 +- 0.4554801017584987 +- 0.4655003408387146 +- 0.5177725166801063 +- 0.5560453151325307 +- 0.6263836494945165 +- 0.7476619305922135 +- 0.8905357576250046 +- 0.9303165925016998 +- 0.7907518836380512 +- 0.6738326732828106 +- 0.5318917390051017 +- 0.572723904751837 +- 0.49350315655476573 +- 0.45519951707918693 +- 0.4153462231076038 +- 0.41915871482161565 +- 0.4444468503631027 +- 0.5058086156471847 +- 0.5286211890794548 +- 0.516891952591057 +- 0.4747176761771358 +- 0.446740130739151 +- 0.3872258001353653 +- 0.33477223483334867 +- 0.3441607194502425 +- 0.3585141245464283 +- 0.39161675049021377 +- 0.437774757957091 +- 0.4974894254173296 +- 0.6145458671470975 +- 0.7564389791964338 +- 0.7831637041637672 +- 0.6859932313670405 +- 0.5344138288148051 +- 0.489388242564137 +- 0.4288101893929819 +- 0.35080909813802585 +- 0.348681174759004 +- 0.34894099559790875 +- 0.3938061631797873 +- 0.44395461966260563 +- 0.4999085155957512 +- 0.47355251803134485 +- 0.49409799097507223 +- 0.4964799958032459 +- 0.4768965252804514 +- 0.45281728288978046 +- 0.34034561287762527 +- 0.3142494953552829 +- 0.30503274505711364 +- 0.35025205185754715 +- 0.39916993982768156 +- 0.4755725874277814 +- 0.6083786028135237 +- 0.7193863516748716 +- 0.7102534295095931 +- 0.6478753808152801 +- 0.5121131928380845 +- 0.43402839323253806 +- 0.38087908865213316 +- 0.37053942654647765 +- 0.37786486463341606 +- 0.3434207915549867 +- 0.4149564936379378 +- 0.48647472587109314 +- 0.5166685568081264 +- 0.5133046193642535 +- 0.47698850270357845 +- 0.4815878190362255 +- 0.4442715815050848 +- 0.38528533990944674 +- 0.3293783125420946 +- 0.3027087240862725 +- 0.2926954658264102 +- 0.3251702762361489 +- 0.36305042494867684 +- 0.43842659336707757 +- 0.5298647729132903 +- 0.6699141386129102 +- 0.7410370737810332 +- 0.6412468615721589 +- 0.5448024156904064 +- 0.48654087894354675 +- 0.39045757973957057 +- 0.3820828979960084 +- 0.3363534183350881 +- 0.3418601473774055 +- 0.37399761435928947 +- 0.45689962337117973 +- 0.5201602894184706 +- 0.5131448929889415 +- 0.4763051364096431 +- 0.43562971206761564 +- 0.4373615100111107 +- 0.39001180302408894 +- 0.3266944925602686 +- 0.29399661885356304 +- 0.28095157085493444 +- 0.29270692577935054 +- 0.32780685873571513 +- 0.39319270836887954 +- 0.5085450314652622 +- 0.6375124525912209 +- 0.7025494311599704 +- 0.6137324715479221 +- 0.4663721512897155 +- 0.415839426738026 +- 0.3693302999693387 +- 0.3518398732735497 +- 0.3599246979221633 +- 0.3672264220992564 +- 0.40666770387053436 +- 0.49031199429763517 +- 0.5249830812648931 +- 0.5412353906421702 +- 0.5228139447585883 +- 0.46359068263533804 +- 0.46872235251622324 +- 0.3822101533167117 +- 0.3168718212623091 +- 0.2764573942131558 +- 0.2688879460882929 +- 0.2949138530584481 +- 0.32569540911591305 +- 0.36577854148468125 +- 0.4600479483877347 +- 0.5665929530818892 +- 0.6396665011512445 +- 0.5634287504874368 +- 0.49016948441224556 +- 0.4815705216436646 +- 0.41571099311949616 +- 0.37831077387367507 +- 0.35568400283731044 +- 0.3627306049193024 +- 0.3814342275261677 +- 0.4574327096542982 +- 0.5106489907977613 +- 0.5008974101834534 +- 0.4727264408360851 +- 0.47882839691241463 +- 0.4356798801589479 +- 0.3880118692682492 +- 0.3134480000510379 +- 0.2635109663611409 +- 0.26436988169088094 +- 0.2809687777607672 +- 0.29388867639934146 +- 0.3297390884397146 +- 0.38838298657861114 +- 0.4915024095513548 +- 0.5374220699746962 +- 0.5012394272765806 +- 0.4587969799072476 +- 0.41209911087463125 +- 0.4067272927475518 +- 0.42373911147383664 +- 0.4227767831856639 +- 0.43042488583047744 +- 0.4503919964913296 +- 0.5488201797229062 +- 0.5618824560815888 +- 0.5547647904967109 +- 0.5280602514155827 +- 0.4981722960197551 +- 0.4862206912203327 +- 0.3895311283761159 +- 0.3035112990404356 +- 0.2549923088956714 +- 0.2453315465187014 +- 0.26436285311514807 +- 0.2869384964417255 +- 0.34682840141300864 +- 0.4352324550407508 +- 0.5348137035790478 +- 0.600860664658789 +- 0.5727161473926252 +- 0.5221887259736209 +- 0.4432453028172558 +- 0.3735419105699425 +- 0.4280679596772897 +- 0.4282599286163712 +- 0.4274612447132008 +- 0.45205750586160887 +- 0.48407774271718956 +- 0.5419725305408567 +- 0.5076970902427773 +- 0.4736826792256088 +- 0.46028115158849087 +- 0.49686192806978907 +- 0.4079365670173665 +- 0.32220568981580283 +- 0.3067390445945547 +- 0.3252258970508888 +- 0.3525861081250377 +- 0.3958264002566393 +- 0.4536510952841598 +- 0.576753172798229 +- 0.6959006121572916 +- 0.7687398897028119 +- 0.623856450385656 +- 0.5015213370450006 +- 0.4213936020888888 +- 0.3689035095109174 +- 0.3682836562869422 +- 0.3787280937918677 +- 0.3967019453542136 +- 0.42968683537988905 +- 0.46569681773612653 +- 0.5165331953799345 +- 0.5498807132808237 +- 0.508379537435636 +- 0.5267215202902528 +- 0.48652859804777726 +- 0.3988126807154191 +- 0.36079085887264845 +- 0.32570291447866245 +- 0.3270458406166053 +- 0.3746910230437349 +- 0.42685456542150607 +- 0.492156670779166 +- 0.5854573508692429 +- 0.7352071876119579 +- 0.8268948277108408 +- 0.7094683404560886 +- 0.5420001068927098 +- 0.4774307990390627 +- 0.43989654852175997 +- 0.4006133496024194 +- 0.439591697129551 +- 0.4294755885944896 +- 0.43380241623323096 +- 0.4760819753569469 +- 0.500128723517834 +- 0.5107024547559661 +- 0.5215014914913001 +- 0.4987608932822552 +- 0.4853906917824142 +- 0.45716891393410947 +- 0.38741063044128754 +- 0.3702659652497388 +- 0.376840422419525 +- 0.4190273758859469 +- 0.4622169965796637 +- 0.5599577406383903 +- 0.7109930502485317 +- 0.8553868013049749 +- 0.9382680203451319 +- 0.8243350443223427 +- 0.6649868366262697 +- 0.555763900652553 +- 0.5128393491247578 +- 0.4575975006127776 +- 0.41399406576665515 +- 0.4122594698128877 +- 0.47093053683795705 +- 0.4344908000138978 +- 0.48205855596618535 +- 0.48871882342178724 +- 0.5053026236048767 +- 0.5444806844062569 +- 0.5690999437195997 +- 0.49491413525428046 +- 0.43902955441529545 +- 0.4235957101809868 +- 0.43634838437369033 +- 0.48809602826776854 +- 0.5341603751411597 +- 0.6244549721577694 +- 0.7500624977511249 +- 0.9276592322256697 +- 0.9913086297341714 +- 0.8386873010573368 +- 0.6538865752496075 +- 0.5494553781865565 +- 0.4151213020324764 +- 0.360083123261197 +- 0.3768805200367842 +- 0.34636187501188853 +- 0.3309986262375971 +- 0.4050267176685572 +- 0.4386288455467518 +- 0.48913342367730805 +- 0.4699069330605004 +- 0.5110518454814833 +- 0.4697842417158048 +- 0.4296272201620478 +- 0.36574434301495506 +- 0.3523868242056125 +- 0.3887870316867163 +- 0.4551860395090213 +- 0.5263561296257626 +- 0.6047051498909503 +- 0.6927076490424746 +- 0.8637395443977349 +- 0.9748176175511016 +- 0.9048026994168147 +- 0.7335312303363204 +- 0.6119182229249643 +- 0.5637222171265374 +- 0.49765074391258896 +- 0.44439954151146155 +- 0.42968200475432416 +- 0.44610705126605227 +- 0.4505683344601414 +- 0.49368330719987474 +- 0.5308291273064115 +- 0.6146135877606981 +- 0.5710149397632577 +- 0.5896255659304084 +- 0.5204622619030782 +- 0.5023458114708567 +- 0.48654106392649954 +- 0.536697468046461 +- 0.6069737848784039 +- 0.6873662803128308 +- 0.7722036329321962 +- 0.8718640304501116 +- 0.9838097196306922 +- 1.0903384001490874 +- 1.060834505324899 +- 0.8384338939164426 +- 0.6584378252437448 +- 0.5223287132483015 +- 0.5012240502999851 +- 0.4514186970071518 +- 0.4704672131153019 +- 0.4533317688566312 +- 0.43852157425497273 +- 0.5153487132198789 +- 0.5359957338474985 +- 0.5004303254496626 +- 0.5161046736454942 +- 0.5157320076040735 +- 0.4908829274108894 +- 0.448340842547072 +- 0.422810254851243 +- 0.44075189292137 +- 0.49559998695578983 +- 0.5722288676907716 +- 0.6447300026125639 +- 0.735809548580238 +- 0.8486742595951564 +- 0.9303848603384498 +- 0.8764292869562539 +- 0.7757640504899633 +- 0.6780903146789786 +- 0.5831556099742896 +- 0.5462183377421876 +- 0.46732153129593734 +- 0.46315822671939416 +- 0.4303637268223702 +- 0.4423238824866423 +- 0.5292255533713612 +- 0.5830044303895228 +- 0.5747224299366054 +- 0.5848747596857188 +- 0.5635691472680321 +- 0.6000021533595348 +- 0.550743294699767 +- 0.5306505883809954 +- 0.5250447027016094 +- 0.5644328582883635 +- 0.6150000666252848 +- 0.71642021902822 +- 0.8469291962954987 +- 0.9981339706536997 +- 1.0861759123670454 +- 0.9250398133461181 +- 0.7203039514263858 +- 0.5889982137132438 +- 0.48224838156969924 +- 0.43452373375689735 +- 0.4077726921297891 +- 0.4355923625957532 +- 0.42510462372247493 +- 0.4941044159384607 +- 0.5415670377909501 +- 0.5352200044044503 +- 0.5273165129119077 +- 0.541094108484012 +- 0.5491580344397816 +- 0.5369585486277287 +- 0.4925923728001769 +- 0.49779246105295033 +- 0.5112312668520482 +- 0.5185387735910233 +- 0.5319357462401364 +- 0.5963575456275589 +- 0.6572490903343979 +- 0.8048913555094009 +- 0.8457973491541603 +- 0.7759934686287068 +- 0.6431918699452905 +- 0.5383072638432065 +- 0.5113542614069694 +- 0.43779083225455073 +- 0.4107772155643631 +- 0.4140182592048622 +- 0.4221745797704074 +- 0.43350598002801666 +- 0.4877921046791655 +- 0.5129492294329564 +- 0.5360230987976471 +- 0.5848007868455792 +- 0.6474139379375806 +- 0.5860682133034198 +- 0.5403115357733225 +- 0.5408922751180842 +- 0.5542246645805757 +- 0.5869304665506526 +- 0.6547589401888537 +- 0.7274416252773725 +- 0.8282120860810259 +- 1.0435175019927845 +- 1.1273571478969229 +- 1.016318587177827 +- 0.8898596331557205 +- 0.748160316646485 +- 0.6247118167847416 +- 0.5482508166798393 +- 0.4192926914301654 +- 0.3824453892939258 +- 0.3879007893976672 +- 0.40720337527981165 +- 0.4817788924505193 +- 0.5028254601240225 +- 0.5559289089700163 +- 0.6304232808137459 +- 0.7047594864880975 +- 0.7076499093733306 +- 0.7336607687196088 +- 0.7353981696255588 +- 0.7790884884462311 +- 0.8462840429381064 +- 0.8921293588020451 +- 0.9836365344628982 +- 1.1142395768616893 +- 1.3376711123064484 +- 1.4396600425443196 +- 1.2297526399142096 +- 0.9436717450810151 +- 0.751916488196681 +- 0.6534930840391963 +- 0.5531045682174685 +- 0.451666313226653 +- 0.3843176552016389 +- 0.4093609893414643 +- 0.43881822472223525 +- 0.5060842798097422 +- 0.4873852494937306 +- 0.5077690105050267 +- 0.5499932401071689 +- 0.5931972905836268 +- 0.5196610270578762 +- 0.4600908451837035 +- 0.4091833159122981 +- 0.4315830817028646 +- 0.4792882618592922 +- 0.5124106948728017 +- 0.5955000776977188 +- 0.7020433927600507 +- 0.8927147780620931 +- 1.010749155808368 +- 1.0620897552739945 +- 1.103998680258449 +- 0.9834096342161398 +- 0.8922882471976304 +- 0.7504031246047752 +- 0.5875551549312055 +- 0.5003163266940464 +- 0.4819788764684633 +- 0.5032817426639427 +- 0.5516448509642061 +- 0.5864141348760551 +- 0.6520718420379485 +- 0.7421545678634895 +- 0.8127126172211329 +- 0.7816034322724895 +- 0.7845933070572386 +- 0.828142225840809 +- 0.8945870761547685 +- 1.0112290638697343 +- 1.1273603517762285 +- 1.225374597481194 +- 1.325510279299745 +- 1.4411768810282235 +- 1.6224227746598914 +- 1.4003223431473673 +- 1.097697048338932 +- 0.7827541261011308 +- 0.6451383568756317 +- 0.5330254621570304 +- 0.4291821214299676 +- 0.42743689953175223 +- 0.42293224920887906 +- 0.43487264920685426 +- 0.4752206289903787 +- 0.49633567296211234 +- 0.5399211315057366 +- 0.597717675460161 +- 0.5990095070989798 +- 0.5330513119152789 +- 0.5248811382569489 +- 0.5370106168062199 +- 0.6106719785000468 +- 0.7078223852814156 +- 0.8186176769432885 +- 0.9395739549081079 +- 1.0823266873555426 +- 1.230596043750674 +- 1.370519729387781 +- 1.2567368703744508 +- 0.9915549962574165 +- 0.7555443807285753 +- 0.6071767883577889 +- 0.47604405236468256 +- 0.4703748195186561 +- 0.44718542467738437 +- 0.4595776185329593 +- 0.49954318259727215 +- 0.4945694240594111 +- 0.4871475623492119 +- 0.4887097057273293 +- 0.5099545602707419 +- 0.5174224018336917 +- 0.5300146874026203 +- 0.5068508794317764 +- 0.5466595006260002 +- 0.6005794398897027 +- 0.6971138220552574 +- 0.8247609910837073 +- 0.9301020103055141 +- 1.08094034392254 +- 1.290538770155752 +- 1.4404631542381026 +- 1.2441049075207287 +- 0.9402763485831878 +- 0.7041296576583403 +- 0.586567761387896 +- 0.4941333274618392 +- 0.4225106390905016 +- 0.3515415043124113 +- 0.3495900283925875 +- 0.4172021482143928 +- 0.45278766128127507 +- 0.4488126219721471 +- 0.48912779463045475 +- 0.5687168949589506 +- 0.608441710682608 +- 0.6548478319420667 +- 0.6541872355660806 +- 0.6927647769387668 +- 0.736797735175834 +- 0.8244743408116461 +- 0.9067650197383901 +- 1.0324998787634574 +- 1.1480454683661983 +- 1.4063049427696768 +- 1.5497574408469716 +- 1.4443209767106102 +- 1.1800527448926035 +- 0.9456745991883696 +- 0.7890841186965678 +- 0.6989288576517235 +- 0.5904016349639 +- 0.516802975380455 +- 0.531781138196959 +- 0.5823557851646878 +- 0.6477566127660389 +- 0.7164524553632128 +- 0.7306462480658189 +- 0.7860309573785085 +- 0.7690013466156397 +- 0.7668239281390141 +- 0.7927371960656162 +- 0.8365407476441241 +- 0.8933250015333136 +- 0.9901963993885312 +- 1.0750968511202617 +- 1.190827870245731 +- 1.3747936197671387 +- 1.5777366968039601 +- 1.69113082492312 +- 1.4928310789140498 +- 1.178468418618073 +- 0.9322702848116657 +- 0.7356277249410428 +- 0.6119831820241521 +- 0.5244975612371422 +- 0.44322089327314346 +- 0.38790957533046155 +- 0.4275136290611534 +- 0.5485384016306557 +- 0.5521953532629628 +- 0.5948466578624942 +- 0.6354558306578961 +- 0.6274325261830052 +- 0.6099074044667546 +- 0.6250561144588906 +- 0.6134468544201215 +- 0.6120727638370382 +- 0.6569748933103173 +- 0.7456555729204717 +- 0.8835733114610238 +- 1.0134076640880463 +- 1.1880064989363934 +- 1.3458420381421445 +- 1.2194330324322749 +- 0.9185773741443868 +- 0.695021827327567 +- 0.5854283952564141 +- 0.5116241916968214 +- 0.39987813988814347 +- 0.3904446516224528 +- 0.36485097513857706 +- 0.4280494420572328 +- 0.48725899677394746 +- 0.526953914729475 +- 0.5697254056722401 +- 0.6115173019217496 +- 0.6213835782047106 +- 0.6408379425163615 +- 0.6449532921104241 +- 0.6460846466015943 +- 0.6858824831986228 +- 0.768117857879251 +- 0.8678004688025642 +- 0.9950634140610899 +- 1.1961842282955326 +- 1.468814418844199 +- 1.5941527064735845 +- 1.4402000796840628 +- 1.1313204868234261 +- 0.8819514546017944 +- 0.7293826689309688 +- 0.6398722126128341 +- 0.5940242641237835 +- 0.4767734738123178 +- 0.4414624973381734 +- 0.4318869780526063 +- 0.47149499398355704 +- 0.5058952251380884 +- 0.5806427979763197 +- 0.6197252599654318 +- 0.6410557445072421 +- 0.6613173074723354 +- 0.6869927289335133 +- 0.7444297767368967 +- 0.7875491855203247 +- 0.8622270482959343 +- 1.0042354479041824 +- 1.1332454152848088 +- 1.2825387187065065 +- 1.4782713339813238 +- 1.5782140492026178 +- 1.4030006031293711 +- 1.0265104743950781 +- 0.7900001374759177 +- 0.6124248465170871 +- 0.5762176127972183 +- 0.43965425482323944 +- 0.4106792031295403 +- 0.405386051791704 +- 0.3852376994151398 +- 0.46984795136985247 +- 0.5128548879594157 +- 0.5456763766303349 +- 0.5732859683366449 +- 0.5842632856967298 +- 0.6569630421883663 +- 0.6658208530575441 +- 0.7020345012863187 +- 0.749025341741663 +- 0.8381351747318809 +- 0.9296951278725525 +- 1.0704646252348726 +- 1.2536683095423282 +- 1.379245848135857 +- 1.535887855459544 +- 1.3900353602403794 +- 1.096038047607025 +- 0.8921128091999779 +- 0.7512446558256293 +- 0.5964792372336309 +- 0.4842588495190131 +- 0.4331396219090299 +- 0.45451193427148956 +- 0.45996297408583764 +- 0.4648741571165751 +- 0.5212804699965069 +- 0.560396778359017 +- 0.6102776832825867 +- 0.6559816773883101 +- 0.6653408243831508 +- 0.6270217179498365 +- 0.600382185096735 +- 0.6112910567217629 +- 0.6137537896235054 +- 0.685735347025964 +- 0.7755302783771975 +- 0.9034210604614223 +- 1.0724415628917026 +- 1.1587365896311503 +- 1.0510432744638263 +- 0.8417569740765742 +- 0.7420522178035507 +- 0.5990322453467697 +- 0.4806546035761958 +- 0.41012625325538477 +- 0.3499051479136334 +- 0.37264327186679264 +- 0.46424276898368166 +- 0.5168873447152629 +- 0.6320557665339094 +- 0.6437347197338769 +- 0.6953499012668884 +- 0.7764051233022303 +- 0.782105511107069 +- 0.8318105045959733 +- 0.8707736686588035 +- 0.9389583261258392 +- 0.9896702036049645 +- 1.0902148736690804 +- 1.2016812525207385 +- 1.3275029057811174 +- 1.526280126860537 +- 1.6081689387335074 +- 1.46926991249804 +- 1.1673424103838725 +- 0.9970743619359748 +- 0.7843601499213595 +- 0.6876792366547091 +- 0.5883479920796615 +- 0.5870818566860152 +- 0.5346431964006816 +- 0.5951050882635923 +- 0.6593419566530437 +- 0.6498745444032258 +- 0.6991914881000826 +- 0.7004105764427555 +- 0.7366225600045497 +- 0.7365926563294256 +- 0.7025839218600171 +- 0.685616048956946 +- 0.7436143669154746 +- 0.7955195897280646 +- 0.8551216600255392 +- 0.96220653496282 +- 1.1596020929653028 +- 1.3484020992830084 +- 1.4863984245713437 +- 1.371437928329007 +- 1.1992264795380032 +- 1.004460237534423 +- 0.8891323417215647 +- 0.777884037475434 +- 0.6827670442437116 +- 0.5919800511414446 +- 0.5849059842334595 +- 0.6202066621616861 +- 0.6261395173552979 +- 0.7314208069023933 +- 0.7820043589785105 +- 0.8567565895646733 +- 0.908728568337761 +- 0.9456853045801417 +- 1.0464526986778728 +- 1.0714172180125938 +- 1.1327742895914261 +- 1.2310997487882107 +- 1.3203929006396644 +- 1.4472741284679973 +- 1.5613013874365878 +- 1.7773368743290618 +- 1.9504055753213756 +- 1.7523219527199827 +- 1.3611814209183766 +- 1.0481276936875659 +- 0.8682904103491266 +- 0.6690986750313535 +- 0.5572814452106831 +- 0.40581794862553483 +- 0.39112494749565674 +- 0.43368580974332127 +- 0.4464356177689479 +- 0.4910724347354447 +- 0.5595151891586747 +- 0.6549385501013243 +- 0.7211924521469829 +- 0.7929162807675333 +- 0.8126010487403308 +- 0.8250007093736806 +- 0.8969737777275816 +- 1.0236868055345827 +- 1.132601869410236 +- 1.252131090845675 +- 1.389809840555152 +- 1.5859880357591274 +- 1.6963709045913182 +- 1.5081607893542237 +- 1.1628988722330016 +- 0.8725619974957559 +- 0.6670283510353526 +- 0.5290321187946406 +- 0.4557837045614373 +- 0.368303501578789 +- 0.36970355586218745 +- 0.41494669152570984 +- 0.4811586091222778 +- 0.5103650298221234 +- 0.5484013205004845 +- 0.6184060468325847 +- 0.7026838658750652 +- 0.7435159052643483 +- 0.7748355088069425 +- 0.8470919054671099 +- 0.896119149351093 +- 0.9831229968907433 +- 1.0465410940971094 +- 1.172320298175868 +- 1.3616723694435175 +- 1.5252972751311902 +- 1.6841002633826694 +- 1.6199046670725437 +- 1.3334018577403561 +- 1.0842570294386025 +- 0.8458373798715986 +- 0.6686608541572182 +- 0.5107782815278882 +- 0.43070043499286315 +- 0.4464240218942982 +- 0.3875020996564016 +- 0.5136365106430026 +- 0.5255999491950779 +- 0.5410785265043195 +- 0.5651688978898997 +- 0.6456984285482844 +- 0.6010619175353105 +- 0.6542319739683968 +- 0.681353585556458 +- 0.690731026832758 +- 0.7475869357231923 +- 0.824303734035645 +- 0.8864855901653732 +- 0.9989212458051211 +- 1.1006645411800458 +- 1.1877625254320412 +- 1.171466074039362 +- 1.0357427564994022 +- 0.8963065909270715 +- 0.7784874978665659 +- 0.7509080516899266 +- 0.663129014870873 +- 0.5066914909293103 +- 0.4283713527637166 +- 0.4763685490459331 +- 0.5294182872375474 +- 0.5811759400584033 +- 0.6210936676133145 +- 0.6994993349154265 +- 0.710161533651953 +- 0.6973812659858574 +- 0.6949945633133211 +- 0.7190850500856634 +- 0.7632055459152837 +- 0.8113328825263687 +- 0.880747503279217 +- 0.957876705553169 +- 1.0805491063185255 +- 1.283176588930807 +- 1.365169461734955 +- 1.329460024429379 +- 1.104260669677927 +- 0.9305679319021144 +- 0.808921193854403 +- 0.6839315124474229 +- 0.630138091475123 +- 0.6330715795590881 +- 0.604629152196988 +- 0.6910144742241191 +- 0.7227357153561844 +- 0.7883159815923759 +- 0.8292941120097608 +- 0.893722721409186 +- 0.9916934312719892 +- 0.9740136717133527 +- 1.0102598667708707 +- 1.0289742624352483 +- 1.011149233598329 +- 1.0280656057902235 +- 1.0950375003940298 +- 1.2140289693919801 +- 1.3686873806076738 +- 1.5524392906345497 +- 1.6583448161821983 +- 1.5808154238251024 +- 1.3672263416602826 +- 1.1541672922737956 +- 0.9769647076371709 +- 0.8250796611678146 +- 0.6889398334142073 +- 0.5789179128120155 +- 0.5760584466816709 +- 0.6127353926947946 +- 0.6818822753596288 +- 0.7129281836967623 +- 0.791456093452405 +- 0.8098652480022105 +- 0.8244549085852153 +- 0.8277135278332072 +- 0.8170215139652623 +- 0.8124514517766115 +- 0.7794057968191106 +- 0.7834206581079379 +- 0.822356837144086 +- 0.8792096997280706 +- 0.9783556097187984 +- 1.1608165982000973 +- 1.2419199063720245 +- 1.1235295769140166 +- 1.0097911811637696 +- 0.9025050077200133 +- 0.8064460582701175 +- 0.710919332240056 +- 0.6262536236800639 +- 0.6353104439017833 +- 0.6132240656663 +- 0.6796793065461482 +- 0.7763700398071749 +- 0.8048621478043008 +- 0.8583795938188923 +- 0.9545558283091401 +- 0.9442687836744075 +- 0.8977597941729596 +- 0.8919772335711894 +- 0.8636304202434458 +- 0.8809007938467104 +- 0.9080512884933055 +- 0.9542645962224937 +- 1.027201884474621 +- 1.1778155342911736 +- 1.3496551017170555 +- 1.468011632125479 +- 1.3708919127332388 +- 1.1488170830674236 +- 1.011696975702512 +- 0.8946934536605943 +- 0.7830530646206517 +- 0.6839724634614703 +- 0.6337672956134213 +- 0.6257806170386551 +- 0.6812095771076896 +- 0.8082952635952068 +- 0.8691075513038313 +- 0.8984324264007808 +- 0.8834127266431081 +- 0.9298344497761436 +- 0.9388562724406426 +- 0.9150704159378363 +- 0.9409542721693718 +- 0.94542219945762 +- 0.9837141240527866 +- 1.0287393907297988 +- 1.1088402645409756 +- 1.1937555108328008 +- 1.3404598928383757 +- 1.4216866334711749 +- 1.3484292002833254 +- 1.0978665446507239 +- 1.0070638613803375 +- 0.8664477611468394 +- 0.7667271673507309 +- 0.6485632192331312 +- 0.5502695528385579 +- 0.5403833792265219 +- 0.5765558775004543 +- 0.6546737967744167 +- 0.7766977756714151 +- 0.8783529176858385 +- 0.9175663279385313 +- 0.9286045665046949 +- 0.9789412474612919 +- 0.9435204792570118 +- 0.9455144950909914 +- 0.9448885108984731 +- 0.9964469684050618 +- 1.0740583983815126 +- 1.1529351452883916 +- 1.2608208201646465 +- 1.3815848012156005 +- 1.5332379240570437 +- 1.434407137442955 +- 1.2691657147916406 +- 1.0678879444840177 +- 0.9051033731835898 +- 0.7579743609532267 +- 0.6507181004237127 +- 0.5489749256274583 +- 0.49722597848117833 +- 0.5349594220769917 +- 0.5809231182650202 +- 0.6600454481582347 +- 0.7330866981754703 +- 0.7937342796698716 +- 0.8482673722102353 +- 0.8876342156052106 +- 0.9101592747753167 +- 0.9427431342280597 +- 0.9879411429155074 +- 1.039021357372682 +- 1.1240847839613326 +- 1.2091502768239808 +- 1.333008619075567 +- 1.4765964731307677 +- 1.594167104085886 +- 1.5153648136740505 +- 1.3080046347784344 +- 1.0322772200223986 +- 0.8772151141929726 +- 0.749840250990282 +- 0.6137375243581707 +- 0.5422592091297171 +- 0.5057645009083573 +- 0.5401761380805543 +- 0.5624327407160554 +- 0.6191986852570049 +- 0.6872271701877715 +- 0.689770986249919 +- 0.7662364302993657 +- 0.819647355025239 +- 0.8508340070546493 +- 0.9250311041067322 +- 0.9642929906915576 +- 1.0273068721783936 +- 1.1515129489167402 +- 1.2566271827802244 +- 1.3948879327597878 +- 1.618159714438971 +- 1.7023200251223354 +- 1.5367273725520079 +- 1.2607996168275004 +- 1.0513008539603181 +- 0.8358176058563137 +- 0.6573594791413915 +- 0.5302794564717285 +- 0.45674099505726146 +- 0.5020400724798518 +- 0.5374094522192105 +- 0.6142412097238912 +- 0.6497320951637381 +- 0.7172966867520157 +- 0.8238926760359129 +- 0.8810746560099179 +- 0.9389206008947653 +- 0.9093910438885819 +- 0.8983503548774617 +- 1.0122914623572195 +- 1.0300868915130392 +- 1.0670520740039158 +- 1.1481843030447656 +- 1.2452314974481653 +- 1.3911262271877407 +- 1.515783364089867 +- 1.460915468091038 +- 1.2305549452732816 +- 0.9813230933677224 +- 0.8120589039097712 +- 0.6694261545432599 +- 0.5498139769544287 +- 0.49656345350821396 +- 0.4955082734190893 +- 0.480082543819658 +- 0.5276832205755416 +- 0.6407851778530428 +- 0.7599424171916473 +- 0.8592945647070312 +- 0.9370669766838303 +- 1.0227419759292113 +- 1.1059601953576101 +- 1.1033790496778184 +- 1.1424503442225211 +- 1.1557402507726164 +- 1.1563492101780064 +- 1.1787863334225692 +- 1.25949821307344 +- 1.3495441882718582 +- 1.4782252577111124 +- 1.4552696061621717 +- 1.3425017665203367 +- 1.160784213204275 +- 1.0185270024138684 +- 0.8723208143969186 +- 0.7203537318956376 +- 0.5993255075623848 +- 0.5452303251694727 +- 0.568509054321871 +- 0.6086123810176393 +- 0.7286180523883952 +- 0.8489197937026506 +- 0.8965475749298066 +- 1.0062394326042694 +- 1.0560928610068552 +- 1.0745603591547461 +- 1.0553924078675985 +- 1.1265426105896357 +- 1.1791108379180757 +- 1.2683441680946812 +- 1.3159791142924635 +- 1.4122041225191917 +- 1.5255410695833214 +- 1.7176365563536795 +- 1.7202588084044523 +- 1.475246008385055 +- 1.226227091769899 +- 1.0291016598159377 +- 0.9078611734279113 +- 0.8584261447163392 +- 0.7136303616941464 +- 0.5871032156166867 +- 0.5861068352078853 +- 0.660997194058727 +- 0.7835962613533234 +- 0.9512300432966931 +- 1.177771955410404 +- 1.193653880904096 +- 1.227278011011957 +- 1.2391129721270011 +- 1.2396246446883024 +- 1.2543479209977624 +- 1.336267591364303 +- 1.3648800704219761 +- 1.436592912580788 +- 1.5713582628172222 +- 1.712137723902622 +- 1.944057488465165 +- 1.879413318977051 +- 1.5444491983972055 +- 1.2456871749760214 +- 1.0317986440230507 +- 0.8958681079941374 +- 0.7470820806484856 +- 0.5825388260243942 +- 0.48536083412914416 +- 0.5202955256431235 +- 0.6080620713443075 +- 0.6964424869916457 +- 0.8660043118722232 +- 0.9982079435064102 +- 1.1085226180963714 +- 1.2158406745474999 +- 1.2837677819471378 +- 1.3034606989881035 +- 1.324701766414196 +- 1.370329523451021 +- 1.4437178453146549 +- 1.527943985577821 +- 1.6500515082782394 +- 1.8263304419924118 +- 1.970263075904874 +- 1.9079930061170702 +- 1.6185100040339708 +- 1.2525686789055033 +- 1.079255783074714 +- 0.9160200305857459 +- 0.7484123321990146 +- 0.5900850633024443 +- 0.5681748651252061 +- 0.5747434324025054 +- 0.6348653427984717 +- 0.7696158810189192 +- 0.9079989932343137 +- 1.0379907694843669 +- 1.1313934028094943 +- 1.1568197397587803 +- 1.1458069125683732 +- 1.136589377991113 +- 1.1414473420659612 +- 1.1573484816374424 +- 1.2162149034713912 +- 1.260772713222165 +- 1.3375479322160586 +- 1.5269208197783846 +- 1.6634448988798896 +- 1.6590172189621928 +- 1.4231722716029043 +- 1.1131032672598578 +- 0.9790442266891961 +- 0.7952026608722284 +- 0.6633359631633375 +- 0.5940177889128332 +- 0.5389801897750907 +- 0.5419960274816653 +- 0.653430963127997 +- 0.8350918286134986 +- 0.9818746975868218 +- 1.0827993199659565 +- 1.2375426834603327 +- 1.3100603314360963 +- 1.3055284067277309 +- 1.3115184935418107 +- 1.397899996638726 +- 1.435031389711128 +- 1.4956678516989024 +- 1.580191733371721 +- 1.674173420650018 +- 1.829841980888681 +- 2.0481290700733688 +- 1.9821539189328108 +- 1.6610944104378775 +- 1.3637286171290866 +- 1.124163635374033 +- 0.9458433587669528 +- 0.8213776057887976 +- 0.7015495286979273 +- 0.6337833059889975 +- 0.5785736171297694 +- 0.6076413195707722 +- 0.7986083591212886 +- 0.8595851574136796 +- 1.0170221344601973 +- 1.1446866493357453 +- 1.2612320883845272 +- 1.3970543271017124 +- 1.3857463832801051 +- 1.47394764746649 +- 1.495027189548416 +- 1.5828198488909189 +- 1.684925188854162 +- 1.7938113787062124 +- 1.9362296747479577 +- 2.1891375295248268 +- 2.065314882828695 +- 1.7028299926076587 +- 1.3161677443696362 +- 1.0315250003366587 +- 0.8747265108499892 +- 0.7511039162003946 +- 0.6404107913602003 +- 0.5585541496737974 +- 0.5985428653150031 +- 0.7042410892657548 +- 0.8636406485898231 +- 1.0067494063957485 +- 1.1162750067246499 +- 1.161530539871545 +- 1.1566212023912938 +- 1.1879004552707277 +- 1.1306364887034184 +- 1.1555386563481058 +- 1.152674395529681 +- 1.2177544546077972 +- 1.2838297539575583 +- 1.3510912590539952 +- 1.4770386869577523 +- 1.6532688362932486 +- 1.5873331331846317 +- 1.4251325306057971 +- 1.2153151649046094 +- 1.05000797066855 +- 0.9432355041315568 +- 0.826090758235199 +- 0.7397443499853111 +- 0.6206646046227668 +- 0.6174584793756833 +- 0.7349084688028189 +- 0.9631455233682371 +- 1.131044369224168 +- 1.1782829080334933 +- 1.2310516530060838 +- 1.332978672990327 +- 1.3927712787054929 +- 1.3685395754468777 +- 1.371441910795216 +- 1.3441165468587901 +- 1.3894517828900328 +- 1.432867080368649 +- 1.4831184761561282 +- 1.6272229646011798 +- 1.756132771481525 +- 1.7106050088573084 +- 1.6524303184913673 +- 1.5072931596725216 +- 1.4872125132385823 +- 1.3937193410899371 +- 1.2989375640192449 +- 1.186290175392822 +- 1.1400652597959493 +- 1.1284156690149991 +- 1.2524230599635742 +- 1.3713648986626064 +- 1.5189706998642611 +- 1.6192609394222854 +- 1.6341257141187118 +- 1.6877296915204607 +- 1.7449107450866743 +- 1.7785533407971972 +- 1.7790769433931386 +- 1.829181384843143 +- 1.888087043242521 +- 1.9663885497719682 +- 2.1073886826217545 +- 2.2905191574882435 +- 2.563318464538924 +- 2.484337286224064 +- 2.0870832696567736 +- 1.752173951874539 +- 1.5168768060591846 +- 1.2958664315059543 +- 1.0798362522917013 +- 0.9549214997983385 +- 0.8421522819879895 +- 0.7986021675392475 +- 0.9794462678451833 +- 1.1215912284493152 +- 1.28190444163388 +- 1.433151175597279 +- 1.5825524413003222 +- 1.6460136675354011 +- 1.684905277708029 +- 1.7073145215008456 +- 1.774266513711882 +- 1.8351879090580103 +- 1.945001875850332 +- 2.0749139409431216 +- 2.2083482897687023 +- 2.3588726801289894 +- 2.5412833849570524 +- 2.441257075413828 +- 2.142451529413072 +- 1.7463843917395387 +- 1.3947952372601846 +- 1.1608500379351865 +- 0.9648008546522708 +- 0.8415572379034088 +- 0.7752754860644284 +- 0.8624725274893802 +- 0.9855094558576138 +- 1.2065185532033735 +- 1.3894938335741418 +- 1.405918071638307 +- 1.5413857567947051 +- 1.595127567415444 +- 1.6265296532950888 +- 1.7066609276810025 +- 1.7785684536686543 +- 1.834337358855416 +- 1.9165693354042146 +- 2.092987085584358 +- 2.2000290176568877 +- 2.391669305468813 +- 2.596920334984893 +- 2.536927101763124 +- 2.1561687095834743 +- 1.7693924759244943 +- 1.3885613801498735 +- 1.1900118892639717 +- 1.0604108442934426 +- 0.9287019513338428 +- 0.7381577955840292 +- 0.7295973010713631 +- 0.832321304561856 +- 1.0544045033313594 +- 1.3052660813169779 +- 1.5199026829721909 +- 1.715716707977168 +- 1.7851402328794646 +- 1.854435845229363 +- 1.869136986007842 +- 1.9376443648177524 +- 1.9713176627529 +- 2.0033976460365692 +- 2.0521892395125594 +- 2.144818667446685 +- 2.286526016705482 +- 2.496308432752874 +- 2.4568842833828493 +- 2.173158154348258 +- 1.8074793646775038 +- 1.4745513079107115 +- 1.2601841759446706 +- 1.0688988998092925 +- 0.8870869123025142 +- 0.850715065206548 +- 0.7712425246726409 +- 0.8512345976774911 +- 1.0481462619596547 +- 1.3054499775435895 +- 1.4998088366986653 +- 1.6603253738429729 +- 1.7774851228692852 +- 1.8381841349605117 +- 1.8458848517335065 +- 1.8957713874070021 +- 2.0231563200561125 +- 2.0998624582274195 +- 2.1533603876618197 +- 2.249730451538586 +- 2.375382268972706 +- 2.5749240915748457 +- 2.5324914797795204 +- 2.1317442272206173 +- 1.5984752825043764 +- 1.2861711361020598 +- 1.0474051278871972 +- 0.8095546220738253 +- 0.6469434736837195 +- 0.5979166691285972 +- 0.542202832634253 +- 0.5916531758505416 +- 0.8151753020152623 +- 1.0290515473735724 +- 1.266190496308402 +- 1.4353573577493006 +- 1.533053267643837 +- 1.5683176684797138 +- 1.6101056346868323 +- 1.656260774556462 +- 1.7528027680717928 +- 1.8054947880658272 +- 1.9044498882761673 +- 2.0294763475505357 +- 2.2033482196691203 +- 2.3490153159016365 +- 2.3091939879839156 +- 1.9362736540309986 +- 1.5302154724004893 +- 1.1781081798935895 +- 0.9766831918584397 +- 0.8183650397859337 +- 0.6782390316955885 +- 0.6082629021132206 +- 0.5728400612184541 +- 0.6393381720115491 +- 0.859085776368556 +- 1.0333745068258806 +- 1.126878390985021 +- 1.2459430994544303 +- 1.324710706425154 +- 1.341073689805932 +- 1.3485420985236287 +- 1.4324405995296785 +- 1.5390674269942677 +- 1.6310676344640611 +- 1.7503853808254968 +- 1.89246506724087 +- 2.066148337062493 +- 2.2713708335213934 +- 2.2050633730794007 +- 1.8745918279177436 +- 1.5074602374930357 +- 1.2342052586463534 +- 1.0639097093807888 +- 0.8977005765367119 +- 0.7593895237522101 +- 0.6173502412327576 +- 0.6017126431565082 +- 0.6965375951476017 +- 0.9019688397851426 +- 1.0355056661119117 +- 1.1860948528951658 +- 1.345241943717711 +- 1.3955074096773445 +- 1.5007352377061796 +- 1.5001782518911533 +- 1.588080740342615 +- 1.6177927650311228 +- 1.6964807485377285 +- 1.8050665342848562 +- 1.904905295385467 +- 2.039714804201017 +- 2.276616866510945 +- 2.299215994573846 +- 2.0299548833160252 +- 1.6829932605165312 +- 1.461825309509877 +- 1.2563978412932706 +- 1.1583887210394428 +- 1.0967430716859845 +- 0.9732814381766524 +- 0.9340362392753851 +- 1.0354401851845785 +- 1.2153385983657188 +- 1.3543462122398788 +- 1.4855245420094676 +- 1.595743878899838 +- 1.5641652537161645 +- 1.6140488927479566 +- 1.6364501855754117 +- 1.7274183652896784 +- 1.7488318179779159 +- 1.8194745874971394 +- 1.9314970442395794 +- 2.032999221857102 +- 2.2124546791308326 +- 2.4085470307299484 +- 2.4195851273227205 +- 2.1608175519436563 +- 1.8263244551352562 +- 1.5600129913732301 +- 1.4043413293596 +- 1.2094985792870008 +- 0.9915318040151004 +- 0.898299515345476 +- 0.8621547095431248 +- 0.9748749421306468 +- 1.2554963898362537 +- 1.408831722116469 +- 1.5638800057738265 +- 1.7460522508263432 +- 1.7860261750895818 +- 1.842569614904779 +- 1.8781276310710378 +- 1.9534395661633888 +- 2.0231201643117096 +- 2.0991871072271535 +- 2.1524041413985424 +- 2.2221030839621956 +- 2.3643228212635186 +- 2.50838044013691 +- 2.4820291790579843 +- 2.2713609991158226 +- 1.9324620953415481 +- 1.6409880507741055 +- 1.3755370825843736 +- 1.1864202799772274 +- 1.0563391894850716 +- 1.019948928838196 +- 1.0211799703166597 +- 1.1730356016325656 +- 1.4200021703572931 +- 1.5449607388831756 +- 1.6203209500232862 +- 1.7093137018150748 +- 1.7325939132123966 +- 1.7250485350973455 +- 1.647614007873221 +- 1.6915771062077813 +- 1.7163657204410874 +- 1.8146932064076216 +- 1.9310423522737936 +- 2.072043197991672 +- 2.2376703942383815 +- 2.4473592642212276 +- 2.547205875844316 +- 2.3503381550484916 +- 2.1196333500945985 +- 1.804119032584481 +- 1.6030973473133237 +- 1.4422584933985239 +- 1.3223412942792439 +- 1.2706136934817749 +- 1.2863309939493535 +- 1.4776073289232163 +- 1.7303359628055088 +- 1.8588023086151302 +- 2.09377874197521 +- 2.265243405650784 +- 2.34379723191114 +- 2.328381961258423 +- 2.314322462401148 +- 2.3654175218556417 +- 2.3786230366974332 +- 2.3855455662069938 +- 2.4175906340679227 +- 2.542108703067395 +- 2.7481698723401373 +- 2.9970191730290807 +- 3.0832406094180596 +- 2.9086869298137055 +- 2.717622508486002 +- 2.517695161805318 +- 2.2656951695882244 +- 2.045266528734855 +- 1.8481671842816716 +- 1.6860582785311358 +- 1.6653232719128135 +- 1.8278769434779003 +- 2.0847949352335537 +- 2.348675715085813 +- 2.486519366560641 +- 2.60628036338411 +- 2.8527681170504775 +- 2.9229359098225913 +- 2.956516718202294 +- 2.9866436827962644 +- 3.03195188145298 +- 3.078229603026921 +- 3.043349075466594 +- 3.1187518367711555 +- 3.255843182925758 +- 3.4137579722889333 +- 3.4767423860920736 +- 3.1867452117881148 +- 2.7458080263112596 +- 2.4011857709753603 +- 1.9836199707744702 +- 1.752186314890264 +- 1.5485040437478153 +- 1.4156589453566488 +- 1.3794714144225497 +- 1.5555113503249074 +- 1.9179648638359668 +- 2.1909034084761445 +- 2.451707560920137 +- 2.575752686526616 +- 2.6655930512337034 +- 2.739555824299859 +- 2.759838041334811 +- 2.7698848628142985 +- 2.814318747907385 +- 2.8537263514859608 +- 2.8788575981322997 +- 2.945853566493131 +- 3.066355529417861 +- 3.273081060549239 +- 3.2895321493507845 +- 3.055257436607248 +- 2.691980103639175 +- 2.3793892079071077 +- 2.1590033912630084 +- 1.9216038402945474 +- 1.556198965006952 +- 1.3417807504806327 +- 1.2833783203985363 +- 1.3823433960143763 +- 1.6977957609836551 +- 1.8849497667531578 +- 2.0988482137134947 +- 2.2625291699698926 +- 2.438889813350423 +- 2.5624755359436624 +- 2.5426849094308883 +- 2.5772167532050076 +- 2.609109730701889 +- 2.6333948805368417 +- 2.7261533914058185 +- 2.8805929607737917 +- 3.115717403062566 +- 3.3532070665913474 +- 3.3005577950126157 +- 3.0268229496965287 +- 2.61104137873157 +- 2.1997957863739717 +- 1.9672603040935555 +- 1.6379964972924634 +- 1.4174580295044392 +- 1.24713928840829 +- 1.2942205901431836 +- 1.4367810827994623 +- 1.713726193182989 +- 2.015658620370066 +- 2.3115615904645868 +- 2.4980751505814087 +- 2.5607082624729696 +- 2.517165428470163 +- 2.4081092447279313 +- 2.3330908948561406 +- 2.2529411992081316 +- 2.1826694748296123 +- 2.1435150323368193 +- 2.1529282898430564 +- 2.2335253657253924 +- 2.3240112531993553 +- 2.3820848059021213 +- 2.217618450864387 +- 1.8502875834892596 +- 1.6090392896580517 +- 1.430397090642235 +- 1.2574414900905242 +- 1.0647850439998368 +- 0.8889754538864744 +- 0.8907161278053551 +- 0.9878379899482425 +- 1.2637926488121618 +- 1.4306873709788719 +- 1.5811267562738036 +- 1.6635143717868561 +- 1.7705627054308402 +- 1.8335884999623466 +- 1.8623543549854027 +- 1.8328212778293327 +- 1.871499494798034 +- 1.9135716708188666 +- 1.9555457058566414 +- 2.0271607287063347 +- 2.1171541441651995 +- 2.2137087200365246 +- 2.257205106880584 +- 2.092058505738714 +- 1.8778245404995833 +- 1.591733536925218 +- 1.3754097372138168 +- 1.278209358424924 +- 1.131596813720202 +- 1.0047133130742696 +- 1.039694436958426 +- 1.0331719530809598 +- 1.2445471805614916 +- 1.459645494998157 +- 1.5228783353340032 +- 1.657927681001152 +- 1.7270517083051713 +- 1.745923354772493 +- 1.6876629210152483 +- 1.671739453908591 +- 1.7005090338011084 +- 1.728958475598697 +- 1.7853455764324082 +- 1.8700033399829141 +- 2.0095718827008215 +- 2.2277578222365615 +- 2.2602366942148633 +- 2.057944554169943 +- 1.7798131375895947 +- 1.5796829254839198 +- 1.3609928749946818 +- 1.22520708740725 +- 1.0206703954179481 +- 0.8701649211045643 +- 0.8616771751486662 +- 1.0453665963682688 +- 1.3063562504485042 +- 1.4380913998390188 +- 1.6231307713496632 +- 1.719623700276128 +- 1.8399448672846843 +- 1.888525880498324 +- 1.9447139514029281 +- 1.9019400385395502 +- 1.9343920521287834 +- 1.9818022511097977 +- 2.054115251898447 +- 2.1631450612243923 +- 2.317930551193489 +- 2.464520061382105 +- 2.4394342156086153 +- 2.224005289807657 +- 1.816377261853587 +- 1.4433663742813208 +- 1.231643290133403 +- 1.0333948045954886 +- 0.8883714575395233 +- 0.7493076099053053 +- 0.7373406498868618 +- 0.9008558204252111 +- 1.176062615428532 +- 1.358063899907601 +- 1.4970102446058944 +- 1.6739374014716508 +- 1.743174093575127 +- 1.7925176852492855 +- 1.7646765049943252 +- 1.7374109315827009 +- 1.7626203988558908 +- 1.81978858844363 +- 1.9105065902999794 +- 2.0529903712548148 +- 2.196397997978761 +- 2.3815418847673437 +- 2.444310282365197 +- 2.3025854486160826 +- 1.9952535772787672 +- 1.7685605764826544 +- 1.5628777254482171 +- 1.402581038627141 +- 1.264158375627141 +- 1.1446963546207316 +- 1.1716197553694427 +- 1.351668637392684 +- 1.6020263730140267 +- 1.762028649243772 +- 1.916928996788465 +- 1.9821471292389952 +- 2.0621331737695914 +- 2.0939966100318275 +- 2.039933289975866 +- 2.0551354525398784 +- 1.9772847376193445 +- 1.9733961081108826 +- 2.03279986113058 +- 2.1104016957333784 +- 2.2178190148879344 +- 2.372032768665215 +- 2.460755105208336 +- 2.4292739956900387 +- 2.237679506260484 +- 2.139187501106819 +- 2.0458349922494965 +- 1.955567039724709 +- 1.8075281265220684 +- 1.6501446954869503 +- 1.6124123786428 +- 1.7561788591632073 +- 1.9335935688041253 +- 2.0418005816337845 +- 2.1346862066411334 +- 2.1843496807386167 +- 2.203693039696836 +- 2.130826855459663 +- 2.071863026121672 +- 2.060763789961325 +- 2.045325950883135 +- 2.0463205377462743 +- 2.072344871807684 +- 2.13189754786022 +- 2.254520947911665 +- 2.3403107315300216 +- 2.4045813848757427 +- 2.3170882729204165 +- 2.2236881493174283 +- 2.056165094184065 +- 1.9286241229555856 +- 1.7344572721843405 +- 1.5683829891562489 +- 1.4711750125365946 +- 1.526295474711392 +- 1.6419510465984584 +- 1.8383304561138134 +- 1.977655629075189 +- 2.0460152213486333 +- 2.105793361794971 +- 2.1688318819650845 +- 2.2076319523132786 +- 2.1170671624223485 +- 2.130502708794292 +- 2.161959847064375 +- 2.2017116703144697 +- 2.276139955725785 +- 2.4014651342137623 +- 2.54335466213714 +- 2.717125517631834 +- 2.7735809109836147 +- 2.6433792981516424 +- 2.3293729592405685 +- 1.9355799980581967 +- 1.7276670787432027 +- 1.5648895138961274 +- 1.3287049542626197 +- 1.1249290366940243 +- 1.1482163747856604 +- 1.2499230212333308 +- 1.5504448753804292 +- 1.7767779202482863 +- 1.8932060754846534 +- 2.0204335595802476 +- 2.0812584691636387 +- 2.042712455617632 +- 1.9940543922084721 +- 2.0342608726606137 +- 2.0494157580286205 +- 2.072597380794182 +- 2.1603946495258857 +- 2.284390641514348 +- 2.3713389906148583 +- 2.482826967481342 +- 2.6309500456098305 +- 2.5112414191150187 +- 2.3049590016641894 +- 2.1208805094616467 +- 2.0372747463508842 +- 2.0459284267088504 +- 1.9684257199550914 +- 1.96654104659723 +- 2.030125392957526 +- 2.1452326737368073 +- 2.4113951828209803 +- 2.49992311493651 +- 2.5354586112039037 +- 2.6084006791533056 +- 2.6678910047456976 +- 2.6329740404198825 +- 2.604329051175419 +- 2.5961629632270284 +- 2.664438976994765 +- 2.751524223378526 +- 2.8226291692181547 +- 3.0003142560210914 +- 3.2222640814387984 +- 3.4962970845059376 +- 3.640384270951442 +- 3.3234157988624693 +- 2.8142300241630838 +- 2.506420577845217 +- 2.32391097251035 +- 2.076387697167657 +- 1.9480566017950052 +- 1.824567288319976 +- 1.8416784617319462 +- 1.999468373193846 +- 2.24978761970645 +- 2.553130873611255 +- 2.775459856772975 +- 2.9541057055469686 +- 3.0137782497199215 +- 3.0428579517646592 +- 3.0221206135861935 +- 3.0296178698690763 +- 3.033995593006648 +- 3.0552326253080713 +- 3.061284703842101 +- 3.1615889894507365 +- 3.2762926361359277 +- 3.4510712592900217 +- 3.5341345884189606 +- 3.311582430665696 +- 2.8643532405444185 +- 2.5633552065554195 +- 2.2810505059622956 +- 2.0594510428003097 +- 1.8267470556592842 +- 1.6508900998874947 +- 1.6282913262558425 +- 1.844680887119292 +- 2.1723298129044064 +- 2.4562746595256435 +- 2.642818493498304 +- 2.8738546876466855 +- 2.9755112876490126 +- 2.9856936734740316 +- 2.9950735723883155 +- 3.026420504840502 +- 3.085082803504312 +- 3.103368130834281 +- 3.1464408804254087 +- 3.2786588701603883 +- 3.424963659152414 +- 3.5872349459715642 +- 3.6558084756016966 +- 3.3736372929396317 +- 2.9197967600659385 +- 2.5728094265089583 +- 2.3199648448924792 +- 2.0318610987615338 +- 1.7620925310913673 +- 1.5587029905573244 +- 1.5624859597476146 +- 1.6971830962993337 +- 2.0530482907818888 +- 2.2843207044432954 +- 2.4889634884153735 +- 2.7386600055179127 +- 2.8853266323795177 +- 2.970437834277199 +- 2.985699766661234 +- 2.998702250801257 +- 3.0109088494059235 +- 3.024143190555606 +- 3.130162944222056 +- 3.25725464890644 +- 3.3926988600011114 +- 3.5627685895223498 +- 3.603887635937295 +- 3.246534690479952 +- 2.7850538002952185 +- 2.385435662687312 +- 2.008883265728472 +- 1.6761122784224558 +- 1.4348564402569346 +- 1.194477952453379 +- 1.1942348296765406 +- 1.3964059406454177 +- 1.7523256343902198 +- 1.9984558447034015 +- 2.224234011013531 +- 2.383349466855885 +- 2.564361527389224 +- 2.6407297001795214 +- 2.666412530958055 +- 2.6645987769771677 +- 2.644828870711724 +- 2.7009799332589366 +- 2.8325935399025393 +- 2.9179173421540963 +- 3.104644787117193 +- 3.3154834936366346 +- 3.3984193951647272 +- 3.1244027657714657 +- 2.6064441748970113 +- 2.1500775067646276 +- 1.733171916695578 +- 1.4801711059944205 +- 1.2561779106305355 +- 1.0785402627408829 +- 1.0710720017898843 +- 1.2097268941869659 +- 1.4939731277483737 +- 1.7767381472882116 +- 2.012099818282561 +- 2.1748690129586272 +- 2.173681769699248 +- 2.242541906823164 +- 2.2522005027145338 +- 2.2789224089344127 +- 2.3458645500261657 +- 2.403170861883042 +- 2.4752910909627106 +- 2.5539055090096685 +- 2.704346319128769 +- 2.8809222350592965 +- 2.9838769481499337 +- 2.8230805159055423 +- 2.5070030226704296 +- 2.162372822892083 +- 1.9985311778391215 +- 1.826612361732916 +- 1.5593617110436708 +- 1.3601084257457061 +- 1.3848320319269607 +- 1.5394665835736543 +- 1.7874705040466803 +- 1.957868624233123 +- 2.1769336384596296 +- 2.2483978757307215 +- 2.3175670525125227 +- 2.3739433374707795 +- 2.3936085962368625 +- 2.463610353961788 +- 2.4836370339362213 +- 2.5345447067611886 +- 2.6053017510819645 +- 2.6836920336692005 +- 2.8081300124385025 +- 2.9640403132673296 +- 3.0971877519559396 +- 2.9828517773726797 +- 2.5594979789854633 +- 2.1708110984171745 +- 1.931180529112007 +- 1.687676711954031 +- 1.4447550382403738 +- 1.2893147894974821 +- 1.2646708206767359 +- 1.422201337602594 +- 1.7320168396297466 +- 2.0269651226610543 +- 2.188152779219777 +- 2.4365364689176037 +- 2.478028191944096 +- 2.5331884410315 +- 2.500221379751122 +- 2.521567882421312 +- 2.5128932156773556 +- 2.575276572562741 +- 2.658767323497679 +- 2.715907786957085 +- 2.792721544200292 +- 2.9165174077468548 +- 2.997121304702382 +- 2.757728550421809 +- 2.37996421375654 +- 2.142229433263341 +- 1.8703331042294773 +- 1.5740357729243775 +- 1.3497115419268584 +- 1.2564790506306776 +- 1.3110139334063655 +- 1.3621130548682496 +- 1.511569000613975 +- 1.623943728456015 +- 1.797811937506905 +- 1.8943441810556165 +- 1.9624227573789987 +- 1.970780957348802 +- 1.9621966982273318 +- 1.9609099643136294 +- 1.9585101215228262 +- 2.0216887437655555 +- 2.105656553685871 +- 2.2108375848308626 +- 2.372803890326326 +- 2.481540802544458 +- 2.535264579320994 +- 2.4167600617414497 +- 2.1299236911705064 +- 1.86736701128931 +- 1.6995870753998703 +- 1.5473775597532153 +- 1.3008216955592677 +- 1.142420402722484 +- 1.1422869227082408 +- 1.2299265437704945 +- 1.5727821901866812 +- 1.762875533556043 +- 1.9798195675218713 +- 2.057655975185261 +- 2.102228686644332 +- 2.179012721345086 +- 2.1910341835838816 +- 2.21697092079008 +- 2.2531123299938445 +- 2.3259057067909183 +- 2.424765157872717 +- 2.487136618737759 +- 2.576412747300968 +- 2.8046348197174695 +- 2.9560154013347604 +- 2.745411265571443 +- 2.403744426564707 +- 2.1325414192154426 +- 1.9265671540206297 +- 1.7376245657146385 +- 1.5874137240127468 +- 1.418141156118133 +- 1.4414292916377607 +- 1.6096630514358397 +- 1.869800859496205 +- 2.0562151452324886 +- 2.261859880706784 +- 2.377061602618692 +- 2.4583831598651162 +- 2.5504862686143754 +- 2.617229087174634 +- 2.5681245969571345 +- 2.6123767717391235 +- 2.6523244630572353 +- 2.7225403372254258 +- 2.810633433829325 +- 2.9868602595917606 +- 3.181279760788261 +- 3.2951161796624513 +- 3.067678864725505 +- 2.77130677148469 +- 2.4514155219370504 +- 2.2048412623433378 +- 1.9896578521557116 +- 1.7967078412802462 +- 1.7429041974224737 +- 1.792831388549525 +- 1.9566803488914928 +- 2.2500061540891916 +- 2.4362895608329462 +- 2.455891777878371 +- 2.536722636308124 +- 2.5466994144968464 +- 2.5925257444216014 +- 2.595518111810307 +- 2.5594229818013536 +- 2.5546400369067355 +- 2.5446582793793815 +- 2.618781359277852 +- 2.683825800349789 +- 2.8074623619529504 +- 3.0179591036622986 +- 3.159136861544809 +- 3.0756557065578263 +- 2.8140795850534297 +- 2.5344337147912976 +- 2.2228811436145492 +- 2.0130946815022503 +- 1.7726157124437494 +- 1.6674841431532936 +- 1.6572613426222806 +- 1.799086236138012 +- 2.141854102451512 +- 2.335770312880638 +- 2.4677904235795483 +- 2.503503024138674 +- 2.620826276029947 +- 2.6815487476018744 +- 2.6239550697425487 +- 2.619536754912689 +- 2.6240428117929455 +- 2.598538673693401 +- 2.6519259551709875 +- 2.711388227909981 +- 2.829133817117633 +- 3.0139996982293082 +- 3.1297450414882007 +- 2.964330134233176 +- 2.7615089314141463 +- 2.479729650468249 +- 2.1451666716620577 +- 1.9656228554015465 +- 1.706594874052828 +- 1.4956785161272068 +- 1.4792704767028604 +- 1.6176843698209284 +- 1.910265759456134 +- 2.222518032237788 +- 2.3918006993998153 +- 2.567660442998342 +- 2.6256789724436724 +- 2.656274826338619 +- 2.6908682927212495 +- 2.6949151243927174 +- 2.7164385328057437 +- 2.766561553556622 +- 2.8602780345715892 +- 2.951661524971474 +- 3.0944536684857122 +- 3.2943174712477927 +- 3.4163265924320876 +- 3.2889569560678362 +- 2.866926632693496 +- 2.4999444125313364 +- 2.341855848215702 +- 2.1704120757583802 +- 1.9189285162635235 +- 1.6876456010991938 +- 1.6838623292241004 +- 1.8563628703309913 +- 2.179798089906268 +- 2.4390680872335455 +- 2.672442909491918 +- 2.711197312295922 +- 2.8058268265201916 +- 2.769111034866795 +- 2.749526646857451 +- 2.7909771778659085 +- 2.8298650882006764 +- 2.8566029471876657 +- 2.9054836135984177 +- 3.0125139181387097 +- 3.1213318849188805 +- 3.3201631393523177 +- 3.3879651898850556 +- 3.239266521491471 +- 2.9304283712819204 +- 2.6741320449797312 +- 2.396128369354321 +- 2.0894057982606076 +- 1.7902133341443323 +- 1.625863969559922 +- 1.5535312615430374 +- 1.7006720570472085 +- 1.8989251470712465 +- 2.176294617401788 +- 2.3185192030773027 +- 2.416983450770184 +- 2.539077402357843 +- 2.6279668187080705 +- 2.654750508639769 +- 2.7535356167694287 +- 2.8175864436570377 +- 2.809514410163608 +- 2.8241162134829616 +- 2.939658603522603 +- 3.1291840643075077 +- 3.3864950204194453 +- 3.508899558209173 +- 3.2432529731045867 +- 2.8356214814822787 +- 2.48045009908421 +- 2.128366360727423 +- 1.8158719371108671 +- 1.5575006308074877 +- 1.3430336562606275 +- 1.357638474924097 +- 1.5405948955670405 +- 1.924014080275273 +- 2.1438805215064822 +- 2.3360067473456536 +- 2.533415533462903 +- 2.741718025547052 +- 2.7921898768522295 +- 2.765523880565951 +- 2.7909321281826855 +- 2.77339484632643 +- 2.7621867662689126 +- 2.7921888053939434 +- 2.8465073004618433 +- 2.9317629143781647 +- 3.0806030234273476 +- 3.221185628301931 +- 2.976940038700725 +- 2.584834059002711 +- 2.2905908141165856 +- 2.0383957406100106 +- 1.795253063747679 +- 1.5137925035543967 +- 1.2657156425600746 +- 1.2174466950791765 +- 1.3263889468373984 +- 1.6374569334469962 +- 1.9491551938895206 +- 2.233512505856981 +- 2.491361289255958 +- 2.601635001945822 +- 2.653464059358893 +- 2.6716994472165814 +- 2.6698551007724056 +- 2.6408569352976783 +- 2.658831263553185 +- 2.7378629310590124 +- 2.868453273129011 +- 3.01519068108722 +- 3.21815963971502 +- 3.3160396909178154 +- 3.12441646413581 +- 2.6944454358198926 +- 2.375002052106458 +- 2.0646965060960043 +- 1.7809492067273855 +- 1.5429952439130585 +- 1.4001335202478438 +- 1.4264277078045804 +- 1.5758954490610033 +- 1.7850158845393078 +- 2.081450741847581 +- 2.3414895437861833 +- 2.4483470088728767 +- 2.531088925422882 +- 2.5629347998206615 +- 2.6213751179653575 +- 2.712259188964476 +- 2.806338315364738 +- 2.816219756292698 +- 2.845062018752223 +- 2.864533012111313 +- 2.9335810032844414 +- 3.081118520280606 +- 3.1267745223230685 +- 2.9761370991443483 +- 2.5893088779787807 +- 2.153014861353738 +- 1.8502789597885458 +- 1.610825062644585 +- 1.4030460823498188 +- 1.2591607163545777 +- 1.2193138612302032 +- 1.3882101708524002 +- 1.788964101268642 +- 2.0667567339162183 +- 2.2841640848326232 +- 2.4783492690465567 +- 2.589804272174729 +- 2.7219454853743703 +- 2.6871941540228037 +- 2.710254516521757 +- 2.750974697276463 +- 2.8270491971133893 +- 2.924199728654161 +- 3.0749337923385838 +- 3.2210316454772707 +- 3.3844786433340386 +- 3.3848091024131897 +- 3.1076571242373174 +- 2.715136126961661 +- 2.352470201129685 +- 1.9897690056532173 +- 1.7505493958406573 +- 1.4070957693419814 +- 1.1787685922547773 +- 1.156411106715694 +- 1.3371205871953695 +- 1.5955224621980386 +- 1.853664829533494 +- 2.14216914228138 +- 2.3333815704718535 +- 2.395241806695247 +- 2.4837945719309307 +- 2.440414282133569 +- 2.467023252506944 +- 2.542356234315262 +- 2.582098772074842 +- 2.6729882896518284 +- 2.782968562227772 +- 2.9094267947242325 +- 3.0447741380991786 +- 3.1299600584498313 +- 2.8996457509499796 +- 2.5139818208861864 +- 2.1422213418578293 +- 1.8199876201749754 +- 1.5854803631397596 +- 1.3001435067140326 +- 1.1281675414000498 +- 1.1206709887335697 +- 1.2061322089082531 +- 1.4761930943686197 +- 1.7197034693723043 +- 2.0298728564796487 +- 2.2015352758765827 +- 2.3415842495314894 +- 2.4282365782698556 +- 2.4290345857644855 +- 2.520312409924681 +- 2.531846305712041 +- 2.614622049335693 +- 2.747168497730112 +- 2.9095320749292752 +- 3.1447103381935424 +- 3.3902591071997534 +- 3.5468526462474648 +- 3.2365405956114905 +- 2.7279486737938132 +- 2.2674563571856914 +- 2.05450632591954 +- 1.8270449171420189 +- 1.6137469168016094 +- 1.3866974405332149 +- 1.3156358328519384 +- 1.4380900042489688 diff --git a/examples/inputs/residential_pv.yaml b/examples/inputs/residential_pv.yaml new file mode 100644 index 000000000..5d9ba7ca1 --- /dev/null +++ b/examples/inputs/residential_pv.yaml @@ -0,0 +1,14 @@ +# PySAM Pvwattsv8 System Design Inputs: https://nrel-pysam.readthedocs.io/en/main/modules/Pvwattsv8.html#systemdesign-group +SystemDesign: + # use fixed roof mount system corresponding to array_type = 1.0 + array_type: 1.0 # 0: fixed open rack 1: fixed roof mount 2: 1-axis tracking 3: 1-axis backtracking 4: 2-axis tracking + bifaciality: 0.0 # monofacial modules have no bifaciality + module_type: 1.0 # 0: standard 1: premium 2: thin film. Premium modules have an efficiency of 21% + losses: 15.0 # DC-losses represented as a percentage + # inverter specifications. Inverters convert DC-power from the solar panels to AC-power + dc_ac_ratio: 1.21 #inverter is (1/dc_ac_ratio) the capacity of the pv system. + inv_eff: 96.0 #inverter efficiency as a percentage + # panel layout and orientation + gcr: 0.3 # groud coverage ratio default value + azimuth: 180.0 # South-facing panels. East is 90, South is 180, West is 270 + rotlim: 0.0 #no rotational limit because using a fixed-tilt panel \ No newline at end of file diff --git a/examples/legacy/CSP_PV_Battery_Analysis/print_output.py b/examples/legacy/CSP_PV_Battery_Analysis/print_output.py index a5974122d..5133f2d02 100644 --- a/examples/legacy/CSP_PV_Battery_Analysis/print_output.py +++ b/examples/legacy/CSP_PV_Battery_Analysis/print_output.py @@ -82,6 +82,6 @@ def print_hybrid_output(hybrid: HybridSimulation): if hybrid.site.follow_desired_schedule: print("\tMissed load [MWh]: {:.2f}".format(sum(hybrid.grid.missed_load[0:8760])/1.e3)) - print("\tMissed load percentage [%]: {:.2f}".format(hybrid.grid.missed_load_percentage*100.0)) + print("\tMissed load percentage [%]: {:.2f}".format(hybrid.grid.missed_load_percentage)) print("\tSchedule curtailed [MWh]: {:.2f}".format(sum(hybrid.grid.schedule_curtailed[0:8760])/1.e3)) - print("\tSchedule curtailed percentage [%]: {:.2f}".format(hybrid.grid.schedule_curtailed_percentage*100.0)) \ No newline at end of file + print("\tSchedule curtailed percentage [%]: {:.2f}".format(hybrid.grid.schedule_curtailed_percentage)) \ No newline at end of file diff --git a/examples/legacy/Detailed_PV_Layout/detailed_pv_layout.py b/examples/legacy/Detailed_PV_Layout/detailed_pv_layout.py index 3b64620ca..51269053c 100644 --- a/examples/legacy/Detailed_PV_Layout/detailed_pv_layout.py +++ b/examples/legacy/Detailed_PV_Layout/detailed_pv_layout.py @@ -152,9 +152,6 @@ def _set_system_layout(self): elif self._system_model.value('subarray1_track_mode') == 1: self._system_model.value('subarray1_rotlim', self.parameters.tilt_tracker_angle) self._system_model.value('constant', self.flicker_loss * 100) # percent - self._system_model.value('subarray2_enable', 0) - self._system_model.value('subarray3_enable', 0) - self._system_model.value('subarray4_enable', 0) else: # PVWatts self._system_model.value('system_capacity', self.calculated_system_capacity) diff --git a/hopp/__init__.py b/hopp/__init__.py index a2ea68c37..7518ef071 100644 --- a/hopp/__init__.py +++ b/hopp/__init__.py @@ -1,7 +1,7 @@ from pathlib import Path -__version__ = "3.1.1" +__version__ = "3.2.0" ROOT_DIR = Path(__file__).resolve().parent diff --git a/hopp/simulation/hybrid_simulation.py b/hopp/simulation/hybrid_simulation.py index 4a59dabd3..eef290a5b 100644 --- a/hopp/simulation/hybrid_simulation.py +++ b/hopp/simulation/hybrid_simulation.py @@ -15,6 +15,7 @@ from hopp.simulation.technologies.csp.tower_plant import TowerConfig, TowerPlant from hopp.simulation.technologies.csp.trough_plant import TroughConfig, TroughPlant from hopp.simulation.technologies.wave.mhk_wave_plant import MHKWavePlant, MHKConfig +from hopp.simulation.technologies.tidal.mhk_tidal_plant import MHKTidalPlant, MHKTidalConfig from hopp.simulation.technologies.battery import Battery, BatteryConfig, BatteryStateless, BatteryStatelessConfig from hopp.simulation.technologies.grid import Grid, GridConfig from hopp.simulation.technologies.reopt import REopt @@ -38,7 +39,7 @@ class HybridSimulationOutput: """Class for creating :class:`HybridSimulation` output structure""" - _keys = ("pv", "wind", "wave", "battery", "tower", "trough", "hybrid") + _keys = ("pv", "wind", "wave", "tidal", "battery", "tower", "trough", "hybrid") def __init__(self, power_sources): """ @@ -97,6 +98,7 @@ class TechnologiesConfig(BaseClass): defaults to `PVConfig` wind: Wind config wave: Wave config + tidal: Tidal config tower: CSP tower config trough: CSP trough config battery: Battery config. If `tracking` is False, uses `BatteryStatelessConfig`. @@ -107,6 +109,7 @@ class TechnologiesConfig(BaseClass): pv: Optional[Union[PVConfig, DetailedPVConfig]] = field(default=None) wind: Optional[WindConfig] = field(default=None) wave: Optional[MHKConfig] = field(default=None) + tidal: Optional[MHKTidalConfig] = field(default=None) tower: Optional[TowerConfig] = field(default=None) trough: Optional[TroughConfig] = field(default=None) battery: Optional[Union[BatteryConfig, BatteryStatelessConfig]] = field(default=None) @@ -134,6 +137,9 @@ def from_dict(cls, data: dict): if "wave" in data: config["wave"] = MHKConfig.from_dict(data["wave"]) + if "tidal" in data: + config["tidal"] = MHKTidalConfig.from_dict(data["tidal"]) + if "tower" in data: config["tower"] = TowerConfig.from_dict(data["tower"]) @@ -184,6 +190,7 @@ class HybridSimulation(BaseClass): pv: Optional[Union[PVPlant, DetailedPVPlant]] = field(init=False, default=None) wind: Optional[WindPlant] = field(init=False, default=None) wave: Optional[MHKWavePlant] = field(init=False, default=None) + tidal: Optional[MHKTidalPlant] = field(init=False, default=None) tower: Optional[TowerPlant] = field(init=False, default=None) trough: Optional[TroughPlant] = field(init=False, default=None) battery: Optional[Union[Battery, BatteryStateless]] = field(init=False, default=None) @@ -226,6 +233,14 @@ def __attrs_post_init__(self): logger.info("Created HybridSystem.wave with system size {} mW".format(wave_config)) + tidal_config = self.tech_config.tidal + + if tidal_config is not None: + self.tidal = MHKTidalPlant(self.site, config=tidal_config) + self.technologies["tidal"] = self.tidal + + logger.info("Created HybridSystem.tidal with system size {} mW".format(tidal_config)) + tower_config = self.tech_config.tower if tower_config is not None: @@ -326,18 +341,20 @@ def setup_cost_calculator(self, cost_calculator: object): def set_om_costs(self, pv_om_per_kw=None, wind_om_per_kw=None, tower_om_per_kw=None, trough_om_per_kw=None, - wave_om_per_kw=None, battery_om_per_kw=None, + wave_om_per_kw=None, tidal_om_per_kw=None, + battery_om_per_kw=None, hybrid_om_per_kw=None, pv_om_per_mwh=None,wind_om_per_mwh=None, tower_om_per_mwh=None,trough_om_per_mwh=None, - wave_om_per_mwh=None,battery_om_per_mwh=None, + wave_om_per_mwh=None,tidal_om_per_mwh=None, + battery_om_per_mwh=None, hybrid_om_per_mwh=None,): """ Sets Capacity-based O&M amount for each technology [$/kWcap]. Sets Production-based O&M amount for each technology [$/MWh]. """ - # om_vals = [pv_om_per_kw, wind_om_per_kw, tower_om_per_kw, trough_om_per_kw, wave_om_per_kw, hybrid_om_per_kw] - # techs = ["pv", "wind", "tower", "trough", "wave", "hybrid"] + # om_vals = [pv_om_per_kw, wind_om_per_kw, tower_om_per_kw, trough_om_per_kw, wave_om_per_kw, tidal_om_per_kw, hybrid_om_per_kw] + # techs = ["pv", "wind", "tower", "trough", "wave", "tidal", "hybrid"] # om_lengths = {tech + "_om_per_kw" : om_val for om_val, tech in zip(om_vals, techs)} # if len(set(om_lengths.values())) != 1 and len(set(om_lengths.values())) is not None: # raise ValueError(f"Length of yearly om cost per kw arrays must be equal. Some lengths of om_per_kw values are different from others: {om_lengths}") @@ -371,6 +388,12 @@ def set_om_costs(self, pv_om_per_kw=None, wind_om_per_kw=None, if wave_om_per_mwh: self.wave.om_production = wave_om_per_mwh + if self.tidal: + if tidal_om_per_kw: + self.tidal.om_capacity = tidal_om_per_kw + if tidal_om_per_mwh: + self.tidal.om_production = tidal_om_per_mwh + if self.battery: if battery_om_per_kw: self.battery.om_capacity = battery_om_per_kw @@ -432,6 +455,9 @@ def calculate_installed_cost(self): if self.wave: self.wave.total_installed_cost = self.wave.calculate_total_installed_cost() total_cost += self.wave.total_installed_cost + if self.tidal: + self.tidal.total_installed_cost = self.tidal.calculate_total_installed_cost() + total_cost += self.tidal.total_installed_cost if self.tower: self.tower.total_installed_cost = self.tower.calculate_total_installed_cost() total_cost += self.tower.total_installed_cost @@ -662,7 +688,7 @@ def simulate_power(self, project_life: int = 25, lifetime_sim=False): """ self.setup_performance_models() # simulate non-dispatchable systems - non_dispatchable_systems = ['pv', 'wind','wave'] + non_dispatchable_systems = ['pv', 'wind','wave','tidal'] for system in non_dispatchable_systems: model = getattr(self, system) if model: @@ -880,6 +906,10 @@ def capacity_factors(self) -> HybridSimulationOutput: cf.wave = self.wave.capacity_factor hybrid_generation += self.wave.annual_energy_kwh hybrid_capacity += self.wave.system_capacity_kw + if self.tidal: + cf.tidal = self.tidal.capacity_factor + hybrid_generation += self.tidal.annual_energy_kwh + hybrid_capacity += self.tidal.system_capacity_kw if self.tower: cf.tower = self.tower.capacity_factor hybrid_generation += self.tower.annual_energy_kwh @@ -1066,6 +1096,8 @@ def hybrid_simulation_outputs(self, filename: str = "") -> dict: outputs['Wind (MW)'] = self.wind.system_capacity_kw / 1000 if self.wave: outputs['Wave (MW)'] = self.wave.system_capacity_kw / 1000 + if self.tidal: + outputs['Tidal (MW)'] = self.tidal.system_capacity_kw / 1000 if self.tower: outputs['Tower (MW)'] = self.tower.system_capacity_kw / 1000 outputs['Tower Hours of Storage (hr)'] = self.tower.tes_hours @@ -1085,9 +1117,9 @@ def hybrid_simulation_outputs(self, filename: str = "") -> dict: outputs['Grid Capacity Factor at Interconnect (%)'] = self.grid.capacity_factor_at_interconnect if self.site.follow_desired_schedule: outputs['Missed Load year 1 (MWh)'] = sum(self.grid.missed_load[0:8760])/1.e3 - outputs['Missed Scheduled Load (%)'] = self.grid.missed_load_percentage * 100 + outputs['Missed Scheduled Load (%)'] = self.grid.missed_load_percentage outputs['Schedule Curtailment year 1 (MWh)'] = sum(self.grid.schedule_curtailed[0:8760])/1.e3 - outputs['Schedule Curtailment (%)'] = self.grid.schedule_curtailed_percentage * 100 + outputs['Schedule Curtailment (%)'] = self.grid.schedule_curtailed_percentage attr_map = {'annual_energies': {'name': 'AEP (GWh)', 'scale': 1/1e6}, 'capacity_factors': {'name': 'Capacity Factor (-)'}, diff --git a/hopp/simulation/resource_files/tidal/Tidal_resource_timeseries.csv b/hopp/simulation/resource_files/tidal/Tidal_resource_timeseries.csv new file mode 100644 index 000000000..144b27fd2 --- /dev/null +++ b/hopp/simulation/resource_files/tidal/Tidal_resource_timeseries.csv @@ -0,0 +1,8763 @@ +Source,Location ID,Jurisdiction,Latitude,Longitude,Time Zone,Local Time Zone,Distance to Shore,Directionality Coefficient,Energy Period,Maximum Energy Direction,Mean Absolute Period,Mean Wave Direction,Mean Zero-Crossing Period,Omni-Directional Wave Power,Peak Period,Significant Wave Height,Spectral Width,Water Depth,Version +CMIST,PUG1527,The Narrows 0.3 miles North of Bridge,47.27432,-122.54532,0,-10,0,-,s,deg,s,deg,s,W/m,s,m,-,42.9,- +Year,Month,Day,Hour,Minute,Speed,,,,,,,,,,,,,, +2008,1,1,0,30,0.91814244,,,,,,,,,,,,,, +2008,1,1,1,30,0.276233,,,,,,,,,,,,,, +2008,1,1,2,30,0.5840359,,,,,,,,,,,,,, +2008,1,1,3,30,1.1303853,,,,,,,,,,,,,, +2008,1,1,4,30,1.2114222,,,,,,,,,,,,,, +2008,1,1,5,30,0.92221373,,,,,,,,,,,,,, +2008,1,1,6,30,0.3877952,,,,,,,,,,,,,, +2008,1,1,7,30,0.23787645,,,,,,,,,,,,,, +2008,1,1,8,30,0.6489161,,,,,,,,,,,,,, +2008,1,1,9,30,0.894621,,,,,,,,,,,,,, +2008,1,1,10,30,0.9655552,,,,,,,,,,,,,, +2008,1,1,11,30,0.7577871,,,,,,,,,,,,,, +2008,1,1,12,30,0.25826332,,,,,,,,,,,,,, +2008,1,1,13,30,0.44513845,,,,,,,,,,,,,, +2008,1,1,14,30,1.0309576,,,,,,,,,,,,,, +2008,1,1,15,30,1.3267394,,,,,,,,,,,,,, +2008,1,1,16,30,1.356456,,,,,,,,,,,,,, +2008,1,1,17,30,1.1857072,,,,,,,,,,,,,, +2008,1,1,18,30,0.7319408,,,,,,,,,,,,,, +2008,1,1,19,30,0.064073,,,,,,,,,,,,,, +2008,1,1,20,30,0.6484447,,,,,,,,,,,,,, +2008,1,1,21,30,1.2598044,,,,,,,,,,,,,, +2008,1,1,22,30,1.5985351,,,,,,,,,,,,,, +2008,1,1,23,30,1.5652064,,,,,,,,,,,,,, +2008,1,2,0,30,1.3126532,,,,,,,,,,,,,, +2008,1,2,1,30,0.9103732,,,,,,,,,,,,,, +2008,1,2,2,30,0.24846812,,,,,,,,,,,,,, +2008,1,2,3,30,0.63345426,,,,,,,,,,,,,, +2008,1,2,4,30,1.1519216,,,,,,,,,,,,,, +2008,1,2,5,30,1.2371852,,,,,,,,,,,,,, +2008,1,2,6,30,0.99938524,,,,,,,,,,,,,, +2008,1,2,7,30,0.5604261,,,,,,,,,,,,,, +2008,1,2,8,30,0.13487019,,,,,,,,,,,,,, +2008,1,2,9,30,0.2916532,,,,,,,,,,,,,, +2008,1,2,10,30,0.58835995,,,,,,,,,,,,,, +2008,1,2,11,30,0.7405145,,,,,,,,,,,,,, +2008,1,2,12,30,0.5782057,,,,,,,,,,,,,, +2008,1,2,13,30,0.16054437,,,,,,,,,,,,,, +2008,1,2,14,30,0.41315103,,,,,,,,,,,,,, +2008,1,2,15,30,0.83195496,,,,,,,,,,,,,, +2008,1,2,16,30,1.0346916,,,,,,,,,,,,,, +2008,1,2,17,30,1.0616306,,,,,,,,,,,,,, +2008,1,2,18,30,0.90346736,,,,,,,,,,,,,, +2008,1,2,19,30,0.46667734,,,,,,,,,,,,,, +2008,1,2,20,30,0.15999499,,,,,,,,,,,,,, +2008,1,2,21,30,0.81012094,,,,,,,,,,,,,, +2008,1,2,22,30,1.3715276,,,,,,,,,,,,,, +2008,1,2,23,30,1.6484821,,,,,,,,,,,,,, +2008,1,3,0,30,1.5800087,,,,,,,,,,,,,, +2008,1,3,1,30,1.3244282,,,,,,,,,,,,,, +2008,1,3,2,30,0.87672246,,,,,,,,,,,,,, +2008,1,3,3,30,0.17804135,,,,,,,,,,,,,, +2008,1,3,4,30,0.784239,,,,,,,,,,,,,, +2008,1,3,5,30,1.2861519,,,,,,,,,,,,,, +2008,1,3,6,30,1.3812388,,,,,,,,,,,,,, +2008,1,3,7,30,1.1903331,,,,,,,,,,,,,, +2008,1,3,8,30,0.8100854,,,,,,,,,,,,,, +2008,1,3,9,30,0.3806571,,,,,,,,,,,,,, +2008,1,3,10,30,0.067557104,,,,,,,,,,,,,, +2008,1,3,11,30,0.4746905,,,,,,,,,,,,,, +2008,1,3,12,30,0.69228697,,,,,,,,,,,,,, +2008,1,3,13,30,0.5445315,,,,,,,,,,,,,, +2008,1,3,14,30,0.16981646,,,,,,,,,,,,,, +2008,1,3,15,30,0.2898078,,,,,,,,,,,,,, +2008,1,3,16,30,0.6158678,,,,,,,,,,,,,, +2008,1,3,17,30,0.8097478,,,,,,,,,,,,,, +2008,1,3,18,30,0.87126625,,,,,,,,,,,,,, +2008,1,3,19,30,0.7215501,,,,,,,,,,,,,, +2008,1,3,20,30,0.28128883,,,,,,,,,,,,,, +2008,1,3,21,30,0.33541572,,,,,,,,,,,,,, +2008,1,3,22,30,0.9799091,,,,,,,,,,,,,, +2008,1,3,23,30,1.5088297,,,,,,,,,,,,,, +2008,1,4,0,30,1.7252834,,,,,,,,,,,,,, +2008,1,4,1,30,1.6186033,,,,,,,,,,,,,, +2008,1,4,2,30,1.3294153,,,,,,,,,,,,,, +2008,1,4,3,30,0.7783458,,,,,,,,,,,,,, +2008,1,4,4,30,0.18941307,,,,,,,,,,,,,, +2008,1,4,5,30,1.0405668,,,,,,,,,,,,,, +2008,1,4,6,30,1.5196822,,,,,,,,,,,,,, +2008,1,4,7,30,1.6143224,,,,,,,,,,,,,, +2008,1,4,8,30,1.4354185,,,,,,,,,,,,,, +2008,1,4,9,30,1.0374483,,,,,,,,,,,,,, +2008,1,4,10,30,0.5308523,,,,,,,,,,,,,, +2008,1,4,11,30,0.041283667,,,,,,,,,,,,,, +2008,1,4,12,30,0.5517004,,,,,,,,,,,,,, +2008,1,4,13,30,0.77207804,,,,,,,,,,,,,, +2008,1,4,14,30,0.60330546,,,,,,,,,,,,,, +2008,1,4,15,30,0.2540018,,,,,,,,,,,,,, +2008,1,4,16,30,0.17125669,,,,,,,,,,,,,, +2008,1,4,17,30,0.47999042,,,,,,,,,,,,,, +2008,1,4,18,30,0.72558,,,,,,,,,,,,,, +2008,1,4,19,30,0.8107643,,,,,,,,,,,,,, +2008,1,4,20,30,0.6267075,,,,,,,,,,,,,, +2008,1,4,21,30,0.13817182,,,,,,,,,,,,,, +2008,1,4,22,30,0.5205928,,,,,,,,,,,,,, +2008,1,4,23,30,1.1910235,,,,,,,,,,,,,, +2008,1,5,0,30,1.6869364,,,,,,,,,,,,,, +2008,1,5,1,30,1.8313013,,,,,,,,,,,,,, +2008,1,5,2,30,1.6703053,,,,,,,,,,,,,, +2008,1,5,3,30,1.3034317,,,,,,,,,,,,,, +2008,1,5,4,30,0.59856784,,,,,,,,,,,,,, +2008,1,5,5,30,0.4866035,,,,,,,,,,,,,, +2008,1,5,6,30,1.3798487,,,,,,,,,,,,,, +2008,1,5,7,30,1.8155296,,,,,,,,,,,,,, +2008,1,5,8,30,1.8778101,,,,,,,,,,,,,, +2008,1,5,9,30,1.6460129,,,,,,,,,,,,,, +2008,1,5,10,30,1.1423593,,,,,,,,,,,,,, +2008,1,5,11,30,0.4924794,,,,,,,,,,,,,, +2008,1,5,12,30,0.2010793,,,,,,,,,,,,,, +2008,1,5,13,30,0.7483295,,,,,,,,,,,,,, +2008,1,5,14,30,0.9048387,,,,,,,,,,,,,, +2008,1,5,15,30,0.6936631,,,,,,,,,,,,,, +2008,1,5,16,30,0.34411436,,,,,,,,,,,,,, +2008,1,5,17,30,0.12834471,,,,,,,,,,,,,, +2008,1,5,18,30,0.5024157,,,,,,,,,,,,,, +2008,1,5,19,30,0.79901963,,,,,,,,,,,,,, +2008,1,5,20,30,0.8478963,,,,,,,,,,,,,, +2008,1,5,21,30,0.5700027,,,,,,,,,,,,,, +2008,1,5,22,30,0.027491247,,,,,,,,,,,,,, +2008,1,5,23,30,0.7571267,,,,,,,,,,,,,, +2008,1,6,0,30,1.4627466,,,,,,,,,,,,,, +2008,1,6,1,30,1.9031141,,,,,,,,,,,,,, +2008,1,6,2,30,1.9535278,,,,,,,,,,,,,, +2008,1,6,3,30,1.7161306,,,,,,,,,,,,,, +2008,1,6,4,30,1.2259095,,,,,,,,,,,,,, +2008,1,6,5,30,0.34309435,,,,,,,,,,,,,, +2008,1,6,6,30,0.89020824,,,,,,,,,,,,,, +2008,1,6,7,30,1.7676125,,,,,,,,,,,,,, +2008,1,6,8,30,2.1203332,,,,,,,,,,,,,, +2008,1,6,9,30,2.0967453,,,,,,,,,,,,,, +2008,1,6,10,30,1.7398441,,,,,,,,,,,,,, +2008,1,6,11,30,1.0726726,,,,,,,,,,,,,, +2008,1,6,12,30,0.27654877,,,,,,,,,,,,,, +2008,1,6,13,30,0.48614424,,,,,,,,,,,,,, +2008,1,6,14,30,0.97922766,,,,,,,,,,,,,, +2008,1,6,15,30,1.0313069,,,,,,,,,,,,,, +2008,1,6,16,30,0.76462394,,,,,,,,,,,,,, +2008,1,6,17,30,0.36236554,,,,,,,,,,,,,, +2008,1,6,18,30,0.18270044,,,,,,,,,,,,,, +2008,1,6,19,30,0.6936156,,,,,,,,,,,,,, +2008,1,6,20,30,0.9764789,,,,,,,,,,,,,, +2008,1,6,21,30,0.9133671,,,,,,,,,,,,,, +2008,1,6,22,30,0.49362382,,,,,,,,,,,,,, +2008,1,6,23,30,0.22592275,,,,,,,,,,,,,, +2008,1,7,0,30,1.0693957,,,,,,,,,,,,,, +2008,1,7,1,30,1.7866418,,,,,,,,,,,,,, +2008,1,7,2,30,2.1296458,,,,,,,,,,,,,, +2008,1,7,3,30,2.0650914,,,,,,,,,,,,,, +2008,1,7,4,30,1.7306665,,,,,,,,,,,,,, +2008,1,7,5,30,1.0721852,,,,,,,,,,,,,, +2008,1,7,6,30,0.16242607,,,,,,,,,,,,,, +2008,1,7,7,30,1.3637164,,,,,,,,,,,,,, +2008,1,7,8,30,2.1585479,,,,,,,,,,,,,, +2008,1,7,9,30,2.3711133,,,,,,,,,,,,,, +2008,1,7,10,30,2.206406,,,,,,,,,,,,,, +2008,1,7,11,30,1.6781533,,,,,,,,,,,,,, +2008,1,7,12,30,0.8415884,,,,,,,,,,,,,, +2008,1,7,13,30,0.07759966,,,,,,,,,,,,,, +2008,1,7,14,30,0.81064576,,,,,,,,,,,,,, +2008,1,7,15,30,1.1878433,,,,,,,,,,,,,, +2008,1,7,16,30,1.1211853,,,,,,,,,,,,,, +2008,1,7,17,30,0.7792273,,,,,,,,,,,,,, +2008,1,7,18,30,0.26631975,,,,,,,,,,,,,, +2008,1,7,19,30,0.41947204,,,,,,,,,,,,,, +2008,1,7,20,30,0.9883137,,,,,,,,,,,,,, +2008,1,7,21,30,1.1697723,,,,,,,,,,,,,, +2008,1,7,22,30,0.93952274,,,,,,,,,,,,,, +2008,1,7,23,30,0.3546708,,,,,,,,,,,,,, +2008,1,8,0,30,0.5128517,,,,,,,,,,,,,, +2008,1,8,1,30,1.4471073,,,,,,,,,,,,,, +2008,1,8,2,30,2.1196263,,,,,,,,,,,,,, +2008,1,8,3,30,2.321615,,,,,,,,,,,,,, +2008,1,8,4,30,2.1340585,,,,,,,,,,,,,, +2008,1,8,5,30,1.6800516,,,,,,,,,,,,,, +2008,1,8,6,30,0.8087549,,,,,,,,,,,,,, +2008,1,8,7,30,0.58800256,,,,,,,,,,,,,, +2008,1,8,8,30,1.8686817,,,,,,,,,,,,,, +2008,1,8,9,30,2.492618,,,,,,,,,,,,,, +2008,1,8,10,30,2.5134463,,,,,,,,,,,,,, +2008,1,8,11,30,2.1796875,,,,,,,,,,,,,, +2008,1,8,12,30,1.4746073,,,,,,,,,,,,,, +2008,1,8,13,30,0.50147855,,,,,,,,,,,,,, +2008,1,8,14,30,0.45326337,,,,,,,,,,,,,, +2008,1,8,15,30,1.123199,,,,,,,,,,,,,, +2008,1,8,16,30,1.3529255,,,,,,,,,,,,,, +2008,1,8,17,30,1.1640652,,,,,,,,,,,,,, +2008,1,8,18,30,0.7199204,,,,,,,,,,,,,, +2008,1,8,19,30,0.12391373,,,,,,,,,,,,,, +2008,1,8,20,30,0.7581674,,,,,,,,,,,,,, +2008,1,8,21,30,1.290115,,,,,,,,,,,,,, +2008,1,8,22,30,1.3030047,,,,,,,,,,,,,, +2008,1,8,23,30,0.8890613,,,,,,,,,,,,,, +2008,1,9,0,30,0.1406959,,,,,,,,,,,,,, +2008,1,9,1,30,0.86751765,,,,,,,,,,,,,, +2008,1,9,2,30,1.8387306,,,,,,,,,,,,,, +2008,1,9,3,30,2.3975768,,,,,,,,,,,,,, +2008,1,9,4,30,2.435735,,,,,,,,,,,,,, +2008,1,9,5,30,2.1285424,,,,,,,,,,,,,, +2008,1,9,6,30,1.522292,,,,,,,,,,,,,, +2008,1,9,7,30,0.4153369,,,,,,,,,,,,,, +2008,1,9,8,30,1.1500206,,,,,,,,,,,,,, +2008,1,9,9,30,2.3360112,,,,,,,,,,,,,, +2008,1,9,10,30,2.7085521,,,,,,,,,,,,,, +2008,1,9,11,30,2.5245183,,,,,,,,,,,,,, +2008,1,9,12,30,2.0304666,,,,,,,,,,,,,, +2008,1,9,13,30,1.1681659,,,,,,,,,,,,,, +2008,1,9,14,30,0.11681293,,,,,,,,,,,,,, +2008,1,9,15,30,0.8497294,,,,,,,,,,,,,, +2008,1,9,16,30,1.4025806,,,,,,,,,,,,,, +2008,1,9,17,30,1.4722438,,,,,,,,,,,,,, +2008,1,9,18,30,1.1605061,,,,,,,,,,,,,, +2008,1,9,19,30,0.5934769,,,,,,,,,,,,,, +2008,1,9,20,30,0.25365078,,,,,,,,,,,,,, +2008,1,9,21,30,1.1061229,,,,,,,,,,,,,, +2008,1,9,22,30,1.5218692,,,,,,,,,,,,,, +2008,1,9,23,30,1.3441427,,,,,,,,,,,,,, +2008,1,10,0,30,0.76438695,,,,,,,,,,,,,, +2008,1,10,1,30,0.13655075,,,,,,,,,,,,,, +2008,1,10,2,30,1.2366612,,,,,,,,,,,,,, +2008,1,10,3,30,2.1684966,,,,,,,,,,,,,, +2008,1,10,4,30,2.5624256,,,,,,,,,,,,,, +2008,1,10,5,30,2.442716,,,,,,,,,,,,,, +2008,1,10,6,30,2.0174766,,,,,,,,,,,,,, +2008,1,10,7,30,1.2245505,,,,,,,,,,,,,, +2008,1,10,8,30,0.1868145,,,,,,,,,,,,,, +2008,1,10,9,30,1.7223574,,,,,,,,,,,,,, +2008,1,10,10,30,2.679777,,,,,,,,,,,,,, +2008,1,10,11,30,2.7720149,,,,,,,,,,,,,, +2008,1,10,12,30,2.4175138,,,,,,,,,,,,,, +2008,1,10,13,30,1.7875055,,,,,,,,,,,,,, +2008,1,10,14,30,0.788749,,,,,,,,,,,,,, +2008,1,10,15,30,0.36016384,,,,,,,,,,,,,, +2008,1,10,16,30,1.2364575,,,,,,,,,,,,,, +2008,1,10,17,30,1.639189,,,,,,,,,,,,,, +2008,1,10,18,30,1.5492834,,,,,,,,,,,,,, +2008,1,10,19,30,1.1190798,,,,,,,,,,,,,, +2008,1,10,20,30,0.4257713,,,,,,,,,,,,,, +2008,1,10,21,30,0.5438522,,,,,,,,,,,,,, +2008,1,10,22,30,1.396187,,,,,,,,,,,,,, +2008,1,10,23,30,1.654939,,,,,,,,,,,,,, +2008,1,11,0,30,1.3083267,,,,,,,,,,,,,, +2008,1,11,1,30,0.60098755,,,,,,,,,,,,,, +2008,1,11,2,30,0.4077168,,,,,,,,,,,,,, +2008,1,11,3,30,1.5454654,,,,,,,,,,,,,, +2008,1,11,4,30,2.367356,,,,,,,,,,,,,, +2008,1,11,5,30,2.5808187,,,,,,,,,,,,,, +2008,1,11,6,30,2.3271818,,,,,,,,,,,,,, +2008,1,11,7,30,1.7805262,,,,,,,,,,,,,, +2008,1,11,8,30,0.7962113,,,,,,,,,,,,,, +2008,1,11,9,30,0.73270273,,,,,,,,,,,,,, +2008,1,11,10,30,2.1893861,,,,,,,,,,,,,, +2008,1,11,11,30,2.8380551,,,,,,,,,,,,,, +2008,1,11,12,30,2.6899672,,,,,,,,,,,,,, +2008,1,11,13,30,2.2191079,,,,,,,,,,,,,, +2008,1,11,14,30,1.4665358,,,,,,,,,,,,,, +2008,1,11,15,30,0.35425255,,,,,,,,,,,,,, +2008,1,11,16,30,0.8131112,,,,,,,,,,,,,, +2008,1,11,17,30,1.5902567,,,,,,,,,,,,,, +2008,1,11,18,30,1.8254097,,,,,,,,,,,,,, +2008,1,11,19,30,1.5898796,,,,,,,,,,,,,, +2008,1,11,20,30,1.0532603,,,,,,,,,,,,,, +2008,1,11,21,30,0.25063264,,,,,,,,,,,,,, +2008,1,11,22,30,0.80756074,,,,,,,,,,,,,, +2008,1,11,23,30,1.6009982,,,,,,,,,,,,,, +2008,1,12,0,30,1.7067697,,,,,,,,,,,,,, +2008,1,12,1,30,1.2399715,,,,,,,,,,,,,, +2008,1,12,2,30,0.45079175,,,,,,,,,,,,,, +2008,1,12,3,30,0.6201972,,,,,,,,,,,,,, +2008,1,12,4,30,1.7267478,,,,,,,,,,,,,, +2008,1,12,5,30,2.3948445,,,,,,,,,,,,,, +2008,1,12,6,30,2.4454236,,,,,,,,,,,,,, +2008,1,12,7,30,2.088966,,,,,,,,,,,,,, +2008,1,12,8,30,1.4305904,,,,,,,,,,,,,, +2008,1,12,9,30,0.31568593,,,,,,,,,,,,,, +2008,1,12,10,30,1.2347763,,,,,,,,,,,,,, +2008,1,12,11,30,2.4590578,,,,,,,,,,,,,, +2008,1,12,12,30,2.802541,,,,,,,,,,,,,, +2008,1,12,13,30,2.494664,,,,,,,,,,,,,, +2008,1,12,14,30,1.9445274,,,,,,,,,,,,,, +2008,1,12,15,30,1.0726831,,,,,,,,,,,,,, +2008,1,12,16,30,0.15401685,,,,,,,,,,,,,, +2008,1,12,17,30,1.2472388,,,,,,,,,,,,,, +2008,1,12,18,30,1.8855038,,,,,,,,,,,,,, +2008,1,12,19,30,1.9575602,,,,,,,,,,,,,, +2008,1,12,20,30,1.6016667,,,,,,,,,,,,,, +2008,1,12,21,30,0.9778272,,,,,,,,,,,,,, +2008,1,12,22,30,0.12102418,,,,,,,,,,,,,, +2008,1,12,23,30,1.0140518,,,,,,,,,,,,,, +2008,1,13,0,30,1.7279688,,,,,,,,,,,,,, +2008,1,13,1,30,1.7187386,,,,,,,,,,,,,, +2008,1,13,2,30,1.1884246,,,,,,,,,,,,,, +2008,1,13,3,30,0.36148694,,,,,,,,,,,,,, +2008,1,13,4,30,0.7223519,,,,,,,,,,,,,, +2008,1,13,5,30,1.7402039,,,,,,,,,,,,,, +2008,1,13,6,30,2.2429378,,,,,,,,,,,,,, +2008,1,13,7,30,2.1723843,,,,,,,,,,,,,, +2008,1,13,8,30,1.754842,,,,,,,,,,,,,, +2008,1,13,9,30,1.0276153,,,,,,,,,,,,,, +2008,1,13,10,30,0.20141974,,,,,,,,,,,,,, +2008,1,13,11,30,1.5635692,,,,,,,,,,,,,, +2008,1,13,12,30,2.5030417,,,,,,,,,,,,,, +2008,1,13,13,30,2.6100063,,,,,,,,,,,,,, +2008,1,13,14,30,2.2171023,,,,,,,,,,,,,, +2008,1,13,15,30,1.6004196,,,,,,,,,,,,,, +2008,1,13,16,30,0.62948,,,,,,,,,,,,,, +2008,1,13,17,30,0.606177,,,,,,,,,,,,,, +2008,1,13,18,30,1.6157639,,,,,,,,,,,,,, +2008,1,13,19,30,2.1043184,,,,,,,,,,,,,, +2008,1,13,20,30,2.0380583,,,,,,,,,,,,,, +2008,1,13,21,30,1.593673,,,,,,,,,,,,,, +2008,1,13,22,30,0.90931475,,,,,,,,,,,,,, +2008,1,13,23,30,0.10882014,,,,,,,,,,,,,, +2008,1,14,0,30,1.1567156,,,,,,,,,,,,,, +2008,1,14,1,30,1.8030722,,,,,,,,,,,,,, +2008,1,14,2,30,1.7315239,,,,,,,,,,,,,, +2008,1,14,3,30,1.1880138,,,,,,,,,,,,,, +2008,1,14,4,30,0.36151025,,,,,,,,,,,,,, +2008,1,14,5,30,0.6870159,,,,,,,,,,,,,, +2008,1,14,6,30,1.5758207,,,,,,,,,,,,,, +2008,1,14,7,30,1.9347506,,,,,,,,,,,,,, +2008,1,14,8,30,1.8062922,,,,,,,,,,,,,, +2008,1,14,9,30,1.3860834,,,,,,,,,,,,,, +2008,1,14,10,30,0.6601757,,,,,,,,,,,,,, +2008,1,14,11,30,0.48599657,,,,,,,,,,,,,, +2008,1,14,12,30,1.675342,,,,,,,,,,,,,, +2008,1,14,13,30,2.3534124,,,,,,,,,,,,,, +2008,1,14,14,30,2.3116229,,,,,,,,,,,,,, +2008,1,14,15,30,1.8819351,,,,,,,,,,,,,, +2008,1,14,16,30,1.2114007,,,,,,,,,,,,,, +2008,1,14,17,30,0.20367327,,,,,,,,,,,,,, +2008,1,14,18,30,0.9963935,,,,,,,,,,,,,, +2008,1,14,19,30,1.8861167,,,,,,,,,,,,,, +2008,1,14,20,30,2.24295,,,,,,,,,,,,,, +2008,1,14,21,30,2.0743325,,,,,,,,,,,,,, +2008,1,14,22,30,1.5789818,,,,,,,,,,,,,, +2008,1,14,23,30,0.86766195,,,,,,,,,,,,,, +2008,1,15,0,30,0.16479214,,,,,,,,,,,,,, +2008,1,15,1,30,1.2447572,,,,,,,,,,,,,, +2008,1,15,2,30,1.854731,,,,,,,,,,,,,, +2008,1,15,3,30,1.7692585,,,,,,,,,,,,,, +2008,1,15,4,30,1.2506741,,,,,,,,,,,,,, +2008,1,15,5,30,0.4602909,,,,,,,,,,,,,, +2008,1,15,6,30,0.50854784,,,,,,,,,,,,,, +2008,1,15,7,30,1.2551361,,,,,,,,,,,,,, +2008,1,15,8,30,1.5283206,,,,,,,,,,,,,, +2008,1,15,9,30,1.4218888,,,,,,,,,,,,,, +2008,1,15,10,30,1.0618157,,,,,,,,,,,,,, +2008,1,15,11,30,0.40259653,,,,,,,,,,,,,, +2008,1,15,12,30,0.6138911,,,,,,,,,,,,,, +2008,1,15,13,30,1.5892146,,,,,,,,,,,,,, +2008,1,15,14,30,2.0695305,,,,,,,,,,,,,, +2008,1,15,15,30,1.9567671,,,,,,,,,,,,,, +2008,1,15,16,30,1.5255715,,,,,,,,,,,,,, +2008,1,15,17,30,0.8343948,,,,,,,,,,,,,, +2008,1,15,18,30,0.20067386,,,,,,,,,,,,,, +2008,1,15,19,30,1.2706962,,,,,,,,,,,,,, +2008,1,15,20,30,2.0504165,,,,,,,,,,,,,, +2008,1,15,21,30,2.3098786,,,,,,,,,,,,,, +2008,1,15,22,30,2.07984,,,,,,,,,,,,,, +2008,1,15,23,30,1.5772833,,,,,,,,,,,,,, +2008,1,16,0,30,0.86998904,,,,,,,,,,,,,, +2008,1,16,1,30,0.19660494,,,,,,,,,,,,,, +2008,1,16,2,30,1.2984765,,,,,,,,,,,,,, +2008,1,16,3,30,1.9034246,,,,,,,,,,,,,, +2008,1,16,4,30,1.8386424,,,,,,,,,,,,,, +2008,1,16,5,30,1.3754972,,,,,,,,,,,,,, +2008,1,16,6,30,0.65772563,,,,,,,,,,,,,, +2008,1,16,7,30,0.20819435,,,,,,,,,,,,,, +2008,1,16,8,30,0.83827084,,,,,,,,,,,,,, +2008,1,16,9,30,1.114464,,,,,,,,,,,,,, +2008,1,16,10,30,1.1050746,,,,,,,,,,,,,, +2008,1,16,11,30,0.8439334,,,,,,,,,,,,,, +2008,1,16,12,30,0.28397304,,,,,,,,,,,,,, +2008,1,16,13,30,0.5713278,,,,,,,,,,,,,, +2008,1,16,14,30,1.3554094,,,,,,,,,,,,,, +2008,1,16,15,30,1.7157221,,,,,,,,,,,,,, +2008,1,16,16,30,1.6008337,,,,,,,,,,,,,, +2008,1,16,17,30,1.2065963,,,,,,,,,,,,,, +2008,1,16,18,30,0.53819937,,,,,,,,,,,,,, +2008,1,16,19,30,0.43146715,,,,,,,,,,,,,, +2008,1,16,20,30,1.4201047,,,,,,,,,,,,,, +2008,1,16,21,30,2.1230469,,,,,,,,,,,,,, +2008,1,16,22,30,2.3239484,,,,,,,,,,,,,, +2008,1,16,23,30,2.0764177,,,,,,,,,,,,,, +2008,1,17,0,30,1.6085804,,,,,,,,,,,,,, +2008,1,17,1,30,0.9176669,,,,,,,,,,,,,, +2008,1,17,2,30,0.20524828,,,,,,,,,,,,,, +2008,1,17,3,30,1.3419752,,,,,,,,,,,,,, +2008,1,17,4,30,1.9613899,,,,,,,,,,,,,, +2008,1,17,5,30,1.941963,,,,,,,,,,,,,, +2008,1,17,6,30,1.5628532,,,,,,,,,,,,,, +2008,1,17,7,30,0.9429328,,,,,,,,,,,,,, +2008,1,17,8,30,0.21280603,,,,,,,,,,,,,, +2008,1,17,9,30,0.42257243,,,,,,,,,,,,,, +2008,1,17,10,30,0.79263586,,,,,,,,,,,,,, +2008,1,17,11,30,0.9176264,,,,,,,,,,,,,, +2008,1,17,12,30,0.754807,,,,,,,,,,,,,, +2008,1,17,13,30,0.29699898,,,,,,,,,,,,,, +2008,1,17,14,30,0.38988158,,,,,,,,,,,,,, +2008,1,17,15,30,1.0359741,,,,,,,,,,,,,, +2008,1,17,16,30,1.3635409,,,,,,,,,,,,,, +2008,1,17,17,30,1.3110343,,,,,,,,,,,,,, +2008,1,17,18,30,0.98668975,,,,,,,,,,,,,, +2008,1,17,19,30,0.36600816,,,,,,,,,,,,,, +2008,1,17,20,30,0.53734446,,,,,,,,,,,,,, +2008,1,17,21,30,1.4692122,,,,,,,,,,,,,, +2008,1,17,22,30,2.135002,,,,,,,,,,,,,, +2008,1,17,23,30,2.3143327,,,,,,,,,,,,,, +2008,1,18,0,30,2.0892375,,,,,,,,,,,,,, +2008,1,18,1,30,1.679486,,,,,,,,,,,,,, +2008,1,18,2,30,0.9904852,,,,,,,,,,,,,, +2008,1,18,3,30,0.21753962,,,,,,,,,,,,,, +2008,1,18,4,30,1.3980281,,,,,,,,,,,,,, +2008,1,18,5,30,2.0418773,,,,,,,,,,,,,, +2008,1,18,6,30,2.0888512,,,,,,,,,,,,,, +2008,1,18,7,30,1.8108461,,,,,,,,,,,,,, +2008,1,18,8,30,1.2781638,,,,,,,,,,,,,, +2008,1,18,9,30,0.57528913,,,,,,,,,,,,,, +2008,1,18,10,30,0.118057385,,,,,,,,,,,,,, +2008,1,18,11,30,0.63108283,,,,,,,,,,,,,, +2008,1,18,12,30,0.8737073,,,,,,,,,,,,,, +2008,1,18,13,30,0.7847532,,,,,,,,,,,,,, +2008,1,18,14,30,0.43206793,,,,,,,,,,,,,, +2008,1,18,15,30,0.13955793,,,,,,,,,,,,,, +2008,1,18,16,30,0.708301,,,,,,,,,,,,,, +2008,1,18,17,30,1.0940692,,,,,,,,,,,,,, +2008,1,18,18,30,1.1476947,,,,,,,,,,,,,, +2008,1,18,19,30,0.8973301,,,,,,,,,,,,,, +2008,1,18,20,30,0.3158348,,,,,,,,,,,,,, +2008,1,18,21,30,0.5470119,,,,,,,,,,,,,, +2008,1,18,22,30,1.4650289,,,,,,,,,,,,,, +2008,1,18,23,30,2.1290302,,,,,,,,,,,,,, +2008,1,19,0,30,2.3140137,,,,,,,,,,,,,, +2008,1,19,1,30,2.133584,,,,,,,,,,,,,, +2008,1,19,2,30,1.7761532,,,,,,,,,,,,,, +2008,1,19,3,30,1.0539792,,,,,,,,,,,,,, +2008,1,19,4,30,0.25826544,,,,,,,,,,,,,, +2008,1,19,5,30,1.4904006,,,,,,,,,,,,,, +2008,1,19,6,30,2.1649656,,,,,,,,,,,,,, +2008,1,19,7,30,2.2876854,,,,,,,,,,,,,, +2008,1,19,8,30,2.093463,,,,,,,,,,,,,, +2008,1,19,9,30,1.5897591,,,,,,,,,,,,,, +2008,1,19,10,30,0.8364207,,,,,,,,,,,,,, +2008,1,19,11,30,0.06275175,,,,,,,,,,,,,, +2008,1,19,12,30,0.6406352,,,,,,,,,,,,,, +2008,1,19,13,30,0.9483385,,,,,,,,,,,,,, +2008,1,19,14,30,0.9102008,,,,,,,,,,,,,, +2008,1,19,15,30,0.6561691,,,,,,,,,,,,,, +2008,1,19,16,30,0.18082768,,,,,,,,,,,,,, +2008,1,19,17,30,0.46628946,,,,,,,,,,,,,, +2008,1,19,18,30,0.97610444,,,,,,,,,,,,,, +2008,1,19,19,30,1.1332976,,,,,,,,,,,,,, +2008,1,19,20,30,0.923731,,,,,,,,,,,,,, +2008,1,19,21,30,0.34862596,,,,,,,,,,,,,, +2008,1,19,22,30,0.51846516,,,,,,,,,,,,,, +2008,1,19,23,30,1.4656755,,,,,,,,,,,,,, +2008,1,20,0,30,2.1478992,,,,,,,,,,,,,, +2008,1,20,1,30,2.3446984,,,,,,,,,,,,,, +2008,1,20,2,30,2.2057605,,,,,,,,,,,,,, +2008,1,20,3,30,1.8702892,,,,,,,,,,,,,, +2008,1,20,4,30,1.0697826,,,,,,,,,,,,,, +2008,1,20,5,30,0.3534706,,,,,,,,,,,,,, +2008,1,20,6,30,1.6450236,,,,,,,,,,,,,, +2008,1,20,7,30,2.3445241,,,,,,,,,,,,,, +2008,1,20,8,30,2.5201411,,,,,,,,,,,,,, +2008,1,20,9,30,2.3480003,,,,,,,,,,,,,, +2008,1,20,10,30,1.789315,,,,,,,,,,,,,, +2008,1,20,11,30,0.9175374,,,,,,,,,,,,,, +2008,1,20,12,30,0.059765726,,,,,,,,,,,,,, +2008,1,20,13,30,0.7851361,,,,,,,,,,,,,, +2008,1,20,14,30,1.1025547,,,,,,,,,,,,,, +2008,1,20,15,30,1.0991966,,,,,,,,,,,,,, +2008,1,20,16,30,0.9062629,,,,,,,,,,,,,, +2008,1,20,17,30,0.39859957,,,,,,,,,,,,,, +2008,1,20,18,30,0.3940216,,,,,,,,,,,,,, +2008,1,20,19,30,1.0311582,,,,,,,,,,,,,, +2008,1,20,20,30,1.2394611,,,,,,,,,,,,,, +2008,1,20,21,30,1.0153526,,,,,,,,,,,,,, +2008,1,20,22,30,0.40338603,,,,,,,,,,,,,, +2008,1,20,23,30,0.5191119,,,,,,,,,,,,,, +2008,1,21,0,30,1.522172,,,,,,,,,,,,,, +2008,1,21,1,30,2.214315,,,,,,,,,,,,,, +2008,1,21,2,30,2.4049277,,,,,,,,,,,,,, +2008,1,21,3,30,2.2857203,,,,,,,,,,,,,, +2008,1,21,4,30,1.9266399,,,,,,,,,,,,,, +2008,1,21,5,30,0.9977199,,,,,,,,,,,,,, +2008,1,21,6,30,0.54453564,,,,,,,,,,,,,, +2008,1,21,7,30,1.8755404,,,,,,,,,,,,,, +2008,1,21,8,30,2.5623324,,,,,,,,,,,,,, +2008,1,21,9,30,2.7286255,,,,,,,,,,,,,, +2008,1,21,10,30,2.495265,,,,,,,,,,,,,, +2008,1,21,11,30,1.8145739,,,,,,,,,,,,,, +2008,1,21,12,30,0.8042698,,,,,,,,,,,,,, +2008,1,21,13,30,0.2629541,,,,,,,,,,,,,, +2008,1,21,14,30,1.0119506,,,,,,,,,,,,,, +2008,1,21,15,30,1.2970536,,,,,,,,,,,,,, +2008,1,21,16,30,1.304863,,,,,,,,,,,,,, +2008,1,21,17,30,1.100194,,,,,,,,,,,,,, +2008,1,21,18,30,0.4616871,,,,,,,,,,,,,, +2008,1,21,19,30,0.51208943,,,,,,,,,,,,,, +2008,1,21,20,30,1.220509,,,,,,,,,,,,,, +2008,1,21,21,30,1.4011853,,,,,,,,,,,,,, +2008,1,21,22,30,1.1071694,,,,,,,,,,,,,, +2008,1,21,23,30,0.41406927,,,,,,,,,,,,,, +2008,1,22,0,30,0.60310745,,,,,,,,,,,,,, +2008,1,22,1,30,1.6533308,,,,,,,,,,,,,, +2008,1,22,2,30,2.3165324,,,,,,,,,,,,,, +2008,1,22,3,30,2.4714541,,,,,,,,,,,,,, +2008,1,22,4,30,2.341929,,,,,,,,,,,,,, +2008,1,22,5,30,1.9006706,,,,,,,,,,,,,, +2008,1,22,6,30,0.7963298,,,,,,,,,,,,,, +2008,1,22,7,30,0.85504615,,,,,,,,,,,,,, +2008,1,22,8,30,2.158118,,,,,,,,,,,,,, +2008,1,22,9,30,2.7585275,,,,,,,,,,,,,, +2008,1,22,10,30,2.838674,,,,,,,,,,,,,, +2008,1,22,11,30,2.479643,,,,,,,,,,,,,, +2008,1,22,12,30,1.6537149,,,,,,,,,,,,,, +2008,1,22,13,30,0.52921855,,,,,,,,,,,,,, +2008,1,22,14,30,0.57609916,,,,,,,,,,,,,, +2008,1,22,15,30,1.2713013,,,,,,,,,,,,,, +2008,1,22,16,30,1.4909629,,,,,,,,,,,,,, +2008,1,22,17,30,1.4679568,,,,,,,,,,,,,, +2008,1,22,18,30,1.1646158,,,,,,,,,,,,,, +2008,1,22,19,30,0.34264034,,,,,,,,,,,,,, +2008,1,22,20,30,0.775751,,,,,,,,,,,,,, +2008,1,22,21,30,1.4635779,,,,,,,,,,,,,, +2008,1,22,22,30,1.5435477,,,,,,,,,,,,,, +2008,1,22,23,30,1.1387327,,,,,,,,,,,,,, +2008,1,23,0,30,0.33321363,,,,,,,,,,,,,, +2008,1,23,1,30,0.78373444,,,,,,,,,,,,,, +2008,1,23,2,30,1.8311894,,,,,,,,,,,,,, +2008,1,23,3,30,2.4130645,,,,,,,,,,,,,, +2008,1,23,4,30,2.5074239,,,,,,,,,,,,,, +2008,1,23,5,30,2.328581,,,,,,,,,,,,,, +2008,1,23,6,30,1.7373139,,,,,,,,,,,,,, +2008,1,23,7,30,0.4460512,,,,,,,,,,,,,, +2008,1,23,8,30,1.2575417,,,,,,,,,,,,,, +2008,1,23,9,30,2.4234276,,,,,,,,,,,,,, +2008,1,23,10,30,2.8578634,,,,,,,,,,,,,, +2008,1,23,11,30,2.8000016,,,,,,,,,,,,,, +2008,1,23,12,30,2.2916741,,,,,,,,,,,,,, +2008,1,23,13,30,1.3340479,,,,,,,,,,,,,, +2008,1,23,14,30,0.15074523,,,,,,,,,,,,,, +2008,1,23,15,30,0.9351419,,,,,,,,,,,,,, +2008,1,23,16,30,1.5194609,,,,,,,,,,,,,, +2008,1,23,17,30,1.643103,,,,,,,,,,,,,, +2008,1,23,18,30,1.5380676,,,,,,,,,,,,,, +2008,1,23,19,30,1.070038,,,,,,,,,,,,,, +2008,1,23,20,30,0.14632288,,,,,,,,,,,,,, +2008,1,23,21,30,1.0980793,,,,,,,,,,,,,, +2008,1,23,22,30,1.670989,,,,,,,,,,,,,, +2008,1,23,23,30,1.6063601,,,,,,,,,,,,,, +2008,1,24,0,30,1.0722172,,,,,,,,,,,,,, +2008,1,24,1,30,0.16327569,,,,,,,,,,,,,, +2008,1,24,2,30,1.0215755,,,,,,,,,,,,,, +2008,1,24,3,30,1.9920384,,,,,,,,,,,,,, +2008,1,24,4,30,2.4509587,,,,,,,,,,,,,, +2008,1,24,5,30,2.4666345,,,,,,,,,,,,,, +2008,1,24,6,30,2.1868489,,,,,,,,,,,,,, +2008,1,24,7,30,1.392962,,,,,,,,,,,,,, +2008,1,24,8,30,0.15999268,,,,,,,,,,,,,, +2008,1,24,9,30,1.6690556,,,,,,,,,,,,,, +2008,1,24,10,30,2.585471,,,,,,,,,,,,,, +2008,1,24,11,30,2.8128693,,,,,,,,,,,,,, +2008,1,24,12,30,2.6072488,,,,,,,,,,,,,, +2008,1,24,13,30,1.9554558,,,,,,,,,,,,,, +2008,1,24,14,30,0.8957125,,,,,,,,,,,,,, +2008,1,24,15,30,0.32059598,,,,,,,,,,,,,, +2008,1,24,16,30,1.288961,,,,,,,,,,,,,, +2008,1,24,17,30,1.7193464,,,,,,,,,,,,,, +2008,1,24,18,30,1.7236626,,,,,,,,,,,,,, +2008,1,24,19,30,1.496579,,,,,,,,,,,,,, +2008,1,24,20,30,0.8437401,,,,,,,,,,,,,, +2008,1,24,21,30,0.33683473,,,,,,,,,,,,,, +2008,1,24,22,30,1.3800529,,,,,,,,,,,,,, +2008,1,24,23,30,1.777888,,,,,,,,,,,,,, +2008,1,25,0,30,1.5625101,,,,,,,,,,,,,, +2008,1,25,1,30,0.90891564,,,,,,,,,,,,,, +2008,1,25,2,30,0.13787861,,,,,,,,,,,,,, +2008,1,25,3,30,1.2408907,,,,,,,,,,,,,, +2008,1,25,4,30,2.0656579,,,,,,,,,,,,,, +2008,1,25,5,30,2.3824556,,,,,,,,,,,,,, +2008,1,25,6,30,2.3002737,,,,,,,,,,,,,, +2008,1,25,7,30,1.8703264,,,,,,,,,,,,,, +2008,1,25,8,30,0.87823427,,,,,,,,,,,,,, +2008,1,25,9,30,0.6544763,,,,,,,,,,,,,, +2008,1,25,10,30,1.9814672,,,,,,,,,,,,,, +2008,1,25,11,30,2.588657,,,,,,,,,,,,,, +2008,1,25,12,30,2.6238115,,,,,,,,,,,,,, +2008,1,25,13,30,2.284576,,,,,,,,,,,,,, +2008,1,25,14,30,1.5035325,,,,,,,,,,,,,, +2008,1,25,15,30,0.38312504,,,,,,,,,,,,,, +2008,1,25,16,30,0.7807271,,,,,,,,,,,,,, +2008,1,25,17,30,1.5914552,,,,,,,,,,,,,, +2008,1,25,18,30,1.8466698,,,,,,,,,,,,,, +2008,1,25,19,30,1.7243474,,,,,,,,,,,,,, +2008,1,25,20,30,1.3603797,,,,,,,,,,,,,, +2008,1,25,21,30,0.55161035,,,,,,,,,,,,,, +2008,1,25,22,30,0.6563826,,,,,,,,,,,,,, +2008,1,25,23,30,1.5536172,,,,,,,,,,,,,, +2008,1,26,0,30,1.7657381,,,,,,,,,,,,,, +2008,1,26,1,30,1.4272107,,,,,,,,,,,,,, +2008,1,26,2,30,0.6918582,,,,,,,,,,,,,, +2008,1,26,3,30,0.36279,,,,,,,,,,,,,, +2008,1,26,4,30,1.3640671,,,,,,,,,,,,,, +2008,1,26,5,30,2.0027635,,,,,,,,,,,,,, +2008,1,26,6,30,2.1776001,,,,,,,,,,,,,, +2008,1,26,7,30,1.9807545,,,,,,,,,,,,,, +2008,1,26,8,30,1.3881083,,,,,,,,,,,,,, +2008,1,26,9,30,0.29425964,,,,,,,,,,,,,, +2008,1,26,10,30,1.1247904,,,,,,,,,,,,,, +2008,1,26,11,30,2.1150362,,,,,,,,,,,,,, +2008,1,26,12,30,2.4316838,,,,,,,,,,,,,, +2008,1,26,13,30,2.320554,,,,,,,,,,,,,, +2008,1,26,14,30,1.859761,,,,,,,,,,,,,, +2008,1,26,15,30,0.9717067,,,,,,,,,,,,,, +2008,1,26,16,30,0.1626962,,,,,,,,,,,,,, +2008,1,26,17,30,1.1933143,,,,,,,,,,,,,, +2008,1,26,18,30,1.8083365,,,,,,,,,,,,,, +2008,1,26,19,30,1.8942168,,,,,,,,,,,,,, +2008,1,26,20,30,1.6551325,,,,,,,,,,,,,, +2008,1,26,21,30,1.1657455,,,,,,,,,,,,,, +2008,1,26,22,30,0.27154383,,,,,,,,,,,,,, +2008,1,26,23,30,0.89528877,,,,,,,,,,,,,, +2008,1,27,0,30,1.6063035,,,,,,,,,,,,,, +2008,1,27,1,30,1.6652029,,,,,,,,,,,,,, +2008,1,27,2,30,1.2504271,,,,,,,,,,,,,, +2008,1,27,3,30,0.48617464,,,,,,,,,,,,,, +2008,1,27,4,30,0.5145992,,,,,,,,,,,,,, +2008,1,27,5,30,1.342786,,,,,,,,,,,,,, +2008,1,27,6,30,1.7908462,,,,,,,,,,,,,, +2008,1,27,7,30,1.84106,,,,,,,,,,,,,, +2008,1,27,8,30,1.5349258,,,,,,,,,,,,,, +2008,1,27,9,30,0.82714224,,,,,,,,,,,,,, +2008,1,27,10,30,0.2999376,,,,,,,,,,,,,, +2008,1,27,11,30,1.4140656,,,,,,,,,,,,,, +2008,1,27,12,30,2.0525665,,,,,,,,,,,,,, +2008,1,27,13,30,2.151335,,,,,,,,,,,,,, +2008,1,27,14,30,1.9343513,,,,,,,,,,,,,, +2008,1,27,15,30,1.3613031,,,,,,,,,,,,,, +2008,1,27,16,30,0.41343293,,,,,,,,,,,,,, +2008,1,27,17,30,0.6473029,,,,,,,,,,,,,, +2008,1,27,18,30,1.5078927,,,,,,,,,,,,,, +2008,1,27,19,30,1.9246757,,,,,,,,,,,,,, +2008,1,27,20,30,1.8675411,,,,,,,,,,,,,, +2008,1,27,21,30,1.5331905,,,,,,,,,,,,,, +2008,1,27,22,30,0.9489869,,,,,,,,,,,,,, +2008,1,27,23,30,0.12502307,,,,,,,,,,,,,, +2008,1,28,0,30,1.0405279,,,,,,,,,,,,,, +2008,1,28,1,30,1.5780996,,,,,,,,,,,,,, +2008,1,28,2,30,1.5370104,,,,,,,,,,,,,, +2008,1,28,3,30,1.0914736,,,,,,,,,,,,,, +2008,1,28,4,30,0.34821388,,,,,,,,,,,,,, +2008,1,28,5,30,0.54332364,,,,,,,,,,,,,, +2008,1,28,6,30,1.1729453,,,,,,,,,,,,,, +2008,1,28,7,30,1.4624383,,,,,,,,,,,,,, +2008,1,28,8,30,1.4279567,,,,,,,,,,,,,, +2008,1,28,9,30,1.0530145,,,,,,,,,,,,,, +2008,1,28,10,30,0.32516804,,,,,,,,,,,,,, +2008,1,28,11,30,0.6654159,,,,,,,,,,,,,, +2008,1,28,12,30,1.4808613,,,,,,,,,,,,,, +2008,1,28,13,30,1.8315952,,,,,,,,,,,,,, +2008,1,28,14,30,1.7928066,,,,,,,,,,,,,, +2008,1,28,15,30,1.4940808,,,,,,,,,,,,,, +2008,1,28,16,30,0.83571684,,,,,,,,,,,,,, +2008,1,28,17,30,0.11505089,,,,,,,,,,,,,, +2008,1,28,18,30,1.0296896,,,,,,,,,,,,,, +2008,1,28,19,30,1.7007366,,,,,,,,,,,,,, +2008,1,28,20,30,1.9448421,,,,,,,,,,,,,, +2008,1,28,21,30,1.7790601,,,,,,,,,,,,,, +2008,1,28,22,30,1.3773793,,,,,,,,,,,,,, +2008,1,28,23,30,0.7355975,,,,,,,,,,,,,, +2008,1,29,0,30,0.24349229,,,,,,,,,,,,,, +2008,1,29,1,30,1.1280087,,,,,,,,,,,,,, +2008,1,29,2,30,1.532906,,,,,,,,,,,,,, +2008,1,29,3,30,1.4389393,,,,,,,,,,,,,, +2008,1,29,4,30,0.9919017,,,,,,,,,,,,,, +2008,1,29,5,30,0.30302256,,,,,,,,,,,,,, +2008,1,29,6,30,0.44446522,,,,,,,,,,,,,, +2008,1,29,7,30,0.8969351,,,,,,,,,,,,,, +2008,1,29,8,30,1.0948405,,,,,,,,,,,,,, +2008,1,29,9,30,1.0354917,,,,,,,,,,,,,, +2008,1,29,10,30,0.6498567,,,,,,,,,,,,,, +2008,1,29,11,30,0.13487539,,,,,,,,,,,,,, +2008,1,29,12,30,0.81706923,,,,,,,,,,,,,, +2008,1,29,13,30,1.3574712,,,,,,,,,,,,,, +2008,1,29,14,30,1.5149747,,,,,,,,,,,,,, +2008,1,29,15,30,1.4006377,,,,,,,,,,,,,, +2008,1,29,16,30,1.0432847,,,,,,,,,,,,,, +2008,1,29,17,30,0.35178223,,,,,,,,,,,,,, +2008,1,29,18,30,0.5155943,,,,,,,,,,,,,, +2008,1,29,19,30,1.2791629,,,,,,,,,,,,,, +2008,1,29,20,30,1.7795632,,,,,,,,,,,,,, +2008,1,29,21,30,1.889067,,,,,,,,,,,,,, +2008,1,29,22,30,1.6497597,,,,,,,,,,,,,, +2008,1,29,23,30,1.2096552,,,,,,,,,,,,,, +2008,1,30,0,30,0.5372853,,,,,,,,,,,,,, +2008,1,30,1,30,0.4181129,,,,,,,,,,,,,, +2008,1,30,2,30,1.2090503,,,,,,,,,,,,,, +2008,1,30,3,30,1.5211471,,,,,,,,,,,,,, +2008,1,30,4,30,1.4004837,,,,,,,,,,,,,, +2008,1,30,5,30,0.9667138,,,,,,,,,,,,,, +2008,1,30,6,30,0.34709448,,,,,,,,,,,,,, +2008,1,30,7,30,0.2534147,,,,,,,,,,,,,, +2008,1,30,8,30,0.59603703,,,,,,,,,,,,,, +2008,1,30,9,30,0.7889068,,,,,,,,,,,,,, +2008,1,30,10,30,0.7585702,,,,,,,,,,,,,, +2008,1,30,11,30,0.40034503,,,,,,,,,,,,,, +2008,1,30,12,30,0.23009984,,,,,,,,,,,,,, +2008,1,30,13,30,0.77892286,,,,,,,,,,,,,, +2008,1,30,14,30,1.1187909,,,,,,,,,,,,,, +2008,1,30,15,30,1.172409,,,,,,,,,,,,,, +2008,1,30,16,30,1.0284965,,,,,,,,,,,,,, +2008,1,30,17,30,0.64419067,,,,,,,,,,,,,, +2008,1,30,18,30,0.04267674,,,,,,,,,,,,,, +2008,1,30,19,30,0.7867075,,,,,,,,,,,,,, +2008,1,30,20,30,1.410486,,,,,,,,,,,,,, +2008,1,30,21,30,1.7784615,,,,,,,,,,,,,, +2008,1,30,22,30,1.7930167,,,,,,,,,,,,,, +2008,1,30,23,30,1.5131253,,,,,,,,,,,,,, +2008,1,31,0,30,1.0530546,,,,,,,,,,,,,, +2008,1,31,1,30,0.35567126,,,,,,,,,,,,,, +2008,1,31,2,30,0.6013471,,,,,,,,,,,,,, +2008,1,31,3,30,1.3168428,,,,,,,,,,,,,, +2008,1,31,4,30,1.5595949,,,,,,,,,,,,,, +2008,1,31,5,30,1.4235348,,,,,,,,,,,,,, +2008,1,31,6,30,1.0131948,,,,,,,,,,,,,, +2008,1,31,7,30,0.46316233,,,,,,,,,,,,,, +2008,1,31,8,30,0.054617,,,,,,,,,,,,,, +2008,1,31,9,30,0.36622915,,,,,,,,,,,,,, +2008,1,31,10,30,0.6243642,,,,,,,,,,,,,, +2008,1,31,11,30,0.6361252,,,,,,,,,,,,,, +2008,1,31,12,30,0.30562964,,,,,,,,,,,,,, +2008,1,31,13,30,0.2236877,,,,,,,,,,,,,, +2008,1,31,14,30,0.6278443,,,,,,,,,,,,,, +2008,1,31,15,30,0.852975,,,,,,,,,,,,,, +2009,1,31,16,30,0.8770323,,,,,,,,,,,,,, +2009,1,31,17,30,0.73827183,,,,,,,,,,,,,, +2009,1,31,18,30,0.353068,,,,,,,,,,,,,, +2009,1,31,19,30,0.28249496,,,,,,,,,,,,,, +2009,1,31,20,30,0.9439915,,,,,,,,,,,,,, +2009,1,31,21,30,1.4706606,,,,,,,,,,,,,, +2009,1,31,22,30,1.7490184,,,,,,,,,,,,,, +2009,1,31,23,30,1.7045177,,,,,,,,,,,,,, +2009,2,1,0,30,1.4071255,,,,,,,,,,,,,, +2009,2,1,1,30,0.92207825,,,,,,,,,,,,,, +2009,2,1,2,30,0.20307894,,,,,,,,,,,,,, +2009,2,1,3,30,0.8043829,,,,,,,,,,,,,, +2009,2,1,4,30,1.4553525,,,,,,,,,,,,,, +2009,2,1,5,30,1.6419252,,,,,,,,,,,,,, +2009,2,1,6,30,1.500848,,,,,,,,,,,,,, +2009,2,1,7,30,1.1171252,,,,,,,,,,,,,, +2009,2,1,8,30,0.609931,,,,,,,,,,,,,, +2009,2,1,9,30,0.15143192,,,,,,,,,,,,,, +2009,2,1,10,30,0.27866325,,,,,,,,,,,,,, +2009,2,1,11,30,0.6169895,,,,,,,,,,,,,, +2009,2,1,12,30,0.6372446,,,,,,,,,,,,,, +2009,2,1,13,30,0.31674692,,,,,,,,,,,,,, +2009,2,1,14,30,0.15148807,,,,,,,,,,,,,, +2009,2,1,15,30,0.45135164,,,,,,,,,,,,,, +2009,2,1,16,30,0.6454822,,,,,,,,,,,,,, +2009,2,1,17,30,0.6957036,,,,,,,,,,,,,, +2009,2,1,18,30,0.5739981,,,,,,,,,,,,,, +2009,2,1,19,30,0.18912241,,,,,,,,,,,,,, +2009,2,1,20,30,0.4267722,,,,,,,,,,,,,, +2009,2,1,21,30,1.0419998,,,,,,,,,,,,,, +2009,2,1,22,30,1.5205668,,,,,,,,,,,,,, +2009,2,1,23,30,1.7463913,,,,,,,,,,,,,, +2009,2,2,0,30,1.6669422,,,,,,,,,,,,,, +2009,2,2,1,30,1.3537947,,,,,,,,,,,,,, +2009,2,2,2,30,0.8147173,,,,,,,,,,,,,, +2009,2,2,3,30,0.14597149,,,,,,,,,,,,,, +2009,2,2,4,30,1.0253613,,,,,,,,,,,,,, +2009,2,2,5,30,1.6168597,,,,,,,,,,,,,, +2009,2,2,6,30,1.7624553,,,,,,,,,,,,,, +2009,2,2,7,30,1.6241894,,,,,,,,,,,,,, +2009,2,2,8,30,1.2468903,,,,,,,,,,,,,, +2009,2,2,9,30,0.7227203,,,,,,,,,,,,,, +2009,2,2,10,30,0.19038394,,,,,,,,,,,,,, +2009,2,2,11,30,0.3457598,,,,,,,,,,,,,, +2009,2,2,12,30,0.718821,,,,,,,,,,,,,, +2009,2,2,13,30,0.69902825,,,,,,,,,,,,,, +2009,2,2,14,30,0.3773409,,,,,,,,,,,,,, +2009,2,2,15,30,0.10556974,,,,,,,,,,,,,, +2009,2,2,16,30,0.32611713,,,,,,,,,,,,,, +2009,2,2,17,30,0.5647061,,,,,,,,,,,,,, +2009,2,2,18,30,0.6605061,,,,,,,,,,,,,, +2009,2,2,19,30,0.531321,,,,,,,,,,,,,, +2009,2,2,20,30,0.12080035,,,,,,,,,,,,,, +2009,2,2,21,30,0.5206908,,,,,,,,,,,,,, +2009,2,2,22,30,1.1437808,,,,,,,,,,,,,, +2009,2,2,23,30,1.6139749,,,,,,,,,,,,,, +2009,2,3,0,30,1.8068432,,,,,,,,,,,,,, +2009,2,3,1,30,1.6950582,,,,,,,,,,,,,, +2009,2,3,2,30,1.3451605,,,,,,,,,,,,,, +2009,2,3,3,30,0.7135593,,,,,,,,,,,,,, +2009,2,3,4,30,0.30820996,,,,,,,,,,,,,, +2009,2,3,5,30,1.2648247,,,,,,,,,,,,,, +2009,2,3,6,30,1.80441,,,,,,,,,,,,,, +2009,2,3,7,30,1.9214251,,,,,,,,,,,,,, +2009,2,3,8,30,1.7722629,,,,,,,,,,,,,, +2009,2,3,9,30,1.350102,,,,,,,,,,,,,, +2009,2,3,10,30,0.7391907,,,,,,,,,,,,,, +2009,2,3,11,30,0.09739532,,,,,,,,,,,,,, +2009,2,3,12,30,0.5266655,,,,,,,,,,,,,, +2009,2,3,13,30,0.8646116,,,,,,,,,,,,,, +2009,2,3,14,30,0.7762411,,,,,,,,,,,,,, +2009,2,3,15,30,0.45367107,,,,,,,,,,,,,, +2009,2,3,16,30,0.113697946,,,,,,,,,,,,,, +2009,2,3,17,30,0.30905956,,,,,,,,,,,,,, +2009,2,3,18,30,0.63676083,,,,,,,,,,,,,, +2009,2,3,19,30,0.7481195,,,,,,,,,,,,,, +2009,2,3,20,30,0.5623175,,,,,,,,,,,,,, +2009,2,3,21,30,0.08501934,,,,,,,,,,,,,, +2009,2,3,22,30,0.6227209,,,,,,,,,,,,,, +2009,2,3,23,30,1.2975193,,,,,,,,,,,,,, +2009,2,4,0,30,1.7748165,,,,,,,,,,,,,, +2009,2,4,1,30,1.9270903,,,,,,,,,,,,,, +2009,2,4,2,30,1.7656736,,,,,,,,,,,,,, +2009,2,4,3,30,1.3485181,,,,,,,,,,,,,, +2009,2,4,4,30,0.5897988,,,,,,,,,,,,,, +2009,2,4,5,30,0.5534427,,,,,,,,,,,,,, +2009,2,4,6,30,1.5398705,,,,,,,,,,,,,, +2009,2,4,7,30,2.028666,,,,,,,,,,,,,, +2009,2,4,8,30,2.1056023,,,,,,,,,,,,,, +2009,2,4,9,30,1.8997409,,,,,,,,,,,,,, +2009,2,4,10,30,1.3687183,,,,,,,,,,,,,, +2009,2,4,11,30,0.62586224,,,,,,,,,,,,,, +2009,2,4,12,30,0.14835525,,,,,,,,,,,,,, +2009,2,4,13,30,0.76871437,,,,,,,,,,,,,, +2009,2,4,14,30,1.0176096,,,,,,,,,,,,,, +2009,2,4,15,30,0.86161983,,,,,,,,,,,,,, +2009,2,4,16,30,0.53020424,,,,,,,,,,,,,, +2009,2,4,17,30,0.12659553,,,,,,,,,,,,,, +2009,2,4,18,30,0.4290751,,,,,,,,,,,,,, +2009,2,4,19,30,0.83332825,,,,,,,,,,,,,, +2009,2,4,20,30,0.9007541,,,,,,,,,,,,,, +2009,2,4,21,30,0.6107682,,,,,,,,,,,,,, +2009,2,4,22,30,0.044435035,,,,,,,,,,,,,, +2009,2,4,23,30,0.77446127,,,,,,,,,,,,,, +2009,2,5,0,30,1.5174978,,,,,,,,,,,,,, +2009,2,5,1,30,1.9829168,,,,,,,,,,,,,, +2009,2,5,2,30,2.0653682,,,,,,,,,,,,,, +2009,2,5,3,30,1.8334115,,,,,,,,,,,,,, +2009,2,5,4,30,1.3204036,,,,,,,,,,,,,, +2009,2,5,5,30,0.40635514,,,,,,,,,,,,,, +2009,2,5,6,30,0.87618697,,,,,,,,,,,,,, +2009,2,5,7,30,1.8689512,,,,,,,,,,,,,, +2009,2,5,8,30,2.2793262,,,,,,,,,,,,,, +2009,2,5,9,30,2.2719922,,,,,,,,,,,,,, +2009,2,5,10,30,1.9493189,,,,,,,,,,,,,, +2009,2,5,11,30,1.2638443,,,,,,,,,,,,,, +2009,2,5,12,30,0.38368332,,,,,,,,,,,,,, +2009,2,5,13,30,0.46335346,,,,,,,,,,,,,, +2009,2,5,14,30,1.0410955,,,,,,,,,,,,,, +2009,2,5,15,30,1.1783181,,,,,,,,,,,,,, +2009,2,5,16,30,0.9644486,,,,,,,,,,,,,, +2009,2,5,17,30,0.5879073,,,,,,,,,,,,,, +2009,2,5,18,30,0.11235373,,,,,,,,,,,,,, +2009,2,5,19,30,0.671242,,,,,,,,,,,,,, +2009,2,5,20,30,1.0958246,,,,,,,,,,,,,, +2009,2,5,21,30,1.0591418,,,,,,,,,,,,,, +2009,2,5,22,30,0.6367698,,,,,,,,,,,,,, +2009,2,5,23,30,0.0918302,,,,,,,,,,,,,, +2009,2,6,0,30,0.9858135,,,,,,,,,,,,,, +2009,2,6,1,30,1.7757645,,,,,,,,,,,,,, +2009,2,6,2,30,2.1834135,,,,,,,,,,,,,, +2009,2,6,3,30,2.1678824,,,,,,,,,,,,,, +2009,2,6,4,30,1.8540239,,,,,,,,,,,,,, +2009,2,6,5,30,1.2146287,,,,,,,,,,,,,, +2009,2,6,6,30,0.16367422,,,,,,,,,,,,,, +2009,2,6,7,30,1.2953811,,,,,,,,,,,,,, +2009,2,6,8,30,2.2350783,,,,,,,,,,,,,, +2009,2,6,9,30,2.5063105,,,,,,,,,,,,,, +2009,2,6,10,30,2.3606925,,,,,,,,,,,,,, +2009,2,6,11,30,1.8785756,,,,,,,,,,,,,, +2009,2,6,12,30,1.0256604,,,,,,,,,,,,,, +2009,2,6,13,30,0.06418347,,,,,,,,,,,,,, +2009,2,6,14,30,0.84855807,,,,,,,,,,,,,, +2009,2,6,15,30,1.33575,,,,,,,,,,,,,, +2009,2,6,16,30,1.3563172,,,,,,,,,,,,,, +2009,2,6,17,30,1.078377,,,,,,,,,,,,,, +2009,2,6,18,30,0.5967182,,,,,,,,,,,,,, +2009,2,6,19,30,0.18817179,,,,,,,,,,,,,, +2009,2,6,20,30,0.99263334,,,,,,,,,,,,,, +2009,2,6,21,30,1.3643305,,,,,,,,,,,,,, +2009,2,6,22,30,1.1844933,,,,,,,,,,,,,, +2009,2,6,23,30,0.62447774,,,,,,,,,,,,,, +2009,2,7,0,30,0.23420691,,,,,,,,,,,,,, +2009,2,7,1,30,1.2303536,,,,,,,,,,,,,, +2009,2,7,2,30,2.0147479,,,,,,,,,,,,,, +2009,2,7,3,30,2.31813,,,,,,,,,,,,,, +2009,2,7,4,30,2.197056,,,,,,,,,,,,,, +2009,2,7,5,30,1.7931982,,,,,,,,,,,,,, +2009,2,7,6,30,0.9891512,,,,,,,,,,,,,, +2009,2,7,7,30,0.37414116,,,,,,,,,,,,,, +2009,2,7,8,30,1.7803729,,,,,,,,,,,,,, +2009,2,7,9,30,2.5688493,,,,,,,,,,,,,, +2009,2,7,10,30,2.6389346,,,,,,,,,,,,,, +2009,2,7,11,30,2.3268023,,,,,,,,,,,,,, +2009,2,7,12,30,1.6736876,,,,,,,,,,,,,, +2009,2,7,13,30,0.6619822,,,,,,,,,,,,,, +2009,2,7,14,30,0.44288316,,,,,,,,,,,,,, +2009,2,7,15,30,1.282596,,,,,,,,,,,,,, +2009,2,7,16,30,1.6421102,,,,,,,,,,,,,, +2009,2,7,17,30,1.5408614,,,,,,,,,,,,,, +2009,2,7,18,30,1.1720585,,,,,,,,,,,,,, +2009,2,7,19,30,0.52461755,,,,,,,,,,,,,, +2009,2,7,20,30,0.46908563,,,,,,,,,,,,,, +2009,2,7,21,30,1.343049,,,,,,,,,,,,,, +2009,2,7,22,30,1.5969241,,,,,,,,,,,,,, +2009,2,7,23,30,1.2644233,,,,,,,,,,,,,, +2009,2,8,0,30,0.5786694,,,,,,,,,,,,,, +2009,2,8,1,30,0.40341562,,,,,,,,,,,,,, +2009,2,8,2,30,1.4576352,,,,,,,,,,,,,, +2009,2,8,3,30,2.1765432,,,,,,,,,,,,,, +2009,2,8,4,30,2.3535192,,,,,,,,,,,,,, +2009,2,8,5,30,2.1365206,,,,,,,,,,,,,, +2009,2,8,6,30,1.6243175,,,,,,,,,,,,,, +2009,2,8,7,30,0.62688506,,,,,,,,,,,,,, +2009,2,8,8,30,0.8904007,,,,,,,,,,,,,, +2009,2,8,9,30,2.238557,,,,,,,,,,,,,, +2009,2,8,10,30,2.778319,,,,,,,,,,,,,, +2009,2,8,11,30,2.6276212,,,,,,,,,,,,,, +2009,2,8,12,30,2.158211,,,,,,,,,,,,,, +2009,2,8,13,30,1.3402127,,,,,,,,,,,,,, +2009,2,8,14,30,0.19354509,,,,,,,,,,,,,, +2009,2,8,15,30,0.9697552,,,,,,,,,,,,,, +2009,2,8,16,30,1.7299325,,,,,,,,,,,,,, +2009,2,8,17,30,1.9294182,,,,,,,,,,,,,, +2009,2,8,18,30,1.697608,,,,,,,,,,,,,, +2009,2,8,19,30,1.2031074,,,,,,,,,,,,,, +2009,2,8,20,30,0.35519576,,,,,,,,,,,,,, +2009,2,8,21,30,0.8224969,,,,,,,,,,,,,, +2009,2,8,22,30,1.6760906,,,,,,,,,,,,,, +2009,2,8,23,30,1.7742221,,,,,,,,,,,,,, +2009,2,9,0,30,1.3059224,,,,,,,,,,,,,, +2009,2,9,1,30,0.51730806,,,,,,,,,,,,,, +2009,2,9,2,30,0.5596218,,,,,,,,,,,,,, +2009,2,9,3,30,1.6164261,,,,,,,,,,,,,, +2009,2,9,4,30,2.2265406,,,,,,,,,,,,,, +2009,2,9,5,30,2.2824266,,,,,,,,,,,,,, +2009,2,9,6,30,1.978908,,,,,,,,,,,,,, +2009,2,9,7,30,1.3364305,,,,,,,,,,,,,, +2009,2,9,8,30,0.1880733,,,,,,,,,,,,,, +2009,2,9,9,30,1.4094969,,,,,,,,,,,,,, +2009,2,9,10,30,2.5545347,,,,,,,,,,,,,, +2009,2,9,11,30,2.8030112,,,,,,,,,,,,,, +2009,2,9,12,30,2.4672112,,,,,,,,,,,,,, +2009,2,9,13,30,1.866209,,,,,,,,,,,,,, +2009,2,9,14,30,0.89276063,,,,,,,,,,,,,, +2009,2,9,15,30,0.38715452,,,,,,,,,,,,,, +2009,2,9,16,30,1.5176069,,,,,,,,,,,,,, +2009,2,9,17,30,2.1343827,,,,,,,,,,,,,, +2009,2,9,18,30,2.1540787,,,,,,,,,,,,,, +2009,2,9,19,30,1.7864668,,,,,,,,,,,,,, +2009,2,9,20,30,1.14096,,,,,,,,,,,,,, +2009,2,9,21,30,0.13727161,,,,,,,,,,,,,, +2009,2,9,22,30,1.1956053,,,,,,,,,,,,,, +2009,2,9,23,30,1.9539751,,,,,,,,,,,,,, +2009,2,10,0,30,1.8943357,,,,,,,,,,,,,, +2009,2,10,1,30,1.3260567,,,,,,,,,,,,,, +2009,2,10,2,30,0.46377817,,,,,,,,,,,,,, +2009,2,10,3,30,0.66628146,,,,,,,,,,,,,, +2009,2,10,4,30,1.6717469,,,,,,,,,,,,,, +2009,2,10,5,30,2.154526,,,,,,,,,,,,,, +2009,2,10,6,30,2.1087523,,,,,,,,,,,,,, +2009,2,10,7,30,1.7241722,,,,,,,,,,,,,, +2009,2,10,8,30,0.9554342,,,,,,,,,,,,,, +2009,2,10,9,30,0.3561825,,,,,,,,,,,,,, +2009,2,10,10,30,1.7999748,,,,,,,,,,,,,, +2009,2,10,11,30,2.652643,,,,,,,,,,,,,, +2009,2,10,12,30,2.6435008,,,,,,,,,,,,,, +2009,2,10,13,30,2.1850162,,,,,,,,,,,,,, +2009,2,10,14,30,1.4710802,,,,,,,,,,,,,, +2009,2,10,15,30,0.36773914,,,,,,,,,,,,,, +2009,2,10,16,30,0.9673797,,,,,,,,,,,,,, +2009,2,10,17,30,2.0088632,,,,,,,,,,,,,, +2009,2,10,18,30,2.4376202,,,,,,,,,,,,,, +2009,2,10,19,30,2.2803864,,,,,,,,,,,,,, +2009,2,10,20,30,1.7833755,,,,,,,,,,,,,, +2009,2,10,21,30,0.98696756,,,,,,,,,,,,,, +2009,2,10,22,30,0.25500554,,,,,,,,,,,,,, +2009,2,10,23,30,1.5303941,,,,,,,,,,,,,, +2009,2,11,0,30,2.1522121,,,,,,,,,,,,,, +2009,2,11,1,30,1.967067,,,,,,,,,,,,,, +2009,2,11,2,30,1.34371,,,,,,,,,,,,,, +2009,2,11,3,30,0.4391086,,,,,,,,,,,,,, +2009,2,11,4,30,0.6964246,,,,,,,,,,,,,, +2009,2,11,5,30,1.6057131,,,,,,,,,,,,,, +2009,2,11,6,30,1.9637644,,,,,,,,,,,,,, +2009,2,11,7,30,1.8434153,,,,,,,,,,,,,, +2009,2,11,8,30,1.3962514,,,,,,,,,,,,,, +2009,2,11,9,30,0.5540223,,,,,,,,,,,,,, +2009,2,11,10,30,0.73846596,,,,,,,,,,,,,, +2009,2,11,11,30,1.9747221,,,,,,,,,,,,,, +2009,2,11,12,30,2.5308642,,,,,,,,,,,,,, +2009,2,11,13,30,2.346389,,,,,,,,,,,,,, +2009,2,11,14,30,1.81795,,,,,,,,,,,,,, +2009,2,11,15,30,1.0066326,,,,,,,,,,,,,, +2009,2,11,16,30,0.21517643,,,,,,,,,,,,,, +2009,2,11,17,30,1.484606,,,,,,,,,,,,,, +2009,2,11,18,30,2.3707404,,,,,,,,,,,,,, +2009,2,11,19,30,2.6033108,,,,,,,,,,,,,, +2009,2,11,20,30,2.2964933,,,,,,,,,,,,,, +2009,2,11,21,30,1.69513,,,,,,,,,,,,,, +2009,2,11,22,30,0.7816143,,,,,,,,,,,,,, +2009,2,11,23,30,0.5469995,,,,,,,,,,,,,, +2009,2,12,0,30,1.7776775,,,,,,,,,,,,,, +2009,2,12,1,30,2.2652104,,,,,,,,,,,,,, +2009,2,12,2,30,2.007826,,,,,,,,,,,,,, +2009,2,12,3,30,1.3720918,,,,,,,,,,,,,, +2009,2,12,4,30,0.45872194,,,,,,,,,,,,,, +2009,2,12,5,30,0.6305587,,,,,,,,,,,,,, +2009,2,12,6,30,1.4133868,,,,,,,,,,,,,, +2009,2,12,7,30,1.6717275,,,,,,,,,,,,,, +2009,2,12,8,30,1.5189105,,,,,,,,,,,,,, +2009,2,12,9,30,1.0542803,,,,,,,,,,,,,, +2009,2,12,10,30,0.2342237,,,,,,,,,,,,,, +2009,2,12,11,30,0.9431465,,,,,,,,,,,,,, +2009,2,12,12,30,1.9210154,,,,,,,,,,,,,, +2009,2,12,13,30,2.2447224,,,,,,,,,,,,,, +2009,2,12,14,30,1.9718202,,,,,,,,,,,,,, +2009,2,12,15,30,1.4084156,,,,,,,,,,,,,, +2009,2,12,16,30,0.5349055,,,,,,,,,,,,,, +2009,2,12,17,30,0.68680716,,,,,,,,,,,,,, +2009,2,12,18,30,1.8557923,,,,,,,,,,,,,, +2009,2,12,19,30,2.5629747,,,,,,,,,,,,,, +2009,2,12,20,30,2.6284437,,,,,,,,,,,,,, +2009,2,12,21,30,2.2200913,,,,,,,,,,,,,, +2009,2,12,22,30,1.5617521,,,,,,,,,,,,,, +2009,2,12,23,30,0.5899273,,,,,,,,,,,,,, +2009,2,13,0,30,0.76544553,,,,,,,,,,,,,, +2009,2,13,1,30,1.916721,,,,,,,,,,,,,, +2009,2,13,2,30,2.305694,,,,,,,,,,,,,, +2009,2,13,3,30,2.030859,,,,,,,,,,,,,, +2009,2,13,4,30,1.4185994,,,,,,,,,,,,,, +2009,2,13,5,30,0.53721094,,,,,,,,,,,,,, +2009,2,13,6,30,0.45628747,,,,,,,,,,,,,, +2009,2,13,7,30,1.1112556,,,,,,,,,,,,,, +2009,2,13,8,30,1.3246135,,,,,,,,,,,,,, +2009,2,13,9,30,1.1985713,,,,,,,,,,,,,, +2009,2,13,10,30,0.7752975,,,,,,,,,,,,,, +2009,2,13,11,30,0.13970074,,,,,,,,,,,,,, +2009,2,13,12,30,0.94309014,,,,,,,,,,,,,, +2009,2,13,13,30,1.6865566,,,,,,,,,,,,,, +2009,2,13,14,30,1.8699722,,,,,,,,,,,,,, +2009,2,13,15,30,1.5793794,,,,,,,,,,,,,, +2009,2,13,16,30,1.0147749,,,,,,,,,,,,,, +2009,2,13,17,30,0.14735708,,,,,,,,,,,,,, +2009,2,13,18,30,1.01522,,,,,,,,,,,,,, +2009,2,13,19,30,2.039367,,,,,,,,,,,,,, +2009,2,13,20,30,2.58831,,,,,,,,,,,,,, +2009,2,13,21,30,2.541915,,,,,,,,,,,,,, +2009,2,13,22,30,2.0957031,,,,,,,,,,,,,, +2009,2,13,23,30,1.4413589,,,,,,,,,,,,,, +2009,2,14,0,30,0.46725518,,,,,,,,,,,,,, +2009,2,14,1,30,0.88224447,,,,,,,,,,,,,, +2009,2,14,2,30,1.9599698,,,,,,,,,,,,,, +2009,2,14,3,30,2.2963662,,,,,,,,,,,,,, +2009,2,14,4,30,2.0486722,,,,,,,,,,,,,, +2009,2,14,5,30,1.4943187,,,,,,,,,,,,,, +2009,2,14,6,30,0.6894371,,,,,,,,,,,,,, +2009,2,14,7,30,0.18580773,,,,,,,,,,,,,, +2009,2,14,8,30,0.75389075,,,,,,,,,,,,,, +2009,2,14,9,30,1.0010221,,,,,,,,,,,,,, +2009,2,14,10,30,0.9575555,,,,,,,,,,,,,, +2009,2,14,11,30,0.6176864,,,,,,,,,,,,,, +2009,2,14,12,30,0.12811275,,,,,,,,,,,,,, +2009,2,14,13,30,0.7684423,,,,,,,,,,,,,, +2009,2,14,14,30,1.3456485,,,,,,,,,,,,,, +2009,2,14,15,30,1.4825337,,,,,,,,,,,,,, +2009,2,14,16,30,1.233074,,,,,,,,,,,,,, +2009,2,14,17,30,0.70843995,,,,,,,,,,,,,, +2009,2,14,18,30,0.13974634,,,,,,,,,,,,,, +2009,2,14,19,30,1.1553205,,,,,,,,,,,,,, +2009,2,14,20,30,2.045651,,,,,,,,,,,,,, +2009,2,14,21,30,2.487583,,,,,,,,,,,,,, +2009,2,14,22,30,2.3975542,,,,,,,,,,,,,, +2009,2,14,23,30,1.981251,,,,,,,,,,,,,, +2009,2,15,0,30,1.3808391,,,,,,,,,,,,,, +2009,2,15,1,30,0.4284815,,,,,,,,,,,,,, +2009,2,15,2,30,0.9139252,,,,,,,,,,,,,, +2009,2,15,3,30,1.940575,,,,,,,,,,,,,, +2009,2,15,4,30,2.2640343,,,,,,,,,,,,,, +2009,2,15,5,30,2.0801177,,,,,,,,,,,,,, +2009,2,15,6,30,1.6175371,,,,,,,,,,,,,, +2009,2,15,7,30,0.9160677,,,,,,,,,,,,,, +2009,2,15,8,30,0.17563786,,,,,,,,,,,,,, +2009,2,15,9,30,0.43270865,,,,,,,,,,,,,, +2009,2,15,10,30,0.78514004,,,,,,,,,,,,,, +2009,2,15,11,30,0.84500295,,,,,,,,,,,,,, +2009,2,15,12,30,0.5988215,,,,,,,,,,,,,, +2009,2,15,13,30,0.13724954,,,,,,,,,,,,,, +2009,2,15,14,30,0.4789668,,,,,,,,,,,,,, +2009,2,15,15,30,0.9803573,,,,,,,,,,,,,, +2009,2,15,16,30,1.158314,,,,,,,,,,,,,, +2009,2,15,17,30,0.99833184,,,,,,,,,,,,,, +2009,2,15,18,30,0.5469923,,,,,,,,,,,,,, +2009,2,15,19,30,0.21106012,,,,,,,,,,,,,, +2009,2,15,20,30,1.1263273,,,,,,,,,,,,,, +2009,2,15,21,30,1.9292616,,,,,,,,,,,,,, +2009,2,15,22,30,2.3285167,,,,,,,,,,,,,, +2009,2,15,23,30,2.2601838,,,,,,,,,,,,,, +2009,2,16,0,30,1.9233735,,,,,,,,,,,,,, +2009,2,16,1,30,1.3913106,,,,,,,,,,,,,, +2009,2,16,2,30,0.44742274,,,,,,,,,,,,,, +2009,2,16,3,30,0.90180045,,,,,,,,,,,,,, +2009,2,16,4,30,1.8988769,,,,,,,,,,,,,, +2009,2,16,5,30,2.2421932,,,,,,,,,,,,,, +2009,2,16,6,30,2.152517,,,,,,,,,,,,,, +2009,2,16,7,30,1.7967637,,,,,,,,,,,,,, +2009,2,16,8,30,1.1804284,,,,,,,,,,,,,, +2009,2,16,9,30,0.45042577,,,,,,,,,,,,,, +2009,2,16,10,30,0.24197802,,,,,,,,,,,,,, +2009,2,16,11,30,0.7234051,,,,,,,,,,,,,, +2009,2,16,12,30,0.8631873,,,,,,,,,,,,,, +2009,2,16,13,30,0.70171994,,,,,,,,,,,,,, +2009,2,16,14,30,0.3587831,,,,,,,,,,,,,, +2009,2,16,15,30,0.15477943,,,,,,,,,,,,,, +2009,2,16,16,30,0.67786,,,,,,,,,,,,,, +2009,2,16,17,30,0.9667919,,,,,,,,,,,,,, +2009,2,16,18,30,0.9178542,,,,,,,,,,,,,, +2009,2,16,19,30,0.5432673,,,,,,,,,,,,,, +2009,2,16,20,30,0.14246835,,,,,,,,,,,,,, +2009,2,16,21,30,0.9950393,,,,,,,,,,,,,, +2009,2,16,22,30,1.7723564,,,,,,,,,,,,,, +2009,2,16,23,30,2.1871743,,,,,,,,,,,,,, +2009,2,17,0,30,2.1813664,,,,,,,,,,,,,, +2009,2,17,1,30,1.9344965,,,,,,,,,,,,,, +2009,2,17,2,30,1.4461027,,,,,,,,,,,,,, +2009,2,17,3,30,0.4776066,,,,,,,,,,,,,, +2009,2,17,4,30,0.8927167,,,,,,,,,,,,,, +2009,2,17,5,30,1.879268,,,,,,,,,,,,,, +2009,2,17,6,30,2.2694495,,,,,,,,,,,,,, +2009,2,17,7,30,2.2829037,,,,,,,,,,,,,, +2009,2,17,8,30,2.0047457,,,,,,,,,,,,,, +2009,2,17,9,30,1.4049995,,,,,,,,,,,,,, +2009,2,17,10,30,0.60442936,,,,,,,,,,,,,, +2009,2,17,11,30,0.22875056,,,,,,,,,,,,,, +2009,2,17,12,30,0.80559385,,,,,,,,,,,,,, +2009,2,17,13,30,0.98122865,,,,,,,,,,,,,, +2009,2,17,14,30,0.8916807,,,,,,,,,,,,,, +2009,2,17,15,30,0.6424376,,,,,,,,,,,,,, +2009,2,17,16,30,0.14222261,,,,,,,,,,,,,, +2009,2,17,17,30,0.5200984,,,,,,,,,,,,,, +2009,2,17,18,30,0.94546443,,,,,,,,,,,,,, +2009,2,17,19,30,0.98620975,,,,,,,,,,,,,, +2009,2,17,20,30,0.6563412,,,,,,,,,,,,,, +2009,2,17,21,30,0.022953551,,,,,,,,,,,,,, +2009,2,17,22,30,0.85260403,,,,,,,,,,,,,, +2009,2,17,23,30,1.6593058,,,,,,,,,,,,,, +2009,2,18,0,30,2.1189969,,,,,,,,,,,,,, +2009,2,18,1,30,2.1751854,,,,,,,,,,,,,, +2009,2,18,2,30,1.9891688,,,,,,,,,,,,,, +2009,2,18,3,30,1.4975802,,,,,,,,,,,,,, +2009,2,18,4,30,0.4696415,,,,,,,,,,,,,, +2009,2,18,5,30,0.93417436,,,,,,,,,,,,,, +2009,2,18,6,30,1.9260657,,,,,,,,,,,,,, +2009,2,18,7,30,2.3689597,,,,,,,,,,,,,, +2009,2,18,8,30,2.4498775,,,,,,,,,,,,,, +2009,2,18,9,30,2.17344,,,,,,,,,,,,,, +2009,2,18,10,30,1.5037194,,,,,,,,,,,,,, +2009,2,18,11,30,0.57457036,,,,,,,,,,,,,, +2009,2,18,12,30,0.3793599,,,,,,,,,,,,,, +2009,2,18,13,30,0.9871567,,,,,,,,,,,,,, +2009,2,18,14,30,1.1605414,,,,,,,,,,,,,, +2009,2,18,15,30,1.1252182,,,,,,,,,,,,,, +2009,2,18,16,30,0.9006874,,,,,,,,,,,,,, +2009,2,18,17,30,0.29230598,,,,,,,,,,,,,, +2009,2,18,18,30,0.54807884,,,,,,,,,,,,,, +2009,2,18,19,30,1.0781808,,,,,,,,,,,,,, +2009,2,18,20,30,1.1504195,,,,,,,,,,,,,, +2009,2,18,21,30,0.81221056,,,,,,,,,,,,,, +2009,2,18,22,30,0.13626638,,,,,,,,,,,,,, +2009,2,18,23,30,0.78346807,,,,,,,,,,,,,, +2009,2,19,0,30,1.6424663,,,,,,,,,,,,,, +2009,2,19,1,30,2.1318984,,,,,,,,,,,,,, +2009,2,19,2,30,2.2133687,,,,,,,,,,,,,, +2009,2,19,3,30,2.0400689,,,,,,,,,,,,,, +2009,2,19,4,30,1.4934875,,,,,,,,,,,,,, +2009,2,19,5,30,0.37892848,,,,,,,,,,,,,, +2009,2,19,6,30,1.0706812,,,,,,,,,,,,,, +2009,2,19,7,30,2.062153,,,,,,,,,,,,,, +2009,2,19,8,30,2.519881,,,,,,,,,,,,,, +2009,2,19,9,30,2.5878835,,,,,,,,,,,,,, +2009,2,19,10,30,2.2235558,,,,,,,,,,,,,, +2009,2,19,11,30,1.4241179,,,,,,,,,,,,,, +2009,2,19,12,30,0.3637473,,,,,,,,,,,,,, +2009,2,19,13,30,0.6506828,,,,,,,,,,,,,, +2009,2,19,14,30,1.2207973,,,,,,,,,,,,,, +2009,2,19,15,30,1.367381,,,,,,,,,,,,,, +2009,2,19,16,30,1.3512468,,,,,,,,,,,,,, +2009,2,19,17,30,1.0583417,,,,,,,,,,,,,, +2009,2,19,18,30,0.28133863,,,,,,,,,,,,,, +2009,2,19,19,30,0.7397178,,,,,,,,,,,,,, +2009,2,19,20,30,1.3028193,,,,,,,,,,,,,, +2009,2,19,21,30,1.3347265,,,,,,,,,,,,,, +2009,2,19,22,30,0.9339997,,,,,,,,,,,,,, +2009,2,19,23,30,0.18702447,,,,,,,,,,,,,, +2009,2,20,0,30,0.8288104,,,,,,,,,,,,,, +2009,2,20,1,30,1.7157431,,,,,,,,,,,,,, +2009,2,20,2,30,2.1842325,,,,,,,,,,,,,, +2009,2,20,3,30,2.244143,,,,,,,,,,,,,, +2009,2,20,4,30,2.0351024,,,,,,,,,,,,,, +2009,2,20,5,30,1.3815353,,,,,,,,,,,,,, +2009,2,20,6,30,0.20290935,,,,,,,,,,,,,, +2009,2,20,7,30,1.321158,,,,,,,,,,,,,, +2009,2,20,8,30,2.2603593,,,,,,,,,,,,,, +2009,2,20,9,30,2.6531205,,,,,,,,,,,,,, +2009,2,20,10,30,2.6177526,,,,,,,,,,,,,, +2009,2,20,11,30,2.104582,,,,,,,,,,,,,, +2009,2,20,12,30,1.1620033,,,,,,,,,,,,,, +2009,2,20,13,30,0.050220482,,,,,,,,,,,,,, +2009,2,20,14,30,0.99152154,,,,,,,,,,,,,, +2009,2,20,15,30,1.4710364,,,,,,,,,,,,,, +2009,2,20,16,30,1.5705982,,,,,,,,,,,,,, +2009,2,20,17,30,1.5161854,,,,,,,,,,,,,, +2009,2,20,18,30,1.0633028,,,,,,,,,,,,,, +2009,2,20,19,30,0.167285,,,,,,,,,,,,,, +2009,2,20,20,30,1.0333096,,,,,,,,,,,,,, +2009,2,20,21,30,1.5386305,,,,,,,,,,,,,, +2009,2,20,22,30,1.4703939,,,,,,,,,,,,,, +2009,2,20,23,30,0.9676062,,,,,,,,,,,,,, +2009,2,21,0,30,0.1443982,,,,,,,,,,,,,, +2009,2,21,1,30,0.9667816,,,,,,,,,,,,,, +2009,2,21,2,30,1.8200601,,,,,,,,,,,,,, +2009,2,21,3,30,2.212502,,,,,,,,,,,,,, +2009,2,21,4,30,2.215807,,,,,,,,,,,,,, +2009,2,21,5,30,1.9237871,,,,,,,,,,,,,, +2009,2,21,6,30,1.1164365,,,,,,,,,,,,,, +2009,2,21,7,30,0.29959375,,,,,,,,,,,,,, +2009,2,21,8,30,1.6474009,,,,,,,,,,,,,, +2009,2,21,9,30,2.4412177,,,,,,,,,,,,,, +2009,2,21,10,30,2.685511,,,,,,,,,,,,,, +2009,2,21,11,30,2.488467,,,,,,,,,,,,,, +2009,2,21,12,30,1.8098278,,,,,,,,,,,,,, +2009,2,21,13,30,0.7447232,,,,,,,,,,,,,, +2009,2,21,14,30,0.4570633,,,,,,,,,,,,,, +2009,2,21,15,30,1.3571827,,,,,,,,,,,,,, +2009,2,21,16,30,1.7098669,,,,,,,,,,,,,, +2009,2,21,17,30,1.737269,,,,,,,,,,,,,, +2009,2,21,18,30,1.5758297,,,,,,,,,,,,,, +2009,2,21,19,30,0.9031308,,,,,,,,,,,,,, +2009,2,21,20,30,0.34309688,,,,,,,,,,,,,, +2009,2,21,21,30,1.3472359,,,,,,,,,,,,,, +2009,2,21,22,30,1.7173069,,,,,,,,,,,,,, +2009,2,21,23,30,1.517756,,,,,,,,,,,,,, +2009,2,22,0,30,0.8991782,,,,,,,,,,,,,, +2009,2,22,1,30,0.13158502,,,,,,,,,,,,,, +2009,2,22,2,30,1.1289527,,,,,,,,,,,,,, +2009,2,22,3,30,1.8808749,,,,,,,,,,,,,, +2009,2,22,4,30,2.1652973,,,,,,,,,,,,,, +2009,2,22,5,30,2.0879998,,,,,,,,,,,,,, +2009,2,22,6,30,1.6652973,,,,,,,,,,,,,, +2009,2,22,7,30,0.6877708,,,,,,,,,,,,,, +2009,2,22,8,30,0.75770205,,,,,,,,,,,,,, +2009,2,22,9,30,1.9529938,,,,,,,,,,,,,, +2009,2,22,10,30,2.5125217,,,,,,,,,,,,,, +2009,2,22,11,30,2.565786,,,,,,,,,,,,,, +2009,2,22,12,30,2.1938365,,,,,,,,,,,,,, +2009,2,22,13,30,1.3621162,,,,,,,,,,,,,, +2009,2,22,14,30,0.2159919,,,,,,,,,,,,,, +2009,2,22,15,30,0.9555958,,,,,,,,,,,,,, +2009,2,22,16,30,1.7050121,,,,,,,,,,,,,, +2009,2,22,17,30,1.9080414,,,,,,,,,,,,,, +2009,2,22,18,30,1.8338823,,,,,,,,,,,,,, +2009,2,22,19,30,1.50482,,,,,,,,,,,,,, +2009,2,22,20,30,0.6057044,,,,,,,,,,,,,, +2009,2,22,21,30,0.71421766,,,,,,,,,,,,,, +2009,2,22,22,30,1.6093895,,,,,,,,,,,,,, +2009,2,22,23,30,1.8045921,,,,,,,,,,,,,, +2009,2,23,0,30,1.4751229,,,,,,,,,,,,,, +2009,2,23,1,30,0.7564157,,,,,,,,,,,,,, +2009,2,23,2,30,0.29330388,,,,,,,,,,,,,, +2009,2,23,3,30,1.2410543,,,,,,,,,,,,,, +2009,2,23,4,30,1.8491427,,,,,,,,,,,,,, +2009,2,23,5,30,2.0189924,,,,,,,,,,,,,, +2009,2,23,6,30,1.8374761,,,,,,,,,,,,,, +2009,2,23,7,30,1.2525038,,,,,,,,,,,,,, +2009,2,23,8,30,0.1849225,,,,,,,,,,,,,, +2009,2,23,9,30,1.213533,,,,,,,,,,,,,, +2009,2,23,10,30,2.1294284,,,,,,,,,,,,,, +2009,2,23,11,30,2.4217572,,,,,,,,,,,,,, +2009,2,23,12,30,2.2930765,,,,,,,,,,,,,, +2009,2,23,13,30,1.7584149,,,,,,,,,,,,,, +2009,2,23,14,30,0.7985872,,,,,,,,,,,,,, +2009,2,23,15,30,0.38772863,,,,,,,,,,,,,, +2009,2,23,16,30,1.4381962,,,,,,,,,,,,,, +2009,2,23,17,30,1.9893013,,,,,,,,,,,,,, +2009,2,23,18,30,2.0336707,,,,,,,,,,,,,, +2009,2,23,19,30,1.8304646,,,,,,,,,,,,,, +2009,2,23,20,30,1.2991731,,,,,,,,,,,,,, +2009,2,23,21,30,0.24850304,,,,,,,,,,,,,, +2009,2,23,22,30,1.0779603,,,,,,,,,,,,,, +2009,2,23,23,30,1.781044,,,,,,,,,,,,,, +2009,2,24,0,30,1.8050756,,,,,,,,,,,,,, +2009,2,24,1,30,1.3716216,,,,,,,,,,,,,, +2009,2,24,2,30,0.5883817,,,,,,,,,,,,,, +2009,2,24,3,30,0.43714467,,,,,,,,,,,,,, +2009,2,24,4,30,1.261289,,,,,,,,,,,,,, +2009,2,24,5,30,1.7171564,,,,,,,,,,,,,, +2009,2,24,6,30,1.7765157,,,,,,,,,,,,,, +2009,2,24,7,30,1.4717448,,,,,,,,,,,,,, +2009,2,24,8,30,0.7384476,,,,,,,,,,,,,, +2009,2,24,9,30,0.42300949,,,,,,,,,,,,,, +2009,2,24,10,30,1.5318706,,,,,,,,,,,,,, +2009,2,24,11,30,2.116695,,,,,,,,,,,,,, +2009,2,24,12,30,2.177333,,,,,,,,,,,,,, +2009,2,24,13,30,1.9001496,,,,,,,,,,,,,, +2009,2,24,14,30,1.2200848,,,,,,,,,,,,,, +2009,2,24,15,30,0.1783504,,,,,,,,,,,,,, +2009,2,24,16,30,0.9668232,,,,,,,,,,,,,, +2009,2,24,17,30,1.8349205,,,,,,,,,,,,,, +2009,2,24,18,30,2.1679165,,,,,,,,,,,,,, +2009,2,24,19,30,2.0575252,,,,,,,,,,,,,, +2009,2,24,20,30,1.706968,,,,,,,,,,,,,, +2009,2,24,21,30,0.9774006,,,,,,,,,,,,,, +2009,2,24,22,30,0.2651462,,,,,,,,,,,,,, +2009,2,24,23,30,1.3756148,,,,,,,,,,,,,, +2009,2,25,0,30,1.8622271,,,,,,,,,,,,,, +2009,2,25,1,30,1.7500349,,,,,,,,,,,,,, +2009,2,25,2,30,1.2452309,,,,,,,,,,,,,, +2009,2,25,3,30,0.43565255,,,,,,,,,,,,,, +2009,2,25,4,30,0.5186776,,,,,,,,,,,,,, +2009,2,25,5,30,1.1902655,,,,,,,,,,,,,, +2009,2,25,6,30,1.5085977,,,,,,,,,,,,,, +2009,2,25,7,30,1.4654243,,,,,,,,,,,,,, +2009,2,25,8,30,1.042371,,,,,,,,,,,,,, +2009,2,25,9,30,0.24089126,,,,,,,,,,,,,, +2009,2,25,10,30,0.82898283,,,,,,,,,,,,,, +2009,2,25,11,30,1.6403759,,,,,,,,,,,,,, +2009,2,25,12,30,1.9291875,,,,,,,,,,,,,, +2009,2,25,13,30,1.8277725,,,,,,,,,,,,,, +2009,2,25,14,30,1.4296916,,,,,,,,,,,,,, +2009,2,25,15,30,0.63032967,,,,,,,,,,,,,, +2009,2,25,16,30,0.44279432,,,,,,,,,,,,,, +2009,2,25,17,30,1.4494134,,,,,,,,,,,,,, +2009,2,25,18,30,2.0902019,,,,,,,,,,,,,, +2009,2,25,19,30,2.2148006,,,,,,,,,,,,,, +2009,2,25,20,30,1.9628865,,,,,,,,,,,,,, +2009,2,25,21,30,1.4650408,,,,,,,,,,,,,, +2009,2,25,22,30,0.5834739,,,,,,,,,,,,,, +2009,2,25,23,30,0.6506576,,,,,,,,,,,,,, +2009,2,26,0,30,1.5886309,,,,,,,,,,,,,, +2009,2,26,1,30,1.8797365,,,,,,,,,,,,,, +2009,2,26,2,30,1.6737636,,,,,,,,,,,,,, +2009,2,26,3,30,1.119545,,,,,,,,,,,,,, +2009,2,26,4,30,0.31510252,,,,,,,,,,,,,, +2009,2,26,5,30,0.5346471,,,,,,,,,,,,,, +2009,2,26,6,30,1.0545623,,,,,,,,,,,,,, +2009,2,26,7,30,1.263742,,,,,,,,,,,,,, +2009,2,26,8,30,1.1370519,,,,,,,,,,,,,, +2009,2,26,9,30,0.634061,,,,,,,,,,,,,, +2009,2,26,10,30,0.22170015,,,,,,,,,,,,,, +2009,2,26,11,30,1.0348392,,,,,,,,,,,,,, +2009,2,26,12,30,1.5523744,,,,,,,,,,,,,, +2009,2,26,13,30,1.6321642,,,,,,,,,,,,,, +2009,2,26,14,30,1.4289343,,,,,,,,,,,,,, +2009,2,26,15,30,0.9286173,,,,,,,,,,,,,, +2009,2,26,16,30,0.07197293,,,,,,,,,,,,,, +2009,2,26,17,30,0.954487,,,,,,,,,,,,,, +2009,2,26,18,30,1.7737386,,,,,,,,,,,,,, +2009,2,26,19,30,2.1832197,,,,,,,,,,,,,, +2009,2,26,20,30,2.130494,,,,,,,,,,,,,, +2009,2,26,21,30,1.7594578,,,,,,,,,,,,,, +2009,2,26,22,30,1.1396253,,,,,,,,,,,,,, +2009,2,26,23,30,0.20473416,,,,,,,,,,,,,, +2009,2,27,0,30,0.9882145,,,,,,,,,,,,,, +2009,2,27,1,30,1.7261091,,,,,,,,,,,,,, +2009,2,27,2,30,1.8644314,,,,,,,,,,,,,, +2009,2,27,3,30,1.5933188,,,,,,,,,,,,,, +2009,2,27,4,30,0.999936,,,,,,,,,,,,,, +2009,2,27,5,30,0.2288095,,,,,,,,,,,,,, +2009,2,27,6,30,0.49508435,,,,,,,,,,,,,, +2009,2,27,7,30,0.8893072,,,,,,,,,,,,,, +2009,2,27,8,30,1.0306387,,,,,,,,,,,,,, +2009,2,27,9,30,0.852575,,,,,,,,,,,,,, +2009,2,27,10,30,0.32388625,,,,,,,,,,,,,, +2009,2,27,11,30,0.4262808,,,,,,,,,,,,,, +2009,2,27,12,30,1.0485591,,,,,,,,,,,,,, +2009,2,27,13,30,1.3412412,,,,,,,,,,,,,, +2009,2,27,14,30,1.2997953,,,,,,,,,,,,,, +2009,2,27,15,30,1.0301106,,,,,,,,,,,,,, +2009,2,27,16,30,0.4526915,,,,,,,,,,,,,, +2009,2,27,17,30,0.43011984,,,,,,,,,,,,,, +2009,2,27,18,30,1.3124808,,,,,,,,,,,,,, +2009,2,27,19,30,1.9264295,,,,,,,,,,,,,, +2009,2,27,20,30,2.1349561,,,,,,,,,,,,,, +2009,2,27,21,30,1.9483259,,,,,,,,,,,,,, +2009,2,27,22,30,1.4927502,,,,,,,,,,,,,, +2009,2,27,23,30,0.7945939,,,,,,,,,,,,,, +2009,2,28,0,30,0.24345593,,,,,,,,,,,,,, +2009,2,28,1,30,1.2501581,,,,,,,,,,,,,, +2009,2,28,2,30,1.8077549,,,,,,,,,,,,,, +2009,2,28,3,30,1.8330383,,,,,,,,,,,,,, +2009,2,28,4,30,1.5101793,,,,,,,,,,,,,, +2009,2,28,5,30,0.89266443,,,,,,,,,,,,,, +2009,2,28,6,30,0.17976828,,,,,,,,,,,,,, +2009,2,28,7,30,0.41312718,,,,,,,,,,,,,, +2009,2,28,8,30,0.7328533,,,,,,,,,,,,,, +2009,2,28,9,30,0.8537513,,,,,,,,,,,,,, +2009,2,28,10,30,0.6535912,,,,,,,,,,,,,, +2009,2,28,11,30,0.14713427,,,,,,,,,,,,,, +2009,2,28,12,30,0.49090776,,,,,,,,,,,,,, +2009,2,28,13,30,0.9387353,,,,,,,,,,,,,, +2009,2,28,14,30,1.0920053,,,,,,,,,,,,,, +2009,2,28,15,30,0.99157363,,,,,,,,,,,,,, +2012,2,28,16,30,0.6772726,,,,,,,,,,,,,, +2012,2,28,17,30,0.06882127,,,,,,,,,,,,,, +2012,2,28,18,30,0.7756367,,,,,,,,,,,,,, +2012,2,28,19,30,1.5102265,,,,,,,,,,,,,, +2012,2,28,20,30,1.9422913,,,,,,,,,,,,,, +2012,2,28,21,30,2.0011256,,,,,,,,,,,,,, +2012,2,28,22,30,1.7315786,,,,,,,,,,,,,, +2012,2,28,23,30,1.2329422,,,,,,,,,,,,,, +2012,3,1,0,30,0.4965101,,,,,,,,,,,,,, +2012,3,1,1,30,0.53454,,,,,,,,,,,,,, +2012,3,1,2,30,1.4393576,,,,,,,,,,,,,, +2012,3,1,3,30,1.8490651,,,,,,,,,,,,,, +2012,3,1,4,30,1.7912257,,,,,,,,,,,,,, +2012,3,1,5,30,1.4328352,,,,,,,,,,,,,, +2012,3,1,6,30,0.82085264,,,,,,,,,,,,,, +2012,3,1,7,30,0.17801908,,,,,,,,,,,,,, +2012,3,1,8,30,0.31258932,,,,,,,,,,,,,, +2012,3,1,9,30,0.62357587,,,,,,,,,,,,,, +2012,3,1,10,30,0.755792,,,,,,,,,,,,,, +2012,3,1,11,30,0.5423816,,,,,,,,,,,,,, +2012,3,1,12,30,0.11288838,,,,,,,,,,,,,, +2012,3,1,13,30,0.456201,,,,,,,,,,,,,, +2012,3,1,14,30,0.78304064,,,,,,,,,,,,,, +2012,3,1,15,30,0.87119496,,,,,,,,,,,,,, +2012,3,1,16,30,0.7514671,,,,,,,,,,,,,, +2012,3,1,17,30,0.41266012,,,,,,,,,,,,,, +2012,3,1,18,30,0.23182404,,,,,,,,,,,,,, +2012,3,1,19,30,0.98154175,,,,,,,,,,,,,, +2012,3,1,20,30,1.5860357,,,,,,,,,,,,,, +2012,3,1,21,30,1.88565,,,,,,,,,,,,,, +2012,3,1,22,30,1.8551248,,,,,,,,,,,,,, +2012,3,1,23,30,1.5529054,,,,,,,,,,,,,, +2012,3,2,0,30,1.0404342,,,,,,,,,,,,,, +2012,3,2,1,30,0.2866094,,,,,,,,,,,,,, +2012,3,2,2,30,0.7591217,,,,,,,,,,,,,, +2012,3,2,3,30,1.569335,,,,,,,,,,,,,, +2012,3,2,4,30,1.8633652,,,,,,,,,,,,,, +2012,3,2,5,30,1.7543417,,,,,,,,,,,,,, +2012,3,2,6,30,1.390489,,,,,,,,,,,,,, +2012,3,2,7,30,0.81129456,,,,,,,,,,,,,, +2012,3,2,8,30,0.22619018,,,,,,,,,,,,,, +2012,3,2,9,30,0.23434487,,,,,,,,,,,,,, +2012,3,2,10,30,0.5891582,,,,,,,,,,,,,, +2012,3,2,11,30,0.7298665,,,,,,,,,,,,,, +2012,3,2,12,30,0.49658614,,,,,,,,,,,,,, +2012,3,2,13,30,0.10794735,,,,,,,,,,,,,, +2012,3,2,14,30,0.3711514,,,,,,,,,,,,,, +2012,3,2,15,30,0.6399809,,,,,,,,,,,,,, +2012,3,2,16,30,0.72392976,,,,,,,,,,,,,, +2012,3,2,17,30,0.6088655,,,,,,,,,,,,,, +2012,3,2,18,30,0.2602661,,,,,,,,,,,,,, +2012,3,2,19,30,0.3909182,,,,,,,,,,,,,, +2012,3,2,20,30,1.0795399,,,,,,,,,,,,,, +2012,3,2,21,30,1.5986814,,,,,,,,,,,,,, +2012,3,2,22,30,1.826039,,,,,,,,,,,,,, +2012,3,2,23,30,1.761838,,,,,,,,,,,,,, +2012,3,3,0,30,1.4591944,,,,,,,,,,,,,, +2012,3,3,1,30,0.9325894,,,,,,,,,,,,,, +2012,3,3,2,30,0.1755453,,,,,,,,,,,,,, +2012,3,3,3,30,0.9293742,,,,,,,,,,,,,, +2012,3,3,4,30,1.6618378,,,,,,,,,,,,,, +2012,3,3,5,30,1.8768774,,,,,,,,,,,,,, +2012,3,3,6,30,1.7565876,,,,,,,,,,,,,, +2012,3,3,7,30,1.4132141,,,,,,,,,,,,,, +2012,3,3,8,30,0.86113006,,,,,,,,,,,,,, +2012,3,3,9,30,0.28449455,,,,,,,,,,,,,, +2012,3,3,10,30,0.22640328,,,,,,,,,,,,,, +2012,3,3,11,30,0.63756365,,,,,,,,,,,,,, +2012,3,3,12,30,0.75720155,,,,,,,,,,,,,, +2012,3,3,13,30,0.5020533,,,,,,,,,,,,,, +2012,3,3,14,30,0.12115077,,,,,,,,,,,,,, +2012,3,3,15,30,0.26979533,,,,,,,,,,,,,, +2012,3,3,16,30,0.551372,,,,,,,,,,,,,, +2012,3,3,17,30,0.67781174,,,,,,,,,,,,,, +2012,3,3,18,30,0.5707756,,,,,,,,,,,,,, +2012,3,3,19,30,0.20553544,,,,,,,,,,,,,, +2012,3,3,20,30,0.45383042,,,,,,,,,,,,,, +2012,3,3,21,30,1.1154541,,,,,,,,,,,,,, +2012,3,3,22,30,1.6047636,,,,,,,,,,,,,, +2012,3,3,23,30,1.8142328,,,,,,,,,,,,,, +2012,3,4,0,30,1.7490511,,,,,,,,,,,,,, +2012,3,4,1,30,1.4469445,,,,,,,,,,,,,, +2012,3,4,2,30,0.8812478,,,,,,,,,,,,,, +2012,3,4,3,30,0.13714275,,,,,,,,,,,,,, +2012,3,4,4,30,1.0768327,,,,,,,,,,,,,, +2012,3,4,5,30,1.7534434,,,,,,,,,,,,,, +2012,3,4,6,30,1.9310205,,,,,,,,,,,,,, +2012,3,4,7,30,1.8274987,,,,,,,,,,,,,, +2012,3,4,8,30,1.4942263,,,,,,,,,,,,,, +2012,3,4,9,30,0.9196235,,,,,,,,,,,,,, +2012,3,4,10,30,0.28180203,,,,,,,,,,,,,, +2012,3,4,11,30,0.32432568,,,,,,,,,,,,,, +2012,3,4,12,30,0.764077,,,,,,,,,,,,,, +2012,3,4,13,30,0.83295375,,,,,,,,,,,,,, +2012,3,4,14,30,0.56833625,,,,,,,,,,,,,, +2012,3,4,15,30,0.21457429,,,,,,,,,,,,,, +2012,3,4,16,30,0.18419541,,,,,,,,,,,,,, +2012,3,4,17,30,0.552157,,,,,,,,,,,,,, +2012,3,4,18,30,0.7410742,,,,,,,,,,,,,, +2012,3,4,19,30,0.6246828,,,,,,,,,,,,,, +2012,3,4,20,30,0.21710202,,,,,,,,,,,,,, +2012,3,4,21,30,0.4521287,,,,,,,,,,,,,, +2012,3,4,22,30,1.1334685,,,,,,,,,,,,,, +2012,3,4,23,30,1.6427971,,,,,,,,,,,,,, +2012,3,5,0,30,1.863301,,,,,,,,,,,,,, +2012,3,5,1,30,1.7959397,,,,,,,,,,,,,, +2012,3,5,2,30,1.4718239,,,,,,,,,,,,,, +2012,3,5,3,30,0.8379847,,,,,,,,,,,,,, +2012,3,5,4,30,0.20790425,,,,,,,,,,,,,, +2012,3,5,5,30,1.2450088,,,,,,,,,,,,,, +2012,3,5,6,30,1.8904159,,,,,,,,,,,,,, +2012,3,5,7,30,2.0551903,,,,,,,,,,,,,, +2012,3,5,8,30,1.9543908,,,,,,,,,,,,,, +2012,3,5,9,30,1.575148,,,,,,,,,,,,,, +2012,3,5,10,30,0.9080809,,,,,,,,,,,,,, +2012,3,5,11,30,0.161942,,,,,,,,,,,,,, +2012,3,5,12,30,0.5422222,,,,,,,,,,,,,, +2012,3,5,13,30,0.96539754,,,,,,,,,,,,,, +2012,3,5,14,30,0.97143984,,,,,,,,,,,,,, +2012,3,5,15,30,0.71073556,,,,,,,,,,,,,, +2012,3,5,16,30,0.35711476,,,,,,,,,,,,,, +2012,3,5,17,30,0.15299353,,,,,,,,,,,,,, +2012,3,5,18,30,0.6672586,,,,,,,,,,,,,, +2012,3,5,19,30,0.90561426,,,,,,,,,,,,,, +2012,3,5,20,30,0.75260663,,,,,,,,,,,,,, +2012,3,5,21,30,0.28285772,,,,,,,,,,,,,, +2012,3,5,22,30,0.422683,,,,,,,,,,,,,, +2012,3,5,23,30,1.1680878,,,,,,,,,,,,,, +2012,3,6,0,30,1.7222227,,,,,,,,,,,,,, +2012,3,6,1,30,1.946353,,,,,,,,,,,,,, +2012,3,6,2,30,1.8525717,,,,,,,,,,,,,, +2012,3,6,3,30,1.482499,,,,,,,,,,,,,, +2012,3,6,4,30,0.7579857,,,,,,,,,,,,,, +2012,3,6,5,30,0.37988874,,,,,,,,,,,,,, +2012,3,6,6,30,1.4786699,,,,,,,,,,,,,, +2012,3,6,7,30,2.0984557,,,,,,,,,,,,,, +2012,3,6,8,30,2.2304103,,,,,,,,,,,,,, +2012,3,6,9,30,2.072246,,,,,,,,,,,,,, +2012,3,6,10,30,1.573441,,,,,,,,,,,,,, +2012,3,6,11,30,0.76073515,,,,,,,,,,,,,, +2012,3,6,12,30,0.14662133,,,,,,,,,,,,,, +2012,3,6,13,30,0.8763998,,,,,,,,,,,,,, +2012,3,6,14,30,1.240092,,,,,,,,,,,,,, +2012,3,6,15,30,1.1830864,,,,,,,,,,,,,, +2012,3,6,16,30,0.91506606,,,,,,,,,,,,,, +2012,3,6,17,30,0.4804941,,,,,,,,,,,,,, +2012,3,6,18,30,0.22720525,,,,,,,,,,,,,, +2012,3,6,19,30,0.90400964,,,,,,,,,,,,,, +2012,3,6,20,30,1.1510473,,,,,,,,,,,,,, +2012,3,6,21,30,0.9311225,,,,,,,,,,,,,, +2012,3,6,22,30,0.38458115,,,,,,,,,,,,,, +2012,3,6,23,30,0.40371752,,,,,,,,,,,,,, +2012,3,7,0,30,1.2353836,,,,,,,,,,,,,, +2012,3,7,1,30,1.8226048,,,,,,,,,,,,,, +2012,3,7,2,30,2.01798,,,,,,,,,,,,,, +2012,3,7,3,30,1.8757093,,,,,,,,,,,,,, +2012,3,7,4,30,1.4446136,,,,,,,,,,,,,, +2012,3,7,5,30,0.6056324,,,,,,,,,,,,,, +2012,3,7,6,30,0.65411854,,,,,,,,,,,,,, +2012,3,7,7,30,1.7938207,,,,,,,,,,,,,, +2012,3,7,8,30,2.3483331,,,,,,,,,,,,,, +2012,3,7,9,30,2.3846965,,,,,,,,,,,,,, +2012,3,7,10,30,2.0972292,,,,,,,,,,,,,, +2012,3,7,11,30,1.4271758,,,,,,,,,,,,,, +2012,3,7,12,30,0.45058092,,,,,,,,,,,,,, +2012,3,7,13,30,0.5643447,,,,,,,,,,,,,, +2012,3,7,14,30,1.305121,,,,,,,,,,,,,, +2012,3,7,15,30,1.5721273,,,,,,,,,,,,,, +2012,3,7,16,30,1.4457319,,,,,,,,,,,,,, +2012,3,7,17,30,1.1234664,,,,,,,,,,,,,, +2012,3,7,18,30,0.51038563,,,,,,,,,,,,,, +2012,3,7,19,30,0.4542428,,,,,,,,,,,,,, +2012,3,7,20,30,1.246632,,,,,,,,,,,,,, +2012,3,7,21,30,1.4428942,,,,,,,,,,,,,, +2012,3,7,22,30,1.1272898,,,,,,,,,,,,,, +2012,3,7,23,30,0.4869942,,,,,,,,,,,,,, +2012,3,8,0,30,0.42038924,,,,,,,,,,,,,, +2012,3,8,1,30,1.3273987,,,,,,,,,,,,,, +2012,3,8,2,30,1.9086596,,,,,,,,,,,,,, +2012,3,8,3,30,2.0447736,,,,,,,,,,,,,, +2012,3,8,4,30,1.8470827,,,,,,,,,,,,,, +2012,3,8,5,30,1.3372023,,,,,,,,,,,,,, +2012,3,8,6,30,0.35707706,,,,,,,,,,,,,, +2012,3,8,7,30,1.0313057,,,,,,,,,,,,,, +2012,3,8,8,30,2.1475534,,,,,,,,,,,,,, +2012,3,8,9,30,2.557211,,,,,,,,,,,,,, +2012,3,8,10,30,2.432898,,,,,,,,,,,,,, +2012,3,8,11,30,1.9739033,,,,,,,,,,,,,, +2012,3,8,12,30,1.1179464,,,,,,,,,,,,,, +2012,3,8,13,30,0.05941243,,,,,,,,,,,,,, +2012,3,8,14,30,1.1035268,,,,,,,,,,,,,, +2012,3,8,15,30,1.7816918,,,,,,,,,,,,,, +2012,3,8,16,30,1.9170387,,,,,,,,,,,,,, +2012,3,8,17,30,1.7002728,,,,,,,,,,,,,, +2012,3,8,18,30,1.2536577,,,,,,,,,,,,,, +2012,3,8,19,30,0.38713843,,,,,,,,,,,,,, +2012,3,8,20,30,0.82777584,,,,,,,,,,,,,, +2012,3,8,21,30,1.6507728,,,,,,,,,,,,,, +2012,3,8,22,30,1.734119,,,,,,,,,,,,,, +2012,3,8,23,30,1.3030411,,,,,,,,,,,,,, +2012,3,9,0,30,0.55598146,,,,,,,,,,,,,, +2012,3,9,1,30,0.47241765,,,,,,,,,,,,,, +2012,3,9,2,30,1.418847,,,,,,,,,,,,,, +2012,3,9,3,30,1.9516884,,,,,,,,,,,,,, +2012,3,9,4,30,2.017101,,,,,,,,,,,,,, +2012,3,9,5,30,1.76063,,,,,,,,,,,,,, +2012,3,9,6,30,1.1417124,,,,,,,,,,,,,, +2012,3,9,7,30,0.12031354,,,,,,,,,,,,,, +2012,3,9,8,30,1.458571,,,,,,,,,,,,,, +2012,3,9,9,30,2.444246,,,,,,,,,,,,,, +2012,3,9,10,30,2.6350565,,,,,,,,,,,,,, +2012,3,9,11,30,2.3266957,,,,,,,,,,,,,, +2012,3,9,12,30,1.6949877,,,,,,,,,,,,,, +2012,3,9,13,30,0.6643318,,,,,,,,,,,,,, +2012,3,9,14,30,0.60672325,,,,,,,,,,,,,, +2012,3,9,15,30,1.6915948,,,,,,,,,,,,,, +2012,3,9,16,30,2.2350354,,,,,,,,,,,,,, +2012,3,9,17,30,2.2102,,,,,,,,,,,,,, +2012,3,9,18,30,1.8740742,,,,,,,,,,,,,, +2012,3,9,19,30,1.2356921,,,,,,,,,,,,,, +2012,3,9,20,30,0.1495458,,,,,,,,,,,,,, +2012,3,9,21,30,1.2998946,,,,,,,,,,,,,, +2012,3,9,22,30,2.0480058,,,,,,,,,,,,,, +2012,3,9,23,30,1.9756769,,,,,,,,,,,,,, +2012,3,10,0,30,1.4283082,,,,,,,,,,,,,, +2012,3,10,1,30,0.5763563,,,,,,,,,,,,,, +2012,3,10,2,30,0.541397,,,,,,,,,,,,,, +2012,3,10,3,30,1.4811857,,,,,,,,,,,,,, +2012,3,10,4,30,1.9380335,,,,,,,,,,,,,, +2012,3,10,5,30,1.934185,,,,,,,,,,,,,, +2012,3,10,6,30,1.6049906,,,,,,,,,,,,,, +2012,3,10,7,30,0.8518673,,,,,,,,,,,,,, +2012,3,10,8,30,0.44839948,,,,,,,,,,,,,, +2012,3,10,9,30,1.8341882,,,,,,,,,,,,,, +2012,3,10,10,30,2.5855167,,,,,,,,,,,,,, +2012,3,10,11,30,2.5383985,,,,,,,,,,,,,, +2012,3,10,12,30,2.0719523,,,,,,,,,,,,,, +2012,3,10,13,30,1.2880547,,,,,,,,,,,,,, +2012,3,10,14,30,0.12841977,,,,,,,,,,,,,, +2012,3,10,15,30,1.2348217,,,,,,,,,,,,,, +2012,3,10,16,30,2.2385917,,,,,,,,,,,,,, +2012,3,10,17,30,2.5888581,,,,,,,,,,,,,, +2012,3,10,18,30,2.3925118,,,,,,,,,,,,,, +2012,3,10,19,30,1.9130113,,,,,,,,,,,,,, +2012,3,10,20,30,1.0458108,,,,,,,,,,,,,, +2012,3,10,21,30,0.39239925,,,,,,,,,,,,,, +2012,3,10,22,30,1.7812904,,,,,,,,,,,,,, +2012,3,10,23,30,2.3660805,,,,,,,,,,,,,, +2012,3,11,0,30,2.1345282,,,,,,,,,,,,,, +2012,3,11,1,30,1.4940523,,,,,,,,,,,,,, +2012,3,11,2,30,0.5571423,,,,,,,,,,,,,, +2012,3,11,3,30,0.60195184,,,,,,,,,,,,,, +2012,3,11,4,30,1.4905878,,,,,,,,,,,,,, +2012,3,11,5,30,1.8600432,,,,,,,,,,,,,, +2012,3,11,6,30,1.7884171,,,,,,,,,,,,,, +2012,3,11,7,30,1.3715812,,,,,,,,,,,,,, +2012,3,11,8,30,0.49926376,,,,,,,,,,,,,, +2012,3,11,9,30,0.83611137,,,,,,,,,,,,,, +2012,3,11,10,30,2.0537896,,,,,,,,,,,,,, +2012,3,11,11,30,2.5264926,,,,,,,,,,,,,, +2012,3,11,12,30,2.2869444,,,,,,,,,,,,,, +2012,3,11,13,30,1.7092812,,,,,,,,,,,,,, +2012,3,11,14,30,0.79852635,,,,,,,,,,,,,, +2012,3,11,15,30,0.5047683,,,,,,,,,,,,,, +2012,3,11,16,30,1.8168957,,,,,,,,,,,,,, +2012,3,11,17,30,2.6556306,,,,,,,,,,,,,, +2012,3,11,18,30,2.7891226,,,,,,,,,,,,,, +2012,3,11,19,30,2.4332528,,,,,,,,,,,,,, +2012,3,11,20,30,1.8044853,,,,,,,,,,,,,, +2012,3,11,21,30,0.723105,,,,,,,,,,,,,, +2012,3,11,22,30,0.86259776,,,,,,,,,,,,,, +2012,3,11,23,30,2.1729405,,,,,,,,,,,,,, +2012,3,12,0,30,2.5577278,,,,,,,,,,,,,, +2012,3,12,1,30,2.2065825,,,,,,,,,,,,,, +2012,3,12,2,30,1.511862,,,,,,,,,,,,,, +2012,3,12,3,30,0.5222548,,,,,,,,,,,,,, +2012,3,12,4,30,0.626153,,,,,,,,,,,,,, +2012,3,12,5,30,1.4269654,,,,,,,,,,,,,, +2012,3,12,6,30,1.7092953,,,,,,,,,,,,,, +2012,3,12,7,30,1.574973,,,,,,,,,,,,,, +2012,3,12,8,30,1.0808357,,,,,,,,,,,,,, +2012,3,12,9,30,0.17651805,,,,,,,,,,,,,, +2012,3,12,10,30,1.0957999,,,,,,,,,,,,,, +2012,3,12,11,30,2.0652804,,,,,,,,,,,,,, +2012,3,12,12,30,2.2934465,,,,,,,,,,,,,, +2012,3,12,13,30,1.9388978,,,,,,,,,,,,,, +2012,3,12,14,30,1.2899082,,,,,,,,,,,,,, +2012,3,12,15,30,0.29349738,,,,,,,,,,,,,, +2012,3,12,16,30,1.0497911,,,,,,,,,,,,,, +2012,3,12,17,30,2.2575943,,,,,,,,,,,,,, +2012,3,12,18,30,2.884447,,,,,,,,,,,,,, +2012,3,12,19,30,2.8203397,,,,,,,,,,,,,, +2012,3,12,20,30,2.3391051,,,,,,,,,,,,,, +2012,3,12,21,30,1.5849499,,,,,,,,,,,,,, +2012,3,12,22,30,0.36402246,,,,,,,,,,,,,, +2012,3,12,23,30,1.2617892,,,,,,,,,,,,,, +2012,3,13,0,30,2.4080863,,,,,,,,,,,,,, +2012,3,13,1,30,2.6183107,,,,,,,,,,,,,, +2012,3,13,2,30,2.211536,,,,,,,,,,,,,, +2012,3,13,3,30,1.501523,,,,,,,,,,,,,, +2012,3,13,4,30,0.49983206,,,,,,,,,,,,,, +2012,3,13,5,30,0.58550334,,,,,,,,,,,,,, +2012,3,13,6,30,1.2771626,,,,,,,,,,,,,, +2012,3,13,7,30,1.4896022,,,,,,,,,,,,,, +2012,3,13,8,30,1.3167489,,,,,,,,,,,,,, +2012,3,13,9,30,0.7925173,,,,,,,,,,,,,, +2012,3,13,10,30,0.16112614,,,,,,,,,,,,,, +2012,3,13,11,30,1.1671079,,,,,,,,,,,,,, +2012,3,13,12,30,1.8886731,,,,,,,,,,,,,, +2012,3,13,13,30,1.9571785,,,,,,,,,,,,,, +2012,3,13,14,30,1.5591046,,,,,,,,,,,,,, +2012,3,13,15,30,0.87046176,,,,,,,,,,,,,, +2012,3,13,16,30,0.20016381,,,,,,,,,,,,,, +2012,3,13,17,30,1.4551504,,,,,,,,,,,,,, +2012,3,13,18,30,2.4942532,,,,,,,,,,,,,, +2012,3,13,19,30,2.913597,,,,,,,,,,,,,, +2012,3,13,20,30,2.7054265,,,,,,,,,,,,,, +2012,3,13,21,30,2.152514,,,,,,,,,,,,,, +2012,3,13,22,30,1.3288238,,,,,,,,,,,,,, +2012,3,13,23,30,0.14904475,,,,,,,,,,,,,, +2012,3,14,0,30,1.5106763,,,,,,,,,,,,,, +2012,3,14,1,30,2.47701,,,,,,,,,,,,,, +2012,3,14,2,30,2.5779965,,,,,,,,,,,,,, +2012,3,14,3,30,2.1757002,,,,,,,,,,,,,, +2012,3,14,4,30,1.483461,,,,,,,,,,,,,, +2012,3,14,5,30,0.5178616,,,,,,,,,,,,,, +2012,3,14,6,30,0.45994774,,,,,,,,,,,,,, +2012,3,14,7,30,1.051722,,,,,,,,,,,,,, +2012,3,14,8,30,1.2374022,,,,,,,,,,,,,, +2012,3,14,9,30,1.071175,,,,,,,,,,,,,, +2012,3,14,10,30,0.58096635,,,,,,,,,,,,,, +2012,3,14,11,30,0.22961068,,,,,,,,,,,,,, +2012,3,14,12,30,1.0555335,,,,,,,,,,,,,, +2012,3,14,13,30,1.5928166,,,,,,,,,,,,,, +2012,3,14,14,30,1.5960085,,,,,,,,,,,,,, +2012,3,14,15,30,1.2073203,,,,,,,,,,,,,, +2012,3,14,16,30,0.5157897,,,,,,,,,,,,,, +2012,3,14,17,30,0.51632726,,,,,,,,,,,,,, +2012,3,14,18,30,1.6598918,,,,,,,,,,,,,, +2012,3,14,19,30,2.5166094,,,,,,,,,,,,,, +2012,3,14,20,30,2.7764635,,,,,,,,,,,,,, +2012,3,14,21,30,2.4978764,,,,,,,,,,,,,, +2012,3,14,22,30,1.9410263,,,,,,,,,,,,,, +2012,3,14,23,30,1.1169533,,,,,,,,,,,,,, +2012,3,15,0,30,0.22796543,,,,,,,,,,,,,, +2012,3,15,1,30,1.5969789,,,,,,,,,,,,,, +2012,3,15,2,30,2.41804,,,,,,,,,,,,,, +2012,3,15,3,30,2.4787645,,,,,,,,,,,,,, +2012,3,15,4,30,2.1234164,,,,,,,,,,,,,, +2012,3,15,5,30,1.4819162,,,,,,,,,,,,,, +2012,3,15,6,30,0.59841615,,,,,,,,,,,,,, +2012,3,15,7,30,0.2586037,,,,,,,,,,,,,, +2012,3,15,8,30,0.8007717,,,,,,,,,,,,,, +2012,3,15,9,30,1.0194948,,,,,,,,,,,,,, +2012,3,15,10,30,0.9030498,,,,,,,,,,,,,, +2012,3,15,11,30,0.49465933,,,,,,,,,,,,,, +2012,3,15,12,30,0.17372666,,,,,,,,,,,,,, +2012,3,15,13,30,0.81516206,,,,,,,,,,,,,, +2012,3,15,14,30,1.25956,,,,,,,,,,,,,, +2012,3,15,15,30,1.2777482,,,,,,,,,,,,,, +2012,3,15,16,30,0.93906987,,,,,,,,,,,,,, +2012,3,15,17,30,0.28806332,,,,,,,,,,,,,, +2012,3,15,18,30,0.6583595,,,,,,,,,,,,,, +2012,3,15,19,30,1.6593764,,,,,,,,,,,,,, +2012,3,15,20,30,2.3661282,,,,,,,,,,,,,, +2012,3,15,21,30,2.5399761,,,,,,,,,,,,,, +2012,3,15,22,30,2.2697525,,,,,,,,,,,,,, +2012,3,15,23,30,1.7731498,,,,,,,,,,,,,, +2012,3,16,0,30,0.99714833,,,,,,,,,,,,,, +2012,3,16,1,30,0.29000193,,,,,,,,,,,,,, +2012,3,16,2,30,1.5632001,,,,,,,,,,,,,, +2012,3,16,3,30,2.2884052,,,,,,,,,,,,,, +2012,3,16,4,30,2.3608775,,,,,,,,,,,,,, +2012,3,16,5,30,2.0826735,,,,,,,,,,,,,, +2012,3,16,6,30,1.5233246,,,,,,,,,,,,,, +2012,3,16,7,30,0.74367046,,,,,,,,,,,,,, +2012,3,16,8,30,0.05673793,,,,,,,,,,,,,, +2012,3,16,9,30,0.6033718,,,,,,,,,,,,,, +2012,3,16,10,30,0.8987524,,,,,,,,,,,,,, +2012,3,16,11,30,0.8472106,,,,,,,,,,,,,, +2012,3,16,12,30,0.53862536,,,,,,,,,,,,,, +2012,3,16,13,30,0.10613096,,,,,,,,,,,,,, +2012,3,16,14,30,0.51896226,,,,,,,,,,,,,, +2012,3,16,15,30,0.9635887,,,,,,,,,,,,,, +2012,3,16,16,30,1.0565174,,,,,,,,,,,,,, +2012,3,16,17,30,0.79704297,,,,,,,,,,,,,, +2012,3,16,18,30,0.21979097,,,,,,,,,,,,,, +2012,3,16,19,30,0.62455285,,,,,,,,,,,,,, +2012,3,16,20,30,1.5033237,,,,,,,,,,,,,, +2012,3,16,21,30,2.1215618,,,,,,,,,,,,,, +2012,3,16,22,30,2.2879417,,,,,,,,,,,,,, +2012,3,16,23,30,2.0894718,,,,,,,,,,,,,, +2012,3,17,0,30,1.6860718,,,,,,,,,,,,,, +2012,3,17,1,30,0.96363115,,,,,,,,,,,,,, +2012,3,17,2,30,0.28451085,,,,,,,,,,,,,, +2012,3,17,3,30,1.4728888,,,,,,,,,,,,,, +2012,3,17,4,30,2.1441162,,,,,,,,,,,,,, +2012,3,17,5,30,2.2655485,,,,,,,,,,,,,, +2012,3,17,6,30,2.0853856,,,,,,,,,,,,,, +2012,3,17,7,30,1.6176552,,,,,,,,,,,,,, +2012,3,17,8,30,0.91555244,,,,,,,,,,,,,, +2012,3,17,9,30,0.17004421,,,,,,,,,,,,,, +2012,3,17,10,30,0.5269979,,,,,,,,,,,,,, +2012,3,17,11,30,0.89833605,,,,,,,,,,,,,, +2012,3,17,12,30,0.8987161,,,,,,,,,,,,,, +2012,3,17,13,30,0.68805903,,,,,,,,,,,,,, +2012,3,17,14,30,0.32009414,,,,,,,,,,,,,, +2012,3,17,15,30,0.24163823,,,,,,,,,,,,,, +2012,3,17,16,30,0.7661834,,,,,,,,,,,,,, +2012,3,17,17,30,0.9654344,,,,,,,,,,,,,, +2012,3,17,18,30,0.79141533,,,,,,,,,,,,,, +2012,3,17,19,30,0.2877893,,,,,,,,,,,,,, +2012,3,17,20,30,0.4687492,,,,,,,,,,,,,, +2012,3,17,21,30,1.2766286,,,,,,,,,,,,,, +2012,3,17,22,30,1.8760073,,,,,,,,,,,,,, +2012,3,17,23,30,2.0944428,,,,,,,,,,,,,, +2012,3,18,0,30,1.9915816,,,,,,,,,,,,,, +2012,3,18,1,30,1.6672161,,,,,,,,,,,,,, +2012,3,18,2,30,0.968919,,,,,,,,,,,,,, +2012,3,18,3,30,0.26179615,,,,,,,,,,,,,, +2012,3,18,4,30,1.3863598,,,,,,,,,,,,,, +2012,3,18,5,30,2.0378754,,,,,,,,,,,,,, +2012,3,18,6,30,2.2330678,,,,,,,,,,,,,, +2012,3,18,7,30,2.1463842,,,,,,,,,,,,,, +2012,3,18,8,30,1.7350233,,,,,,,,,,,,,, +2012,3,18,9,30,1.0378499,,,,,,,,,,,,,, +2012,3,18,10,30,0.20798108,,,,,,,,,,,,,, +2012,3,18,11,30,0.592773,,,,,,,,,,,,,, +2012,3,18,12,30,1.0010507,,,,,,,,,,,,,, +2012,3,18,13,30,1.0322335,,,,,,,,,,,,,, +2012,3,18,14,30,0.906258,,,,,,,,,,,,,, +2012,3,18,15,30,0.58384144,,,,,,,,,,,,,, +2012,3,18,16,30,0.10755835,,,,,,,,,,,,,, +2012,3,18,17,30,0.7058192,,,,,,,,,,,,,, +2012,3,18,18,30,1.0050135,,,,,,,,,,,,,, +2012,3,18,19,30,0.8940441,,,,,,,,,,,,,, +2012,3,18,20,30,0.43862638,,,,,,,,,,,,,, +2012,3,18,21,30,0.27454394,,,,,,,,,,,,,, +2012,3,18,22,30,1.0712693,,,,,,,,,,,,,, +2012,3,18,23,30,1.704814,,,,,,,,,,,,,, +2012,3,19,0,30,1.991931,,,,,,,,,,,,,, +2012,3,19,1,30,1.9594765,,,,,,,,,,,,,, +2012,3,19,2,30,1.6669172,,,,,,,,,,,,,, +2012,3,19,3,30,0.9548291,,,,,,,,,,,,,, +2012,3,19,4,30,0.26581365,,,,,,,,,,,,,, +2012,3,19,5,30,1.3563579,,,,,,,,,,,,,, +2012,3,19,6,30,2.014366,,,,,,,,,,,,,, +2012,3,19,7,30,2.2795343,,,,,,,,,,,,,, +2012,3,19,8,30,2.2366889,,,,,,,,,,,,,, +2012,3,19,9,30,1.8057868,,,,,,,,,,,,,, +2012,3,19,10,30,1.0323977,,,,,,,,,,,,,, +2012,3,19,11,30,0.10316412,,,,,,,,,,,,,, +2012,3,19,12,30,0.7814814,,,,,,,,,,,,,, +2012,3,19,13,30,1.1748866,,,,,,,,,,,,,, +2012,3,19,14,30,1.2220266,,,,,,,,,,,,,, +2012,3,19,15,30,1.1514459,,,,,,,,,,,,,, +2012,3,19,16,30,0.791663,,,,,,,,,,,,,, +2012,3,19,17,30,0.13449912,,,,,,,,,,,,,, +2012,3,19,18,30,0.78576684,,,,,,,,,,,,,, +2012,3,19,19,30,1.1452601,,,,,,,,,,,,,, +2012,3,19,20,30,1.0558643,,,,,,,,,,,,,, +2012,3,19,21,30,0.6104462,,,,,,,,,,,,,, +2012,3,19,22,30,0.13491204,,,,,,,,,,,,,, +2012,3,19,23,30,0.95295715,,,,,,,,,,,,,, +2012,3,20,0,30,1.6334585,,,,,,,,,,,,,, +2012,3,20,1,30,1.9569944,,,,,,,,,,,,,, +2012,3,20,2,30,1.9408739,,,,,,,,,,,,,, +2012,3,20,3,30,1.6310514,,,,,,,,,,,,,, +2012,3,20,4,30,0.87560034,,,,,,,,,,,,,, +2012,3,20,5,30,0.3406899,,,,,,,,,,,,,, +2012,3,20,6,30,1.4228947,,,,,,,,,,,,,, +2012,3,20,7,30,2.0861075,,,,,,,,,,,,,, +2012,3,20,8,30,2.3700957,,,,,,,,,,,,,, +2012,3,20,9,30,2.2841344,,,,,,,,,,,,,, +2012,3,20,10,30,1.7531683,,,,,,,,,,,,,, +2012,3,20,11,30,0.85536206,,,,,,,,,,,,,, +2012,3,20,12,30,0.2243649,,,,,,,,,,,,,, +2012,3,20,13,30,1.0571003,,,,,,,,,,,,,, +2012,3,20,14,30,1.3933198,,,,,,,,,,,,,, +2012,3,20,15,30,1.4444568,,,,,,,,,,,,,, +2012,3,20,16,30,1.3741717,,,,,,,,,,,,,, +2012,3,20,17,30,0.88456786,,,,,,,,,,,,,, +2012,3,20,18,30,0.18163997,,,,,,,,,,,,,, +2012,3,20,19,30,0.9803611,,,,,,,,,,,,,, +2012,3,20,20,30,1.3414719,,,,,,,,,,,,,, +2012,3,20,21,30,1.226475,,,,,,,,,,,,,, +2012,3,20,22,30,0.74664676,,,,,,,,,,,,,, +2012,3,20,23,30,0.10795875,,,,,,,,,,,,,, +2012,3,21,0,30,0.9348987,,,,,,,,,,,,,, +2012,3,21,1,30,1.6298912,,,,,,,,,,,,,, +2012,3,21,2,30,1.9325769,,,,,,,,,,,,,, +2012,3,21,3,30,1.8848387,,,,,,,,,,,,,, +2012,3,21,4,30,1.5233971,,,,,,,,,,,,,, +2012,3,21,5,30,0.7004425,,,,,,,,,,,,,, +2012,3,21,6,30,0.52890337,,,,,,,,,,,,,, +2012,3,21,7,30,1.5897992,,,,,,,,,,,,,, +2012,3,21,8,30,2.2091749,,,,,,,,,,,,,, +2012,3,21,9,30,2.4243948,,,,,,,,,,,,,, +2012,3,21,10,30,2.2098048,,,,,,,,,,,,,, +2012,3,21,11,30,1.5308708,,,,,,,,,,,,,, +2012,3,21,12,30,0.50634813,,,,,,,,,,,,,, +2012,3,21,13,30,0.6179401,,,,,,,,,,,,,, +2012,3,21,14,30,1.3830154,,,,,,,,,,,,,, +2012,3,21,15,30,1.6352266,,,,,,,,,,,,,, +2012,3,21,16,30,1.6670109,,,,,,,,,,,,,, +2012,3,21,17,30,1.5167422,,,,,,,,,,,,,, +2012,3,21,18,30,0.81904507,,,,,,,,,,,,,, +2012,3,21,19,30,0.38364017,,,,,,,,,,,,,, +2012,3,21,20,30,1.2495515,,,,,,,,,,,,,, +2012,3,21,21,30,1.5487922,,,,,,,,,,,,,, +2012,3,21,22,30,1.3653946,,,,,,,,,,,,,, +2012,3,21,23,30,0.81111515,,,,,,,,,,,,,, +2012,3,22,0,30,0.1344854,,,,,,,,,,,,,, +2012,3,22,1,30,0.9811395,,,,,,,,,,,,,, +2012,3,22,2,30,1.6343029,,,,,,,,,,,,,, +2012,3,22,3,30,1.8709112,,,,,,,,,,,,,, +2012,3,22,4,30,1.7658781,,,,,,,,,,,,,, +2012,3,22,5,30,1.3247898,,,,,,,,,,,,,, +2012,3,22,6,30,0.41637716,,,,,,,,,,,,,, +2012,3,22,7,30,0.82605726,,,,,,,,,,,,,, +2012,3,22,8,30,1.8031368,,,,,,,,,,,,,, +2012,3,22,9,30,2.2952237,,,,,,,,,,,,,, +2012,3,22,10,30,2.3602002,,,,,,,,,,,,,, +2012,3,22,11,30,1.969801,,,,,,,,,,,,,, +2012,3,22,12,30,1.1358919,,,,,,,,,,,,,, +2012,3,22,13,30,0.050301116,,,,,,,,,,,,,, +2012,3,22,14,30,1.0874059,,,,,,,,,,,,,, +2012,3,22,15,30,1.7219181,,,,,,,,,,,,,, +2012,3,22,16,30,1.8712816,,,,,,,,,,,,,, +2012,3,22,17,30,1.8407526,,,,,,,,,,,,,, +2012,3,22,18,30,1.5209026,,,,,,,,,,,,,, +2012,3,22,19,30,0.57964075,,,,,,,,,,,,,, +2012,3,22,20,30,0.73054665,,,,,,,,,,,,,, +2012,3,22,21,30,1.5456077,,,,,,,,,,,,,, +2012,3,22,22,30,1.7292267,,,,,,,,,,,,,, +2012,3,22,23,30,1.4460447,,,,,,,,,,,,,, +2012,3,23,0,30,0.7940213,,,,,,,,,,,,,, +2012,3,23,1,30,0.19229612,,,,,,,,,,,,,, +2012,3,23,2,30,1.0392334,,,,,,,,,,,,,, +2012,3,23,3,30,1.6041797,,,,,,,,,,,,,, +2012,3,23,4,30,1.7585424,,,,,,,,,,,,,, +2012,3,23,5,30,1.579184,,,,,,,,,,,,,, +2012,3,23,6,30,1.0276959,,,,,,,,,,,,,, +2012,3,23,7,30,0.12989244,,,,,,,,,,,,,, +2012,3,23,8,30,1.1675056,,,,,,,,,,,,,, +2012,3,23,9,30,1.9682038,,,,,,,,,,,,,, +2012,3,23,10,30,2.261917,,,,,,,,,,,,,, +2012,3,23,11,30,2.1392443,,,,,,,,,,,,,, +2012,3,23,12,30,1.5686343,,,,,,,,,,,,,, +2012,3,23,13,30,0.5991185,,,,,,,,,,,,,, +2012,3,23,14,30,0.5757322,,,,,,,,,,,,,, +2012,3,23,15,30,1.569054,,,,,,,,,,,,,, +2012,3,23,16,30,2.0273871,,,,,,,,,,,,,, +2012,3,23,17,30,2.0565705,,,,,,,,,,,,,, +2012,3,23,18,30,1.9057257,,,,,,,,,,,,,, +2012,3,23,19,30,1.3425152,,,,,,,,,,,,,, +2012,3,23,20,30,0.23032606,,,,,,,,,,,,,, +2012,3,23,21,30,1.1517985,,,,,,,,,,,,,, +2012,3,23,22,30,1.8183407,,,,,,,,,,,,,, +2012,3,23,23,30,1.8538036,,,,,,,,,,,,,, +2012,3,24,0,30,1.4561089,,,,,,,,,,,,,, +2012,3,24,1,30,0.706387,,,,,,,,,,,,,, +2012,3,24,2,30,0.28444785,,,,,,,,,,,,,, +2012,3,24,3,30,1.0770912,,,,,,,,,,,,,, +2012,3,24,4,30,1.536039,,,,,,,,,,,,,, +2012,3,24,5,30,1.6056124,,,,,,,,,,,,,, +2012,3,24,6,30,1.3263476,,,,,,,,,,,,,, +2012,3,24,7,30,0.6456016,,,,,,,,,,,,,, +2012,3,24,8,30,0.43541184,,,,,,,,,,,,,, +2012,3,24,9,30,1.4539769,,,,,,,,,,,,,, +2012,3,24,10,30,2.0035722,,,,,,,,,,,,,, +2012,3,24,11,30,2.0804281,,,,,,,,,,,,,, +2012,3,24,12,30,1.7775205,,,,,,,,,,,,,, +2012,3,24,13,30,1.0441335,,,,,,,,,,,,,, +2012,3,24,14,30,0.045486182,,,,,,,,,,,,,, +2012,3,24,15,30,1.1731566,,,,,,,,,,,,,, +2012,3,24,16,30,1.9901034,,,,,,,,,,,,,, +2012,3,24,17,30,2.2463675,,,,,,,,,,,,,, +2012,3,24,18,30,2.1382973,,,,,,,,,,,,,, +2012,3,24,19,30,1.8080679,,,,,,,,,,,,,, +2012,3,24,20,30,0.9714345,,,,,,,,,,,,,, +2012,3,24,21,30,0.4235087,,,,,,,,,,,,,, +2012,3,24,22,30,1.5681942,,,,,,,,,,,,,, +2012,3,24,23,30,2.0229952,,,,,,,,,,,,,, +2012,3,25,0,30,1.9050009,,,,,,,,,,,,,, +2012,3,25,1,30,1.394224,,,,,,,,,,,,,, +2012,3,25,2,30,0.5654624,,,,,,,,,,,,,, +2012,3,25,3,30,0.3947671,,,,,,,,,,,,,, +2012,3,25,4,30,1.0952566,,,,,,,,,,,,,, +2012,3,25,5,30,1.4481417,,,,,,,,,,,,,, +2012,3,25,6,30,1.4214917,,,,,,,,,,,,,, +2012,3,25,7,30,1.0154644,,,,,,,,,,,,,, +2012,3,25,8,30,0.23562405,,,,,,,,,,,,,, +2012,3,25,9,30,0.8151655,,,,,,,,,,,,,, +2012,3,25,10,30,1.6036165,,,,,,,,,,,,,, +2012,3,25,11,30,1.8882577,,,,,,,,,,,,,, +2012,3,25,12,30,1.7802083,,,,,,,,,,,,,, +2012,3,25,13,30,1.3207662,,,,,,,,,,,,,, +2012,3,25,14,30,0.44986123,,,,,,,,,,,,,, +2012,3,25,15,30,0.67081034,,,,,,,,,,,,,, +2012,3,25,16,30,1.6989406,,,,,,,,,,,,,, +2012,3,25,17,30,2.2832942,,,,,,,,,,,,,, +2012,3,25,18,30,2.3345046,,,,,,,,,,,,,, +2012,3,25,19,30,2.0735931,,,,,,,,,,,,,, +2012,3,25,20,30,1.5245395,,,,,,,,,,,,,, +2012,3,25,21,30,0.45525235,,,,,,,,,,,,,, +2012,3,25,22,30,0.96441764,,,,,,,,,,,,,, +2012,3,25,23,30,1.9061067,,,,,,,,,,,,,, +2012,3,26,0,30,2.131883,,,,,,,,,,,,,, +2012,3,26,1,30,1.8778,,,,,,,,,,,,,, +2012,3,26,2,30,1.2631433,,,,,,,,,,,,,, +2012,3,26,3,30,0.38467154,,,,,,,,,,,,,, +2012,3,26,4,30,0.51606715,,,,,,,,,,,,,, +2012,3,26,5,30,1.1051868,,,,,,,,,,,,,, +2012,3,26,6,30,1.3497908,,,,,,,,,,,,,, +2012,3,26,7,30,1.2076386,,,,,,,,,,,,,, +2012,3,26,8,30,0.67230105,,,,,,,,,,,,,, +2012,3,26,9,30,0.2205765,,,,,,,,,,,,,, +2012,3,26,10,30,1.0731617,,,,,,,,,,,,,, +2012,3,26,11,30,1.5961125,,,,,,,,,,,,,, +2012,3,26,12,30,1.6621794,,,,,,,,,,,,,, +2012,3,26,13,30,1.4149301,,,,,,,,,,,,,, +2012,3,26,14,30,0.8173146,,,,,,,,,,,,,, +2012,3,26,15,30,0.16107176,,,,,,,,,,,,,, +2012,3,26,16,30,1.2423627,,,,,,,,,,,,,, +2012,3,26,17,30,2.0783465,,,,,,,,,,,,,, +2012,3,26,18,30,2.410399,,,,,,,,,,,,,, +2012,3,26,19,30,2.2724128,,,,,,,,,,,,,, +2012,3,26,20,30,1.8504877,,,,,,,,,,,,,, +2012,3,26,21,30,1.0850266,,,,,,,,,,,,,, +2012,3,26,22,30,0.20182219,,,,,,,,,,,,,, +2012,3,26,23,30,1.4474775,,,,,,,,,,,,,, +2012,3,27,0,30,2.1184635,,,,,,,,,,,,,, +2012,3,27,1,30,2.1417387,,,,,,,,,,,,,, +2012,3,27,2,30,1.7759778,,,,,,,,,,,,,, +2012,3,27,3,30,1.0681535,,,,,,,,,,,,,, +2012,3,27,4,30,0.18733351,,,,,,,,,,,,,, +2012,3,27,5,30,0.6354111,,,,,,,,,,,,,, +2012,3,27,6,30,1.1018181,,,,,,,,,,,,,, +2012,3,27,7,30,1.2330904,,,,,,,,,,,,,, +2012,3,27,8,30,0.9694377,,,,,,,,,,,,,, +2012,3,27,9,30,0.3418854,,,,,,,,,,,,,, +2012,3,27,10,30,0.49809408,,,,,,,,,,,,,, +2012,3,27,11,30,1.1828408,,,,,,,,,,,,,, +2012,3,27,12,30,1.471639,,,,,,,,,,,,,, +2012,3,27,13,30,1.3862611,,,,,,,,,,,,,, +2012,3,27,14,30,1.02868,,,,,,,,,,,,,, +2012,3,27,15,30,0.31106558,,,,,,,,,,,,,, +2012,3,27,16,30,0.7075933,,,,,,,,,,,,,, +2012,3,27,17,30,1.6781324,,,,,,,,,,,,,, +2012,3,27,18,30,2.2775357,,,,,,,,,,,,,, +2012,3,27,19,30,2.3742967,,,,,,,,,,,,,, +2012,3,27,20,30,2.0752492,,,,,,,,,,,,,, +2012,3,27,21,30,1.5037942,,,,,,,,,,,,,, +2012,3,27,22,30,0.5765599,,,,,,,,,,,,,, +2012,3,27,23,30,0.7232434,,,,,,,,,,,,,, +2012,3,28,0,30,1.7929691,,,,,,,,,,,,,, +2012,3,28,1,30,2.198955,,,,,,,,,,,,,, +2012,3,28,2,30,2.0687149,,,,,,,,,,,,,, +2012,3,28,3,30,1.6099975,,,,,,,,,,,,,, +2012,3,28,4,30,0.82927907,,,,,,,,,,,,,, +2012,3,28,5,30,0.11049726,,,,,,,,,,,,,, +2012,3,28,6,30,0.7203239,,,,,,,,,,,,,, +2012,3,28,7,30,1.0647986,,,,,,,,,,,,,, +2012,3,28,8,30,1.090217,,,,,,,,,,,,,, +2012,3,28,9,30,0.72603357,,,,,,,,,,,,,, +2012,3,28,10,30,0.12579775,,,,,,,,,,,,,, +2012,3,28,11,30,0.6767766,,,,,,,,,,,,,, +2012,3,28,12,30,1.1724379,,,,,,,,,,,,,, +2012,3,28,13,30,1.2910154,,,,,,,,,,,,,, +2012,3,28,14,30,1.1050041,,,,,,,,,,,,,, +2012,3,28,15,30,0.65036833,,,,,,,,,,,,,, +2012,3,28,16,30,0.16156565,,,,,,,,,,,,,, +2012,3,28,17,30,1.1477628,,,,,,,,,,,,,, +2012,3,28,18,30,1.9477613,,,,,,,,,,,,,, +2012,3,28,19,30,2.3095155,,,,,,,,,,,,,, +2012,3,28,20,30,2.2143314,,,,,,,,,,,,,, +2012,3,28,21,30,1.7940394,,,,,,,,,,,,,, +2012,3,28,22,30,1.1117134,,,,,,,,,,,,,, +2012,3,28,23,30,0.16469893,,,,,,,,,,,,,, +2012,3,29,0,30,1.141395,,,,,,,,,,,,,, +2012,3,29,1,30,1.982744,,,,,,,,,,,,,, +2012,3,29,2,30,2.1745582,,,,,,,,,,,,,, +2012,3,29,3,30,1.9382732,,,,,,,,,,,,,, +2012,3,29,4,30,1.4052701,,,,,,,,,,,,,, +2012,3,29,5,30,0.59477633,,,,,,,,,,,,,, +2012,3,29,6,30,0.2349068,,,,,,,,,,,,,, +2012,3,29,7,30,0.73700124,,,,,,,,,,,,,, +2012,3,29,8,30,0.9852781,,,,,,,,,,,,,, +2012,3,29,9,30,0.9311746,,,,,,,,,,,,,, +2012,3,29,10,30,0.50619894,,,,,,,,,,,,,, +2012,3,29,11,30,0.19669962,,,,,,,,,,,,,, +2012,3,29,12,30,0.74725777,,,,,,,,,,,,,, +2012,3,29,13,30,1.0894845,,,,,,,,,,,,,, +2012,3,29,14,30,1.0994842,,,,,,,,,,,,,, +2012,3,29,15,30,0.8416194,,,,,,,,,,,,,, +2012,3,29,16,30,0.3098176,,,,,,,,,,,,,, +2012,3,29,17,30,0.5466453,,,,,,,,,,,,,, +2012,3,29,18,30,1.4494551,,,,,,,,,,,,,, +2012,3,29,19,30,2.059995,,,,,,,,,,,,,, +2012,3,29,20,30,2.219811,,,,,,,,,,,,,, +2012,3,29,21,30,1.99314,,,,,,,,,,,,,, +2012,3,29,22,30,1.5038563,,,,,,,,,,,,,, +2012,3,29,23,30,0.7638581,,,,,,,,,,,,,, +2012,3,30,0,30,0.3228354,,,,,,,,,,,,,, +2012,3,30,1,30,1.4091293,,,,,,,,,,,,,, +2012,3,30,2,30,2.0452747,,,,,,,,,,,,,, +2012,3,30,3,30,2.0860324,,,,,,,,,,,,,, +2012,3,30,4,30,1.7841828,,,,,,,,,,,,,, +2012,3,30,5,30,1.2108696,,,,,,,,,,,,,, +2012,3,30,6,30,0.42820087,,,,,,,,,,,,,, +2012,3,30,7,30,0.27782756,,,,,,,,,,,,,, +2012,3,30,8,30,0.6859672,,,,,,,,,,,,,, +2012,3,30,9,30,0.886034,,,,,,,,,,,,,, +2012,3,30,10,30,0.7844478,,,,,,,,,,,,,, +2012,3,30,11,30,0.34012264,,,,,,,,,,,,,, +2012,3,30,12,30,0.27072412,,,,,,,,,,,,,, +2012,3,30,13,30,0.72978365,,,,,,,,,,,,,, +2012,3,30,14,30,0.9722983,,,,,,,,,,,,,, +2012,3,30,15,30,0.9232459,,,,,,,,,,,,,, +2012,3,30,16,30,0.6159845,,,,,,,,,,,,,, +2012,3,30,17,30,0.08733763,,,,,,,,,,,,,, +2012,3,30,18,30,0.8194205,,,,,,,,,,,,,, +2012,3,30,19,30,1.6074282,,,,,,,,,,,,,, +2012,3,30,20,30,2.0474586,,,,,,,,,,,,,, +2012,3,30,21,30,2.067738,,,,,,,,,,,,,, +2012,3,30,22,30,1.7796495,,,,,,,,,,,,,, +2012,3,30,23,30,1.2744116,,,,,,,,,,,,,, +2012,3,31,0,30,0.51592743,,,,,,,,,,,,,, +2012,3,31,1,30,0.56214136,,,,,,,,,,,,,, +2012,3,31,2,30,1.5516388,,,,,,,,,,,,,, +2012,3,31,3,30,2.028842,,,,,,,,,,,,,, +2012,3,31,4,30,1.9772953,,,,,,,,,,,,,, +2012,3,31,5,30,1.6526943,,,,,,,,,,,,,, +2012,3,31,6,30,1.0852282,,,,,,,,,,,,,, +2012,3,31,7,30,0.36698776,,,,,,,,,,,,,, +2012,3,31,8,30,0.23749614,,,,,,,,,,,,,, +2012,3,31,9,30,0.6174664,,,,,,,,,,,,,, +2012,3,31,10,30,0.81434786,,,,,,,,,,,,,, +2012,3,31,11,30,0.68684244,,,,,,,,,,,,,, +2012,3,31,12,30,0.25833425,,,,,,,,,,,,,, +2012,3,31,13,30,0.2595134,,,,,,,,,,,,,, +2012,3,31,14,30,0.6450799,,,,,,,,,,,,,, +2012,3,31,15,30,0.85141516,,,,,,,,,,,,,, +2012,3,31,16,30,0.7874099,,,,,,,,,,,,,, +2012,3,31,17,30,0.45650777,,,,,,,,,,,,,, +2012,3,31,18,30,0.1943635,,,,,,,,,,,,,, +2012,3,31,19,30,0.9576634,,,,,,,,,,,,,, +2012,3,31,20,30,1.6337593,,,,,,,,,,,,,, +2012,3,31,21,30,1.9538028,,,,,,,,,,,,,, +2012,3,31,22,30,1.9119651,,,,,,,,,,,,,, +2012,3,31,23,30,1.6264932,,,,,,,,,,,,,, +2012,4,1,0,30,1.1361088,,,,,,,,,,,,,, +2012,4,1,1,30,0.36700454,,,,,,,,,,,,,, +2012,4,1,2,30,0.71098644,,,,,,,,,,,,,, +2012,4,1,3,30,1.6173036,,,,,,,,,,,,,, +2012,4,1,4,30,1.9836584,,,,,,,,,,,,,, +2012,4,1,5,30,1.8955171,,,,,,,,,,,,,, +2012,4,1,6,30,1.5909276,,,,,,,,,,,,,, +2012,4,1,7,30,1.0571536,,,,,,,,,,,,,, +2012,4,1,8,30,0.39042407,,,,,,,,,,,,,, +2012,4,1,9,30,0.18787532,,,,,,,,,,,,,, +2012,4,1,10,30,0.60783285,,,,,,,,,,,,,, +2012,4,1,11,30,0.8185296,,,,,,,,,,,,,, +2012,4,1,12,30,0.6747678,,,,,,,,,,,,,, +2012,4,1,13,30,0.28691667,,,,,,,,,,,,,, +2012,4,1,14,30,0.16771176,,,,,,,,,,,,,, +2012,4,1,15,30,0.5237349,,,,,,,,,,,,,, +2012,4,1,16,30,0.76603377,,,,,,,,,,,,,, +2012,4,1,17,30,0.7261137,,,,,,,,,,,,,, +2012,4,1,18,30,0.39331853,,,,,,,,,,,,,, +2012,4,1,19,30,0.23938362,,,,,,,,,,,,,, +2012,4,1,20,30,0.9575715,,,,,,,,,,,,,, +2012,4,1,21,30,1.5566921,,,,,,,,,,,,,, +2012,4,1,22,30,1.8285205,,,,,,,,,,,,,, +2012,4,1,23,30,1.7963396,,,,,,,,,,,,,, +2012,4,2,0,30,1.5488211,,,,,,,,,,,,,, +2012,4,2,1,30,1.0703125,,,,,,,,,,,,,, +2012,4,2,2,30,0.27770907,,,,,,,,,,,,,, +2012,4,2,3,30,0.8109077,,,,,,,,,,,,,, +2012,4,2,4,30,1.6552473,,,,,,,,,,,,,, +2012,4,2,5,30,1.959038,,,,,,,,,,,,,, +2012,4,2,6,30,1.8824661,,,,,,,,,,,,,, +2012,4,2,7,30,1.6148535,,,,,,,,,,,,,, +2012,4,2,8,30,1.0939558,,,,,,,,,,,,,, +2012,4,2,9,30,0.41690952,,,,,,,,,,,,,, +2012,4,2,10,30,0.224967,,,,,,,,,,,,,, +2012,4,2,11,30,0.71794474,,,,,,,,,,,,,, +2012,4,2,12,30,0.9299308,,,,,,,,,,,,,, +2012,4,2,13,30,0.775057,,,,,,,,,,,,,, +2012,4,2,14,30,0.4367071,,,,,,,,,,,,,, +2012,4,2,15,30,0.10121318,,,,,,,,,,,,,, +2012,4,2,16,30,0.4216146,,,,,,,,,,,,,, +2012,4,2,17,30,0.7667763,,,,,,,,,,,,,, +2012,4,2,18,30,0.7743853,,,,,,,,,,,,,, +2012,4,2,19,30,0.44960028,,,,,,,,,,,,,, +2012,4,2,20,30,0.1543631,,,,,,,,,,,,,, +2012,4,2,21,30,0.8416961,,,,,,,,,,,,,, +2012,4,2,22,30,1.4242934,,,,,,,,,,,,,, +2012,4,2,23,30,1.718785,,,,,,,,,,,,,, +2012,4,3,0,30,1.7361252,,,,,,,,,,,,,, +2012,4,3,1,30,1.5230421,,,,,,,,,,,,,, +2012,4,3,2,30,1.0339296,,,,,,,,,,,,,, +2012,4,3,3,30,0.20678131,,,,,,,,,,,,,, +2012,4,3,4,30,0.9030038,,,,,,,,,,,,,, +2012,4,3,5,30,1.7118568,,,,,,,,,,,,,, +2012,4,3,6,30,1.9963316,,,,,,,,,,,,,, +2012,4,3,7,30,1.948323,,,,,,,,,,,,,, +2012,4,3,8,30,1.6841768,,,,,,,,,,,,,, +2012,4,3,9,30,1.1098717,,,,,,,,,,,,,, +2012,4,3,10,30,0.3450539,,,,,,,,,,,,,, +2012,4,3,11,30,0.4126169,,,,,,,,,,,,,, +2012,4,3,12,30,0.96954,,,,,,,,,,,,,, +2012,4,3,13,30,1.1548802,,,,,,,,,,,,,, +2012,4,3,14,30,0.99083626,,,,,,,,,,,,,, +2012,4,3,15,30,0.68267787,,,,,,,,,,,,,, +2012,4,3,16,30,0.2282885,,,,,,,,,,,,,, +2012,4,3,17,30,0.41400662,,,,,,,,,,,,,, +2012,4,3,18,30,0.89821756,,,,,,,,,,,,,, +2012,4,3,19,30,0.9519876,,,,,,,,,,,,,, +2012,4,3,20,30,0.6320504,,,,,,,,,,,,,, +2012,4,3,21,30,0.061955594,,,,,,,,,,,,,, +2012,4,3,22,30,0.6659115,,,,,,,,,,,,,, +2012,4,3,23,30,1.2960867,,,,,,,,,,,,,, +2012,4,4,0,30,1.6538575,,,,,,,,,,,,,, +2012,4,4,1,30,1.716719,,,,,,,,,,,,,, +2012,4,4,2,30,1.5114257,,,,,,,,,,,,,, +2012,4,4,3,30,0.9923979,,,,,,,,,,,,,, +2012,4,4,4,30,0.1400167,,,,,,,,,,,,,, +2012,4,4,5,30,1.0245838,,,,,,,,,,,,,, +2012,4,4,6,30,1.8254826,,,,,,,,,,,,,, +2012,4,4,7,30,2.1050916,,,,,,,,,,,,,, +2012,4,4,8,30,2.0505612,,,,,,,,,,,,,, +2012,4,4,9,30,1.7155237,,,,,,,,,,,,,, +2012,4,4,10,30,1.0143874,,,,,,,,,,,,,, +2012,4,4,11,30,0.120562956,,,,,,,,,,,,,, +2012,4,4,12,30,0.7684361,,,,,,,,,,,,,, +2012,4,4,13,30,1.343353,,,,,,,,,,,,,, +2012,4,4,14,30,1.4701502,,,,,,,,,,,,,, +2012,4,4,15,30,1.287982,,,,,,,,,,,,,, +2012,4,4,16,30,0.9520997,,,,,,,,,,,,,, +2012,4,4,17,30,0.32740575,,,,,,,,,,,,,, +2012,4,4,18,30,0.5634435,,,,,,,,,,,,,, +2012,4,4,19,30,1.1771389,,,,,,,,,,,,,, +2012,4,4,20,30,1.2461785,,,,,,,,,,,,,, +2012,4,4,21,30,0.90743655,,,,,,,,,,,,,, +2012,4,4,22,30,0.29751498,,,,,,,,,,,,,, +2012,4,4,23,30,0.5049778,,,,,,,,,,,,,, +2012,4,5,0,30,1.2185093,,,,,,,,,,,,,, +2012,4,5,1,30,1.6350994,,,,,,,,,,,,,, +2012,4,5,2,30,1.7113192,,,,,,,,,,,,,, +2012,4,5,3,30,1.4899454,,,,,,,,,,,,,, +2012,4,5,4,30,0.9289986,,,,,,,,,,,,,, +2012,4,5,5,30,0.121132575,,,,,,,,,,,,,, +2012,4,5,6,30,1.2071173,,,,,,,,,,,,,, +2012,4,5,7,30,2.0037537,,,,,,,,,,,,,, +2012,4,5,8,30,2.2427087,,,,,,,,,,,,,, +2012,4,5,9,30,2.1084874,,,,,,,,,,,,,, +2012,4,5,10,30,1.6298692,,,,,,,,,,,,,, +2012,4,5,11,30,0.7599733,,,,,,,,,,,,,, +2012,4,5,12,30,0.3127661,,,,,,,,,,,,,, +2012,4,5,13,30,1.257371,,,,,,,,,,,,,, +2012,4,5,14,30,1.7859606,,,,,,,,,,,,,, +2012,4,5,15,30,1.8230515,,,,,,,,,,,,,, +2012,4,5,16,30,1.5960296,,,,,,,,,,,,,, +2012,4,5,17,30,1.1463788,,,,,,,,,,,,,, +2012,4,5,18,30,0.26897016,,,,,,,,,,,,,, +2012,4,5,19,30,0.89265716,,,,,,,,,,,,,, +2012,4,5,20,30,1.576861,,,,,,,,,,,,,, +2012,4,5,21,30,1.6045382,,,,,,,,,,,,,, +2012,4,5,22,30,1.2061883,,,,,,,,,,,,,, +2012,4,5,23,30,0.51457644,,,,,,,,,,,,,, +2012,4,6,0,30,0.41406083,,,,,,,,,,,,,, +2012,4,6,1,30,1.2048585,,,,,,,,,,,,,, +2012,4,6,2,30,1.6438639,,,,,,,,,,,,,, +2012,4,6,3,30,1.7019542,,,,,,,,,,,,,, +2012,4,6,4,30,1.4511528,,,,,,,,,,,,,, +2012,4,6,5,30,0.82888305,,,,,,,,,,,,,, +2012,4,6,6,30,0.26007286,,,,,,,,,,,,,, +2012,4,6,7,30,1.4553857,,,,,,,,,,,,,, +2012,4,6,8,30,2.2026942,,,,,,,,,,,,,, +2012,4,6,9,30,2.3293116,,,,,,,,,,,,,, +2012,4,6,10,30,2.0497723,,,,,,,,,,,,,, +2012,4,6,11,30,1.3939307,,,,,,,,,,,,,, +2012,4,6,12,30,0.35494167,,,,,,,,,,,,,, +2012,4,6,13,30,0.846269,,,,,,,,,,,,,, +2012,4,6,14,30,1.8082126,,,,,,,,,,,,,, +2012,4,6,15,30,2.222741,,,,,,,,,,,,,, +2012,4,6,16,30,2.1435199,,,,,,,,,,,,,, +2012,4,6,17,30,1.8304272,,,,,,,,,,,,,, +2012,4,6,18,30,1.177716,,,,,,,,,,,,,, +2012,4,6,19,30,0.13886888,,,,,,,,,,,,,, +2012,4,6,20,30,1.3703136,,,,,,,,,,,,,, +2012,4,6,21,30,2.0258756,,,,,,,,,,,,,, +2012,4,6,22,30,1.9487913,,,,,,,,,,,,,, +2012,4,6,23,30,1.4522405,,,,,,,,,,,,,, +2012,4,7,0,30,0.643642,,,,,,,,,,,,,, +2012,4,7,1,30,0.40285,,,,,,,,,,,,,, +2012,4,7,2,30,1.2379041,,,,,,,,,,,,,, +2012,4,7,3,30,1.6586205,,,,,,,,,,,,,, +2012,4,7,4,30,1.6812683,,,,,,,,,,,,,, +2012,4,7,5,30,1.3848202,,,,,,,,,,,,,, +2012,4,7,6,30,0.66994745,,,,,,,,,,,,,, +2012,4,7,7,30,0.5207759,,,,,,,,,,,,,, +2012,4,7,8,30,1.7254174,,,,,,,,,,,,,, +2012,4,7,9,30,2.3409047,,,,,,,,,,,,,, +2012,4,7,10,30,2.295294,,,,,,,,,,,,,, +2012,4,7,11,30,1.8497301,,,,,,,,,,,,,, +2012,4,7,12,30,1.0246278,,,,,,,,,,,,,, +2012,4,7,13,30,0.18263698,,,,,,,,,,,,,, +2012,4,7,14,30,1.4419267,,,,,,,,,,,,,, +2012,4,7,15,30,2.332809,,,,,,,,,,,,,, +2012,4,7,16,30,2.5779014,,,,,,,,,,,,,, +2012,4,7,17,30,2.366921,,,,,,,,,,,,,, +2012,4,7,18,30,1.9224288,,,,,,,,,,,,,, +2012,4,7,19,30,1.0025237,,,,,,,,,,,,,, +2012,4,7,20,30,0.5354037,,,,,,,,,,,,,, +2012,4,7,21,30,1.9087566,,,,,,,,,,,,,, +2012,4,7,22,30,2.4285815,,,,,,,,,,,,,, +2012,4,7,23,30,2.2060285,,,,,,,,,,,,,, +2012,4,8,0,30,1.5974128,,,,,,,,,,,,,, +2012,4,8,1,30,0.6692281,,,,,,,,,,,,,, +2012,4,8,2,30,0.4512373,,,,,,,,,,,,,, +2012,4,8,3,30,1.2870288,,,,,,,,,,,,,, +2012,4,8,4,30,1.6620337,,,,,,,,,,,,,, +2012,4,8,5,30,1.6372179,,,,,,,,,,,,,, +2012,4,8,6,30,1.268884,,,,,,,,,,,,,, +2012,4,8,7,30,0.4418408,,,,,,,,,,,,,, +2012,4,8,8,30,0.8186575,,,,,,,,,,,,,, +2012,4,8,9,30,1.9355142,,,,,,,,,,,,,, +2012,4,8,10,30,2.3480144,,,,,,,,,,,,,, +2012,4,8,11,30,2.1220431,,,,,,,,,,,,,, +2012,4,8,12,30,1.5332874,,,,,,,,,,,,,, +2012,4,8,13,30,0.5681582,,,,,,,,,,,,,, +2012,4,8,14,30,0.74601716,,,,,,,,,,,,,, +2012,4,8,15,30,2.0107217,,,,,,,,,,,,,, +2012,4,8,16,30,2.7468648,,,,,,,,,,,,,, +2012,4,8,17,30,2.7970283,,,,,,,,,,,,,, +2012,4,8,18,30,2.453544,,,,,,,,,,,,,, +2012,4,8,19,30,1.8403822,,,,,,,,,,,,,, +2012,4,8,20,30,0.6419598,,,,,,,,,,,,,, +2012,4,8,21,30,1.0922081,,,,,,,,,,,,,, +2012,4,8,22,30,2.3903227,,,,,,,,,,,,,, +2012,4,8,23,30,2.7030444,,,,,,,,,,,,,, +2012,4,9,0,30,2.340327,,,,,,,,,,,,,, +2012,4,9,1,30,1.637593,,,,,,,,,,,,,, +2012,4,9,2,30,0.6165885,,,,,,,,,,,,,, +2012,4,9,3,30,0.52697754,,,,,,,,,,,,,, +2012,4,9,4,30,1.3216759,,,,,,,,,,,,,, +2012,4,9,5,30,1.6354053,,,,,,,,,,,,,, +2012,4,9,6,30,1.5478766,,,,,,,,,,,,,, +2012,4,9,7,30,1.0882953,,,,,,,,,,,,,, +2012,4,9,8,30,0.18209597,,,,,,,,,,,,,, +2012,4,9,9,30,1.0746862,,,,,,,,,,,,,, +2012,4,9,10,30,2.0125995,,,,,,,,,,,,,, +2012,4,9,11,30,2.2079082,,,,,,,,,,,,,, +2012,4,9,12,30,1.8438647,,,,,,,,,,,,,, +2012,4,9,13,30,1.1498578,,,,,,,,,,,,,, +2012,4,9,14,30,0.10738762,,,,,,,,,,,,,, +2012,4,9,15,30,1.2900493,,,,,,,,,,,,,, +2012,4,9,16,30,2.4647365,,,,,,,,,,,,,, +2012,4,9,17,30,2.9925413,,,,,,,,,,,,,, +2012,4,9,18,30,2.859758,,,,,,,,,,,,,, +2012,4,9,19,30,2.3950517,,,,,,,,,,,,,, +2012,4,9,20,30,1.5992967,,,,,,,,,,,,,, +2012,4,9,21,30,0.21391802,,,,,,,,,,,,,, +2012,4,9,22,30,1.6149328,,,,,,,,,,,,,, +2012,4,9,23,30,2.7137825,,,,,,,,,,,,,, +2012,4,10,0,30,2.8153222,,,,,,,,,,,,,, +2012,4,10,1,30,2.3611474,,,,,,,,,,,,,, +2012,4,10,2,30,1.5991094,,,,,,,,,,,,,, +2012,4,10,3,30,0.5261694,,,,,,,,,,,,,, +2012,4,10,4,30,0.5931854,,,,,,,,,,,,,, +2012,4,10,5,30,1.315213,,,,,,,,,,,,,, +2012,4,10,6,30,1.5589247,,,,,,,,,,,,,, +2012,4,10,7,30,1.4000529,,,,,,,,,,,,,, +2012,4,10,8,30,0.8617727,,,,,,,,,,,,,, +2012,4,10,9,30,0.13572833,,,,,,,,,,,,,, +2012,4,10,10,30,1.2142713,,,,,,,,,,,,,, +2012,4,10,11,30,1.9362732,,,,,,,,,,,,,, +2012,4,10,12,30,1.9617462,,,,,,,,,,,,,, +2012,4,10,13,30,1.5190871,,,,,,,,,,,,,, +2012,4,10,14,30,0.7524447,,,,,,,,,,,,,, +2012,4,10,15,30,0.40615672,,,,,,,,,,,,,, +2012,4,10,16,30,1.7276211,,,,,,,,,,,,,, +2012,4,10,17,30,2.7386212,,,,,,,,,,,,,, +2012,4,10,18,30,3.0517726,,,,,,,,,,,,,, +2012,4,10,19,30,2.7771668,,,,,,,,,,,,,, +2012,4,10,20,30,2.2131703,,,,,,,,,,,,,, +2012,4,10,21,30,1.2602308,,,,,,,,,,,,,, +2012,4,10,22,30,0.3487392,,,,,,,,,,,,,, +2012,4,10,23,30,1.9863131,,,,,,,,,,,,,, +2012,4,11,0,30,2.836151,,,,,,,,,,,,,, +2012,4,11,1,30,2.785718,,,,,,,,,,,,,, +2012,4,11,2,30,2.3025794,,,,,,,,,,,,,, +2012,4,11,3,30,1.513413,,,,,,,,,,,,,, +2012,4,11,4,30,0.43548316,,,,,,,,,,,,,, +2012,4,11,5,30,0.61657023,,,,,,,,,,,,,, +2012,4,11,6,30,1.2499907,,,,,,,,,,,,,, +2012,4,11,7,30,1.4280914,,,,,,,,,,,,,, +2012,4,11,8,30,1.212149,,,,,,,,,,,,,, +2012,4,11,9,30,0.6442977,,,,,,,,,,,,,, +2012,4,11,10,30,0.26701674,,,,,,,,,,,,,, +2012,4,11,11,30,1.2078222,,,,,,,,,,,,,, +2012,4,11,12,30,1.7440513,,,,,,,,,,,,,, +2012,4,11,13,30,1.6759678,,,,,,,,,,,,,, +2012,4,11,14,30,1.202699,,,,,,,,,,,,,, +2012,4,11,15,30,0.39379525,,,,,,,,,,,,,, +2012,4,11,16,30,0.76962715,,,,,,,,,,,,,, +2012,4,11,17,30,1.9935853,,,,,,,,,,,,,, +2012,4,11,18,30,2.808131,,,,,,,,,,,,,, +2012,4,11,19,30,2.9437497,,,,,,,,,,,,,, +2012,4,11,20,30,2.583235,,,,,,,,,,,,,, +2012,4,11,21,30,1.9572289,,,,,,,,,,,,,, +2012,4,11,22,30,0.91339684,,,,,,,,,,,,,, +2012,4,11,23,30,0.69229704,,,,,,,,,,,,,, +2012,4,12,0,30,2.153071,,,,,,,,,,,,,, +2012,4,12,1,30,2.7819486,,,,,,,,,,,,,, +2012,4,12,2,30,2.663517,,,,,,,,,,,,,, +2012,4,12,3,30,2.1967876,,,,,,,,,,,,,, +2012,4,12,4,30,1.4073946,,,,,,,,,,,,,, +2012,4,12,5,30,0.37502572,,,,,,,,,,,,,, +2012,4,12,6,30,0.57660615,,,,,,,,,,,,,, +2012,4,12,7,30,1.1313648,,,,,,,,,,,,,, +2012,4,12,8,30,1.2693431,,,,,,,,,,,,,, +2012,4,12,9,30,1.0329349,,,,,,,,,,,,,, +2012,4,12,10,30,0.49765563,,,,,,,,,,,,,, +2012,4,12,11,30,0.2962032,,,,,,,,,,,,,, +2012,4,12,12,30,1.0789695,,,,,,,,,,,,,, +2012,4,12,13,30,1.5006148,,,,,,,,,,,,,, +2012,4,12,14,30,1.4088819,,,,,,,,,,,,,, +2012,4,12,15,30,0.9377934,,,,,,,,,,,,,, +2012,4,12,16,30,0.12859207,,,,,,,,,,,,,, +2012,4,12,17,30,0.9853468,,,,,,,,,,,,,, +2012,4,12,18,30,2.0623953,,,,,,,,,,,,,, +2012,4,12,19,30,2.6926987,,,,,,,,,,,,,, +2012,4,12,20,30,2.7141824,,,,,,,,,,,,,, +2012,4,12,21,30,2.3293018,,,,,,,,,,,,,, +2012,4,12,22,30,1.6939207,,,,,,,,,,,,,, +2012,4,12,23,30,0.6410423,,,,,,,,,,,,,, +2012,4,13,0,30,0.88164985,,,,,,,,,,,,,, +2012,4,13,1,30,2.1376014,,,,,,,,,,,,,, +2012,4,13,2,30,2.6153617,,,,,,,,,,,,,, +2012,4,13,3,30,2.496177,,,,,,,,,,,,,, +2012,4,13,4,30,2.0685592,,,,,,,,,,,,,, +2012,4,13,5,30,1.3103321,,,,,,,,,,,,,, +2012,4,13,6,30,0.36519748,,,,,,,,,,,,,, +2012,4,13,7,30,0.48061013,,,,,,,,,,,,,, +2012,4,13,8,30,0.99685127,,,,,,,,,,,,,, +2012,4,13,9,30,1.1318581,,,,,,,,,,,,,, +2012,4,13,10,30,0.9137429,,,,,,,,,,,,,, +2012,4,13,11,30,0.45628285,,,,,,,,,,,,,, +2012,4,13,12,30,0.21501586,,,,,,,,,,,,,, +2012,4,13,13,30,0.880052,,,,,,,,,,,,,, +2012,4,13,14,30,1.2642877,,,,,,,,,,,,,, +2012,4,13,15,30,1.1979696,,,,,,,,,,,,,, +2012,4,13,16,30,0.7554995,,,,,,,,,,,,,, +2012,4,13,17,30,0.062026095,,,,,,,,,,,,,, +2012,4,13,18,30,1.0335294,,,,,,,,,,,,,, +2012,4,13,19,30,1.9534649,,,,,,,,,,,,,, +2012,4,13,20,30,2.445139,,,,,,,,,,,,,, +2012,4,13,21,30,2.4253514,,,,,,,,,,,,,, +2012,4,13,22,30,2.075618,,,,,,,,,,,,,, +2012,4,13,23,30,1.4810008,,,,,,,,,,,,,, +2012,4,14,0,30,0.47751194,,,,,,,,,,,,,, +2012,4,14,1,30,0.92980987,,,,,,,,,,,,,, +2012,4,14,2,30,2.008749,,,,,,,,,,,,,, +2012,4,14,3,30,2.4028344,,,,,,,,,,,,,, +2012,4,14,4,30,2.3206735,,,,,,,,,,,,,, +2012,4,14,5,30,1.9470927,,,,,,,,,,,,,, +2012,4,14,6,30,1.2537615,,,,,,,,,,,,,, +2012,4,14,7,30,0.40974212,,,,,,,,,,,,,, +2012,4,14,8,30,0.37267053,,,,,,,,,,,,,, +2012,4,14,9,30,0.90203106,,,,,,,,,,,,,, +2012,4,14,10,30,1.0592047,,,,,,,,,,,,,, +2012,4,14,11,30,0.88243264,,,,,,,,,,,,,, +2012,4,14,12,30,0.5212083,,,,,,,,,,,,,, +2012,4,14,13,30,0.10653504,,,,,,,,,,,,,, +2012,4,14,14,30,0.6649883,,,,,,,,,,,,,, +2012,4,14,15,30,1.0744003,,,,,,,,,,,,,, +2012,4,14,16,30,1.0625318,,,,,,,,,,,,,, +2012,4,14,17,30,0.66985047,,,,,,,,,,,,,, +2012,4,14,18,30,0.07288833,,,,,,,,,,,,,, +2012,4,14,19,30,0.9350375,,,,,,,,,,,,,, +2012,4,14,20,30,1.7202657,,,,,,,,,,,,,, +2012,4,14,21,30,2.137586,,,,,,,,,,,,,, +2012,4,14,22,30,2.1438353,,,,,,,,,,,,,, +2012,4,14,23,30,1.8703387,,,,,,,,,,,,,, +2012,4,15,0,30,1.3373178,,,,,,,,,,,,,, +2012,4,15,1,30,0.39838937,,,,,,,,,,,,,, +2012,4,15,2,30,0.8975498,,,,,,,,,,,,,, +2012,4,15,3,30,1.8392408,,,,,,,,,,,,,, +2012,4,15,4,30,2.1969805,,,,,,,,,,,,,, +2012,4,15,5,30,2.1728013,,,,,,,,,,,,,, +2012,4,15,6,30,1.8659337,,,,,,,,,,,,,, +2012,4,15,7,30,1.2503644,,,,,,,,,,,,,, +2012,4,15,8,30,0.47617418,,,,,,,,,,,,,, +2012,4,15,9,30,0.31705922,,,,,,,,,,,,,, +2012,4,15,10,30,0.8908783,,,,,,,,,,,,,, +2012,4,15,11,30,1.0698001,,,,,,,,,,,,,, +2012,4,15,12,30,0.9421545,,,,,,,,,,,,,, +2012,4,15,13,30,0.6749131,,,,,,,,,,,,,, +2012,4,15,14,30,0.19514205,,,,,,,,,,,,,, +2012,4,15,15,30,0.4810052,,,,,,,,,,,,,, +2012,4,15,16,30,0.9554741,,,,,,,,,,,,,, +2012,4,15,17,30,1.0089281,,,,,,,,,,,,,, +2012,4,15,18,30,0.67614603,,,,,,,,,,,,,, +2012,4,15,19,30,0.05681344,,,,,,,,,,,,,, +2012,4,15,20,30,0.73792946,,,,,,,,,,,,,, +2012,4,15,21,30,1.4341468,,,,,,,,,,,,,, +2012,4,15,22,30,1.8442018,,,,,,,,,,,,,, +2012,4,15,23,30,1.919091,,,,,,,,,,,,,, +2012,4,16,0,30,1.7249546,,,,,,,,,,,,,, +2012,4,16,1,30,1.2372748,,,,,,,,,,,,,, +2012,4,16,2,30,0.3498689,,,,,,,,,,,,,, +2012,4,16,3,30,0.8455583,,,,,,,,,,,,,, +2012,4,16,4,30,1.6845424,,,,,,,,,,,,,, +2012,4,16,5,30,2.040717,,,,,,,,,,,,,, +2012,4,16,6,30,2.0851386,,,,,,,,,,,,,, +2012,4,16,7,30,1.8376694,,,,,,,,,,,,,, +2012,4,16,8,30,1.2688099,,,,,,,,,,,,,, +2012,4,16,9,30,0.49413443,,,,,,,,,,,,,, +2012,4,16,10,30,0.36470073,,,,,,,,,,,,,, +2012,4,16,11,30,0.9788349,,,,,,,,,,,,,, +2012,4,16,12,30,1.1610527,,,,,,,,,,,,,, +2012,4,16,13,30,1.0836241,,,,,,,,,,,,,, +2012,4,16,14,30,0.888282,,,,,,,,,,,,,, +2012,4,16,15,30,0.39583513,,,,,,,,,,,,,, +2012,4,16,16,30,0.37328982,,,,,,,,,,,,,, +2012,4,16,17,30,0.9236766,,,,,,,,,,,,,, +2012,4,16,18,30,1.0367138,,,,,,,,,,,,,, +2012,4,16,19,30,0.76294315,,,,,,,,,,,,,, +2012,4,16,20,30,0.21314946,,,,,,,,,,,,,, +2012,4,16,21,30,0.50356185,,,,,,,,,,,,,, +2012,4,16,22,30,1.1668576,,,,,,,,,,,,,, +2012,4,16,23,30,1.6179409,,,,,,,,,,,,,, +2012,4,17,0,30,1.7620093,,,,,,,,,,,,,, +2012,4,17,1,30,1.6124666,,,,,,,,,,,,,, +2012,4,17,2,30,1.1387414,,,,,,,,,,,,,, +2012,4,17,3,30,0.2909235,,,,,,,,,,,,,, +2012,4,17,4,30,0.814958,,,,,,,,,,,,,, +2012,4,17,5,30,1.5853643,,,,,,,,,,,,,, +2012,4,17,6,30,1.9642494,,,,,,,,,,,,,, +2012,4,17,7,30,2.0621276,,,,,,,,,,,,,, +2012,4,17,8,30,1.8281429,,,,,,,,,,,,,, +2012,4,17,9,30,1.2384303,,,,,,,,,,,,,, +2012,4,17,10,30,0.39503342,,,,,,,,,,,,,, +2012,4,17,11,30,0.5394299,,,,,,,,,,,,,, +2012,4,17,12,30,1.1572418,,,,,,,,,,,,,, +2012,4,17,13,30,1.321764,,,,,,,,,,,,,, +2012,4,17,14,30,1.2890605,,,,,,,,,,,,,, +2012,4,17,15,30,1.1168768,,,,,,,,,,,,,, +2012,4,17,16,30,0.5382768,,,,,,,,,,,,,, +2012,4,17,17,30,0.37658855,,,,,,,,,,,,,, +2012,4,17,18,30,0.9900726,,,,,,,,,,,,,, +2012,4,17,19,30,1.1447699,,,,,,,,,,,,,, +2012,4,17,20,30,0.9174962,,,,,,,,,,,,,, +2012,4,17,21,30,0.42064682,,,,,,,,,,,,,, +2012,4,17,22,30,0.29637915,,,,,,,,,,,,,, +2012,4,17,23,30,0.97017896,,,,,,,,,,,,,, +2012,4,18,0,30,1.4719499,,,,,,,,,,,,,, +2012,4,18,1,30,1.6469654,,,,,,,,,,,,,, +2012,4,18,2,30,1.4970475,,,,,,,,,,,,,, +2012,4,18,3,30,1.0175139,,,,,,,,,,,,,, +2012,4,18,4,30,0.21094969,,,,,,,,,,,,,, +2012,4,18,5,30,0.833799,,,,,,,,,,,,,, +2012,4,18,6,30,1.5671183,,,,,,,,,,,,,, +2012,4,18,7,30,1.9640503,,,,,,,,,,,,,, +2012,4,18,8,30,2.060021,,,,,,,,,,,,,, +2012,4,18,9,30,1.7656612,,,,,,,,,,,,,, +2012,4,18,10,30,1.0877393,,,,,,,,,,,,,, +2012,4,18,11,30,0.15359107,,,,,,,,,,,,,, +2012,4,18,12,30,0.834397,,,,,,,,,,,,,, +2012,4,18,13,30,1.4040356,,,,,,,,,,,,,, +2012,4,18,14,30,1.5349106,,,,,,,,,,,,,, +2012,4,18,15,30,1.5239335,,,,,,,,,,,,,, +2012,4,18,16,30,1.297054,,,,,,,,,,,,,, +2012,4,18,17,30,0.55878395,,,,,,,,,,,,,, +2012,4,18,18,30,0.50450563,,,,,,,,,,,,,, +2012,4,18,19,30,1.1604887,,,,,,,,,,,,,, +2012,4,18,20,30,1.3278002,,,,,,,,,,,,,, +2012,4,18,21,30,1.1161072,,,,,,,,,,,,,, +2012,4,18,22,30,0.6180208,,,,,,,,,,,,,, +2012,4,18,23,30,0.16737816,,,,,,,,,,,,,, +2012,4,19,0,30,0.86186445,,,,,,,,,,,,,, +2012,4,19,1,30,1.3851472,,,,,,,,,,,,,, +2012,4,19,2,30,1.5427358,,,,,,,,,,,,,, +2012,4,19,3,30,1.3660028,,,,,,,,,,,,,, +2012,4,19,4,30,0.8733016,,,,,,,,,,,,,, +2012,4,19,5,30,0.1401371,,,,,,,,,,,,,, +2012,4,19,6,30,0.9214988,,,,,,,,,,,,,, +2012,4,19,7,30,1.6235826,,,,,,,,,,,,,, +2012,4,19,8,30,1.9903129,,,,,,,,,,,,,, +2012,4,19,9,30,2.0041115,,,,,,,,,,,,,, +2012,4,19,10,30,1.5834012,,,,,,,,,,,,,, +2012,4,19,11,30,0.78151447,,,,,,,,,,,,,, +2012,4,19,12,30,0.27099115,,,,,,,,,,,,,, +2012,4,19,13,30,1.2149761,,,,,,,,,,,,,, +2012,4,19,14,30,1.6879871,,,,,,,,,,,,,, +2012,4,19,15,30,1.7694671,,,,,,,,,,,,,, +2012,4,19,16,30,1.7301409,,,,,,,,,,,,,, +2012,4,19,17,30,1.3530073,,,,,,,,,,,,,, +2012,4,19,18,30,0.4139831,,,,,,,,,,,,,, +2012,4,19,19,30,0.772162,,,,,,,,,,,,,, +2012,4,19,20,30,1.4259315,,,,,,,,,,,,,, +2012,4,19,21,30,1.5621287,,,,,,,,,,,,,, +2012,4,19,22,30,1.314888,,,,,,,,,,,,,, +2012,4,19,23,30,0.7516439,,,,,,,,,,,,,, +2012,4,20,0,30,0.12321639,,,,,,,,,,,,,, +2012,4,20,1,30,0.831946,,,,,,,,,,,,,, +2012,4,20,2,30,1.331535,,,,,,,,,,,,,, +2012,4,20,3,30,1.442,,,,,,,,,,,,,, +2012,4,20,4,30,1.2293354,,,,,,,,,,,,,, +2012,4,20,5,30,0.70640844,,,,,,,,,,,,,, +2012,4,20,6,30,0.19053437,,,,,,,,,,,,,, +2012,4,20,7,30,1.0754856,,,,,,,,,,,,,, +2012,4,20,8,30,1.7077357,,,,,,,,,,,,,, +2012,4,20,9,30,1.9698604,,,,,,,,,,,,,, +2012,4,20,10,30,1.8343828,,,,,,,,,,,,,, +2012,4,20,11,30,1.2560867,,,,,,,,,,,,,, +2012,4,20,12,30,0.33153397,,,,,,,,,,,,,, +2012,4,20,13,30,0.7672757,,,,,,,,,,,,,, +2012,4,20,14,30,1.6283537,,,,,,,,,,,,,, +2012,4,20,15,30,1.9661707,,,,,,,,,,,,,, +2012,4,20,16,30,1.9752117,,,,,,,,,,,,,, +2012,4,20,17,30,1.8334061,,,,,,,,,,,,,, +2012,4,20,18,30,1.2167157,,,,,,,,,,,,,, +2012,4,20,19,30,0.1845903,,,,,,,,,,,,,, +2012,4,20,20,30,1.1696067,,,,,,,,,,,,,, +2012,4,20,21,30,1.7466128,,,,,,,,,,,,,, +2012,4,20,22,30,1.796273,,,,,,,,,,,,,, +2012,4,20,23,30,1.4549592,,,,,,,,,,,,,, +2012,4,21,0,30,0.77961606,,,,,,,,,,,,,, +2012,4,21,1,30,0.13071214,,,,,,,,,,,,,, +2012,4,21,2,30,0.8634472,,,,,,,,,,,,,, +2012,4,21,3,30,1.3046291,,,,,,,,,,,,,, +2012,4,21,4,30,1.3567293,,,,,,,,,,,,,, +2012,4,21,5,30,1.0903404,,,,,,,,,,,,,, +2012,4,21,6,30,0.501172,,,,,,,,,,,,,, +2012,4,21,7,30,0.4108879,,,,,,,,,,,,,, +2012,4,21,8,30,1.2587488,,,,,,,,,,,,,, +2012,4,21,9,30,1.7535746,,,,,,,,,,,,,, +2012,4,21,10,30,1.8508348,,,,,,,,,,,,,, +2012,4,21,11,30,1.5379393,,,,,,,,,,,,,, +2012,4,21,12,30,0.8027083,,,,,,,,,,,,,, +2012,4,21,13,30,0.23580512,,,,,,,,,,,,,, +2012,4,21,14,30,1.3048999,,,,,,,,,,,,,, +2012,4,21,15,30,2.010211,,,,,,,,,,,,,, +2012,4,21,16,30,2.1868293,,,,,,,,,,,,,, +2012,4,21,17,30,2.0912976,,,,,,,,,,,,,, +2012,4,21,18,30,1.7636741,,,,,,,,,,,,,, +2012,4,21,19,30,0.8557204,,,,,,,,,,,,,, +2012,4,21,20,30,0.5604411,,,,,,,,,,,,,, +2012,4,21,21,30,1.6312698,,,,,,,,,,,,,, +2012,4,21,22,30,2.0501735,,,,,,,,,,,,,, +2012,4,21,23,30,1.962487,,,,,,,,,,,,,, +2012,4,22,0,30,1.4831463,,,,,,,,,,,,,, +2012,4,22,1,30,0.68381965,,,,,,,,,,,,,, +2012,4,22,2,30,0.23745057,,,,,,,,,,,,,, +2012,4,22,3,30,0.9467395,,,,,,,,,,,,,, +2012,4,22,4,30,1.3100543,,,,,,,,,,,,,, +2012,4,22,5,30,1.286003,,,,,,,,,,,,,, +2012,4,22,6,30,0.92603505,,,,,,,,,,,,,, +2012,4,22,7,30,0.2454404,,,,,,,,,,,,,, +2012,4,22,8,30,0.6895209,,,,,,,,,,,,,, +2012,4,22,9,30,1.4136428,,,,,,,,,,,,,, +2012,4,22,10,30,1.7158086,,,,,,,,,,,,,, +2012,4,22,11,30,1.6287413,,,,,,,,,,,,,, +2012,4,22,12,30,1.1420363,,,,,,,,,,,,,, +2012,4,22,13,30,0.2668782,,,,,,,,,,,,,, +2012,4,22,14,30,0.82983047,,,,,,,,,,,,,, +2012,4,22,15,30,1.8037649,,,,,,,,,,,,,, +2012,4,22,16,30,2.2982335,,,,,,,,,,,,,, +2012,4,22,17,30,2.3027062,,,,,,,,,,,,,, +2012,4,22,18,30,2.0636973,,,,,,,,,,,,,, +2012,4,22,19,30,1.480603,,,,,,,,,,,,,, +2012,4,22,20,30,0.31931812,,,,,,,,,,,,,, +2012,4,22,21,30,1.1659043,,,,,,,,,,,,,, +2012,4,22,22,30,2.054418,,,,,,,,,,,,,, +2012,4,22,23,30,2.2570713,,,,,,,,,,,,,, +2012,4,23,0,30,2.0059483,,,,,,,,,,,,,, +2012,4,23,1,30,1.3732097,,,,,,,,,,,,,, +2012,4,23,2,30,0.4724875,,,,,,,,,,,,,, +2012,4,23,3,30,0.4354205,,,,,,,,,,,,,, +2012,4,23,4,30,1.0713904,,,,,,,,,,,,,, +2012,4,23,5,30,1.3347937,,,,,,,,,,,,,, +2012,4,23,6,30,1.1971728,,,,,,,,,,,,,, +2012,4,23,7,30,0.7028198,,,,,,,,,,,,,, +2012,4,23,8,30,0.15538612,,,,,,,,,,,,,, +2012,4,23,9,30,0.9604837,,,,,,,,,,,,,, +2012,4,23,10,30,1.4947975,,,,,,,,,,,,,, +2012,4,23,11,30,1.5912523,,,,,,,,,,,,,, +2012,4,23,12,30,1.332417,,,,,,,,,,,,,, +2012,4,23,13,30,0.6839088,,,,,,,,,,,,,, +2012,4,23,14,30,0.31618533,,,,,,,,,,,,,, +2012,4,23,15,30,1.3980255,,,,,,,,,,,,,, +2012,4,23,16,30,2.1935217,,,,,,,,,,,,,, +2012,4,23,17,30,2.4511847,,,,,,,,,,,,,, +2012,4,23,18,30,2.2845497,,,,,,,,,,,,,, +2012,4,23,19,30,1.8627942,,,,,,,,,,,,,, +2012,4,23,20,30,0.99755126,,,,,,,,,,,,,, +2012,4,23,21,30,0.43781585,,,,,,,,,,,,,, +2012,4,23,22,30,1.7383249,,,,,,,,,,,,,, +2012,4,23,23,30,2.3428981,,,,,,,,,,,,,, +2012,4,24,0,30,2.3189416,,,,,,,,,,,,,, +2012,4,24,1,30,1.9086714,,,,,,,,,,,,,, +2012,4,24,2,30,1.1334436,,,,,,,,,,,,,, +2012,4,24,3,30,0.18617252,,,,,,,,,,,,,, +2012,4,24,4,30,0.6793121,,,,,,,,,,,,,, +2012,4,24,5,30,1.2037592,,,,,,,,,,,,,, +2012,4,24,6,30,1.3339158,,,,,,,,,,,,,, +2012,4,24,7,30,1.0452914,,,,,,,,,,,,,, +2012,4,24,8,30,0.41202474,,,,,,,,,,,,,, +2012,4,24,9,30,0.4462153,,,,,,,,,,,,,, +2012,4,24,10,30,1.1710069,,,,,,,,,,,,,, +2012,4,24,11,30,1.4901483,,,,,,,,,,,,,, +2012,4,24,12,30,1.4040021,,,,,,,,,,,,,, +2012,4,24,13,30,0.99101627,,,,,,,,,,,,,, +2012,4,24,14,30,0.19301613,,,,,,,,,,,,,, +2012,4,24,15,30,0.8800354,,,,,,,,,,,,,, +2012,4,24,16,30,1.8723898,,,,,,,,,,,,,, +2012,4,24,17,30,2.432044,,,,,,,,,,,,,, +2012,4,24,18,30,2.4586747,,,,,,,,,,,,,, +2012,4,24,19,30,2.1267765,,,,,,,,,,,,,, +2012,4,24,20,30,1.4985363,,,,,,,,,,,,,, +2012,4,24,21,30,0.40181798,,,,,,,,,,,,,, +2012,4,24,22,30,1.0919641,,,,,,,,,,,,,, +2012,4,24,23,30,2.1568177,,,,,,,,,,,,,, +2012,4,25,0,30,2.4525537,,,,,,,,,,,,,, +2012,4,25,1,30,2.2388282,,,,,,,,,,,,,, +2012,4,25,2,30,1.6910679,,,,,,,,,,,,,, +2012,4,25,3,30,0.8036767,,,,,,,,,,,,,, +2012,4,25,4,30,0.19824596,,,,,,,,,,,,,, +2012,4,25,5,30,0.90720767,,,,,,,,,,,,,, +2012,4,25,6,30,1.2863834,,,,,,,,,,,,,, +2012,4,25,7,30,1.2570064,,,,,,,,,,,,,, +2012,4,25,8,30,0.8125666,,,,,,,,,,,,,, +2012,4,25,9,30,0.13170412,,,,,,,,,,,,,, +2012,4,25,10,30,0.7352744,,,,,,,,,,,,,, +2012,4,25,11,30,1.2916363,,,,,,,,,,,,,, +2012,4,25,12,30,1.412534,,,,,,,,,,,,,, +2012,4,25,13,30,1.1758536,,,,,,,,,,,,,, +2012,4,25,14,30,0.6196004,,,,,,,,,,,,,, +2012,4,25,15,30,0.30662146,,,,,,,,,,,,,, +2012,4,25,16,30,1.3829792,,,,,,,,,,,,,, +2012,4,25,17,30,2.2075012,,,,,,,,,,,,,, +2012,4,25,18,30,2.5119567,,,,,,,,,,,,,, +2012,4,25,19,30,2.3357766,,,,,,,,,,,,,, +2012,4,25,20,30,1.8496977,,,,,,,,,,,,,, +2012,4,25,21,30,1.0283926,,,,,,,,,,,,,, +2012,4,25,22,30,0.28764677,,,,,,,,,,,,,, +2012,4,25,23,30,1.6167418,,,,,,,,,,,,,, +2012,4,26,0,30,2.3705354,,,,,,,,,,,,,, +2012,4,26,1,30,2.4052494,,,,,,,,,,,,,, +2012,4,26,2,30,2.0583832,,,,,,,,,,,,,, +2012,4,26,3,30,1.3986751,,,,,,,,,,,,,, +2012,4,26,4,30,0.4515334,,,,,,,,,,,,,, +2012,4,26,5,30,0.4786932,,,,,,,,,,,,,, +2012,4,26,6,30,1.0520462,,,,,,,,,,,,,, +2012,4,26,7,30,1.2729385,,,,,,,,,,,,,, +2012,4,26,8,30,1.0900455,,,,,,,,,,,,,, +2012,4,26,9,30,0.5308548,,,,,,,,,,,,,, +2012,4,26,10,30,0.2657586,,,,,,,,,,,,,, +2012,4,26,11,30,0.93711317,,,,,,,,,,,,,, +2012,4,26,12,30,1.3178334,,,,,,,,,,,,,, +2012,4,26,13,30,1.2788128,,,,,,,,,,,,,, +2012,4,26,14,30,0.9167992,,,,,,,,,,,,,, +2012,4,26,15,30,0.23669598,,,,,,,,,,,,,, +2012,4,26,16,30,0.7710381,,,,,,,,,,,,,, +2012,4,26,17,30,1.7750998,,,,,,,,,,,,,, +2012,4,26,18,30,2.3831553,,,,,,,,,,,,,, +2012,4,26,19,30,2.4506428,,,,,,,,,,,,,, +2012,4,26,20,30,2.1141224,,,,,,,,,,,,,, +2012,4,26,21,30,1.5016172,,,,,,,,,,,,,, +2012,4,26,22,30,0.5468896,,,,,,,,,,,,,, +2012,4,26,23,30,0.79249656,,,,,,,,,,,,,, +2012,4,27,0,30,1.9437672,,,,,,,,,,,,,, +2012,4,27,1,30,2.404439,,,,,,,,,,,,,, +2012,4,27,2,30,2.261861,,,,,,,,,,,,,, +2012,4,27,3,30,1.8302523,,,,,,,,,,,,,, +2012,4,27,4,30,1.0906441,,,,,,,,,,,,,, +2012,4,27,5,30,0.16873029,,,,,,,,,,,,,, +2012,4,27,6,30,0.6581702,,,,,,,,,,,,,, +2012,4,27,7,30,1.0804367,,,,,,,,,,,,,, +2012,4,27,8,30,1.1673926,,,,,,,,,,,,,, +2012,4,27,9,30,0.8732623,,,,,,,,,,,,,, +2012,4,27,10,30,0.2705966,,,,,,,,,,,,,, +2012,4,27,11,30,0.45501798,,,,,,,,,,,,,, +2012,4,27,12,30,1.0252228,,,,,,,,,,,,,, +2012,4,27,13,30,1.2607658,,,,,,,,,,,,,, +2012,4,27,14,30,1.1048862,,,,,,,,,,,,,, +2012,4,27,15,30,0.64268315,,,,,,,,,,,,,, +2012,4,27,16,30,0.1573717,,,,,,,,,,,,,, +2012,4,27,17,30,1.1483043,,,,,,,,,,,,,, +2012,4,27,18,30,2.0158942,,,,,,,,,,,,,, +2012,4,27,19,30,2.3988435,,,,,,,,,,,,,, +2012,4,27,20,30,2.2790601,,,,,,,,,,,,,, +2012,4,27,21,30,1.8395783,,,,,,,,,,,,,, +2012,4,27,22,30,1.1512382,,,,,,,,,,,,,, +2012,4,27,23,30,0.18043812,,,,,,,,,,,,,, +2012,4,28,0,30,1.1509725,,,,,,,,,,,,,, +2012,4,28,1,30,2.0866904,,,,,,,,,,,,,, +2012,4,28,2,30,2.3248591,,,,,,,,,,,,,, +2012,4,28,3,30,2.0829973,,,,,,,,,,,,,, +2012,4,28,4,30,1.6025368,,,,,,,,,,,,,, +2012,4,28,5,30,0.8291591,,,,,,,,,,,,,, +2012,4,28,6,30,0.10426116,,,,,,,,,,,,,, +2012,4,28,7,30,0.7109827,,,,,,,,,,,,,, +2012,4,28,8,30,1.023314,,,,,,,,,,,,,, +2012,4,28,9,30,1.029129,,,,,,,,,,,,,, +2012,4,28,10,30,0.6813297,,,,,,,,,,,,,, +2012,4,28,11,30,0.13779698,,,,,,,,,,,,,, +2012,4,28,12,30,0.5360193,,,,,,,,,,,,,, +2012,4,28,13,30,1.00215,,,,,,,,,,,,,, +2012,4,28,14,30,1.1462133,,,,,,,,,,,,,, +2012,4,28,15,30,0.91941243,,,,,,,,,,,,,, +2012,4,28,16,30,0.39464095,,,,,,,,,,,,,, +2012,4,28,17,30,0.4374129,,,,,,,,,,,,,, +2012,4,28,18,30,1.3806245,,,,,,,,,,,,,, +2012,4,28,19,30,2.079761,,,,,,,,,,,,,, +2012,4,28,20,30,2.2715554,,,,,,,,,,,,,, +2012,4,28,21,30,2.0408347,,,,,,,,,,,,,, +2012,4,28,22,30,1.5687435,,,,,,,,,,,,,, +2012,4,28,23,30,0.86186075,,,,,,,,,,,,,, +2012,4,29,0,30,0.21652517,,,,,,,,,,,,,, +2012,4,29,1,30,1.354233,,,,,,,,,,,,,, +2012,4,29,2,30,2.1021404,,,,,,,,,,,,,, +2012,4,29,3,30,2.195459,,,,,,,,,,,,,, +2012,4,29,4,30,1.9117619,,,,,,,,,,,,,, +2012,4,29,5,30,1.4166763,,,,,,,,,,,,,, +2012,4,29,6,30,0.657985,,,,,,,,,,,,,, +2012,4,29,7,30,0.15913144,,,,,,,,,,,,,, +2012,4,29,8,30,0.6901476,,,,,,,,,,,,,, +2012,4,29,9,30,0.9636917,,,,,,,,,,,,,, +2012,4,29,10,30,0.9394778,,,,,,,,,,,,,, +2012,4,29,11,30,0.58604324,,,,,,,,,,,,,, +2012,4,29,12,30,0.12013109,,,,,,,,,,,,,, +2012,4,29,13,30,0.4843874,,,,,,,,,,,,,, +2012,4,29,14,30,0.9007037,,,,,,,,,,,,,, +2012,4,29,15,30,1.0209988,,,,,,,,,,,,,, +2012,4,29,16,30,0.77293664,,,,,,,,,,,,,, +2012,4,29,17,30,0.23399511,,,,,,,,,,,,,, +2012,4,29,18,30,0.58217686,,,,,,,,,,,,,, +2012,4,29,19,30,1.4264714,,,,,,,,,,,,,, +2012,4,29,20,30,1.968144,,,,,,,,,,,,,, +2012,4,29,21,30,2.0426838,,,,,,,,,,,,,, +2012,4,29,22,30,1.7923,,,,,,,,,,,,,, +2012,4,29,23,30,1.3518186,,,,,,,,,,,,,, +2012,4,30,0,30,0.6618477,,,,,,,,,,,,,, +2012,4,30,1,30,0.3828235,,,,,,,,,,,,,, +2012,4,30,2,30,1.4429642,,,,,,,,,,,,,, +2012,4,30,3,30,2.0474668,,,,,,,,,,,,,, +2012,4,30,4,30,2.060492,,,,,,,,,,,,,, +2012,4,30,5,30,1.7792718,,,,,,,,,,,,,, +2012,4,30,6,30,1.2997416,,,,,,,,,,,,,, +2012,4,30,7,30,0.5765868,,,,,,,,,,,,,, +2012,4,30,8,30,0.16968179,,,,,,,,,,,,,, +2012,4,30,9,30,0.6948857,,,,,,,,,,,,,, +2012,4,30,10,30,0.98812246,,,,,,,,,,,,,, +2012,4,30,11,30,0.95983094,,,,,,,,,,,,,, +2012,4,30,12,30,0.6283509,,,,,,,,,,,,,, +2012,4,30,13,30,0.1765712,,,,,,,,,,,,,, +2012,4,30,14,30,0.33373934,,,,,,,,,,,,,, +2012,4,30,15,30,0.78418857,,,,,,,,,,,,,, +1999,4,30,16,30,0.9494273,,,,,,,,,,,,,, +1999,4,30,17,30,0.7255658,,,,,,,,,,,,,, +1999,4,30,18,30,0.20945242,,,,,,,,,,,,,, +1999,4,30,19,30,0.5435043,,,,,,,,,,,,,, +1999,4,30,20,30,1.2832998,,,,,,,,,,,,,, +1999,4,30,21,30,1.7244154,,,,,,,,,,,,,, +1999,4,30,22,30,1.7795223,,,,,,,,,,,,,, +1999,4,30,23,30,1.5880945,,,,,,,,,,,,,, +1999,5,1,0,30,1.2098378,,,,,,,,,,,,,, +1999,5,1,1,30,0.540329,,,,,,,,,,,,,, +1999,5,1,2,30,0.47871017,,,,,,,,,,,,,, +1999,5,1,3,30,1.4610851,,,,,,,,,,,,,, +1999,5,1,4,30,1.9664205,,,,,,,,,,,,,, +1999,5,1,5,30,1.9540241,,,,,,,,,,,,,, +1999,5,1,6,30,1.7063735,,,,,,,,,,,,,, +1999,5,1,7,30,1.2461928,,,,,,,,,,,,,, +1999,5,1,8,30,0.531928,,,,,,,,,,,,,, +1999,5,1,9,30,0.22299302,,,,,,,,,,,,,, +1999,5,1,10,30,0.81192064,,,,,,,,,,,,,, +1999,5,1,11,30,1.1427972,,,,,,,,,,,,,, +1999,5,1,12,30,1.1098267,,,,,,,,,,,,,, +1999,5,1,13,30,0.80863845,,,,,,,,,,,,,, +1999,5,1,14,30,0.39533085,,,,,,,,,,,,,, +1999,5,1,15,30,0.1625442,,,,,,,,,,,,,, +1999,5,1,16,30,0.7325697,,,,,,,,,,,,,, +1999,5,1,17,30,0.9926904,,,,,,,,,,,,,, +1999,5,1,18,30,0.82167494,,,,,,,,,,,,,, +1999,5,1,19,30,0.34867972,,,,,,,,,,,,,, +1999,5,1,20,30,0.32812035,,,,,,,,,,,,,, +1999,5,1,21,30,1.0038869,,,,,,,,,,,,,, +1999,5,1,22,30,1.4324672,,,,,,,,,,,,,, +1999,5,1,23,30,1.5552533,,,,,,,,,,,,,, +1999,5,2,0,30,1.4573805,,,,,,,,,,,,,, +1999,5,2,1,30,1.1310092,,,,,,,,,,,,,, +1999,5,2,2,30,0.47077948,,,,,,,,,,,,,, +1999,5,2,3,30,0.52427137,,,,,,,,,,,,,, +1999,5,2,4,30,1.4451505,,,,,,,,,,,,,, +1999,5,2,5,30,1.8989168,,,,,,,,,,,,,, +1999,5,2,6,30,1.9035461,,,,,,,,,,,,,, +1999,5,2,7,30,1.6886585,,,,,,,,,,,,,, +1999,5,2,8,30,1.209461,,,,,,,,,,,,,, +1999,5,2,9,30,0.44310433,,,,,,,,,,,,,, +1999,5,2,10,30,0.39464033,,,,,,,,,,,,,, +1999,5,2,11,30,1.0743623,,,,,,,,,,,,,, +1999,5,2,12,30,1.4210382,,,,,,,,,,,,,, +1999,5,2,13,30,1.3673916,,,,,,,,,,,,,, +1999,5,2,14,30,1.0866644,,,,,,,,,,,,,, +1999,5,2,15,30,0.6552623,,,,,,,,,,,,,, +1999,5,2,16,30,0.106507584,,,,,,,,,,,,,, +1999,5,2,17,30,0.8144453,,,,,,,,,,,,,, +1999,5,2,18,30,1.184495,,,,,,,,,,,,,, +1999,5,2,19,30,1.0686876,,,,,,,,,,,,,, +1999,5,2,20,30,0.640357,,,,,,,,,,,,,, +1999,5,2,21,30,0.041230716,,,,,,,,,,,,,, +1999,5,2,22,30,0.6875731,,,,,,,,,,,,,, +1999,5,2,23,30,1.1858137,,,,,,,,,,,,,, +1999,5,3,0,30,1.4162058,,,,,,,,,,,,,, +1999,5,3,1,30,1.3950632,,,,,,,,,,,,,, +1999,5,3,2,30,1.0915773,,,,,,,,,,,,,, +1999,5,3,3,30,0.43338293,,,,,,,,,,,,,, +1999,5,3,4,30,0.5426451,,,,,,,,,,,,,, +1999,5,3,5,30,1.4345292,,,,,,,,,,,,,, +1999,5,3,6,30,1.8818371,,,,,,,,,,,,,, +1999,5,3,7,30,1.9121485,,,,,,,,,,,,,, +1999,5,3,8,30,1.6851528,,,,,,,,,,,,,, +1999,5,3,9,30,1.12316,,,,,,,,,,,,,, +1999,5,3,10,30,0.24950036,,,,,,,,,,,,,, +1999,5,3,11,30,0.70927185,,,,,,,,,,,,,, +1999,5,3,12,30,1.4584945,,,,,,,,,,,,,, +1999,5,3,13,30,1.7755302,,,,,,,,,,,,,, +1999,5,3,14,30,1.6805,,,,,,,,,,,,,, +1999,5,3,15,30,1.3912165,,,,,,,,,,,,,, +1999,5,3,16,30,0.85693204,,,,,,,,,,,,,, +1999,5,3,17,30,0.13376622,,,,,,,,,,,,,, +1999,5,3,18,30,1.0624255,,,,,,,,,,,,,, +1999,5,3,19,30,1.5166016,,,,,,,,,,,,,, +1999,5,3,20,30,1.4278599,,,,,,,,,,,,,, +1999,5,3,21,30,1.0105071,,,,,,,,,,,,,, +1999,5,3,22,30,0.35525444,,,,,,,,,,,,,, +1999,5,3,23,30,0.4382543,,,,,,,,,,,,,, +1999,5,4,0,30,1.0443327,,,,,,,,,,,,,, +1999,5,4,1,30,1.3656342,,,,,,,,,,,,,, +1999,5,4,2,30,1.3784359,,,,,,,,,,,,,, +1999,5,4,3,30,1.0763583,,,,,,,,,,,,,, +1999,5,4,4,30,0.4144423,,,,,,,,,,,,,, +1999,5,4,5,30,0.56594044,,,,,,,,,,,,,, +1999,5,4,6,30,1.4699306,,,,,,,,,,,,,, +1999,5,4,7,30,1.9262778,,,,,,,,,,,,,, +1999,5,4,8,30,1.9429858,,,,,,,,,,,,,, +1999,5,4,9,30,1.6354011,,,,,,,,,,,,,, +1999,5,4,10,30,0.93969727,,,,,,,,,,,,,, +1999,5,4,11,30,0.09391643,,,,,,,,,,,,,, +1999,5,4,12,30,1.1397145,,,,,,,,,,,,,, +1999,5,4,13,30,1.9036329,,,,,,,,,,,,,, +1999,5,4,14,30,2.1402001,,,,,,,,,,,,,, +1999,5,4,15,30,1.9843102,,,,,,,,,,,,,, +1999,5,4,16,30,1.6416365,,,,,,,,,,,,,, +1999,5,4,17,30,0.9171349,,,,,,,,,,,,,, +1999,5,4,18,30,0.33480775,,,,,,,,,,,,,, +1999,5,4,19,30,1.4628303,,,,,,,,,,,,,, +1999,5,4,20,30,1.9368426,,,,,,,,,,,,,, +1999,5,4,21,30,1.8220314,,,,,,,,,,,,,, +1999,5,4,22,30,1.3592868,,,,,,,,,,,,,, +1999,5,4,23,30,0.60762846,,,,,,,,,,,,,, +1999,5,5,0,30,0.31217003,,,,,,,,,,,,,, +1999,5,5,1,30,1.01443,,,,,,,,,,,,,, +1999,5,5,2,30,1.3779626,,,,,,,,,,,,,, +1999,5,5,3,30,1.388599,,,,,,,,,,,,,, +1999,5,5,4,30,1.0763243,,,,,,,,,,,,,, +1999,5,5,5,30,0.39039493,,,,,,,,,,,,,, +1999,5,5,6,30,0.633799,,,,,,,,,,,,,, +1999,5,5,7,30,1.5677879,,,,,,,,,,,,,, +1999,5,5,8,30,1.998677,,,,,,,,,,,,,, +1999,5,5,9,30,1.935523,,,,,,,,,,,,,, +1999,5,5,10,30,1.4959211,,,,,,,,,,,,,, +1999,5,5,11,30,0.6524745,,,,,,,,,,,,,, +1999,5,5,12,30,0.49998587,,,,,,,,,,,,,, +1999,5,5,13,30,1.6287854,,,,,,,,,,,,,, +1999,5,5,14,30,2.336557,,,,,,,,,,,,,, +1999,5,5,15,30,2.4512951,,,,,,,,,,,,,, +1999,5,5,16,30,2.220039,,,,,,,,,,,,,, +1999,5,5,17,30,1.7706953,,,,,,,,,,,,,, +1999,5,5,18,30,0.787866,,,,,,,,,,,,,, +1999,5,5,19,30,0.73795,,,,,,,,,,,,,, +1999,5,5,20,30,1.954819,,,,,,,,,,,,,, +1999,5,5,21,30,2.360461,,,,,,,,,,,,,, +1999,5,5,22,30,2.1611972,,,,,,,,,,,,,, +1999,5,5,23,30,1.6025015,,,,,,,,,,,,,, +1999,5,6,0,30,0.7196444,,,,,,,,,,,,,, +1999,5,6,1,30,0.30628386,,,,,,,,,,,,,, +1999,5,6,2,30,1.0646693,,,,,,,,,,,,,, +1999,5,6,3,30,1.4241087,,,,,,,,,,,,,, +1999,5,6,4,30,1.4121768,,,,,,,,,,,,,, +1999,5,6,5,30,1.0717967,,,,,,,,,,,,,, +1999,5,6,6,30,0.32634917,,,,,,,,,,,,,, +1999,5,6,7,30,0.7671971,,,,,,,,,,,,,, +1999,5,6,8,30,1.6989009,,,,,,,,,,,,,, +1999,5,6,9,30,2.0376647,,,,,,,,,,,,,, +1999,5,6,10,30,1.8449177,,,,,,,,,,,,,, +1999,5,6,11,30,1.262757,,,,,,,,,,,,,, +1999,5,6,12,30,0.29084617,,,,,,,,,,,,,, +1999,5,6,13,30,0.97093374,,,,,,,,,,,,,, +1999,5,6,14,30,2.108439,,,,,,,,,,,,,, +1999,5,6,15,30,2.6905277,,,,,,,,,,,,,, +1999,5,6,16,30,2.6640077,,,,,,,,,,,,,, +1999,5,6,17,30,2.3483431,,,,,,,,,,,,,, +1999,5,6,18,30,1.7378756,,,,,,,,,,,,,, +1999,5,6,19,30,0.4730862,,,,,,,,,,,,,, +1999,5,6,20,30,1.2677071,,,,,,,,,,,,,, +1999,5,6,21,30,2.4411907,,,,,,,,,,,,,, +1999,5,6,22,30,2.6962423,,,,,,,,,,,,,, +1999,5,6,23,30,2.3780377,,,,,,,,,,,,,, +1999,5,7,0,30,1.7040914,,,,,,,,,,,,,, +1999,5,7,1,30,0.6975831,,,,,,,,,,,,,, +1999,5,7,2,30,0.38984305,,,,,,,,,,,,,, +1999,5,7,3,30,1.1549737,,,,,,,,,,,,,, +1999,5,7,4,30,1.4807731,,,,,,,,,,,,,, +1999,5,7,5,30,1.4282365,,,,,,,,,,,,,, +1999,5,7,6,30,1.0300739,,,,,,,,,,,,,, +1999,5,7,7,30,0.20253344,,,,,,,,,,,,,, +1999,5,7,8,30,0.9441144,,,,,,,,,,,,,, +1999,5,7,9,30,1.8034694,,,,,,,,,,,,,, +1999,5,7,10,30,1.9967241,,,,,,,,,,,,,, +1999,5,7,11,30,1.6682951,,,,,,,,,,,,,, +1999,5,7,12,30,0.9637911,,,,,,,,,,,,,, +1999,5,7,13,30,0.14479226,,,,,,,,,,,,,, +1999,5,7,14,30,1.4424131,,,,,,,,,,,,,, +1999,5,7,15,30,2.5113158,,,,,,,,,,,,,, +1999,5,7,16,30,2.920007,,,,,,,,,,,,,, +1999,5,7,17,30,2.7597802,,,,,,,,,,,,,, +1999,5,7,18,30,2.3506415,,,,,,,,,,,,,, +1999,5,7,19,30,1.5342209,,,,,,,,,,,,,, +1999,5,7,20,30,0.15614292,,,,,,,,,,,,,, +1999,5,7,21,30,1.8152978,,,,,,,,,,,,,, +1999,5,7,22,30,2.8165498,,,,,,,,,,,,,, +1999,5,7,23,30,2.8815393,,,,,,,,,,,,,, +1999,5,8,0,30,2.452534,,,,,,,,,,,,,, +1999,5,8,1,30,1.6774229,,,,,,,,,,,,,, +1999,5,8,2,30,0.58293706,,,,,,,,,,,,,, +1999,5,8,3,30,0.52099717,,,,,,,,,,,,,, +1999,5,8,4,30,1.2524445,,,,,,,,,,,,,, +1999,5,8,5,30,1.523026,,,,,,,,,,,,,, +1999,5,8,6,30,1.4065912,,,,,,,,,,,,,, +1999,5,8,7,30,0.92697203,,,,,,,,,,,,,, +1999,5,8,8,30,0.09531173,,,,,,,,,,,,,, +1999,5,8,9,30,1.1097233,,,,,,,,,,,,,, +1999,5,8,10,30,1.8328251,,,,,,,,,,,,,, +1999,5,8,11,30,1.8732198,,,,,,,,,,,,,, +1999,5,8,12,30,1.4373838,,,,,,,,,,,,,, +1999,5,8,13,30,0.6369745,,,,,,,,,,,,,, +1999,5,8,14,30,0.5458024,,,,,,,,,,,,,, +1999,5,8,15,30,1.8534228,,,,,,,,,,,,,, +1999,5,8,16,30,2.7835648,,,,,,,,,,,,,, +1999,5,8,17,30,3.0083916,,,,,,,,,,,,,, +1999,5,8,18,30,2.7400718,,,,,,,,,,,,,, +1999,5,8,19,30,2.2241657,,,,,,,,,,,,,, +1999,5,8,20,30,1.187414,,,,,,,,,,,,,, +1999,5,8,21,30,0.58606786,,,,,,,,,,,,,, +1999,5,8,22,30,2.260134,,,,,,,,,,,,,, +1999,5,8,23,30,3.0079787,,,,,,,,,,,,,, +1999,5,9,0,30,2.905937,,,,,,,,,,,,,, +1999,5,9,1,30,2.4064987,,,,,,,,,,,,,, +1999,5,9,2,30,1.5579344,,,,,,,,,,,,,, +1999,5,9,3,30,0.4199745,,,,,,,,,,,,,, +1999,5,9,4,30,0.6609155,,,,,,,,,,,,,, +1999,5,9,5,30,1.3285394,,,,,,,,,,,,,, +1999,5,9,6,30,1.523454,,,,,,,,,,,,,, +1999,5,9,7,30,1.3266236,,,,,,,,,,,,,, +1999,5,9,8,30,0.77089703,,,,,,,,,,,,,, +1999,5,9,9,30,0.1891087,,,,,,,,,,,,,, +1999,5,9,10,30,1.2126114,,,,,,,,,,,,,, +1999,5,9,11,30,1.7786148,,,,,,,,,,,,,, +1999,5,9,12,30,1.7002968,,,,,,,,,,,,,, +1999,5,9,13,30,1.1920496,,,,,,,,,,,,,, +1999,5,9,14,30,0.31849498,,,,,,,,,,,,,, +1999,5,9,15,30,0.9068187,,,,,,,,,,,,,, +1999,5,9,16,30,2.147478,,,,,,,,,,,,,, +1999,5,9,17,30,2.8972507,,,,,,,,,,,,,, +1999,5,9,18,30,2.962905,,,,,,,,,,,,,, +1999,5,9,19,30,2.614378,,,,,,,,,,,,,, +1999,5,9,20,30,1.9832375,,,,,,,,,,,,,, +1999,5,9,21,30,0.76528037,,,,,,,,,,,,,, +1999,5,9,22,30,1.0501993,,,,,,,,,,,,,, +1999,5,9,23,30,2.5138173,,,,,,,,,,,,,, +1999,5,10,0,30,3.0050292,,,,,,,,,,,,,, +1999,5,10,1,30,2.8041453,,,,,,,,,,,,,, +1999,5,10,2,30,2.2750003,,,,,,,,,,,,,, +1999,5,10,3,30,1.3779008,,,,,,,,,,,,,, +1999,5,10,4,30,0.2487865,,,,,,,,,,,,,, +1999,5,10,5,30,0.77673465,,,,,,,,,,,,,, +1999,5,10,6,30,1.3585898,,,,,,,,,,,,,, +1999,5,10,7,30,1.4678314,,,,,,,,,,,,,, +1999,5,10,8,30,1.1974615,,,,,,,,,,,,,, +1999,5,10,9,30,0.6035822,,,,,,,,,,,,,, +1999,5,10,10,30,0.31685928,,,,,,,,,,,,,, +1999,5,10,11,30,1.2324167,,,,,,,,,,,,,, +1999,5,10,12,30,1.6660045,,,,,,,,,,,,,, +1999,5,10,13,30,1.5165226,,,,,,,,,,,,,, +1999,5,10,14,30,0.9619481,,,,,,,,,,,,,, +1999,5,10,15,30,0.058383603,,,,,,,,,,,,,, +1999,5,10,16,30,1.1747482,,,,,,,,,,,,,, +1999,5,10,17,30,2.2875962,,,,,,,,,,,,,, +1999,5,10,18,30,2.852237,,,,,,,,,,,,,, +1999,5,10,19,30,2.8018532,,,,,,,,,,,,,, +1999,5,10,20,30,2.3971667,,,,,,,,,,,,,, +1999,5,10,21,30,1.6661406,,,,,,,,,,,,,, +1999,5,10,22,30,0.36720192,,,,,,,,,,,,,, +1999,5,10,23,30,1.3676908,,,,,,,,,,,,,, +1999,5,11,0,30,2.5575633,,,,,,,,,,,,,, +1999,5,11,1,30,2.8545918,,,,,,,,,,,,,, +1999,5,11,2,30,2.6245522,,,,,,,,,,,,,, +1999,5,11,3,30,2.085021,,,,,,,,,,,,,, +1999,5,11,4,30,1.1661162,,,,,,,,,,,,,, +1999,5,11,5,30,0.117162146,,,,,,,,,,,,,, +1999,5,11,6,30,0.84287196,,,,,,,,,,,,,, +1999,5,11,7,30,1.3352805,,,,,,,,,,,,,, +1999,5,11,8,30,1.3700911,,,,,,,,,,,,,, +1999,5,11,9,30,1.0574137,,,,,,,,,,,,,, +1999,5,11,10,30,0.47643024,,,,,,,,,,,,,, +1999,5,11,11,30,0.37311175,,,,,,,,,,,,,, +1999,5,11,12,30,1.17821,,,,,,,,,,,,,, +1999,5,11,13,30,1.5261725,,,,,,,,,,,,,, +1999,5,11,14,30,1.3447076,,,,,,,,,,,,,, +1999,5,11,15,30,0.76527506,,,,,,,,,,,,,, +1999,5,11,16,30,0.18199836,,,,,,,,,,,,,, +1999,5,11,17,30,1.3150626,,,,,,,,,,,,,, +1999,5,11,18,30,2.2636971,,,,,,,,,,,,,, +1999,5,11,19,30,2.667728,,,,,,,,,,,,,, +1999,5,11,20,30,2.5486255,,,,,,,,,,,,,, +1999,5,11,21,30,2.1154857,,,,,,,,,,,,,, +1999,5,11,22,30,1.3308663,,,,,,,,,,,,,, +1999,5,11,23,30,0.15335174,,,,,,,,,,,,,, +1999,5,12,0,30,1.5077512,,,,,,,,,,,,,, +1999,5,12,1,30,2.4398484,,,,,,,,,,,,,, +1999,5,12,2,30,2.624468,,,,,,,,,,,,,, +1999,5,12,3,30,2.4039376,,,,,,,,,,,,,, +1999,5,12,4,30,1.8602648,,,,,,,,,,,,,, +1999,5,12,5,30,0.95935833,,,,,,,,,,,,,, +1999,5,12,6,30,0.07256703,,,,,,,,,,,,,, +1999,5,12,7,30,0.855981,,,,,,,,,,,,,, +1999,5,12,8,30,1.2797636,,,,,,,,,,,,,, +1999,5,12,9,30,1.2679164,,,,,,,,,,,,,, +1999,5,12,10,30,0.95360965,,,,,,,,,,,,,, +1999,5,12,11,30,0.4258705,,,,,,,,,,,,,, +1999,5,12,12,30,0.34361762,,,,,,,,,,,,,, +1999,5,12,13,30,1.0708629,,,,,,,,,,,,,, +1999,5,12,14,30,1.3793018,,,,,,,,,,,,,, +1999,5,12,15,30,1.1934232,,,,,,,,,,,,,, +1999,5,12,16,30,0.6146945,,,,,,,,,,,,,, +1999,5,12,17,30,0.2953983,,,,,,,,,,,,,, +1999,5,12,18,30,1.3134549,,,,,,,,,,,,,, +1999,5,12,19,30,2.0887809,,,,,,,,,,,,,, +1999,5,12,20,30,2.3760307,,,,,,,,,,,,,, +1999,5,12,21,30,2.2366781,,,,,,,,,,,,,, +1999,5,12,22,30,1.8112504,,,,,,,,,,,,,, +1999,5,12,23,30,1.0309012,,,,,,,,,,,,,, +1999,5,13,0,30,0.25300387,,,,,,,,,,,,,, +1999,5,13,1,30,1.5062176,,,,,,,,,,,,,, +1999,5,13,2,30,2.2358165,,,,,,,,,,,,,, +1999,5,13,3,30,2.3688438,,,,,,,,,,,,,, +1999,5,13,4,30,2.1688905,,,,,,,,,,,,,, +1999,5,13,5,30,1.6353321,,,,,,,,,,,,,, +1999,5,13,6,30,0.79680395,,,,,,,,,,,,,, +1999,5,13,7,30,0.1148358,,,,,,,,,,,,,, +1999,5,13,8,30,0.8453914,,,,,,,,,,,,,, +1999,5,13,9,30,1.2331467,,,,,,,,,,,,,, +1999,5,13,10,30,1.2030718,,,,,,,,,,,,,, +1999,5,13,11,30,0.9221975,,,,,,,,,,,,,, +1999,5,13,12,30,0.4662865,,,,,,,,,,,,,, +1999,5,13,13,30,0.24183881,,,,,,,,,,,,,, +1999,5,13,14,30,0.93443596,,,,,,,,,,,,,, +1999,5,13,15,30,1.2394618,,,,,,,,,,,,,, +1999,5,13,16,30,1.0709714,,,,,,,,,,,,,, +1999,5,13,17,30,0.52356833,,,,,,,,,,,,,, +1999,5,13,18,30,0.30389825,,,,,,,,,,,,,, +1999,5,13,19,30,1.1734927,,,,,,,,,,,,,, +1999,5,13,20,30,1.7953285,,,,,,,,,,,,,, +1999,5,13,21,30,2.024308,,,,,,,,,,,,,, +1999,5,13,22,30,1.9119356,,,,,,,,,,,,,, +1999,5,13,23,30,1.526001,,,,,,,,,,,,,, +1999,5,14,0,30,0.7898717,,,,,,,,,,,,,, +1999,5,14,1,30,0.359988,,,,,,,,,,,,,, +1999,5,14,2,30,1.4234426,,,,,,,,,,,,,, +1999,5,14,3,30,2.0059562,,,,,,,,,,,,,, +1999,5,14,4,30,2.1222591,,,,,,,,,,,,,, +1999,5,14,5,30,1.9491541,,,,,,,,,,,,,, +1999,5,14,6,30,1.4488323,,,,,,,,,,,,,, +1999,5,14,7,30,0.69227767,,,,,,,,,,,,,, +1999,5,14,8,30,0.14668897,,,,,,,,,,,,,, +1999,5,14,9,30,0.8606833,,,,,,,,,,,,,, +1999,5,14,10,30,1.2347901,,,,,,,,,,,,,, +1999,5,14,11,30,1.2050953,,,,,,,,,,,,,, +1999,5,14,12,30,0.98052967,,,,,,,,,,,,,, +1999,5,14,13,30,0.5910275,,,,,,,,,,,,,, +1999,5,14,14,30,0.12579614,,,,,,,,,,,,,, +1999,5,14,15,30,0.80162525,,,,,,,,,,,,,, +1999,5,14,16,30,1.1283218,,,,,,,,,,,,,, +1999,5,14,17,30,0.99690276,,,,,,,,,,,,,, +1999,5,14,18,30,0.5130828,,,,,,,,,,,,,, +1999,5,14,19,30,0.20350087,,,,,,,,,,,,,, +1999,5,14,20,30,0.91801804,,,,,,,,,,,,,, +1999,5,14,21,30,1.4378166,,,,,,,,,,,,,, +1999,5,14,22,30,1.6731822,,,,,,,,,,,,,, +1999,5,14,23,30,1.619641,,,,,,,,,,,,,, +1999,5,15,0,30,1.2813535,,,,,,,,,,,,,, +1999,5,15,1,30,0.60247517,,,,,,,,,,,,,, +1999,5,15,2,30,0.41364828,,,,,,,,,,,,,, +1999,5,15,3,30,1.3051113,,,,,,,,,,,,,, +1999,5,15,4,30,1.7867762,,,,,,,,,,,,,, +1999,5,15,5,30,1.9119034,,,,,,,,,,,,,, +1999,5,15,6,30,1.7733825,,,,,,,,,,,,,, +1999,5,15,7,30,1.3135087,,,,,,,,,,,,,, +1999,5,15,8,30,0.6126212,,,,,,,,,,,,,, +1999,5,15,9,30,0.21571259,,,,,,,,,,,,,, +1999,5,15,10,30,0.94520915,,,,,,,,,,,,,, +1999,5,15,11,30,1.3062538,,,,,,,,,,,,,, +1999,5,15,12,30,1.285675,,,,,,,,,,,,,, +1999,5,15,13,30,1.123318,,,,,,,,,,,,,, +1999,5,15,14,30,0.76588494,,,,,,,,,,,,,, +1999,5,15,15,30,0.1493002,,,,,,,,,,,,,, +1999,5,15,16,30,0.71842664,,,,,,,,,,,,,, +1999,5,15,17,30,1.0809664,,,,,,,,,,,,,, +1999,5,15,18,30,1.0031614,,,,,,,,,,,,,, +1999,5,15,19,30,0.60814273,,,,,,,,,,,,,, +1999,5,15,20,30,0.091213055,,,,,,,,,,,,,, +1999,5,15,21,30,0.5984825,,,,,,,,,,,,,, +1999,5,15,22,30,1.0897537,,,,,,,,,,,,,, +1999,5,15,23,30,1.3808029,,,,,,,,,,,,,, +1999,5,16,0,30,1.3856231,,,,,,,,,,,,,, +1999,5,16,1,30,1.0797516,,,,,,,,,,,,,, +1999,5,16,2,30,0.45952502,,,,,,,,,,,,,, +1999,5,16,3,30,0.42760554,,,,,,,,,,,,,, +1999,5,16,4,30,1.177993,,,,,,,,,,,,,, +1999,5,16,5,30,1.60552,,,,,,,,,,,,,, +1999,5,16,6,30,1.7588282,,,,,,,,,,,,,, +1999,5,16,7,30,1.645469,,,,,,,,,,,,,, +1999,5,16,8,30,1.1971623,,,,,,,,,,,,,, +1999,5,16,9,30,0.4939057,,,,,,,,,,,,,, +1999,5,16,10,30,0.37213504,,,,,,,,,,,,,, +1999,5,16,11,30,1.1170113,,,,,,,,,,,,,, +1999,5,16,12,30,1.447629,,,,,,,,,,,,,, +1999,5,16,13,30,1.4365376,,,,,,,,,,,,,, +1999,5,16,14,30,1.3166585,,,,,,,,,,,,,, +1999,5,16,15,30,0.9265006,,,,,,,,,,,,,, +1999,5,16,16,30,0.19865999,,,,,,,,,,,,,, +1999,5,16,17,30,0.73542225,,,,,,,,,,,,,, +1999,5,16,18,30,1.1375908,,,,,,,,,,,,,, +1999,5,16,19,30,1.1199436,,,,,,,,,,,,,, +1999,5,16,20,30,0.81156385,,,,,,,,,,,,,, +1999,5,16,21,30,0.33392078,,,,,,,,,,,,,, +1999,5,16,22,30,0.2964791,,,,,,,,,,,,,, +1999,5,16,23,30,0.82399714,,,,,,,,,,,,,, +1999,5,17,0,30,1.1817478,,,,,,,,,,,,,, +1999,5,17,1,30,1.2148669,,,,,,,,,,,,,, +1999,5,17,2,30,0.92375195,,,,,,,,,,,,,, +1999,5,17,3,30,0.36459297,,,,,,,,,,,,,, +1999,5,17,4,30,0.41264072,,,,,,,,,,,,,, +1999,5,17,5,30,1.0700024,,,,,,,,,,,,,, +1999,5,17,6,30,1.4864947,,,,,,,,,,,,,, +1999,5,17,7,30,1.6621592,,,,,,,,,,,,,, +1999,5,17,8,30,1.5322623,,,,,,,,,,,,,, +1999,5,17,9,30,1.0414631,,,,,,,,,,,,,, +1999,5,17,10,30,0.28380358,,,,,,,,,,,,,, +1999,5,17,11,30,0.63761914,,,,,,,,,,,,,, +1999,5,17,12,30,1.3651783,,,,,,,,,,,,,, +1999,5,17,13,30,1.640033,,,,,,,,,,,,,, +1999,5,17,14,30,1.6268651,,,,,,,,,,,,,, +1999,5,17,15,30,1.4982889,,,,,,,,,,,,,, +1999,5,17,16,30,0.99159825,,,,,,,,,,,,,, +1999,5,17,17,30,0.17851894,,,,,,,,,,,,,, +1999,5,17,18,30,0.8917986,,,,,,,,,,,,,, +1999,5,17,19,30,1.3229847,,,,,,,,,,,,,, +1999,5,17,20,30,1.3479269,,,,,,,,,,,,,, +1999,5,17,21,30,1.0802572,,,,,,,,,,,,,, +1999,5,17,22,30,0.59241426,,,,,,,,,,,,,, +1999,5,17,23,30,0.106748596,,,,,,,,,,,,,, +1999,5,18,0,30,0.68682176,,,,,,,,,,,,,, +1999,5,18,1,30,1.0818944,,,,,,,,,,,,,, +1999,5,18,2,30,1.1072582,,,,,,,,,,,,,, +1999,5,18,3,30,0.8241683,,,,,,,,,,,,,, +1999,5,18,4,30,0.31749418,,,,,,,,,,,,,, +1999,5,18,5,30,0.3953025,,,,,,,,,,,,,, +1999,5,18,6,30,1.0183922,,,,,,,,,,,,,, +1999,5,18,7,30,1.437278,,,,,,,,,,,,,, +1999,5,18,8,30,1.5908521,,,,,,,,,,,,,, +1999,5,18,9,30,1.3831658,,,,,,,,,,,,,, +1999,5,18,10,30,0.8005482,,,,,,,,,,,,,, +1999,5,18,11,30,0.0805306,,,,,,,,,,,,,, +1999,5,18,12,30,0.9960276,,,,,,,,,,,,,, +1999,5,18,13,30,1.6566217,,,,,,,,,,,,,, +1999,5,18,14,30,1.849026,,,,,,,,,,,,,, +1999,5,18,15,30,1.8059368,,,,,,,,,,,,,, +1999,5,18,16,30,1.5919671,,,,,,,,,,,,,, +1999,5,18,17,30,0.8882825,,,,,,,,,,,,,, +1999,5,18,18,30,0.30788752,,,,,,,,,,,,,, +1999,5,18,19,30,1.1989944,,,,,,,,,,,,,, +1999,5,18,20,30,1.6206774,,,,,,,,,,,,,, +1999,5,18,21,30,1.6357397,,,,,,,,,,,,,, +1999,5,18,22,30,1.3266069,,,,,,,,,,,,,, +1999,5,18,23,30,0.74568063,,,,,,,,,,,,,, +1999,5,19,0,30,0.06968174,,,,,,,,,,,,,, +1999,5,19,1,30,0.6868535,,,,,,,,,,,,,, +1999,5,19,2,30,1.0709138,,,,,,,,,,,,,, +1999,5,19,3,30,1.064338,,,,,,,,,,,,,, +1999,5,19,4,30,0.77955866,,,,,,,,,,,,,, +1999,5,19,5,30,0.28483468,,,,,,,,,,,,,, +1999,5,19,6,30,0.42563424,,,,,,,,,,,,,, +1999,5,19,7,30,1.0496887,,,,,,,,,,,,,, +1999,5,19,8,30,1.4361248,,,,,,,,,,,,,, +1999,5,19,9,30,1.5000333,,,,,,,,,,,,,, +1999,5,19,10,30,1.162886,,,,,,,,,,,,,, +1999,5,19,11,30,0.46218705,,,,,,,,,,,,,, +1999,5,19,12,30,0.482406,,,,,,,,,,,,,, +1999,5,19,13,30,1.405577,,,,,,,,,,,,,, +1999,5,19,14,30,1.9455965,,,,,,,,,,,,,, +1999,5,19,15,30,2.0311859,,,,,,,,,,,,,, +1999,5,19,16,30,1.915623,,,,,,,,,,,,,, +1999,5,19,17,30,1.5298474,,,,,,,,,,,,,, +1999,5,19,18,30,0.58056736,,,,,,,,,,,,,, +1999,5,19,19,30,0.7262307,,,,,,,,,,,,,, +1999,5,19,20,30,1.6169609,,,,,,,,,,,,,, +1999,5,19,21,30,1.9598567,,,,,,,,,,,,,, +1999,5,19,22,30,1.8879105,,,,,,,,,,,,,, +1999,5,19,23,30,1.4519159,,,,,,,,,,,,,, +1999,5,20,0,30,0.72688776,,,,,,,,,,,,,, +1999,5,20,1,30,0.11735562,,,,,,,,,,,,,, +1999,5,20,2,30,0.8021358,,,,,,,,,,,,,, +1999,5,20,3,30,1.1312671,,,,,,,,,,,,,, +1999,5,20,4,30,1.0725131,,,,,,,,,,,,,, +1999,5,20,5,30,0.7499876,,,,,,,,,,,,,, +1999,5,20,6,30,0.20676024,,,,,,,,,,,,,, +1999,5,20,7,30,0.55169654,,,,,,,,,,,,,, +1999,5,20,8,30,1.1542736,,,,,,,,,,,,,, +1999,5,20,9,30,1.4409415,,,,,,,,,,,,,, +1999,5,20,10,30,1.3572686,,,,,,,,,,,,,, +1999,5,20,11,30,0.8644676,,,,,,,,,,,,,, +1999,5,20,12,30,0.069668375,,,,,,,,,,,,,, +1999,5,20,13,30,0.96679944,,,,,,,,,,,,,, +1999,5,20,14,30,1.8120792,,,,,,,,,,,,,, +1999,5,20,15,30,2.1849618,,,,,,,,,,,,,, +1999,5,20,16,30,2.1457553,,,,,,,,,,,,,, +1999,5,20,17,30,1.90557,,,,,,,,,,,,,, +1999,5,20,18,30,1.2710421,,,,,,,,,,,,,, +1999,5,20,19,30,0.17851229,,,,,,,,,,,,,, +1999,5,20,20,30,1.2883483,,,,,,,,,,,,,, +1999,5,20,21,30,2.0509071,,,,,,,,,,,,,, +1999,5,20,22,30,2.2363343,,,,,,,,,,,,,, +1999,5,20,23,30,2.0077891,,,,,,,,,,,,,, +1999,5,21,0,30,1.3942778,,,,,,,,,,,,,, +1999,5,21,1,30,0.5288102,,,,,,,,,,,,,, +1999,5,21,2,30,0.35145205,,,,,,,,,,,,,, +1999,5,21,3,30,0.99253416,,,,,,,,,,,,,, +1999,5,21,4,30,1.2297144,,,,,,,,,,,,,, +1999,5,21,5,30,1.0839275,,,,,,,,,,,,,, +1999,5,21,6,30,0.6644596,,,,,,,,,,,,,, +1999,5,21,7,30,0.121983185,,,,,,,,,,,,,, +1999,5,21,8,30,0.77516,,,,,,,,,,,,,, +1999,5,21,9,30,1.2869933,,,,,,,,,,,,,, +1999,5,21,10,30,1.4119173,,,,,,,,,,,,,, +1999,5,21,11,30,1.1520728,,,,,,,,,,,,,, +1999,5,21,12,30,0.49582934,,,,,,,,,,,,,, +1999,5,21,13,30,0.4614841,,,,,,,,,,,,,, +1999,5,21,14,30,1.4658562,,,,,,,,,,,,,, +1999,5,21,15,30,2.1609251,,,,,,,,,,,,,, +1999,5,21,16,30,2.3391469,,,,,,,,,,,,,, +1999,5,21,17,30,2.1634066,,,,,,,,,,,,,, +1999,5,21,18,30,1.7415749,,,,,,,,,,,,,, +1999,5,21,19,30,0.81531316,,,,,,,,,,,,,, +1999,5,21,20,30,0.6449731,,,,,,,,,,,,,, +1999,5,21,21,30,1.8592088,,,,,,,,,,,,,, +1999,5,21,22,30,2.3867455,,,,,,,,,,,,,, +1999,5,21,23,30,2.3632443,,,,,,,,,,,,,, +1999,5,22,0,30,1.946655,,,,,,,,,,,,,, +1999,5,22,1,30,1.1549246,,,,,,,,,,,,,, +1999,5,22,2,30,0.20092738,,,,,,,,,,,,,, +1999,5,22,3,30,0.6641291,,,,,,,,,,,,,, +1999,5,22,4,30,1.2028439,,,,,,,,,,,,,, +1999,5,22,5,30,1.308187,,,,,,,,,,,,,, +1999,5,22,6,30,1.0287423,,,,,,,,,,,,,, +1999,5,22,7,30,0.46637255,,,,,,,,,,,,,, +1999,5,22,8,30,0.33011207,,,,,,,,,,,,,, +1999,5,22,9,30,1.0433824,,,,,,,,,,,,,, +1999,5,22,10,30,1.3917727,,,,,,,,,,,,,, +1999,5,22,11,30,1.3248551,,,,,,,,,,,,,, +1999,5,22,12,30,0.883805,,,,,,,,,,,,,, +1999,5,22,13,30,0.06828661,,,,,,,,,,,,,, +1999,5,22,14,30,0.9851779,,,,,,,,,,,,,, +1999,5,22,15,30,1.9240987,,,,,,,,,,,,,, +1999,5,22,16,30,2.4099054,,,,,,,,,,,,,, +1999,5,22,17,30,2.3903575,,,,,,,,,,,,,, +1999,5,22,18,30,2.0651321,,,,,,,,,,,,,, +1999,5,22,19,30,1.4108541,,,,,,,,,,,,,, +1999,5,22,20,30,0.2503869,,,,,,,,,,,,,, +1999,5,22,21,30,1.3228068,,,,,,,,,,,,,, +1999,5,22,22,30,2.3117576,,,,,,,,,,,,,, +1999,5,22,23,30,2.546539,,,,,,,,,,,,,, +1999,5,23,0,30,2.315083,,,,,,,,,,,,,, +1999,5,23,1,30,1.7207305,,,,,,,,,,,,,, +1999,5,23,2,30,0.7876936,,,,,,,,,,,,,, +1999,5,23,3,30,0.22196516,,,,,,,,,,,,,, +1999,5,23,4,30,0.97779244,,,,,,,,,,,,,, +1999,5,23,5,30,1.3655251,,,,,,,,,,,,,, +1999,5,23,6,30,1.3018153,,,,,,,,,,,,,, +1999,5,23,7,30,0.8592006,,,,,,,,,,,,,, +1999,5,23,8,30,0.17199329,,,,,,,,,,,,,, +1999,5,23,9,30,0.6794101,,,,,,,,,,,,,, +1999,5,23,10,30,1.2808173,,,,,,,,,,,,,, +1999,5,23,11,30,1.4255273,,,,,,,,,,,,,, +1999,5,23,12,30,1.1680646,,,,,,,,,,,,,, +1999,5,23,13,30,0.5513106,,,,,,,,,,,,,, +1999,5,23,14,30,0.41832542,,,,,,,,,,,,,, +1999,5,23,15,30,1.4991889,,,,,,,,,,,,,, +1999,5,23,16,30,2.2886596,,,,,,,,,,,,,, +1999,5,23,17,30,2.5360582,,,,,,,,,,,,,, +1999,5,23,18,30,2.3324342,,,,,,,,,,,,,, +1999,5,23,19,30,1.8399159,,,,,,,,,,,,,, +1999,5,23,20,30,0.9340283,,,,,,,,,,,,,, +1999,5,23,21,30,0.5255766,,,,,,,,,,,,,, +1999,5,23,22,30,1.9042847,,,,,,,,,,,,,, +1999,5,23,23,30,2.5657563,,,,,,,,,,,,,, +1999,5,24,0,30,2.5251164,,,,,,,,,,,,,, +1999,5,24,1,30,2.129168,,,,,,,,,,,,,, +1999,5,24,2,30,1.3879712,,,,,,,,,,,,,, +1999,5,24,3,30,0.37273234,,,,,,,,,,,,,, +1999,5,24,4,30,0.59857714,,,,,,,,,,,,,, +1999,5,24,5,30,1.2201961,,,,,,,,,,,,,, +1999,5,24,6,30,1.4237804,,,,,,,,,,,,,, +1999,5,24,7,30,1.1790881,,,,,,,,,,,,,, +1999,5,24,8,30,0.5886218,,,,,,,,,,,,,, +1999,5,24,9,30,0.24293795,,,,,,,,,,,,,, +1999,5,24,10,30,0.9969772,,,,,,,,,,,,,, +1999,5,24,11,30,1.4260889,,,,,,,,,,,,,, +1999,5,24,12,30,1.3682345,,,,,,,,,,,,,, +1999,5,24,13,30,0.9393789,,,,,,,,,,,,,, +1999,5,24,14,30,0.16579121,,,,,,,,,,,,,, +1999,5,24,15,30,0.91215336,,,,,,,,,,,,,, +1999,5,24,16,30,1.9417711,,,,,,,,,,,,,, +1999,5,24,17,30,2.517516,,,,,,,,,,,,,, +1999,5,24,18,30,2.5312765,,,,,,,,,,,,,, +1999,5,24,19,30,2.1634011,,,,,,,,,,,,,, +1999,5,24,20,30,1.4946616,,,,,,,,,,,,,, +1999,5,24,21,30,0.38510174,,,,,,,,,,,,,, +1999,5,24,22,30,1.1442133,,,,,,,,,,,,,, +1999,5,24,23,30,2.293962,,,,,,,,,,,,,, +1999,5,25,0,30,2.6182601,,,,,,,,,,,,,, +1999,5,25,1,30,2.377796,,,,,,,,,,,,,, +1999,5,25,2,30,1.8676373,,,,,,,,,,,,,, +1999,5,25,3,30,1.013215,,,,,,,,,,,,,, +1999,5,25,4,30,0.0970151,,,,,,,,,,,,,, +1999,5,25,5,30,0.89581,,,,,,,,,,,,,, +1999,5,25,6,30,1.3458289,,,,,,,,,,,,,, +1999,5,25,7,30,1.3653809,,,,,,,,,,,,,, +1999,5,25,8,30,0.96870315,,,,,,,,,,,,,, +1999,5,25,9,30,0.29251227,,,,,,,,,,,,,, +1999,5,25,10,30,0.5330351,,,,,,,,,,,,,, +1999,5,25,11,30,1.2068381,,,,,,,,,,,,,, +1999,5,25,12,30,1.4545214,,,,,,,,,,,,,, +1999,5,25,13,30,1.2260115,,,,,,,,,,,,,, +1999,5,25,14,30,0.65632,,,,,,,,,,,,,, +1999,5,25,15,30,0.25047022,,,,,,,,,,,,,, +1999,5,25,16,30,1.3526543,,,,,,,,,,,,,, +1999,5,25,17,30,2.2482233,,,,,,,,,,,,,, +1999,5,25,18,30,2.5835295,,,,,,,,,,,,,, +1999,5,25,19,30,2.3963885,,,,,,,,,,,,,, +1999,5,25,20,30,1.8922806,,,,,,,,,,,,,, +1999,5,25,21,30,1.0708722,,,,,,,,,,,,,, +1999,5,25,22,30,0.23782842,,,,,,,,,,,,,, +1999,5,25,23,30,1.6182377,,,,,,,,,,,,,, +1999,5,26,0,30,2.4707646,,,,,,,,,,,,,, +1999,5,26,1,30,2.5268586,,,,,,,,,,,,,, +1999,5,26,2,30,2.1720147,,,,,,,,,,,,,, +1999,5,26,3,30,1.5795071,,,,,,,,,,,,,, +1999,5,26,4,30,0.65084046,,,,,,,,,,,,,, +1999,5,26,5,30,0.3848979,,,,,,,,,,,,,, +1999,5,26,6,30,1.0758471,,,,,,,,,,,,,, +1999,5,26,7,30,1.3613989,,,,,,,,,,,,,, +1999,5,26,8,30,1.235532,,,,,,,,,,,,,, +1999,5,26,9,30,0.7469741,,,,,,,,,,,,,, +1999,5,26,10,30,0.13357921,,,,,,,,,,,,,, +1999,5,26,11,30,0.7249096,,,,,,,,,,,,,, +1999,5,26,12,30,1.2831092,,,,,,,,,,,,,, +1999,5,26,13,30,1.3836309,,,,,,,,,,,,,, +1999,5,26,14,30,1.0342515,,,,,,,,,,,,,, +1999,5,26,15,30,0.36773577,,,,,,,,,,,,,, +1999,5,26,16,30,0.6032662,,,,,,,,,,,,,, +1999,5,26,17,30,1.6605318,,,,,,,,,,,,,, +1999,5,26,18,30,2.3667457,,,,,,,,,,,,,, +1999,5,26,19,30,2.4784076,,,,,,,,,,,,,, +1999,5,26,20,30,2.1475787,,,,,,,,,,,,,, +1999,5,26,21,30,1.5554445,,,,,,,,,,,,,, +1999,5,26,22,30,0.64435977,,,,,,,,,,,,,, +1999,5,26,23,30,0.6662176,,,,,,,,,,,,,, +1999,5,27,0,30,1.8992287,,,,,,,,,,,,,, +1999,5,27,1,30,2.4753377,,,,,,,,,,,,,, +1999,5,27,2,30,2.3601718,,,,,,,,,,,,,, +1999,5,27,3,30,1.9490159,,,,,,,,,,,,,, +1999,5,27,4,30,1.293598,,,,,,,,,,,,,, +1999,5,27,5,30,0.3433403,,,,,,,,,,,,,, +1999,5,27,6,30,0.6004694,,,,,,,,,,,,,, +1999,5,27,7,30,1.1581184,,,,,,,,,,,,,, +1999,5,27,8,30,1.3256731,,,,,,,,,,,,,, +1999,5,27,9,30,1.1126854,,,,,,,,,,,,,, +1999,5,27,10,30,0.59572184,,,,,,,,,,,,,, +1999,5,27,11,30,0.1442305,,,,,,,,,,,,,, +1999,5,27,12,30,0.7776407,,,,,,,,,,,,,, +1999,5,27,13,30,1.2515455,,,,,,,,,,,,,, +1999,5,27,14,30,1.2664071,,,,,,,,,,,,,, +1999,5,27,15,30,0.853953,,,,,,,,,,,,,, +1999,5,27,16,30,0.14817803,,,,,,,,,,,,,, +1999,5,27,17,30,0.8252826,,,,,,,,,,,,,, +1999,5,27,18,30,1.7707134,,,,,,,,,,,,,, +1999,5,27,19,30,2.275827,,,,,,,,,,,,,, +1999,5,27,20,30,2.2239165,,,,,,,,,,,,,, +1999,5,27,21,30,1.8299698,,,,,,,,,,,,,, +1999,5,27,22,30,1.2176536,,,,,,,,,,,,,, +1999,5,27,23,30,0.29844522,,,,,,,,,,,,,, +1999,5,28,0,30,0.96096754,,,,,,,,,,,,,, +1999,5,28,1,30,2.002666,,,,,,,,,,,,,, +1999,5,28,2,30,2.3678749,,,,,,,,,,,,,, +1999,5,28,3,30,2.1618154,,,,,,,,,,,,,, +1999,5,28,4,30,1.7253052,,,,,,,,,,,,,, +1999,5,28,5,30,1.0320561,,,,,,,,,,,,,, +1999,5,28,6,30,0.12162952,,,,,,,,,,,,,, +1999,5,28,7,30,0.7356814,,,,,,,,,,,,,, +1999,5,28,8,30,1.2075021,,,,,,,,,,,,,, +1999,5,28,9,30,1.3160313,,,,,,,,,,,,,, +1999,5,28,10,30,1.066139,,,,,,,,,,,,,, +1999,5,28,11,30,0.56488854,,,,,,,,,,,,,, +1999,5,28,12,30,0.11749601,,,,,,,,,,,,,, +1999,5,28,13,30,0.7202288,,,,,,,,,,,,,, +1999,5,28,14,30,1.1754134,,,,,,,,,,,,,, +1999,5,28,15,30,1.1732991,,,,,,,,,,,,,, +1999,5,28,16,30,0.7533256,,,,,,,,,,,,,, +1999,5,28,17,30,0.06716023,,,,,,,,,,,,,, +1999,5,28,18,30,0.85605687,,,,,,,,,,,,,, +1999,5,28,19,30,1.658191,,,,,,,,,,,,,, +1999,5,28,20,30,2.0015721,,,,,,,,,,,,,, +1999,5,28,21,30,1.8820724,,,,,,,,,,,,,, +1999,5,28,22,30,1.5150244,,,,,,,,,,,,,, +1999,5,28,23,30,0.94416463,,,,,,,,,,,,,, +1999,5,29,0,30,0.13637456,,,,,,,,,,,,,, +1999,5,29,1,30,1.1053246,,,,,,,,,,,,,, +1999,5,29,2,30,1.9725634,,,,,,,,,,,,,, +1999,5,29,3,30,2.1960244,,,,,,,,,,,,,, +1999,5,29,4,30,1.9547141,,,,,,,,,,,,,, +1999,5,29,5,30,1.5161508,,,,,,,,,,,,,, +1999,5,29,6,30,0.81438386,,,,,,,,,,,,,, +1999,5,29,7,30,0.10321452,,,,,,,,,,,,,, +1999,5,29,8,30,0.84669447,,,,,,,,,,,,,, +1999,5,29,9,30,1.2965502,,,,,,,,,,,,,, +1999,5,29,10,30,1.3866098,,,,,,,,,,,,,, +1999,5,29,11,30,1.12783,,,,,,,,,,,,,, +1999,5,29,12,30,0.6624414,,,,,,,,,,,,,, +1999,5,29,13,30,0.104980685,,,,,,,,,,,,,, +1999,5,29,14,30,0.6193183,,,,,,,,,,,,,, +1999,5,29,15,30,1.1299307,,,,,,,,,,,,,, +1999,5,29,16,30,1.1665848,,,,,,,,,,,,,, +1999,5,29,17,30,0.78231716,,,,,,,,,,,,,, +1999,5,29,18,30,0.13454917,,,,,,,,,,,,,, +1999,5,29,19,30,0.68220127,,,,,,,,,,,,,, +1999,5,29,20,30,1.3562751,,,,,,,,,,,,,, +1999,5,29,21,30,1.623711,,,,,,,,,,,,,, +1999,5,29,22,30,1.5438442,,,,,,,,,,,,,, +1999,5,29,23,30,1.2706248,,,,,,,,,,,,,, +1999,5,30,0,30,0.7667712,,,,,,,,,,,,,, +1999,5,30,1,30,0.14735878,,,,,,,,,,,,,, +1999,5,30,2,30,1.1263393,,,,,,,,,,,,,, +1999,5,30,3,30,1.8534771,,,,,,,,,,,,,, +1999,5,30,4,30,1.9970369,,,,,,,,,,,,,, +1999,5,30,5,30,1.7644974,,,,,,,,,,,,,, +1999,5,30,6,30,1.3431109,,,,,,,,,,,,,, +1999,5,30,7,30,0.64417356,,,,,,,,,,,,,, +1999,5,30,8,30,0.2404381,,,,,,,,,,,,,, +1999,5,30,9,30,0.9957693,,,,,,,,,,,,,, +1999,5,30,10,30,1.46633,,,,,,,,,,,,,, +1999,5,30,11,30,1.5481374,,,,,,,,,,,,,, +1999,5,30,12,30,1.2898443,,,,,,,,,,,,,, +1999,5,30,13,30,0.8586748,,,,,,,,,,,,,, +1999,5,30,14,30,0.2519134,,,,,,,,,,,,,, +1999,5,30,15,30,0.5529515,,,,,,,,,,,,,, +1999,5,30,16,30,1.1746141,,,,,,,,,,,,,, +1999,5,30,17,30,1.2800882,,,,,,,,,,,,,, +1999,5,30,18,30,0.9567257,,,,,,,,,,,,,, +1999,5,30,19,30,0.37855956,,,,,,,,,,,,,, +1999,5,30,20,30,0.34972492,,,,,,,,,,,,,, +1999,5,30,21,30,0.9567092,,,,,,,,,,,,,, +1999,5,30,22,30,1.2539067,,,,,,,,,,,,,, +1999,5,30,23,30,1.2915065,,,,,,,,,,,,,, +1999,5,31,0,30,1.1271311,,,,,,,,,,,,,, +1999,5,31,1,30,0.67986876,,,,,,,,,,,,,, +1999,5,31,2,30,0.1572307,,,,,,,,,,,,,, +1999,5,31,3,30,1.0574174,,,,,,,,,,,,,, +1999,5,31,4,30,1.6897209,,,,,,,,,,,,,, +1999,5,31,5,30,1.8142201,,,,,,,,,,,,,, +1999,5,31,6,30,1.622639,,,,,,,,,,,,,, +1999,5,31,7,30,1.2161962,,,,,,,,,,,,,, +1999,5,31,8,30,0.4996605,,,,,,,,,,,,,, +1999,5,31,9,30,0.40811944,,,,,,,,,,,,,, +1999,5,31,10,30,1.2161324,,,,,,,,,,,,,, +1999,5,31,11,30,1.7136377,,,,,,,,,,,,,, +1999,5,31,12,30,1.7752683,,,,,,,,,,,,,, +1999,5,31,13,30,1.5168493,,,,,,,,,,,,,, +1999,5,31,14,30,1.0966719,,,,,,,,,,,,,, +1999,5,31,15,30,0.40017667,,,,,,,,,,,,,, +2013,5,31,16,30,0.58391815,,,,,,,,,,,,,, +2013,5,31,17,30,1.3373703,,,,,,,,,,,,,, +2013,5,31,18,30,1.5144353,,,,,,,,,,,,,, +2013,5,31,19,30,1.2564406,,,,,,,,,,,,,, +2013,5,31,20,30,0.7436244,,,,,,,,,,,,,, +2013,5,31,21,30,0.09971658,,,,,,,,,,,,,, +2013,5,31,22,30,0.5803967,,,,,,,,,,,,,, +2013,5,31,23,30,0.98912334,,,,,,,,,,,,,, +2013,6,1,0,30,1.1613165,,,,,,,,,,,,,, +2013,6,1,1,30,1.0739386,,,,,,,,,,,,,, +2013,6,1,2,30,0.6643937,,,,,,,,,,,,,, +2013,6,1,3,30,0.13574207,,,,,,,,,,,,,, +2013,6,1,4,30,0.93725884,,,,,,,,,,,,,, +2013,6,1,5,30,1.5355103,,,,,,,,,,,,,, +2013,6,1,6,30,1.6924595,,,,,,,,,,,,,, +2013,6,1,7,30,1.5430595,,,,,,,,,,,,,, +2013,6,1,8,30,1.1180494,,,,,,,,,,,,,, +2013,6,1,9,30,0.3463471,,,,,,,,,,,,,, +2013,6,1,10,30,0.6290203,,,,,,,,,,,,,, +2013,6,1,11,30,1.503505,,,,,,,,,,,,,, +2013,6,1,12,30,2.0047061,,,,,,,,,,,,,, +2013,6,1,13,30,2.0262325,,,,,,,,,,,,,, +2013,6,1,14,30,1.7610687,,,,,,,,,,,,,, +2013,6,1,15,30,1.3109543,,,,,,,,,,,,,, +2013,6,1,16,30,0.45735723,,,,,,,,,,,,,, +2013,6,1,17,30,0.74442106,,,,,,,,,,,,,, +2013,6,1,18,30,1.6153612,,,,,,,,,,,,,, +2013,6,1,19,30,1.8427162,,,,,,,,,,,,,, +2013,6,1,20,30,1.6296749,,,,,,,,,,,,,, +2013,6,1,21,30,1.1391858,,,,,,,,,,,,,, +2013,6,1,22,30,0.43260294,,,,,,,,,,,,,, +2013,6,1,23,30,0.3262319,,,,,,,,,,,,,, +2013,6,2,0,30,0.8713709,,,,,,,,,,,,,, +2013,6,2,1,30,1.1397153,,,,,,,,,,,,,, +2013,6,2,2,30,1.0856609,,,,,,,,,,,,,, +2013,6,2,3,30,0.7063851,,,,,,,,,,,,,, +2013,6,2,4,30,0.113905504,,,,,,,,,,,,,, +2013,6,2,5,30,0.81916535,,,,,,,,,,,,,, +2013,6,2,6,30,1.445853,,,,,,,,,,,,,, +2013,6,2,7,30,1.6506922,,,,,,,,,,,,,, +2013,6,2,8,30,1.5049397,,,,,,,,,,,,,, +2013,6,2,9,30,1.0140612,,,,,,,,,,,,,, +2013,6,2,10,30,0.16313782,,,,,,,,,,,,,, +2013,6,2,11,30,0.9047874,,,,,,,,,,,,,, +2013,6,2,12,30,1.8301119,,,,,,,,,,,,,, +2013,6,2,13,30,2.2959971,,,,,,,,,,,,,, +2013,6,2,14,30,2.2591133,,,,,,,,,,,,,, +2013,6,2,15,30,1.975621,,,,,,,,,,,,,, +2013,6,2,16,30,1.4446863,,,,,,,,,,,,,, +2013,6,2,17,30,0.3856017,,,,,,,,,,,,,, +2013,6,2,18,30,1.038178,,,,,,,,,,,,,, +2013,6,2,19,30,1.9813763,,,,,,,,,,,,,, +2013,6,2,20,30,2.2151372,,,,,,,,,,,,,, +2013,6,2,21,30,2.0012882,,,,,,,,,,,,,, +2013,6,2,22,30,1.4677746,,,,,,,,,,,,,, +2013,6,2,23,30,0.6538154,,,,,,,,,,,,,, +2013,6,3,0,30,0.23188886,,,,,,,,,,,,,, +2013,6,3,1,30,0.88511217,,,,,,,,,,,,,, +2013,6,3,2,30,1.1919043,,,,,,,,,,,,,, +2013,6,3,3,30,1.1440895,,,,,,,,,,,,,, +2013,6,3,4,30,0.79055744,,,,,,,,,,,,,, +2013,6,3,5,30,0.13478895,,,,,,,,,,,,,, +2013,6,3,6,30,0.76255107,,,,,,,,,,,,,, +2013,6,3,7,30,1.447232,,,,,,,,,,,,,, +2013,6,3,8,30,1.6659107,,,,,,,,,,,,,, +2013,6,3,9,30,1.4667032,,,,,,,,,,,,,, +2013,6,3,10,30,0.8772602,,,,,,,,,,,,,, +2013,6,3,11,30,0.09938945,,,,,,,,,,,,,, +2013,6,3,12,30,1.2216104,,,,,,,,,,,,,, +2013,6,3,13,30,2.1601102,,,,,,,,,,,,,, +2013,6,3,14,30,2.5476286,,,,,,,,,,,,,, +2013,6,3,15,30,2.4419887,,,,,,,,,,,,,, +2013,6,3,16,30,2.1244235,,,,,,,,,,,,,, +2013,6,3,17,30,1.4575324,,,,,,,,,,,,,, +2013,6,3,18,30,0.21062315,,,,,,,,,,,,,, +2013,6,3,19,30,1.4435483,,,,,,,,,,,,,, +2013,6,3,20,30,2.3841932,,,,,,,,,,,,,, +2013,6,3,21,30,2.5630515,,,,,,,,,,,,,, +2013,6,3,22,30,2.292004,,,,,,,,,,,,,, +2013,6,3,23,30,1.6584766,,,,,,,,,,,,,, +2013,6,4,0,30,0.7108559,,,,,,,,,,,,,, +2013,6,4,1,30,0.2804629,,,,,,,,,,,,,, +2013,6,4,2,30,0.98790675,,,,,,,,,,,,,, +2013,6,4,3,30,1.2886481,,,,,,,,,,,,,, +2013,6,4,4,30,1.2335398,,,,,,,,,,,,,, +2013,6,4,5,30,0.8823387,,,,,,,,,,,,,, +2013,6,4,6,30,0.17008275,,,,,,,,,,,,,, +2013,6,4,7,30,0.8032938,,,,,,,,,,,,,, +2013,6,4,8,30,1.5207229,,,,,,,,,,,,,, +2013,6,4,9,30,1.6912133,,,,,,,,,,,,,, +2013,6,4,10,30,1.3962618,,,,,,,,,,,,,, +2013,6,4,11,30,0.7007949,,,,,,,,,,,,,, +2013,6,4,12,30,0.36187372,,,,,,,,,,,,,, +2013,6,4,13,30,1.5577044,,,,,,,,,,,,,, +2013,6,4,14,30,2.4560626,,,,,,,,,,,,,, +2013,6,4,15,30,2.7307186,,,,,,,,,,,,,, +2013,6,4,16,30,2.5579903,,,,,,,,,,,,,, +2013,6,4,17,30,2.183054,,,,,,,,,,,,,, +2013,6,4,18,30,1.3247803,,,,,,,,,,,,,, +2013,6,4,19,30,0.30867714,,,,,,,,,,,,,, +2013,6,4,20,30,1.9073353,,,,,,,,,,,,,, +2013,6,4,21,30,2.7492392,,,,,,,,,,,,,, +2013,6,4,22,30,2.8144646,,,,,,,,,,,,,, +2013,6,4,23,30,2.4465582,,,,,,,,,,,,,, +2013,6,5,0,30,1.6894394,,,,,,,,,,,,,, +2013,6,5,1,30,0.6231741,,,,,,,,,,,,,, +2013,6,5,2,30,0.43063587,,,,,,,,,,,,,, +2013,6,5,3,30,1.1405256,,,,,,,,,,,,,, +2013,6,5,4,30,1.4062974,,,,,,,,,,,,,, +2013,6,5,5,30,1.3239166,,,,,,,,,,,,,, +2013,6,5,6,30,0.9299452,,,,,,,,,,,,,, +2013,6,5,7,30,0.13381746,,,,,,,,,,,,,, +2013,6,5,8,30,0.9319084,,,,,,,,,,,,,, +2013,6,5,9,30,1.6186068,,,,,,,,,,,,,, +2013,6,5,10,30,1.6891015,,,,,,,,,,,,,, +2013,6,5,11,30,1.286327,,,,,,,,,,,,,, +2013,6,5,12,30,0.4907927,,,,,,,,,,,,,, +2013,6,5,13,30,0.6598505,,,,,,,,,,,,,, +2013,6,5,14,30,1.8822387,,,,,,,,,,,,,, +2013,6,5,15,30,2.6829827,,,,,,,,,,,,,, +2013,6,5,16,30,2.831722,,,,,,,,,,,,,, +2013,6,5,17,30,2.6006353,,,,,,,,,,,,,, +2013,6,5,18,30,2.131075,,,,,,,,,,,,,, +2013,6,5,19,30,1.0396993,,,,,,,,,,,,,, +2013,6,5,20,30,0.77122205,,,,,,,,,,,,,, +2013,6,5,21,30,2.3434975,,,,,,,,,,,,,, +2013,6,5,22,30,2.9965901,,,,,,,,,,,,,, +2013,6,5,23,30,2.9218402,,,,,,,,,,,,,, +2013,6,6,0,30,2.4515822,,,,,,,,,,,,,, +2013,6,6,1,30,1.5801204,,,,,,,,,,,,,, +2013,6,6,2,30,0.432805,,,,,,,,,,,,,, +2013,6,6,3,30,0.6397852,,,,,,,,,,,,,, +2013,6,6,4,30,1.3104502,,,,,,,,,,,,,, +2013,6,6,5,30,1.5132034,,,,,,,,,,,,,, +2013,6,6,6,30,1.3717253,,,,,,,,,,,,,, +2013,6,6,7,30,0.8917937,,,,,,,,,,,,,, +2013,6,6,8,30,0.09327637,,,,,,,,,,,,,, +2013,6,6,9,30,1.1031586,,,,,,,,,,,,,, +2013,6,6,10,30,1.6961113,,,,,,,,,,,,,, +2013,6,6,11,30,1.6476023,,,,,,,,,,,,,, +2013,6,6,12,30,1.1451434,,,,,,,,,,,,,, +2013,6,6,13,30,0.25681627,,,,,,,,,,,,,, +2013,6,6,14,30,0.9660389,,,,,,,,,,,,,, +2013,6,6,15,30,2.155438,,,,,,,,,,,,,, +2013,6,6,16,30,2.8149583,,,,,,,,,,,,,, +2013,6,6,17,30,2.8483958,,,,,,,,,,,,,, +2013,6,6,18,30,2.5602193,,,,,,,,,,,,,, +2013,6,6,19,30,1.9495865,,,,,,,,,,,,,, +2013,6,6,20,30,0.62893546,,,,,,,,,,,,,, +2013,6,6,21,30,1.2656658,,,,,,,,,,,,,, +2013,6,6,22,30,2.656083,,,,,,,,,,,,,, +2013,6,6,23,30,3.0758882,,,,,,,,,,,,,, +2013,6,7,0,30,2.8811462,,,,,,,,,,,,,, +2013,6,7,1,30,2.3271048,,,,,,,,,,,,,, +2013,6,7,2,30,1.3643157,,,,,,,,,,,,,, +2013,6,7,3,30,0.18684487,,,,,,,,,,,,,, +2013,6,7,4,30,0.8698665,,,,,,,,,,,,,, +2013,6,7,5,30,1.4614853,,,,,,,,,,,,,, +2013,6,7,6,30,1.5718037,,,,,,,,,,,,,, +2013,6,7,7,30,1.3441788,,,,,,,,,,,,,, +2013,6,7,8,30,0.76449496,,,,,,,,,,,,,, +2013,6,7,9,30,0.24194452,,,,,,,,,,,,,, +2013,6,7,10,30,1.2629946,,,,,,,,,,,,,, +2013,6,7,11,30,1.728522,,,,,,,,,,,,,, +2013,6,7,12,30,1.5703577,,,,,,,,,,,,,, +2013,6,7,13,30,0.98073494,,,,,,,,,,,,,, +2013,6,7,14,30,0.040388275,,,,,,,,,,,,,, +2013,6,7,15,30,1.244705,,,,,,,,,,,,,, +2013,6,7,16,30,2.3367417,,,,,,,,,,,,,, +2013,6,7,17,30,2.83749,,,,,,,,,,,,,, +2013,6,7,18,30,2.7765524,,,,,,,,,,,,,, +2013,6,7,19,30,2.4169018,,,,,,,,,,,,,, +2013,6,7,20,30,1.6355746,,,,,,,,,,,,,, +2013,6,7,21,30,0.204722,,,,,,,,,,,,,, +2013,6,7,22,30,1.6740611,,,,,,,,,,,,,, +2013,6,7,23,30,2.7827008,,,,,,,,,,,,,, +2013,6,8,0,30,2.9908214,,,,,,,,,,,,,, +2013,6,8,1,30,2.7225552,,,,,,,,,,,,,, +2013,6,8,2,30,2.1020703,,,,,,,,,,,,,, +2013,6,8,3,30,1.0740073,,,,,,,,,,,,,, +2013,6,8,4,30,0.13008662,,,,,,,,,,,,,, +2013,6,8,5,30,1.0798348,,,,,,,,,,,,,, +2013,6,8,6,30,1.5581996,,,,,,,,,,,,,, +2013,6,8,7,30,1.5597479,,,,,,,,,,,,,, +2013,6,8,8,30,1.2433388,,,,,,,,,,,,,, +2013,6,8,9,30,0.5870625,,,,,,,,,,,,,, +2013,6,8,10,30,0.4388246,,,,,,,,,,,,,, +2013,6,8,11,30,1.3688157,,,,,,,,,,,,,, +2013,6,8,12,30,1.7066908,,,,,,,,,,,,,, +2013,6,8,13,30,1.4607244,,,,,,,,,,,,,, +2013,6,8,14,30,0.7984475,,,,,,,,,,,,,, +2013,6,8,15,30,0.2404898,,,,,,,,,,,,,, +2013,6,8,16,30,1.4517533,,,,,,,,,,,,,, +2013,6,8,17,30,2.393724,,,,,,,,,,,,,, +2013,6,8,18,30,2.7413373,,,,,,,,,,,,,, +2013,6,8,19,30,2.602627,,,,,,,,,,,,,, +2013,6,8,20,30,2.1550412,,,,,,,,,,,,,, +2013,6,8,21,30,1.222192,,,,,,,,,,,,,, +2013,6,8,22,30,0.36690065,,,,,,,,,,,,,, +2013,6,8,23,30,1.9185867,,,,,,,,,,,,,, +2013,6,9,0,30,2.7247982,,,,,,,,,,,,,, +2013,6,9,1,30,2.7879071,,,,,,,,,,,,,, +2013,6,9,2,30,2.482161,,,,,,,,,,,,,, +2013,6,9,3,30,1.8016278,,,,,,,,,,,,,, +2013,6,9,4,30,0.74562263,,,,,,,,,,,,,, +2013,6,9,5,30,0.3896987,,,,,,,,,,,,,, +2013,6,9,6,30,1.2333868,,,,,,,,,,,,,, +2013,6,9,7,30,1.5855881,,,,,,,,,,,,,, +2013,6,9,8,30,1.4873546,,,,,,,,,,,,,, +2013,6,9,9,30,1.1076953,,,,,,,,,,,,,, +2013,6,9,10,30,0.42045766,,,,,,,,,,,,,, +2013,6,9,11,30,0.57636696,,,,,,,,,,,,,, +2013,6,9,12,30,1.3963448,,,,,,,,,,,,,, +2013,6,9,13,30,1.6286806,,,,,,,,,,,,,, +2013,6,9,14,30,1.3208606,,,,,,,,,,,,,, +2013,6,9,15,30,0.61088276,,,,,,,,,,,,,, +2013,6,9,16,30,0.43399984,,,,,,,,,,,,,, +2013,6,9,17,30,1.5442884,,,,,,,,,,,,,, +2013,6,9,18,30,2.3049319,,,,,,,,,,,,,, +2013,6,9,19,30,2.519524,,,,,,,,,,,,,, +2013,6,9,20,30,2.3173585,,,,,,,,,,,,,, +2013,6,9,21,30,1.7893765,,,,,,,,,,,,,, +2013,6,9,22,30,0.7794184,,,,,,,,,,,,,, +2013,6,9,23,30,0.7098955,,,,,,,,,,,,,, +2013,6,10,0,30,1.9839528,,,,,,,,,,,,,, +2013,6,10,1,30,2.5351808,,,,,,,,,,,,,, +2013,6,10,2,30,2.5195866,,,,,,,,,,,,,, +2013,6,10,3,30,2.1851535,,,,,,,,,,,,,, +2013,6,10,4,30,1.45637,,,,,,,,,,,,,, +2013,6,10,5,30,0.4274674,,,,,,,,,,,,,, +2013,6,10,6,30,0.59922063,,,,,,,,,,,,,, +2013,6,10,7,30,1.3192306,,,,,,,,,,,,,, +2013,6,10,8,30,1.5605271,,,,,,,,,,,,,, +2013,6,10,9,30,1.3932273,,,,,,,,,,,,,, +2013,6,10,10,30,0.99155617,,,,,,,,,,,,,, +2013,6,10,11,30,0.3188535,,,,,,,,,,,,,, +2013,6,10,12,30,0.6231178,,,,,,,,,,,,,, +2013,6,10,13,30,1.3428695,,,,,,,,,,,,,, +2013,6,10,14,30,1.5028689,,,,,,,,,,,,,, +2013,6,10,15,30,1.1638495,,,,,,,,,,,,,, +2013,6,10,16,30,0.44646248,,,,,,,,,,,,,, +2013,6,10,17,30,0.54130495,,,,,,,,,,,,,, +2013,6,10,18,30,1.4887679,,,,,,,,,,,,,, +2013,6,10,19,30,2.064283,,,,,,,,,,,,,, +2013,6,10,20,30,2.1806543,,,,,,,,,,,,,, +2013,6,10,21,30,1.941798,,,,,,,,,,,,,, +2013,6,10,22,30,1.3745868,,,,,,,,,,,,,, +2013,6,10,23,30,0.38943014,,,,,,,,,,,,,, +2013,6,11,0,30,0.92054224,,,,,,,,,,,,,, +2013,6,11,1,30,1.9067398,,,,,,,,,,,,,, +2013,6,11,2,30,2.2749746,,,,,,,,,,,,,, +2013,6,11,3,30,2.218857,,,,,,,,,,,,,, +2013,6,11,4,30,1.8546473,,,,,,,,,,,,,, +2013,6,11,5,30,1.1118542,,,,,,,,,,,,,, +2013,6,11,6,30,0.167353,,,,,,,,,,,,,, +2013,6,11,7,30,0.7429043,,,,,,,,,,,,,, +2013,6,11,8,30,1.3590134,,,,,,,,,,,,,, +2013,6,11,9,30,1.521217,,,,,,,,,,,,,, +2013,6,11,10,30,1.3232315,,,,,,,,,,,,,, +2013,6,11,11,30,0.93954027,,,,,,,,,,,,,, +2013,6,11,12,30,0.30561918,,,,,,,,,,,,,, +2013,6,11,13,30,0.583449,,,,,,,,,,,,,, +2013,6,11,14,30,1.2325736,,,,,,,,,,,,,, +2013,6,11,15,30,1.3570371,,,,,,,,,,,,,, +2013,6,11,16,30,1.022451,,,,,,,,,,,,,, +2013,6,11,17,30,0.34920067,,,,,,,,,,,,,, +2013,6,11,18,30,0.5214364,,,,,,,,,,,,,, +2013,6,11,19,30,1.2728595,,,,,,,,,,,,,, +2013,6,11,20,30,1.6962061,,,,,,,,,,,,,, +2013,6,11,21,30,1.7693993,,,,,,,,,,,,,, +2013,6,11,22,30,1.5364492,,,,,,,,,,,,,, +2013,6,11,23,30,0.98391473,,,,,,,,,,,,,, +2013,6,12,0,30,0.155042,,,,,,,,,,,,,, +2013,6,12,1,30,0.9970873,,,,,,,,,,,,,, +2013,6,12,2,30,1.7357954,,,,,,,,,,,,,, +2013,6,12,3,30,1.9837154,,,,,,,,,,,,,, +2013,6,12,4,30,1.9062828,,,,,,,,,,,,,, +2013,6,12,5,30,1.5257213,,,,,,,,,,,,,, +2013,6,12,6,30,0.81468296,,,,,,,,,,,,,, +2013,6,12,7,30,0.04564457,,,,,,,,,,,,,, +2013,6,12,8,30,0.84551984,,,,,,,,,,,,,, +2013,6,12,9,30,1.3919706,,,,,,,,,,,,,, +2013,6,12,10,30,1.505078,,,,,,,,,,,,,, +2013,6,12,11,30,1.3100706,,,,,,,,,,,,,, +2013,6,12,12,30,0.968428,,,,,,,,,,,,,, +2013,6,12,13,30,0.36578962,,,,,,,,,,,,,, +2013,6,12,14,30,0.50121135,,,,,,,,,,,,,, +2013,6,12,15,30,1.1160367,,,,,,,,,,,,,, +2013,6,12,16,30,1.2388551,,,,,,,,,,,,,, +2013,6,12,17,30,0.9448741,,,,,,,,,,,,,, +2013,6,12,18,30,0.36566514,,,,,,,,,,,,,, +2013,6,12,19,30,0.35655648,,,,,,,,,,,,,, +2013,6,12,20,30,0.9256176,,,,,,,,,,,,,, +2013,6,12,21,30,1.27022,,,,,,,,,,,,,, +2013,6,12,22,30,1.3668356,,,,,,,,,,,,,, +2013,6,12,23,30,1.177575,,,,,,,,,,,,,, +2013,6,13,0,30,0.67656785,,,,,,,,,,,,,, +2013,6,13,1,30,0.16061406,,,,,,,,,,,,,, +2013,6,13,2,30,0.96035063,,,,,,,,,,,,,, +2013,6,13,3,30,1.5073451,,,,,,,,,,,,,, +2013,6,13,4,30,1.6869867,,,,,,,,,,,,,, +2013,6,13,5,30,1.6095202,,,,,,,,,,,,,, +2013,6,13,6,30,1.2379929,,,,,,,,,,,,,, +2013,6,13,7,30,0.58378166,,,,,,,,,,,,,, +2013,6,13,8,30,0.19390598,,,,,,,,,,,,,, +2013,6,13,9,30,0.9495308,,,,,,,,,,,,,, +2013,6,13,10,30,1.4511585,,,,,,,,,,,,,, +2013,6,13,11,30,1.5331993,,,,,,,,,,,,,, +2013,6,13,12,30,1.3619548,,,,,,,,,,,,,, +2013,6,13,13,30,1.0578979,,,,,,,,,,,,,, +2013,6,13,14,30,0.44822925,,,,,,,,,,,,,, +2013,6,13,15,30,0.4459173,,,,,,,,,,,,,, +2013,6,13,16,30,1.056122,,,,,,,,,,,,,, +2013,6,13,17,30,1.2027385,,,,,,,,,,,,,, +2013,6,13,18,30,0.97800523,,,,,,,,,,,,,, +2013,6,13,19,30,0.5171739,,,,,,,,,,,,,, +2013,6,13,20,30,0.114865005,,,,,,,,,,,,,, +2013,6,13,21,30,0.53039426,,,,,,,,,,,,,, +2013,6,13,22,30,0.88999176,,,,,,,,,,,,,, +2013,6,13,23,30,1.0582709,,,,,,,,,,,,,, +2013,6,14,0,30,0.92077005,,,,,,,,,,,,,, +2013,6,14,1,30,0.48243052,,,,,,,,,,,,,, +2013,6,14,2,30,0.20612562,,,,,,,,,,,,,, +2013,6,14,3,30,0.8356228,,,,,,,,,,,,,, +2013,6,14,4,30,1.2559812,,,,,,,,,,,,,, +2013,6,14,5,30,1.4191722,,,,,,,,,,,,,, +2013,6,14,6,30,1.3631597,,,,,,,,,,,,,, +2013,6,14,7,30,1.0110058,,,,,,,,,,,,,, +2013,6,14,8,30,0.39896247,,,,,,,,,,,,,, +2013,6,14,9,30,0.3497264,,,,,,,,,,,,,, +2013,6,14,10,30,1.0891027,,,,,,,,,,,,,, +2013,6,14,11,30,1.5507047,,,,,,,,,,,,,, +2013,6,14,12,30,1.60683,,,,,,,,,,,,,, +2013,6,14,13,30,1.4595025,,,,,,,,,,,,,, +2013,6,14,14,30,1.153774,,,,,,,,,,,,,, +2013,6,14,15,30,0.47817412,,,,,,,,,,,,,, +2013,6,14,16,30,0.48159498,,,,,,,,,,,,,, +2013,6,14,17,30,1.1058279,,,,,,,,,,,,,, +2013,6,14,18,30,1.2888615,,,,,,,,,,,,,, +2013,6,14,19,30,1.1413187,,,,,,,,,,,,,, +2013,6,14,20,30,0.7775737,,,,,,,,,,,,,, +2013,6,14,21,30,0.32350603,,,,,,,,,,,,,, +2013,6,14,22,30,0.20629942,,,,,,,,,,,,,, +2013,6,14,23,30,0.65098095,,,,,,,,,,,,,, +2013,6,15,0,30,0.89214736,,,,,,,,,,,,,, +2013,6,15,1,30,0.78437793,,,,,,,,,,,,,, +2013,6,15,2,30,0.40476948,,,,,,,,,,,,,, +2013,6,15,3,30,0.18111566,,,,,,,,,,,,,, +2013,6,15,4,30,0.6653565,,,,,,,,,,,,,, +2013,6,15,5,30,1.0353968,,,,,,,,,,,,,, +2013,6,15,6,30,1.2238703,,,,,,,,,,,,,, +2013,6,15,7,30,1.1868846,,,,,,,,,,,,,, +2013,6,15,8,30,0.8310193,,,,,,,,,,,,,, +2013,6,15,9,30,0.21981072,,,,,,,,,,,,,, +2013,6,15,10,30,0.54719585,,,,,,,,,,,,,, +2013,6,15,11,30,1.2784033,,,,,,,,,,,,,, +2013,6,15,12,30,1.6870434,,,,,,,,,,,,,, +2013,6,15,13,30,1.7104151,,,,,,,,,,,,,, +2013,6,15,14,30,1.5615237,,,,,,,,,,,,,, +2013,6,15,15,30,1.1880577,,,,,,,,,,,,,, +2013,6,15,16,30,0.39309055,,,,,,,,,,,,,, +2013,6,15,17,30,0.6487273,,,,,,,,,,,,,, +2013,6,15,18,30,1.2897387,,,,,,,,,,,,,, +2013,6,15,19,30,1.5013902,,,,,,,,,,,,,, +2013,6,15,20,30,1.4021184,,,,,,,,,,,,,, +2013,6,15,21,30,1.0634726,,,,,,,,,,,,,, +2013,6,15,22,30,0.56546336,,,,,,,,,,,,,, +2013,6,15,23,30,0.05456236,,,,,,,,,,,,,, +2013,6,16,0,30,0.59562385,,,,,,,,,,,,,, +2013,6,16,1,30,0.8652913,,,,,,,,,,,,,, +2013,6,16,2,30,0.75650287,,,,,,,,,,,,,, +2013,6,16,3,30,0.4240027,,,,,,,,,,,,,, +2013,6,16,4,30,0.1362625,,,,,,,,,,,,,, +2013,6,16,5,30,0.5218991,,,,,,,,,,,,,, +2013,6,16,6,30,0.9106575,,,,,,,,,,,,,, +2013,6,16,7,30,1.1271731,,,,,,,,,,,,,, +2013,6,16,8,30,1.0687397,,,,,,,,,,,,,, +2013,6,16,9,30,0.66240877,,,,,,,,,,,,,, +2013,6,16,10,30,0.056756042,,,,,,,,,,,,,, +2013,6,16,11,30,0.80574274,,,,,,,,,,,,,, +2013,6,16,12,30,1.5137335,,,,,,,,,,,,,, +2013,6,16,13,30,1.8445756,,,,,,,,,,,,,, +2013,6,16,14,30,1.8171428,,,,,,,,,,,,,, +2013,6,16,15,30,1.619895,,,,,,,,,,,,,, +2013,6,16,16,30,1.1050283,,,,,,,,,,,,,, +2013,6,16,17,30,0.20427783,,,,,,,,,,,,,, +2013,6,16,18,30,0.96114904,,,,,,,,,,,,,, +2013,6,16,19,30,1.5918278,,,,,,,,,,,,,, +2013,6,16,20,30,1.7939835,,,,,,,,,,,,,, +2013,6,16,21,30,1.673054,,,,,,,,,,,,,, +2013,6,16,22,30,1.2594106,,,,,,,,,,,,,, +2013,6,16,23,30,0.63621026,,,,,,,,,,,,,, +2013,6,17,0,30,0.09361426,,,,,,,,,,,,,, +2013,6,17,1,30,0.7008149,,,,,,,,,,,,,, +2013,6,17,2,30,0.9383831,,,,,,,,,,,,,, +2013,6,17,3,30,0.80422175,,,,,,,,,,,,,, +2013,6,17,4,30,0.49001917,,,,,,,,,,,,,, +2013,6,17,5,30,0.12373867,,,,,,,,,,,,,, +2013,6,17,6,30,0.48938456,,,,,,,,,,,,,, +2013,6,17,7,30,0.9187689,,,,,,,,,,,,,, +2013,6,17,8,30,1.1142615,,,,,,,,,,,,,, +2013,6,17,9,30,0.9714491,,,,,,,,,,,,,, +2013,6,17,10,30,0.46745235,,,,,,,,,,,,,, +2013,6,17,11,30,0.29096377,,,,,,,,,,,,,, +2013,6,17,12,30,1.1281431,,,,,,,,,,,,,, +2013,6,17,13,30,1.7775667,,,,,,,,,,,,,, +2013,6,17,14,30,1.9998163,,,,,,,,,,,,,, +2013,6,17,15,30,1.8970966,,,,,,,,,,,,,, +2013,6,17,16,30,1.5946057,,,,,,,,,,,,,, +2013,6,17,17,30,0.8752476,,,,,,,,,,,,,, +2013,6,17,18,30,0.3421667,,,,,,,,,,,,,, +2013,6,17,19,30,1.3888763,,,,,,,,,,,,,, +2013,6,17,20,30,1.9511158,,,,,,,,,,,,,, +2013,6,17,21,30,2.076625,,,,,,,,,,,,,, +2013,6,17,22,30,1.8456417,,,,,,,,,,,,,, +2013,6,17,23,30,1.2747731,,,,,,,,,,,,,, +2013,6,18,0,30,0.49727893,,,,,,,,,,,,,, +2013,6,18,1,30,0.31486058,,,,,,,,,,,,,, +2013,6,18,2,30,0.90159225,,,,,,,,,,,,,, +2013,6,18,3,30,1.057669,,,,,,,,,,,,,, +2013,6,18,4,30,0.8739624,,,,,,,,,,,,,, +2013,6,18,5,30,0.52082455,,,,,,,,,,,,,, +2013,6,18,6,30,0.115246914,,,,,,,,,,,,,, +2013,6,18,7,30,0.61458015,,,,,,,,,,,,,, +2013,6,18,8,30,1.0373342,,,,,,,,,,,,,, +2013,6,18,9,30,1.1346761,,,,,,,,,,,,,, +2013,6,18,10,30,0.8515876,,,,,,,,,,,,,, +2013,6,18,11,30,0.21609476,,,,,,,,,,,,,, +2013,6,18,12,30,0.6454375,,,,,,,,,,,,,, +2013,6,18,13,30,1.4997767,,,,,,,,,,,,,, +2013,6,18,14,30,2.0399108,,,,,,,,,,,,,, +2013,6,18,15,30,2.1264262,,,,,,,,,,,,,, +2013,6,18,16,30,1.9238222,,,,,,,,,,,,,, +2013,6,18,17,30,1.4568647,,,,,,,,,,,,,, +2013,6,18,18,30,0.49877483,,,,,,,,,,,,,, +2013,6,18,19,30,0.85954773,,,,,,,,,,,,,, +2013,6,18,20,30,1.8606428,,,,,,,,,,,,,, +2013,6,18,21,30,2.2755501,,,,,,,,,,,,,, +2013,6,18,22,30,2.2521527,,,,,,,,,,,,,, +2013,6,18,23,30,1.8443735,,,,,,,,,,,,,, +2013,6,19,0,30,1.0883663,,,,,,,,,,,,,, +2013,6,19,1,30,0.19255197,,,,,,,,,,,,,, +2013,6,19,2,30,0.6332614,,,,,,,,,,,,,, +2013,6,19,3,30,1.1258307,,,,,,,,,,,,,, +2013,6,19,4,30,1.1663171,,,,,,,,,,,,,, +2013,6,19,5,30,0.8976344,,,,,,,,,,,,,, +2013,6,19,6,30,0.4374264,,,,,,,,,,,,,, +2013,6,19,7,30,0.23668675,,,,,,,,,,,,,, +2013,6,19,8,30,0.8672867,,,,,,,,,,,,,, +2013,6,19,9,30,1.1958469,,,,,,,,,,,,,, +2013,6,19,10,30,1.1283709,,,,,,,,,,,,,, +2013,6,19,11,30,0.6726878,,,,,,,,,,,,,, +2013,6,19,12,30,0.12269912,,,,,,,,,,,,,, +2013,6,19,13,30,1.072676,,,,,,,,,,,,,, +2013,6,19,14,30,1.8846235,,,,,,,,,,,,,, +2013,6,19,15,30,2.263013,,,,,,,,,,,,,, +2013,6,19,16,30,2.200517,,,,,,,,,,,,,, +2013,6,19,17,30,1.8720315,,,,,,,,,,,,,, +2013,6,19,18,30,1.1835299,,,,,,,,,,,,,, +2013,6,19,19,30,0.16111033,,,,,,,,,,,,,, +2013,6,19,20,30,1.4494116,,,,,,,,,,,,,, +2013,6,19,21,30,2.2818305,,,,,,,,,,,,,, +2013,6,19,22,30,2.4783854,,,,,,,,,,,,,, +2013,6,19,23,30,2.2643528,,,,,,,,,,,,,, +2013,6,20,0,30,1.6611084,,,,,,,,,,,,,, +2013,6,20,1,30,0.7466078,,,,,,,,,,,,,, +2013,6,20,2,30,0.21832974,,,,,,,,,,,,,, +2013,6,20,3,30,0.966382,,,,,,,,,,,,,, +2013,6,20,4,30,1.3132604,,,,,,,,,,,,,, +2013,6,20,5,30,1.2121868,,,,,,,,,,,,,, +2013,6,20,6,30,0.81938565,,,,,,,,,,,,,, +2013,6,20,7,30,0.21617624,,,,,,,,,,,,,, +2013,6,20,8,30,0.5688081,,,,,,,,,,,,,, +2013,6,20,9,30,1.1595961,,,,,,,,,,,,,, +2013,6,20,10,30,1.3140675,,,,,,,,,,,,,, +2013,6,20,11,30,1.049506,,,,,,,,,,,,,, +2013,6,20,12,30,0.4115715,,,,,,,,,,,,,, +2013,6,20,13,30,0.5334996,,,,,,,,,,,,,, +2013,6,20,14,30,1.5357419,,,,,,,,,,,,,, +2013,6,20,15,30,2.228722,,,,,,,,,,,,,, +2013,6,20,16,30,2.411049,,,,,,,,,,,,,, +2013,6,20,17,30,2.1998558,,,,,,,,,,,,,, +2013,6,20,18,30,1.711455,,,,,,,,,,,,,, +2013,6,20,19,30,0.76302844,,,,,,,,,,,,,, +2013,6,20,20,30,0.71769285,,,,,,,,,,,,,, +2013,6,20,21,30,2.0061467,,,,,,,,,,,,,, +2013,6,20,22,30,2.566341,,,,,,,,,,,,,, +2013,6,20,23,30,2.519263,,,,,,,,,,,,,, +2013,6,21,0,30,2.1201677,,,,,,,,,,,,,, +2013,6,21,1,30,1.3429252,,,,,,,,,,,,,, +2013,6,21,2,30,0.32666376,,,,,,,,,,,,,, +2013,6,21,3,30,0.62775093,,,,,,,,,,,,,, +2013,6,21,4,30,1.2534646,,,,,,,,,,,,,, +2013,6,21,5,30,1.4225109,,,,,,,,,,,,,, +2013,6,21,6,30,1.1645782,,,,,,,,,,,,,, +2013,6,21,7,30,0.628383,,,,,,,,,,,,,, +2013,6,21,8,30,0.17231292,,,,,,,,,,,,,, +2013,6,21,9,30,0.94113505,,,,,,,,,,,,,, +2013,6,21,10,30,1.3960589,,,,,,,,,,,,,, +2013,6,21,11,30,1.3379757,,,,,,,,,,,,,, +2013,6,21,12,30,0.879385,,,,,,,,,,,,,, +2013,6,21,13,30,0.07179842,,,,,,,,,,,,,, +2013,6,21,14,30,0.99609536,,,,,,,,,,,,,, +2013,6,21,15,30,1.968785,,,,,,,,,,,,,, +2013,6,21,16,30,2.475308,,,,,,,,,,,,,, +2013,6,21,17,30,2.4565227,,,,,,,,,,,,,, +2013,6,21,18,30,2.0993152,,,,,,,,,,,,,, +2013,6,21,19,30,1.4145253,,,,,,,,,,,,,, +2013,6,21,20,30,0.24683604,,,,,,,,,,,,,, +2013,6,21,21,30,1.3578161,,,,,,,,,,,,,, +2013,6,21,22,30,2.431033,,,,,,,,,,,,,, +2013,6,21,23,30,2.673504,,,,,,,,,,,,,, +2013,6,22,0,30,2.4172533,,,,,,,,,,,,,, +2013,6,22,1,30,1.86719,,,,,,,,,,,,,, +2013,6,22,2,30,0.95025444,,,,,,,,,,,,,, +2013,6,22,3,30,0.1507363,,,,,,,,,,,,,, +2013,6,22,4,30,0.9995136,,,,,,,,,,,,,, +2013,6,22,5,30,1.4585049,,,,,,,,,,,,,, +2013,6,22,6,30,1.4397322,,,,,,,,,,,,,, +2013,6,22,7,30,1.0313799,,,,,,,,,,,,,, +2013,6,22,8,30,0.36910978,,,,,,,,,,,,,, +2013,6,22,9,30,0.49918666,,,,,,,,,,,,,, +2013,6,22,10,30,1.2517759,,,,,,,,,,,,,, +2013,6,22,11,30,1.5188658,,,,,,,,,,,,,, +2013,6,22,12,30,1.2576958,,,,,,,,,,,,,, +2013,6,22,13,30,0.6332134,,,,,,,,,,,,,, +2013,6,22,14,30,0.32100415,,,,,,,,,,,,,, +2013,6,22,15,30,1.4382752,,,,,,,,,,,,,, +2013,6,22,16,30,2.2952962,,,,,,,,,,,,,, +2013,6,22,17,30,2.5809913,,,,,,,,,,,,,, +2013,6,22,18,30,2.3802507,,,,,,,,,,,,,, +2013,6,22,19,30,1.877162,,,,,,,,,,,,,, +2013,6,22,20,30,0.9839503,,,,,,,,,,,,,, +2013,6,22,21,30,0.45452756,,,,,,,,,,,,,, +2013,6,22,22,30,1.9054896,,,,,,,,,,,,,, +2013,6,22,23,30,2.6623588,,,,,,,,,,,,,, +2013,6,23,0,30,2.6210165,,,,,,,,,,,,,, +2013,6,23,1,30,2.2224736,,,,,,,,,,,,,, +2013,6,23,2,30,1.5506008,,,,,,,,,,,,,, +2013,6,23,3,30,0.528315,,,,,,,,,,,,,, +2013,6,23,4,30,0.55915934,,,,,,,,,,,,,, +2013,6,23,5,30,1.2989161,,,,,,,,,,,,,, +2013,6,23,6,30,1.5738089,,,,,,,,,,,,,, +2013,6,23,7,30,1.3845713,,,,,,,,,,,,,, +2013,6,23,8,30,0.8569223,,,,,,,,,,,,,, +2013,6,23,9,30,0.14859425,,,,,,,,,,,,,, +2013,6,23,10,30,0.7932281,,,,,,,,,,,,,, +2013,6,23,11,30,1.4459171,,,,,,,,,,,,,, +2013,6,23,12,30,1.5266024,,,,,,,,,,,,,, +2013,6,23,13,30,1.1063762,,,,,,,,,,,,,, +2013,6,23,14,30,0.36005753,,,,,,,,,,,,,, +2013,6,23,15,30,0.6830736,,,,,,,,,,,,,, +2013,6,23,16,30,1.7750227,,,,,,,,,,,,,, +2013,6,23,17,30,2.4531395,,,,,,,,,,,,,, +2013,6,23,18,30,2.523853,,,,,,,,,,,,,, +2013,6,23,19,30,2.175404,,,,,,,,,,,,,, +2013,6,23,20,30,1.5380905,,,,,,,,,,,,,, +2013,6,23,21,30,0.47966623,,,,,,,,,,,,,, +2013,6,23,22,30,1.0131606,,,,,,,,,,,,,, +2013,6,23,23,30,2.2681375,,,,,,,,,,,,,, +2013,6,24,0,30,2.6978304,,,,,,,,,,,,,, +2013,6,24,1,30,2.459469,,,,,,,,,,,,,, +2013,6,24,2,30,1.9735518,,,,,,,,,,,,,, +2013,6,24,3,30,1.1927097,,,,,,,,,,,,,, +2013,6,24,4,30,0.13111646,,,,,,,,,,,,,, +2013,6,24,5,30,0.9249358,,,,,,,,,,,,,, +2013,6,24,6,30,1.5165145,,,,,,,,,,,,,, +2013,6,24,7,30,1.6209278,,,,,,,,,,,,,, +2013,6,24,8,30,1.3010561,,,,,,,,,,,,,, +2013,6,24,9,30,0.6979402,,,,,,,,,,,,,, +2013,6,24,10,30,0.15631399,,,,,,,,,,,,,, +2013,6,24,11,30,0.98481333,,,,,,,,,,,,,, +2013,6,24,12,30,1.5263551,,,,,,,,,,,,,, +2013,6,24,13,30,1.4644575,,,,,,,,,,,,,, +2013,6,24,14,30,0.9447818,,,,,,,,,,,,,, +2013,6,24,15,30,0.12984599,,,,,,,,,,,,,, +2013,6,24,16,30,0.9416548,,,,,,,,,,,,,, +2013,6,24,17,30,1.9362015,,,,,,,,,,,,,, +2013,6,24,18,30,2.411444,,,,,,,,,,,,,, +2013,6,24,19,30,2.3086255,,,,,,,,,,,,,, +2013,6,24,20,30,1.862373,,,,,,,,,,,,,, +2013,6,24,21,30,1.1331662,,,,,,,,,,,,,, +2013,6,24,22,30,0.12654269,,,,,,,,,,,,,, +2013,6,24,23,30,1.4277141,,,,,,,,,,,,,, +2013,6,25,0,30,2.414324,,,,,,,,,,,,,, +2013,6,25,1,30,2.5800974,,,,,,,,,,,,,, +2013,6,25,2,30,2.2326045,,,,,,,,,,,,,, +2013,6,25,3,30,1.6831232,,,,,,,,,,,,,, +2013,6,25,4,30,0.80896056,,,,,,,,,,,,,, +2013,6,25,5,30,0.32155547,,,,,,,,,,,,,, +2013,6,25,6,30,1.220627,,,,,,,,,,,,,, +2013,6,25,7,30,1.6676624,,,,,,,,,,,,,, +2013,6,25,8,30,1.6393614,,,,,,,,,,,,,, +2013,6,25,9,30,1.235492,,,,,,,,,,,,,, +2013,6,25,10,30,0.5974351,,,,,,,,,,,,,, +2013,6,25,11,30,0.24048686,,,,,,,,,,,,,, +2013,6,25,12,30,1.0769986,,,,,,,,,,,,,, +2013,6,25,13,30,1.538411,,,,,,,,,,,,,, +2013,6,25,14,30,1.3973811,,,,,,,,,,,,,, +2013,6,25,15,30,0.83682615,,,,,,,,,,,,,, +2013,6,25,16,30,0.034107406,,,,,,,,,,,,,, +2013,6,25,17,30,1.0367151,,,,,,,,,,,,,, +2013,6,25,18,30,1.8872185,,,,,,,,,,,,,, +2013,6,25,19,30,2.1794412,,,,,,,,,,,,,, +2013,6,25,20,30,1.9749883,,,,,,,,,,,,,, +2013,6,25,21,30,1.4996358,,,,,,,,,,,,,, +2013,6,25,22,30,0.74823254,,,,,,,,,,,,,, +2013,6,25,23,30,0.41374382,,,,,,,,,,,,,, +2013,6,26,0,30,1.6417669,,,,,,,,,,,,,, +2013,6,26,1,30,2.3705163,,,,,,,,,,,,,, +2013,6,26,2,30,2.3613622,,,,,,,,,,,,,, +2013,6,26,3,30,1.9628417,,,,,,,,,,,,,, +2013,6,26,4,30,1.3604045,,,,,,,,,,,,,, +2013,6,26,5,30,0.43165144,,,,,,,,,,,,,, +2013,6,26,6,30,0.65494215,,,,,,,,,,,,,, +2013,6,26,7,30,1.4478569,,,,,,,,,,,,,, +2013,6,26,8,30,1.7833179,,,,,,,,,,,,,, +2013,6,26,9,30,1.6658322,,,,,,,,,,,,,, +2013,6,26,10,30,1.2183565,,,,,,,,,,,,,, +2013,6,26,11,30,0.57474315,,,,,,,,,,,,,, +2013,6,26,12,30,0.26466396,,,,,,,,,,,,,, +2013,6,26,13,30,1.1072443,,,,,,,,,,,,,, +2013,6,26,14,30,1.541116,,,,,,,,,,,,,, +2013,6,26,15,30,1.3804786,,,,,,,,,,,,,, +2013,6,26,16,30,0.8261428,,,,,,,,,,,,,, +2013,6,26,17,30,0.037934717,,,,,,,,,,,,,, +2013,6,26,18,30,0.94353724,,,,,,,,,,,,,, +2013,6,26,19,30,1.6390512,,,,,,,,,,,,,, +2013,6,26,20,30,1.8116394,,,,,,,,,,,,,, +2013,6,26,21,30,1.5987685,,,,,,,,,,,,,, +2013,6,26,22,30,1.1681743,,,,,,,,,,,,,, +2013,6,26,23,30,0.4604674,,,,,,,,,,,,,, +2013,6,27,0,30,0.61729544,,,,,,,,,,,,,, +2013,6,27,1,30,1.6653122,,,,,,,,,,,,,, +2013,6,27,2,30,2.1897728,,,,,,,,,,,,,, +2013,6,27,3,30,2.0841475,,,,,,,,,,,,,, +2013,6,27,4,30,1.6705507,,,,,,,,,,,,,, +2013,6,27,5,30,1.0366681,,,,,,,,,,,,,, +2013,6,27,6,30,0.1174355,,,,,,,,,,,,,, +2013,6,27,7,30,0.9170426,,,,,,,,,,,,,, +2013,6,27,8,30,1.6265198,,,,,,,,,,,,,, +2013,6,27,9,30,1.8916366,,,,,,,,,,,,,, +2013,6,27,10,30,1.7198461,,,,,,,,,,,,,, +2013,6,27,11,30,1.2608999,,,,,,,,,,,,,, +2013,6,27,12,30,0.6276447,,,,,,,,,,,,,, +2013,6,27,13,30,0.23681474,,,,,,,,,,,,,, +2013,6,27,14,30,1.1248863,,,,,,,,,,,,,, +2013,6,27,15,30,1.5800813,,,,,,,,,,,,,, +2013,6,27,16,30,1.441036,,,,,,,,,,,,,, +2013,6,27,17,30,0.9270007,,,,,,,,,,,,,, +2013,6,27,18,30,0.17681521,,,,,,,,,,,,,, +2013,6,27,19,30,0.6780583,,,,,,,,,,,,,, +2013,6,27,20,30,1.252084,,,,,,,,,,,,,, +2013,6,27,21,30,1.4017951,,,,,,,,,,,,,, +2013,6,27,22,30,1.2702829,,,,,,,,,,,,,, +2013,6,27,23,30,0.9323157,,,,,,,,,,,,,, +2013,6,28,0,30,0.30096236,,,,,,,,,,,,,, +2013,6,28,1,30,0.66411126,,,,,,,,,,,,,, +2013,6,28,2,30,1.5416044,,,,,,,,,,,,,, +2013,6,28,3,30,1.9275423,,,,,,,,,,,,,, +2013,6,28,4,30,1.7905089,,,,,,,,,,,,,, +2013,6,28,5,30,1.3946607,,,,,,,,,,,,,, +2013,6,28,6,30,0.75961256,,,,,,,,,,,,,, +2013,6,28,7,30,0.17733978,,,,,,,,,,,,,, +2013,6,28,8,30,1.1126344,,,,,,,,,,,,,, +2013,6,28,9,30,1.7799006,,,,,,,,,,,,,, +2013,6,28,10,30,2.005772,,,,,,,,,,,,,, +2013,6,28,11,30,1.8047698,,,,,,,,,,,,,, +2013,6,28,12,30,1.3599656,,,,,,,,,,,,,, +2013,6,28,13,30,0.7346399,,,,,,,,,,,,,, +2013,6,28,14,30,0.19894126,,,,,,,,,,,,,, +2013,6,28,15,30,1.1710901,,,,,,,,,,,,,, +2013,6,28,16,30,1.6753174,,,,,,,,,,,,,, +2013,6,28,17,30,1.5806895,,,,,,,,,,,,,, +2013,6,28,18,30,1.1322484,,,,,,,,,,,,,, +2013,6,28,19,30,0.4618461,,,,,,,,,,,,,, +2013,6,28,20,30,0.3011885,,,,,,,,,,,,,, +2013,6,28,21,30,0.82753485,,,,,,,,,,,,,, +2013,6,28,22,30,1.0548215,,,,,,,,,,,,,, +2013,6,28,23,30,1.0555224,,,,,,,,,,,,,, +2013,6,29,0,30,0.8124339,,,,,,,,,,,,,, +2013,6,29,1,30,0.25748587,,,,,,,,,,,,,, +2013,6,29,2,30,0.58100635,,,,,,,,,,,,,, +2013,6,29,3,30,1.3222506,,,,,,,,,,,,,, +2013,6,29,4,30,1.6422094,,,,,,,,,,,,,, +2013,6,29,5,30,1.5338383,,,,,,,,,,,,,, +2013,6,29,6,30,1.1833818,,,,,,,,,,,,,, +2013,6,29,7,30,0.5632109,,,,,,,,,,,,,, +2013,6,29,8,30,0.34490177,,,,,,,,,,,,,, +2013,6,29,9,30,1.2639374,,,,,,,,,,,,,, +2013,6,29,10,30,1.9233141,,,,,,,,,,,,,, +2013,6,29,11,30,2.1266763,,,,,,,,,,,,,, +2013,6,29,12,30,1.9161841,,,,,,,,,,,,,, +2013,6,29,13,30,1.5004069,,,,,,,,,,,,,, +2013,6,29,14,30,0.8593618,,,,,,,,,,,,,, +2013,6,29,15,30,0.1943985,,,,,,,,,,,,,, +2013,6,29,16,30,1.2694016,,,,,,,,,,,,,, +2013,6,29,17,30,1.8285036,,,,,,,,,,,,,, +2013,6,29,18,30,1.7904927,,,,,,,,,,,,,, +2013,6,29,19,30,1.4217349,,,,,,,,,,,,,, +2013,6,29,20,30,0.8254965,,,,,,,,,,,,,, +2013,6,29,21,30,0.14067313,,,,,,,,,,,,,, +2013,6,29,22,30,0.4771102,,,,,,,,,,,,,, +2013,6,29,23,30,0.8453082,,,,,,,,,,,,,, +2013,6,30,0,30,0.9710261,,,,,,,,,,,,,, +2013,6,30,1,30,0.7951569,,,,,,,,,,,,,, +2013,6,30,2,30,0.31073216,,,,,,,,,,,,,, +2013,6,30,3,30,0.40352196,,,,,,,,,,,,,, +2013,6,30,4,30,1.0668619,,,,,,,,,,,,,, +2013,6,30,5,30,1.4007417,,,,,,,,,,,,,, +2013,6,30,6,30,1.3661394,,,,,,,,,,,,,, +2013,6,30,7,30,1.0638027,,,,,,,,,,,,,, +2013,6,30,8,30,0.44711733,,,,,,,,,,,,,, +2013,6,30,9,30,0.46051416,,,,,,,,,,,,,, +2013,6,30,10,30,1.3956381,,,,,,,,,,,,,, +2013,6,30,11,30,2.065152,,,,,,,,,,,,,, +2013,6,30,12,30,2.2516317,,,,,,,,,,,,,, +2013,6,30,13,30,2.0450525,,,,,,,,,,,,,, +2013,6,30,14,30,1.6558955,,,,,,,,,,,,,, +2013,6,30,15,30,0.9600479,,,,,,,,,,,,,, +2011,6,30,16,30,0.25001925,,,,,,,,,,,,,, +2011,6,30,17,30,1.4308002,,,,,,,,,,,,,, +2011,6,30,18,30,2.0376103,,,,,,,,,,,,,, +2011,6,30,19,30,2.0580783,,,,,,,,,,,,,, +2011,6,30,20,30,1.757523,,,,,,,,,,,,,, +2011,6,30,21,30,1.1882389,,,,,,,,,,,,,, +2011,6,30,22,30,0.44222498,,,,,,,,,,,,,, +2011,6,30,23,30,0.28031102,,,,,,,,,,,,,, +2011,7,1,0,30,0.7918006,,,,,,,,,,,,,, +2011,7,1,1,30,0.9945179,,,,,,,,,,,,,, +2011,7,1,2,30,0.86049604,,,,,,,,,,,,,, +2011,7,1,3,30,0.45219535,,,,,,,,,,,,,, +2011,7,1,4,30,0.1862096,,,,,,,,,,,,,, +2011,7,1,5,30,0.8488308,,,,,,,,,,,,,, +2011,7,1,6,30,1.2641717,,,,,,,,,,,,,, +2011,7,1,7,30,1.3095716,,,,,,,,,,,,,, +2011,7,1,8,30,1.0251454,,,,,,,,,,,,,, +2011,7,1,9,30,0.38350752,,,,,,,,,,,,,, +2011,7,1,10,30,0.55366564,,,,,,,,,,,,,, +2011,7,1,11,30,1.5306554,,,,,,,,,,,,,, +2011,7,1,12,30,2.2113576,,,,,,,,,,,,,, +2011,7,1,13,30,2.3761923,,,,,,,,,,,,,, +2011,7,1,14,30,2.1766667,,,,,,,,,,,,,, +2011,7,1,15,30,1.7945387,,,,,,,,,,,,,, +2011,7,1,16,30,0.99833757,,,,,,,,,,,,,, +2011,7,1,17,30,0.38318977,,,,,,,,,,,,,, +2011,7,1,18,30,1.6626692,,,,,,,,,,,,,, +2011,7,1,19,30,2.2979903,,,,,,,,,,,,,, +2011,7,1,20,30,2.3565733,,,,,,,,,,,,,, +2011,7,1,21,30,2.0772684,,,,,,,,,,,,,, +2011,7,1,22,30,1.4619709,,,,,,,,,,,,,, +2011,7,1,23,30,0.6035305,,,,,,,,,,,,,, +2011,7,2,0,30,0.25774932,,,,,,,,,,,,,, +2011,7,2,1,30,0.86694926,,,,,,,,,,,,,, +2011,7,2,2,30,1.0946281,,,,,,,,,,,,,, +2011,7,2,3,30,0.99227875,,,,,,,,,,,,,, +2011,7,2,4,30,0.6471764,,,,,,,,,,,,,, +2011,7,2,5,30,0.09169041,,,,,,,,,,,,,, +2011,7,2,6,30,0.7409399,,,,,,,,,,,,,, +2011,7,2,7,30,1.2588257,,,,,,,,,,,,,, +2011,7,2,8,30,1.3443943,,,,,,,,,,,,,, +2011,7,2,9,30,1.031028,,,,,,,,,,,,,, +2011,7,2,10,30,0.33642793,,,,,,,,,,,,,, +2011,7,2,11,30,0.65801775,,,,,,,,,,,,,, +2011,7,2,12,30,1.6883904,,,,,,,,,,,,,, +2011,7,2,13,30,2.3625507,,,,,,,,,,,,,, +2011,7,2,14,30,2.4913478,,,,,,,,,,,,,, +2011,7,2,15,30,2.2933295,,,,,,,,,,,,,, +2011,7,2,16,30,1.8854506,,,,,,,,,,,,,, +2011,7,2,17,30,0.9408291,,,,,,,,,,,,,, +2011,7,2,18,30,0.61750126,,,,,,,,,,,,,, +2011,7,2,19,30,1.963554,,,,,,,,,,,,,, +2011,7,2,20,30,2.585306,,,,,,,,,,,,,, +2011,7,2,21,30,2.6326008,,,,,,,,,,,,,, +2011,7,2,22,30,2.3066406,,,,,,,,,,,,,, +2011,7,2,23,30,1.5822489,,,,,,,,,,,,,, +2011,7,3,0,30,0.5885127,,,,,,,,,,,,,, +2011,7,3,1,30,0.3825639,,,,,,,,,,,,,, +2011,7,3,2,30,1.0288326,,,,,,,,,,,,,, +2011,7,3,3,30,1.2458961,,,,,,,,,,,,,, +2011,7,3,4,30,1.1643054,,,,,,,,,,,,,, +2011,7,3,5,30,0.8317936,,,,,,,,,,,,,, +2011,7,3,6,30,0.13986324,,,,,,,,,,,,,, +2011,7,3,7,30,0.781453,,,,,,,,,,,,,, +2011,7,3,8,30,1.3634659,,,,,,,,,,,,,, +2011,7,3,9,30,1.4247193,,,,,,,,,,,,,, +2011,7,3,10,30,1.0419741,,,,,,,,,,,,,, +2011,7,3,11,30,0.27219385,,,,,,,,,,,,,, +2011,7,3,12,30,0.80328894,,,,,,,,,,,,,, +2011,7,3,13,30,1.875715,,,,,,,,,,,,,, +2011,7,3,14,30,2.5076869,,,,,,,,,,,,,, +2011,7,3,15,30,2.5844836,,,,,,,,,,,,,, +2011,7,3,16,30,2.3774552,,,,,,,,,,,,,, +2011,7,3,17,30,1.8968309,,,,,,,,,,,,,, +2011,7,3,18,30,0.75827026,,,,,,,,,,,,,, +2011,7,3,19,30,0.9610008,,,,,,,,,,,,,, +2011,7,3,20,30,2.3032136,,,,,,,,,,,,,, +2011,7,3,21,30,2.8431697,,,,,,,,,,,,,, +2011,7,3,22,30,2.818025,,,,,,,,,,,,,, +2011,7,3,23,30,2.3895664,,,,,,,,,,,,,, +2011,7,4,0,30,1.5300586,,,,,,,,,,,,,, +2011,7,4,1,30,0.41932636,,,,,,,,,,,,,, +2011,7,4,2,30,0.6115388,,,,,,,,,,,,,, +2011,7,4,3,30,1.2395256,,,,,,,,,,,,,, +2011,7,4,4,30,1.4194973,,,,,,,,,,,,,, +2011,7,4,5,30,1.3273277,,,,,,,,,,,,,, +2011,7,4,6,30,0.9314615,,,,,,,,,,,,,, +2011,7,4,7,30,0.12056669,,,,,,,,,,,,,, +2011,7,4,8,30,0.9533855,,,,,,,,,,,,,, +2011,7,4,9,30,1.5239966,,,,,,,,,,,,,, +2011,7,4,10,30,1.5027057,,,,,,,,,,,,,, +2011,7,4,11,30,1.0258379,,,,,,,,,,,,,, +2011,7,4,12,30,0.16371647,,,,,,,,,,,,,, +2011,7,4,13,30,1.0024033,,,,,,,,,,,,,, +2011,7,4,14,30,2.0764642,,,,,,,,,,,,,, +2011,7,4,15,30,2.6246037,,,,,,,,,,,,,, +2011,7,4,16,30,2.6416879,,,,,,,,,,,,,, +2011,7,4,17,30,2.4052641,,,,,,,,,,,,,, +2011,7,4,18,30,1.790054,,,,,,,,,,,,,, +2011,7,4,19,30,0.44198236,,,,,,,,,,,,,, +2011,7,4,20,30,1.3819109,,,,,,,,,,,,,, +2011,7,4,21,30,2.613018,,,,,,,,,,,,,, +2011,7,4,22,30,3.0003536,,,,,,,,,,,,,, +2011,7,4,23,30,2.862572,,,,,,,,,,,,,, +2011,7,5,0,30,2.30979,,,,,,,,,,,,,, +2011,7,5,1,30,1.324342,,,,,,,,,,,,,, +2011,7,5,2,30,0.14520887,,,,,,,,,,,,,, +2011,7,5,3,30,0.90029037,,,,,,,,,,,,,, +2011,7,5,4,30,1.4610827,,,,,,,,,,,,,, +2011,7,5,5,30,1.5736128,,,,,,,,,,,,,, +2011,7,5,6,30,1.4221948,,,,,,,,,,,,,, +2011,7,5,7,30,0.8964403,,,,,,,,,,,,,, +2011,7,5,8,30,0.16186652,,,,,,,,,,,,,, +2011,7,5,9,30,1.1963513,,,,,,,,,,,,,, +2011,7,5,10,30,1.6785173,,,,,,,,,,,,,, +2011,7,5,11,30,1.5411333,,,,,,,,,,,,,, +2011,7,5,12,30,0.95778024,,,,,,,,,,,,,, +2011,7,5,13,30,0.04090678,,,,,,,,,,,,,, +2011,7,5,14,30,1.2378036,,,,,,,,,,,,,, +2011,7,5,15,30,2.2522426,,,,,,,,,,,,,, +2011,7,5,16,30,2.68633,,,,,,,,,,,,,, +2011,7,5,17,30,2.6421356,,,,,,,,,,,,,, +2011,7,5,18,30,2.3371058,,,,,,,,,,,,,, +2011,7,5,19,30,1.5287492,,,,,,,,,,,,,, +2011,7,5,20,30,0.158528,,,,,,,,,,,,,, +2011,7,5,21,30,1.8017833,,,,,,,,,,,,,, +2011,7,5,22,30,2.8097558,,,,,,,,,,,,,, +2011,7,5,23,30,3.0096252,,,,,,,,,,,,,, +2011,7,6,0,30,2.7564168,,,,,,,,,,,,,, +2011,7,6,1,30,2.0842495,,,,,,,,,,,,,, +2011,7,6,2,30,0.9987857,,,,,,,,,,,,,, +2011,7,6,3,30,0.23497646,,,,,,,,,,,,,, +2011,7,6,4,30,1.2026308,,,,,,,,,,,,,, +2011,7,6,5,30,1.6509079,,,,,,,,,,,,,, +2011,7,6,6,30,1.6649799,,,,,,,,,,,,,, +2011,7,6,7,30,1.4115378,,,,,,,,,,,,,, +2011,7,6,8,30,0.7302195,,,,,,,,,,,,,, +2011,7,6,9,30,0.4262391,,,,,,,,,,,,,, +2011,7,6,10,30,1.4327118,,,,,,,,,,,,,, +2011,7,6,11,30,1.7758967,,,,,,,,,,,,,, +2011,7,6,12,30,1.515384,,,,,,,,,,,,,, +2011,7,6,13,30,0.82544315,,,,,,,,,,,,,, +2011,7,6,14,30,0.24870193,,,,,,,,,,,,,, +2011,7,6,15,30,1.4615399,,,,,,,,,,,,,, +2011,7,6,16,30,2.3549366,,,,,,,,,,,,,, +2011,7,6,17,30,2.6634955,,,,,,,,,,,,,, +2011,7,6,18,30,2.5501611,,,,,,,,,,,,,, +2011,7,6,19,30,2.1263895,,,,,,,,,,,,,, +2011,7,6,20,30,1.1094027,,,,,,,,,,,,,, +2011,7,6,21,30,0.58227545,,,,,,,,,,,,,, +2011,7,6,22,30,2.1216025,,,,,,,,,,,,,, +2011,7,6,23,30,2.8407671,,,,,,,,,,,,,, +2011,7,7,0,30,2.8715482,,,,,,,,,,,,,, +2011,7,7,1,30,2.5212603,,,,,,,,,,,,,, +2011,7,7,2,30,1.741255,,,,,,,,,,,,,, +2011,7,7,3,30,0.5913926,,,,,,,,,,,,,, +2011,7,7,4,30,0.61472166,,,,,,,,,,,,,, +2011,7,7,5,30,1.4699295,,,,,,,,,,,,,, +2011,7,7,6,30,1.7731915,,,,,,,,,,,,,, +2011,7,7,7,30,1.6723827,,,,,,,,,,,,,, +2011,7,7,8,30,1.3015773,,,,,,,,,,,,,, +2011,7,7,9,30,0.48853645,,,,,,,,,,,,,, +2011,7,7,10,30,0.7057792,,,,,,,,,,,,,, +2011,7,7,11,30,1.5950571,,,,,,,,,,,,,, +2011,7,7,12,30,1.7861894,,,,,,,,,,,,,, +2011,7,7,13,30,1.417753,,,,,,,,,,,,,, +2011,7,7,14,30,0.6407646,,,,,,,,,,,,,, +2011,7,7,15,30,0.476685,,,,,,,,,,,,,, +2011,7,7,16,30,1.6111902,,,,,,,,,,,,,, +2011,7,7,17,30,2.3400598,,,,,,,,,,,,,, +2011,7,7,18,30,2.5245237,,,,,,,,,,,,,, +2011,7,7,19,30,2.3256197,,,,,,,,,,,,,, +2011,7,7,20,30,1.754414,,,,,,,,,,,,,, +2011,7,7,21,30,0.59045506,,,,,,,,,,,,,, +2011,7,7,22,30,1.0319479,,,,,,,,,,,,,, +2011,7,7,23,30,2.2705092,,,,,,,,,,,,,, +2011,7,8,0,30,2.709764,,,,,,,,,,,,,, +2011,7,8,1,30,2.6203346,,,,,,,,,,,,,, +2011,7,8,2,30,2.1849751,,,,,,,,,,,,,, +2011,7,8,3,30,1.3119813,,,,,,,,,,,,,, +2011,7,8,4,30,0.16014335,,,,,,,,,,,,,, +2011,7,8,5,30,0.9663578,,,,,,,,,,,,,, +2011,7,8,6,30,1.6639044,,,,,,,,,,,,,, +2011,7,8,7,30,1.8158728,,,,,,,,,,,,,, +2011,7,8,8,30,1.607906,,,,,,,,,,,,,, +2011,7,8,9,30,1.1362826,,,,,,,,,,,,,, +2011,7,8,10,30,0.25716367,,,,,,,,,,,,,, +2011,7,8,11,30,0.91154134,,,,,,,,,,,,,, +2011,7,8,12,30,1.6482025,,,,,,,,,,,,,, +2011,7,8,13,30,1.7083998,,,,,,,,,,,,,, +2011,7,8,14,30,1.2652814,,,,,,,,,,,,,, +2011,7,8,15,30,0.4441541,,,,,,,,,,,,,, +2011,7,8,16,30,0.64781624,,,,,,,,,,,,,, +2011,7,8,17,30,1.6304191,,,,,,,,,,,,,, +2011,7,8,18,30,2.1772947,,,,,,,,,,,,,, +2011,7,8,19,30,2.2484484,,,,,,,,,,,,,, +2011,7,8,20,30,1.958121,,,,,,,,,,,,,, +2011,7,8,21,30,1.26433,,,,,,,,,,,,,, +2011,7,8,22,30,0.14710757,,,,,,,,,,,,,, +2011,7,8,23,30,1.3391001,,,,,,,,,,,,,, +2011,7,9,0,30,2.2364285,,,,,,,,,,,,,, +2011,7,9,1,30,2.4598134,,,,,,,,,,,,,, +2011,7,9,2,30,2.291322,,,,,,,,,,,,,, +2011,7,9,3,30,1.7723024,,,,,,,,,,,,,, +2011,7,9,4,30,0.84065723,,,,,,,,,,,,,, +2011,7,9,5,30,0.27789727,,,,,,,,,,,,,, +2011,7,9,6,30,1.2423801,,,,,,,,,,,,,, +2011,7,9,7,30,1.7718813,,,,,,,,,,,,,, +2011,7,9,8,30,1.79371,,,,,,,,,,,,,, +2011,7,9,9,30,1.5064235,,,,,,,,,,,,,, +2011,7,9,10,30,0.97148323,,,,,,,,,,,,,, +2011,7,9,11,30,0.13916934,,,,,,,,,,,,,, +2011,7,9,12,30,1.0093582,,,,,,,,,,,,,, +2011,7,9,13,30,1.6008161,,,,,,,,,,,,,, +2011,7,9,14,30,1.5733193,,,,,,,,,,,,,, +2011,7,9,15,30,1.0992943,,,,,,,,,,,,,, +2011,7,9,16,30,0.29372543,,,,,,,,,,,,,, +2011,7,9,17,30,0.703138,,,,,,,,,,,,,, +2011,7,9,18,30,1.4869902,,,,,,,,,,,,,, +2011,7,9,19,30,1.8659481,,,,,,,,,,,,,, +2011,7,9,20,30,1.8526827,,,,,,,,,,,,,, +2011,7,9,21,30,1.4974289,,,,,,,,,,,,,, +2011,7,9,22,30,0.75735956,,,,,,,,,,,,,, +2011,7,9,23,30,0.37315232,,,,,,,,,,,,,, +2011,7,10,0,30,1.4584683,,,,,,,,,,,,,, +2011,7,10,1,30,2.0542629,,,,,,,,,,,,,, +2011,7,10,2,30,2.1365013,,,,,,,,,,,,,, +2011,7,10,3,30,1.9085674,,,,,,,,,,,,,, +2011,7,10,4,30,1.3186986,,,,,,,,,,,,,, +2011,7,10,5,30,0.38931638,,,,,,,,,,,,,, +2011,7,10,6,30,0.61576307,,,,,,,,,,,,,, +2011,7,10,7,30,1.424444,,,,,,,,,,,,,, +2011,7,10,8,30,1.8073273,,,,,,,,,,,,,, +2011,7,10,9,30,1.7351053,,,,,,,,,,,,,, +2011,7,10,10,30,1.4053838,,,,,,,,,,,,,, +2011,7,10,11,30,0.8478509,,,,,,,,,,,,,, +2011,7,10,12,30,0.13194536,,,,,,,,,,,,,, +2011,7,10,13,30,1.018006,,,,,,,,,,,,,, +2011,7,10,14,30,1.500716,,,,,,,,,,,,,, +2011,7,10,15,30,1.4336336,,,,,,,,,,,,,, +2011,7,10,16,30,0.9717016,,,,,,,,,,,,,, +2011,7,10,17,30,0.24068531,,,,,,,,,,,,,, +2011,7,10,18,30,0.60875285,,,,,,,,,,,,,, +2011,7,10,19,30,1.1906375,,,,,,,,,,,,,, +2011,7,10,20,30,1.4541415,,,,,,,,,,,,,, +2011,7,10,21,30,1.4102244,,,,,,,,,,,,,, +2011,7,10,22,30,1.043926,,,,,,,,,,,,,, +2011,7,10,23,30,0.34859425,,,,,,,,,,,,,, +2011,7,11,0,30,0.6027938,,,,,,,,,,,,,, +2011,7,11,1,30,1.4014499,,,,,,,,,,,,,, +2011,7,11,2,30,1.7731482,,,,,,,,,,,,,, +2011,7,11,3,30,1.773217,,,,,,,,,,,,,, +2011,7,11,4,30,1.5013835,,,,,,,,,,,,,, +2011,7,11,5,30,0.8801098,,,,,,,,,,,,,, +2011,7,11,6,30,0.042388834,,,,,,,,,,,,,, +2011,7,11,7,30,0.8539963,,,,,,,,,,,,,, +2011,7,11,8,30,1.5246689,,,,,,,,,,,,,, +2011,7,11,9,30,1.7965362,,,,,,,,,,,,,, +2011,7,11,10,30,1.6674227,,,,,,,,,,,,,, +2011,7,11,11,30,1.3297105,,,,,,,,,,,,,, +2011,7,11,12,30,0.7742907,,,,,,,,,,,,,, +2011,7,11,13,30,0.15780708,,,,,,,,,,,,,, +2011,7,11,14,30,0.99550754,,,,,,,,,,,,,, +2011,7,11,15,30,1.41223,,,,,,,,,,,,,, +2011,7,11,16,30,1.3431793,,,,,,,,,,,,,, +2011,7,11,17,30,0.9270506,,,,,,,,,,,,,, +2011,7,11,18,30,0.30197996,,,,,,,,,,,,,, +2011,7,11,19,30,0.37568378,,,,,,,,,,,,,, +2011,7,11,20,30,0.80667055,,,,,,,,,,,,,, +2011,7,11,21,30,1.0401416,,,,,,,,,,,,,, +2011,7,11,22,30,1.0272148,,,,,,,,,,,,,, +2011,7,11,23,30,0.69746363,,,,,,,,,,,,,, +2011,7,12,0,30,0.14511299,,,,,,,,,,,,,, +2011,7,12,1,30,0.65266633,,,,,,,,,,,,,, +2011,7,12,2,30,1.2117916,,,,,,,,,,,,,, +2011,7,12,3,30,1.4418099,,,,,,,,,,,,,, +2011,7,12,4,30,1.4069815,,,,,,,,,,,,,, +2011,7,12,5,30,1.1190046,,,,,,,,,,,,,, +2011,7,12,6,30,0.5156459,,,,,,,,,,,,,, +2011,7,12,7,30,0.25700864,,,,,,,,,,,,,, +2011,7,12,8,30,1.0052356,,,,,,,,,,,,,, +2011,7,12,9,30,1.573074,,,,,,,,,,,,,, +2011,7,12,10,30,1.7668394,,,,,,,,,,,,,, +2011,7,12,11,30,1.6112856,,,,,,,,,,,,,, +2011,7,12,12,30,1.285042,,,,,,,,,,,,,, +2011,7,12,13,30,0.72575617,,,,,,,,,,,,,, +2011,7,12,14,30,0.20574942,,,,,,,,,,,,,, +2011,7,12,15,30,1.0065742,,,,,,,,,,,,,, +2011,7,12,16,30,1.3878176,,,,,,,,,,,,,, +2011,7,12,17,30,1.3386297,,,,,,,,,,,,,, +2011,7,12,18,30,0.9884564,,,,,,,,,,,,,, +2011,7,12,19,30,0.47248664,,,,,,,,,,,,,, +2011,7,12,20,30,0.096133344,,,,,,,,,,,,,, +2011,7,12,21,30,0.44657236,,,,,,,,,,,,,, +2011,7,12,22,30,0.73677707,,,,,,,,,,,,,, +2011,7,12,23,30,0.78714496,,,,,,,,,,,,,, +2011,7,13,0,30,0.5063995,,,,,,,,,,,,,, +2011,7,13,1,30,0.1264941,,,,,,,,,,,,,, +2011,7,13,2,30,0.55795497,,,,,,,,,,,,,, +2011,7,13,3,30,0.95111895,,,,,,,,,,,,,, +2011,7,13,4,30,1.1185238,,,,,,,,,,,,,, +2011,7,13,5,30,1.091851,,,,,,,,,,,,,, +2011,7,13,6,30,0.8158358,,,,,,,,,,,,,, +2011,7,13,7,30,0.25574085,,,,,,,,,,,,,, +2011,7,13,8,30,0.43329483,,,,,,,,,,,,,, +2011,7,13,9,30,1.1074916,,,,,,,,,,,,,, +2011,7,13,10,30,1.6050737,,,,,,,,,,,,,, +2011,7,13,11,30,1.7437589,,,,,,,,,,,,,, +2011,7,13,12,30,1.5796624,,,,,,,,,,,,,, +2011,7,13,13,30,1.2574441,,,,,,,,,,,,,, +2011,7,13,14,30,0.65791494,,,,,,,,,,,,,, +2011,7,13,15,30,0.30508593,,,,,,,,,,,,,, +2011,7,13,16,30,1.092784,,,,,,,,,,,,,, +2011,7,13,17,30,1.452472,,,,,,,,,,,,,, +2011,7,13,18,30,1.431792,,,,,,,,,,,,,, +2011,7,13,19,30,1.146134,,,,,,,,,,,,,, +2011,7,13,20,30,0.70621115,,,,,,,,,,,,,, +2011,7,13,21,30,0.2503173,,,,,,,,,,,,,, +2011,7,13,22,30,0.22443648,,,,,,,,,,,,,, +2011,7,13,23,30,0.61377174,,,,,,,,,,,,,, +2011,7,14,0,30,0.7078604,,,,,,,,,,,,,, +2011,7,14,1,30,0.45821,,,,,,,,,,,,,, +2011,7,14,2,30,0.12201382,,,,,,,,,,,,,, +2011,7,14,3,30,0.38716513,,,,,,,,,,,,,, +2011,7,14,4,30,0.69872135,,,,,,,,,,,,,, +2011,7,14,5,30,0.875298,,,,,,,,,,,,,, +2011,7,14,6,30,0.8815508,,,,,,,,,,,,,, +2011,7,14,7,30,0.61867833,,,,,,,,,,,,,, +2011,7,14,8,30,0.087390706,,,,,,,,,,,,,, +2011,7,14,9,30,0.56533194,,,,,,,,,,,,,, +2011,7,14,10,30,1.2070209,,,,,,,,,,,,,, +2011,7,14,11,30,1.6551254,,,,,,,,,,,,,, +2011,7,14,12,30,1.7490318,,,,,,,,,,,,,, +2011,7,14,13,30,1.5746071,,,,,,,,,,,,,, +2011,7,14,14,30,1.2203279,,,,,,,,,,,,,, +2011,7,14,15,30,0.53244054,,,,,,,,,,,,,, +2011,7,14,16,30,0.4888718,,,,,,,,,,,,,, +2011,7,14,17,30,1.265186,,,,,,,,,,,,,, +2011,7,14,18,30,1.6054075,,,,,,,,,,,,,, +2011,7,14,19,30,1.6066554,,,,,,,,,,,,,, +2011,7,14,20,30,1.3501493,,,,,,,,,,,,,, +2011,7,14,21,30,0.9099261,,,,,,,,,,,,,, +2011,7,14,22,30,0.38511398,,,,,,,,,,,,,, +2011,7,14,23,30,0.20154837,,,,,,,,,,,,,, +2011,7,15,0,30,0.6629935,,,,,,,,,,,,,, +2011,7,15,1,30,0.7471792,,,,,,,,,,,,,, +2011,7,15,2,30,0.50503063,,,,,,,,,,,,,, +2011,7,15,3,30,0.17554894,,,,,,,,,,,,,, +2011,7,15,4,30,0.22893581,,,,,,,,,,,,,, +2011,7,15,5,30,0.5436816,,,,,,,,,,,,,, +2011,7,15,6,30,0.7716072,,,,,,,,,,,,,, +2011,7,15,7,30,0.793841,,,,,,,,,,,,,, +2011,7,15,8,30,0.5089686,,,,,,,,,,,,,, +2011,7,15,9,30,0.046162188,,,,,,,,,,,,,, +2011,7,15,10,30,0.7078463,,,,,,,,,,,,,, +2011,7,15,11,30,1.3463156,,,,,,,,,,,,,, +2011,7,15,12,30,1.7487158,,,,,,,,,,,,,, +2011,7,15,13,30,1.791909,,,,,,,,,,,,,, +2011,7,15,14,30,1.5841887,,,,,,,,,,,,,, +2011,7,15,15,30,1.1461228,,,,,,,,,,,,,, +2011,7,15,16,30,0.33830732,,,,,,,,,,,,,, +2011,7,15,17,30,0.7630063,,,,,,,,,,,,,, +2011,7,15,18,30,1.5144676,,,,,,,,,,,,,, +2011,7,15,19,30,1.825141,,,,,,,,,,,,,, +2011,7,15,20,30,1.8164642,,,,,,,,,,,,,, +2011,7,15,21,30,1.5195067,,,,,,,,,,,,,, +2011,7,15,22,30,0.9887393,,,,,,,,,,,,,, +2011,7,15,23,30,0.33386317,,,,,,,,,,,,,, +2011,7,16,0,30,0.35819185,,,,,,,,,,,,,, +2011,7,16,1,30,0.8171209,,,,,,,,,,,,,, +2011,7,16,2,30,0.84091026,,,,,,,,,,,,,, +2011,7,16,3,30,0.5901128,,,,,,,,,,,,,, +2011,7,16,4,30,0.2713133,,,,,,,,,,,,,, +2011,7,16,5,30,0.16038242,,,,,,,,,,,,,, +2011,7,16,6,30,0.5515493,,,,,,,,,,,,,, +2011,7,16,7,30,0.81341803,,,,,,,,,,,,,, +2011,7,16,8,30,0.7944183,,,,,,,,,,,,,, +2011,7,16,9,30,0.43431512,,,,,,,,,,,,,, +2011,7,16,10,30,0.18788818,,,,,,,,,,,,,, +2011,7,16,11,30,0.90871704,,,,,,,,,,,,,, +2011,7,16,12,30,1.5503944,,,,,,,,,,,,,, +2011,7,16,13,30,1.8890045,,,,,,,,,,,,,, +2011,7,16,14,30,1.8608725,,,,,,,,,,,,,, +2011,7,16,15,30,1.5852772,,,,,,,,,,,,,, +2011,7,16,16,30,1.0119774,,,,,,,,,,,,,, +2011,7,16,17,30,0.16024277,,,,,,,,,,,,,, +2011,7,16,18,30,1.117542,,,,,,,,,,,,,, +2011,7,16,19,30,1.8185211,,,,,,,,,,,,,, +2011,7,16,20,30,2.0683055,,,,,,,,,,,,,, +2011,7,16,21,30,1.9907207,,,,,,,,,,,,,, +2011,7,16,22,30,1.5743548,,,,,,,,,,,,,, +2011,7,16,23,30,0.89369047,,,,,,,,,,,,,, +2011,7,17,0,30,0.11372249,,,,,,,,,,,,,, +2011,7,17,1,30,0.62070704,,,,,,,,,,,,,, +2011,7,17,2,30,1.0001806,,,,,,,,,,,,,, +2011,7,17,3,30,0.93811095,,,,,,,,,,,,,, +2011,7,17,4,30,0.6602469,,,,,,,,,,,,,, +2011,7,17,5,30,0.28778344,,,,,,,,,,,,,, +2011,7,17,6,30,0.23768874,,,,,,,,,,,,,, +2011,7,17,7,30,0.71956664,,,,,,,,,,,,,, +2011,7,17,8,30,0.9462126,,,,,,,,,,,,,, +2011,7,17,9,30,0.8175906,,,,,,,,,,,,,, +2011,7,17,10,30,0.33513796,,,,,,,,,,,,,, +2011,7,17,11,30,0.39679354,,,,,,,,,,,,,, +2011,7,17,12,30,1.1919346,,,,,,,,,,,,,, +2011,7,17,13,30,1.8110574,,,,,,,,,,,,,, +2011,7,17,14,30,2.0497265,,,,,,,,,,,,,, +2011,7,17,15,30,1.9267918,,,,,,,,,,,,,, +2011,7,17,16,30,1.5478593,,,,,,,,,,,,,, +2011,7,17,17,30,0.7940832,,,,,,,,,,,,,, +2011,7,17,18,30,0.42870206,,,,,,,,,,,,,, +2011,7,17,19,30,1.5357808,,,,,,,,,,,,,, +2011,7,17,20,30,2.1375163,,,,,,,,,,,,,, +2011,7,17,21,30,2.2727132,,,,,,,,,,,,,, +2011,7,17,22,30,2.0610795,,,,,,,,,,,,,, +2011,7,17,23,30,1.4732838,,,,,,,,,,,,,, +2011,7,18,0,30,0.6374893,,,,,,,,,,,,,, +2011,7,18,1,30,0.23568554,,,,,,,,,,,,,, +2011,7,18,2,30,0.91401565,,,,,,,,,,,,,, +2011,7,18,3,30,1.1651533,,,,,,,,,,,,,, +2011,7,18,4,30,1.0103914,,,,,,,,,,,,,, +2011,7,18,5,30,0.6711609,,,,,,,,,,,,,, +2011,7,18,6,30,0.18203658,,,,,,,,,,,,,, +2011,7,18,7,30,0.4841531,,,,,,,,,,,,,, +2011,7,18,8,30,0.98075056,,,,,,,,,,,,,, +2011,7,18,9,30,1.0893879,,,,,,,,,,,,,, +2011,7,18,10,30,0.8012935,,,,,,,,,,,,,, +2011,7,18,11,30,0.1679593,,,,,,,,,,,,,, +2011,7,18,12,30,0.6940111,,,,,,,,,,,,,, +2011,7,18,13,30,1.5412582,,,,,,,,,,,,,, +2011,7,18,14,30,2.0831637,,,,,,,,,,,,,, +2011,7,18,15,30,2.1859508,,,,,,,,,,,,,, +2011,7,18,16,30,1.9536463,,,,,,,,,,,,,, +2011,7,18,17,30,1.4344715,,,,,,,,,,,,,, +2011,7,18,18,30,0.46811256,,,,,,,,,,,,,, +2011,7,18,19,30,0.91346884,,,,,,,,,,,,,, +2011,7,18,20,30,1.9800227,,,,,,,,,,,,,, +2011,7,18,21,30,2.4107616,,,,,,,,,,,,,, +2011,7,18,22,30,2.3778343,,,,,,,,,,,,,, +2011,7,18,23,30,1.9921391,,,,,,,,,,,,,, +2011,7,19,0,30,1.2247529,,,,,,,,,,,,,, +2011,7,19,1,30,0.27143094,,,,,,,,,,,,,, +2011,7,19,2,30,0.62037486,,,,,,,,,,,,,, +2011,7,19,3,30,1.1934531,,,,,,,,,,,,,, +2011,7,19,4,30,1.2960125,,,,,,,,,,,,,, +2011,7,19,5,30,1.0424541,,,,,,,,,,,,,, +2011,7,19,6,30,0.5965962,,,,,,,,,,,,,, +2011,7,19,7,30,0.12723637,,,,,,,,,,,,,, +2011,7,19,8,30,0.8268956,,,,,,,,,,,,,, +2011,7,19,9,30,1.2457078,,,,,,,,,,,,,, +2011,7,19,10,30,1.1765271,,,,,,,,,,,,,, +2011,7,19,11,30,0.7114941,,,,,,,,,,,,,, +2011,7,19,12,30,0.08386051,,,,,,,,,,,,,, +2011,7,19,13,30,1.0596749,,,,,,,,,,,,,, +2011,7,19,14,30,1.899193,,,,,,,,,,,,,, +2011,7,19,15,30,2.3033807,,,,,,,,,,,,,, +2011,7,19,16,30,2.254848,,,,,,,,,,,,,, +2011,7,19,17,30,1.9046698,,,,,,,,,,,,,, +2011,7,19,18,30,1.2028235,,,,,,,,,,,,,, +2011,7,19,19,30,0.1440995,,,,,,,,,,,,,, +2011,7,19,20,30,1.4702114,,,,,,,,,,,,,, +2011,7,19,21,30,2.3802748,,,,,,,,,,,,,, +2011,7,19,22,30,2.574692,,,,,,,,,,,,,, +2011,7,19,23,30,2.3524444,,,,,,,,,,,,,, +2011,7,20,0,30,1.7896404,,,,,,,,,,,,,, +2011,7,20,1,30,0.8641675,,,,,,,,,,,,,, +2011,7,20,2,30,0.18507089,,,,,,,,,,,,,, +2011,7,20,3,30,1.015926,,,,,,,,,,,,,, +2011,7,20,4,30,1.440943,,,,,,,,,,,,,, +2011,7,20,5,30,1.3896248,,,,,,,,,,,,,, +2011,7,20,6,30,1.0255649,,,,,,,,,,,,,, +2011,7,20,7,30,0.43678802,,,,,,,,,,,,,, +2011,7,20,8,30,0.41284028,,,,,,,,,,,,,, +2011,7,20,9,30,1.1795157,,,,,,,,,,,,,, +2011,7,20,10,30,1.4448147,,,,,,,,,,,,,, +2011,7,20,11,30,1.18075,,,,,,,,,,,,,, +2011,7,20,12,30,0.55042934,,,,,,,,,,,,,, +2011,7,20,13,30,0.388506,,,,,,,,,,,,,, +2011,7,20,14,30,1.433994,,,,,,,,,,,,,, +2011,7,20,15,30,2.190117,,,,,,,,,,,,,, +2011,7,20,16,30,2.4194,,,,,,,,,,,,,, +2011,7,20,17,30,2.2274828,,,,,,,,,,,,,, +2011,7,20,18,30,1.7452209,,,,,,,,,,,,,, +2011,7,20,19,30,0.8264678,,,,,,,,,,,,,, +2011,7,20,20,30,0.63115966,,,,,,,,,,,,,, +2011,7,20,21,30,2.0092084,,,,,,,,,,,,,, +2011,7,20,22,30,2.6539738,,,,,,,,,,,,,, +2011,7,20,23,30,2.5939763,,,,,,,,,,,,,, +2011,7,21,0,30,2.2025633,,,,,,,,,,,,,, +2011,7,21,1,30,1.4789261,,,,,,,,,,,,,, +2011,7,21,2,30,0.42516226,,,,,,,,,,,,,, +2011,7,21,3,30,0.6524655,,,,,,,,,,,,,, +2011,7,21,4,30,1.3957487,,,,,,,,,,,,,, +2011,7,21,5,30,1.6463382,,,,,,,,,,,,,, +2011,7,21,6,30,1.4435005,,,,,,,,,,,,,, +2011,7,21,7,30,0.95806396,,,,,,,,,,,,,, +2011,7,21,8,30,0.22294888,,,,,,,,,,,,,, +2011,7,21,9,30,0.76429164,,,,,,,,,,,,,, +2011,7,21,10,30,1.475813,,,,,,,,,,,,,, +2011,7,21,11,30,1.5533078,,,,,,,,,,,,,, +2011,7,21,12,30,1.1166766,,,,,,,,,,,,,, +2011,7,21,13,30,0.35231596,,,,,,,,,,,,,, +2011,7,21,14,30,0.6959375,,,,,,,,,,,,,, +2011,7,21,15,30,1.7409092,,,,,,,,,,,,,, +2011,7,21,16,30,2.35293,,,,,,,,,,,,,, +2011,7,21,17,30,2.405896,,,,,,,,,,,,,, +2011,7,21,18,30,2.0879536,,,,,,,,,,,,,, +2011,7,21,19,30,1.4560329,,,,,,,,,,,,,, +2011,7,21,20,30,0.33437765,,,,,,,,,,,,,, +2011,7,21,21,30,1.2236378,,,,,,,,,,,,,, +2011,7,21,22,30,2.420156,,,,,,,,,,,,,, +2011,7,21,23,30,2.7476592,,,,,,,,,,,,,, +2011,7,22,0,30,2.4751782,,,,,,,,,,,,,, +2011,7,22,1,30,1.9512936,,,,,,,,,,,,,, +2011,7,22,2,30,1.0801086,,,,,,,,,,,,,, +2011,7,22,3,30,0.109722055,,,,,,,,,,,,,, +2011,7,22,4,30,1.1310375,,,,,,,,,,,,,, +2011,7,22,5,30,1.7330889,,,,,,,,,,,,,, +2011,7,22,6,30,1.7991396,,,,,,,,,,,,,, +2011,7,22,7,30,1.4552429,,,,,,,,,,,,,, +2011,7,22,8,30,0.84593326,,,,,,,,,,,,,, +2011,7,22,9,30,0.12418054,,,,,,,,,,,,,, +2011,7,22,10,30,1.0894613,,,,,,,,,,,,,, +2011,7,22,11,30,1.6881679,,,,,,,,,,,,,, +2011,7,22,12,30,1.5886984,,,,,,,,,,,,,, +2011,7,22,13,30,1.0251939,,,,,,,,,,,,,, +2011,7,22,14,30,0.17023018,,,,,,,,,,,,,, +2011,7,22,15,30,0.9409749,,,,,,,,,,,,,, +2011,7,22,16,30,1.9183315,,,,,,,,,,,,,, +2011,7,22,17,30,2.35882,,,,,,,,,,,,,, +2011,7,22,18,30,2.2612157,,,,,,,,,,,,,, +2011,7,22,19,30,1.8355072,,,,,,,,,,,,,, +2011,7,22,20,30,1.0572551,,,,,,,,,,,,,, +2011,7,22,21,30,0.25330198,,,,,,,,,,,,,, +2011,7,22,22,30,1.7152498,,,,,,,,,,,,,, +2011,7,22,23,30,2.6231227,,,,,,,,,,,,,, +2011,7,23,0,30,2.6621492,,,,,,,,,,,,,, +2011,7,23,1,30,2.249189,,,,,,,,,,,,,, +2011,7,23,2,30,1.6158031,,,,,,,,,,,,,, +2011,7,23,3,30,0.6107425,,,,,,,,,,,,,, +2011,7,23,4,30,0.6153699,,,,,,,,,,,,,, +2011,7,23,5,30,1.5729368,,,,,,,,,,,,,, +2011,7,23,6,30,2.000545,,,,,,,,,,,,,, +2011,7,23,7,30,1.8921833,,,,,,,,,,,,,, +2011,7,23,8,30,1.4260383,,,,,,,,,,,,,, +2011,7,23,9,30,0.70266116,,,,,,,,,,,,,, +2011,7,23,10,30,0.3309498,,,,,,,,,,,,,, +2011,7,23,11,30,1.35596,,,,,,,,,,,,,, +2011,7,23,12,30,1.8235133,,,,,,,,,,,,,, +2011,7,23,13,30,1.5905648,,,,,,,,,,,,,, +2011,7,23,14,30,0.952165,,,,,,,,,,,,,, +2011,7,23,15,30,0.06440045,,,,,,,,,,,,,, +2011,7,23,16,30,1.0737375,,,,,,,,,,,,,, +2011,7,23,17,30,1.9338548,,,,,,,,,,,,,, +2011,7,23,18,30,2.2087893,,,,,,,,,,,,,, +2011,7,23,19,30,2.0021415,,,,,,,,,,,,,, +2011,7,23,20,30,1.4972285,,,,,,,,,,,,,, +2011,7,23,21,30,0.6201772,,,,,,,,,,,,,, +2011,7,23,22,30,0.712702,,,,,,,,,,,,,, +2011,7,23,23,30,2.005192,,,,,,,,,,,,,, +2011,7,24,0,30,2.6051116,,,,,,,,,,,,,, +2011,7,24,1,30,2.4391134,,,,,,,,,,,,,, +2011,7,24,2,30,1.9454229,,,,,,,,,,,,,, +2011,7,24,3,30,1.21049,,,,,,,,,,,,,, +2011,7,24,4,30,0.1294162,,,,,,,,,,,,,, +2011,7,24,5,30,1.1066189,,,,,,,,,,,,,, +2011,7,24,6,30,1.931949,,,,,,,,,,,,,, +2011,7,24,7,30,2.1810658,,,,,,,,,,,,,, +2011,7,24,8,30,1.9264009,,,,,,,,,,,,,, +2011,7,24,9,30,1.364598,,,,,,,,,,,,,, +2011,7,24,10,30,0.55124915,,,,,,,,,,,,,, +2011,7,24,11,30,0.55452096,,,,,,,,,,,,,, +2011,7,24,12,30,1.5524833,,,,,,,,,,,,,, +2011,7,24,13,30,1.9072702,,,,,,,,,,,,,, +2011,7,24,14,30,1.5975106,,,,,,,,,,,,,, +2011,7,24,15,30,0.9299501,,,,,,,,,,,,,, +2011,7,24,16,30,0.058248412,,,,,,,,,,,,,, +2011,7,24,17,30,1.0674046,,,,,,,,,,,,,, +2011,7,24,18,30,1.7836612,,,,,,,,,,,,,, +2011,7,24,19,30,1.9281533,,,,,,,,,,,,,, +2011,7,24,20,30,1.66869,,,,,,,,,,,,,, +2011,7,24,21,30,1.1344585,,,,,,,,,,,,,, +2011,7,24,22,30,0.25050512,,,,,,,,,,,,,, +2011,7,24,23,30,1.0140203,,,,,,,,,,,,,, +2011,7,25,0,30,2.0653372,,,,,,,,,,,,,, +2011,7,25,1,30,2.4107041,,,,,,,,,,,,,, +2011,7,25,2,30,2.129574,,,,,,,,,,,,,, +2011,7,25,3,30,1.5887325,,,,,,,,,,,,,, +2011,7,25,4,30,0.7704569,,,,,,,,,,,,,, +2011,7,25,5,30,0.39671722,,,,,,,,,,,,,, +2011,7,25,6,30,1.5055761,,,,,,,,,,,,,, +2011,7,25,7,30,2.1790836,,,,,,,,,,,,,, +2011,7,25,8,30,2.2742462,,,,,,,,,,,,,, +2011,7,25,9,30,1.9127693,,,,,,,,,,,,,, +2011,7,25,10,30,1.291545,,,,,,,,,,,,,, +2011,7,25,11,30,0.4237128,,,,,,,,,,,,,, +2011,7,25,12,30,0.7230058,,,,,,,,,,,,,, +2011,7,25,13,30,1.6843641,,,,,,,,,,,,,, +2011,7,25,14,30,1.9662737,,,,,,,,,,,,,, +2011,7,25,15,30,1.6315666,,,,,,,,,,,,,, +2011,7,25,16,30,0.97035104,,,,,,,,,,,,,, +2011,7,25,17,30,0.08948791,,,,,,,,,,,,,, +2011,7,25,18,30,0.9150879,,,,,,,,,,,,,, +2011,7,25,19,30,1.4912297,,,,,,,,,,,,,, +2011,7,25,20,30,1.5693867,,,,,,,,,,,,,, +2011,7,25,21,30,1.3265374,,,,,,,,,,,,,, +2011,7,25,22,30,0.8236866,,,,,,,,,,,,,, +2011,7,25,23,30,0.15827635,,,,,,,,,,,,,, +2011,7,26,0,30,1.1145346,,,,,,,,,,,,,, +2011,7,26,1,30,1.9312019,,,,,,,,,,,,,, +2011,7,26,2,30,2.1059456,,,,,,,,,,,,,, +2011,7,26,3,30,1.779856,,,,,,,,,,,,,, +2011,7,26,4,30,1.2172912,,,,,,,,,,,,,, +2011,7,26,5,30,0.361789,,,,,,,,,,,,,, +2011,7,26,6,30,0.77512544,,,,,,,,,,,,,, +2011,7,26,7,30,1.7726017,,,,,,,,,,,,,, +2011,7,26,8,30,2.3116431,,,,,,,,,,,,,, +2011,7,26,9,30,2.2947414,,,,,,,,,,,,,, +2011,7,26,10,30,1.8739202,,,,,,,,,,,,,, +2011,7,26,11,30,1.2383868,,,,,,,,,,,,,, +2011,7,26,12,30,0.34951416,,,,,,,,,,,,,, +2011,7,26,13,30,0.8275193,,,,,,,,,,,,,, +2011,7,26,14,30,1.767705,,,,,,,,,,,,,, +2011,7,26,15,30,2.017882,,,,,,,,,,,,,, +2011,7,26,16,30,1.6974106,,,,,,,,,,,,,, +2011,7,26,17,30,1.0743397,,,,,,,,,,,,,, +2011,7,26,18,30,0.23371656,,,,,,,,,,,,,, +2011,7,26,19,30,0.63257325,,,,,,,,,,,,,, +2011,7,26,20,30,1.113618,,,,,,,,,,,,,, +2011,7,26,21,30,1.2113283,,,,,,,,,,,,,, +2011,7,26,22,30,1.0494508,,,,,,,,,,,,,, +2011,7,26,23,30,0.62123835,,,,,,,,,,,,,, +2011,7,27,0,30,0.18897495,,,,,,,,,,,,,, +2011,7,27,1,30,1.034411,,,,,,,,,,,,,, +2011,7,27,2,30,1.6660076,,,,,,,,,,,,,, +2011,7,27,3,30,1.7556702,,,,,,,,,,,,,, +2011,7,27,4,30,1.4405631,,,,,,,,,,,,,, +2011,7,27,5,30,0.8903615,,,,,,,,,,,,,, +2011,7,27,6,30,0.071469374,,,,,,,,,,,,,, +2011,7,27,7,30,1.013621,,,,,,,,,,,,,, +2011,7,27,8,30,1.9050785,,,,,,,,,,,,,, +2011,7,27,9,30,2.3494618,,,,,,,,,,,,,, +2011,7,27,10,30,2.2696192,,,,,,,,,,,,,, +2011,7,27,11,30,1.8422667,,,,,,,,,,,,,, +2011,7,27,12,30,1.2340775,,,,,,,,,,,,,, +2011,7,27,13,30,0.33717555,,,,,,,,,,,,,, +2011,7,27,14,30,0.8815915,,,,,,,,,,,,,, +2011,7,27,15,30,1.8220985,,,,,,,,,,,,,, +2011,7,27,16,30,2.0712285,,,,,,,,,,,,,, +2011,7,27,17,30,1.7966614,,,,,,,,,,,,,, +2011,7,27,18,30,1.2454071,,,,,,,,,,,,,, +2011,7,27,19,30,0.4891335,,,,,,,,,,,,,, +2011,7,27,20,30,0.27192375,,,,,,,,,,,,,, +2011,7,27,21,30,0.7401604,,,,,,,,,,,,,, +2011,7,27,22,30,0.93837774,,,,,,,,,,,,,, +2011,7,27,23,30,0.8879132,,,,,,,,,,,,,, +2011,7,28,0,30,0.5453552,,,,,,,,,,,,,, +2011,7,28,1,30,0.14793205,,,,,,,,,,,,,, +2011,7,28,2,30,0.8194655,,,,,,,,,,,,,, +2011,7,28,3,30,1.3378961,,,,,,,,,,,,,, +2011,7,28,4,30,1.4255431,,,,,,,,,,,,,, +2011,7,28,5,30,1.1717995,,,,,,,,,,,,,, +2011,7,28,6,30,0.66767716,,,,,,,,,,,,,, +2011,7,28,7,30,0.15027136,,,,,,,,,,,,,, +2011,7,28,8,30,1.1099846,,,,,,,,,,,,,, +2011,7,28,9,30,1.9316797,,,,,,,,,,,,,, +2011,7,28,10,30,2.3283973,,,,,,,,,,,,,, +2011,7,28,11,30,2.2349052,,,,,,,,,,,,,, +2011,7,28,12,30,1.8481175,,,,,,,,,,,,,, +2011,7,28,13,30,1.2863882,,,,,,,,,,,,,, +2011,7,28,14,30,0.36799264,,,,,,,,,,,,,, +2011,7,28,15,30,0.91295594,,,,,,,,,,,,,, +2011,7,28,16,30,1.8680418,,,,,,,,,,,,,, +2011,7,28,17,30,2.139295,,,,,,,,,,,,,, +2011,7,28,18,30,1.9405282,,,,,,,,,,,,,, +2011,7,28,19,30,1.4840631,,,,,,,,,,,,,, +2011,7,28,20,30,0.8093187,,,,,,,,,,,,,, +2011,7,28,21,30,0.11466326,,,,,,,,,,,,,, +2011,7,28,22,30,0.4673118,,,,,,,,,,,,,, +2011,7,28,23,30,0.80599225,,,,,,,,,,,,,, +2011,7,29,0,30,0.8521096,,,,,,,,,,,,,, +2011,7,29,1,30,0.58846796,,,,,,,,,,,,,, +2011,7,29,2,30,0.119315684,,,,,,,,,,,,,, +2011,7,29,3,30,0.52610457,,,,,,,,,,,,,, +2011,7,29,4,30,1.0214359,,,,,,,,,,,,,, +2011,7,29,5,30,1.1844671,,,,,,,,,,,,,, +2011,7,29,6,30,1.0251932,,,,,,,,,,,,,, +2011,7,29,7,30,0.577955,,,,,,,,,,,,,, +2011,7,29,8,30,0.18595989,,,,,,,,,,,,,, +2011,7,29,9,30,1.10211,,,,,,,,,,,,,, +2011,7,29,10,30,1.9015255,,,,,,,,,,,,,, +2011,7,29,11,30,2.2935896,,,,,,,,,,,,,, +2011,7,29,12,30,2.2247791,,,,,,,,,,,,,, +2011,7,29,13,30,1.9028015,,,,,,,,,,,,,, +2011,7,29,14,30,1.3756276,,,,,,,,,,,,,, +2011,7,29,15,30,0.4059635,,,,,,,,,,,,,, +2011,7,29,16,30,0.95399857,,,,,,,,,,,,,, +2011,7,29,17,30,1.9317911,,,,,,,,,,,,,, +2011,7,29,18,30,2.2458339,,,,,,,,,,,,,, +2011,7,29,19,30,2.1399622,,,,,,,,,,,,,, +2011,7,29,20,30,1.7647727,,,,,,,,,,,,,, +2011,7,29,21,30,1.1164856,,,,,,,,,,,,,, +2011,7,29,22,30,0.3496232,,,,,,,,,,,,,, +2011,7,29,23,30,0.35883817,,,,,,,,,,,,,, +2011,7,30,0,30,0.82045394,,,,,,,,,,,,,, +2011,7,30,1,30,0.9233197,,,,,,,,,,,,,, +2011,7,30,2,30,0.7330267,,,,,,,,,,,,,, +2011,7,30,3,30,0.34560397,,,,,,,,,,,,,, +2011,7,30,4,30,0.22688739,,,,,,,,,,,,,, +2011,7,30,5,30,0.7985374,,,,,,,,,,,,,, +2011,7,30,6,30,1.0861433,,,,,,,,,,,,,, +2011,7,30,7,30,1.0166986,,,,,,,,,,,,,, +2011,7,30,8,30,0.6056699,,,,,,,,,,,,,, +2011,7,30,9,30,0.13551041,,,,,,,,,,,,,, +2011,7,30,10,30,1.051306,,,,,,,,,,,,,, +2011,7,30,11,30,1.8724229,,,,,,,,,,,,,, +2011,7,30,12,30,2.2860236,,,,,,,,,,,,,, +2011,7,30,13,30,2.2556207,,,,,,,,,,,,,, +2011,7,30,14,30,1.9923346,,,,,,,,,,,,,, +2011,7,30,15,30,1.464689,,,,,,,,,,,,,, +2011,7,30,16,30,0.41011685,,,,,,,,,,,,,, +2011,7,30,17,30,1.0400643,,,,,,,,,,,,,, +2011,7,30,18,30,2.0457563,,,,,,,,,,,,,, +2011,7,30,19,30,2.41007,,,,,,,,,,,,,, +2011,7,30,20,30,2.377974,,,,,,,,,,,,,, +2011,7,30,21,30,2.0235846,,,,,,,,,,,,,, +2011,7,30,22,30,1.3196123,,,,,,,,,,,,,, +2011,7,30,23,30,0.4271151,,,,,,,,,,,,,, +2011,7,31,0,30,0.4226919,,,,,,,,,,,,,, +2011,7,31,1,30,0.9511248,,,,,,,,,,,,,, +2011,7,31,2,30,1.0745825,,,,,,,,,,,,,, +2011,7,31,3,30,0.951142,,,,,,,,,,,,,, +2011,7,31,4,30,0.6223902,,,,,,,,,,,,,, +2011,7,31,5,30,0.09117926,,,,,,,,,,,,,, +2011,7,31,6,30,0.7353412,,,,,,,,,,,,,, +2011,7,31,7,30,1.1420348,,,,,,,,,,,,,, +2011,7,31,8,30,1.117701,,,,,,,,,,,,,, +2011,7,31,9,30,0.701724,,,,,,,,,,,,,, +2011,7,31,10,30,0.06306573,,,,,,,,,,,,,, +2011,7,31,11,30,1.0253057,,,,,,,,,,,,,, +2011,7,31,12,30,1.8922313,,,,,,,,,,,,,, +2011,7,31,13,30,2.323924,,,,,,,,,,,,,, +2011,7,31,14,30,2.31839,,,,,,,,,,,,,, +2011,7,31,15,30,2.0861413,,,,,,,,,,,,,, +1998,7,31,16,30,1.5108275,,,,,,,,,,,,,, +1998,7,31,17,30,0.34317023,,,,,,,,,,,,,, +1998,7,31,18,30,1.2071731,,,,,,,,,,,,,, +1998,7,31,19,30,2.230083,,,,,,,,,,,,,, +1998,7,31,20,30,2.6171715,,,,,,,,,,,,,, +1998,7,31,21,30,2.5958009,,,,,,,,,,,,,, +1998,7,31,22,30,2.1788664,,,,,,,,,,,,,, +1998,7,31,23,30,1.3538682,,,,,,,,,,,,,, +1998,8,1,0,30,0.32095268,,,,,,,,,,,,,, +1998,8,1,1,30,0.6251578,,,,,,,,,,,,,, +1998,8,1,2,30,1.1568549,,,,,,,,,,,,,, +1998,8,1,3,30,1.2770963,,,,,,,,,,,,,, +1998,8,1,4,30,1.194783,,,,,,,,,,,,,, +1998,8,1,5,30,0.8373025,,,,,,,,,,,,,, +1998,8,1,6,30,0.11835764,,,,,,,,,,,,,, +1998,8,1,7,30,0.84702635,,,,,,,,,,,,,, +1998,8,1,8,30,1.3142812,,,,,,,,,,,,,, +1998,8,1,9,30,1.2698387,,,,,,,,,,,,,, +1998,8,1,10,30,0.80292827,,,,,,,,,,,,,, +1998,8,1,11,30,0.038226563,,,,,,,,,,,,,, +1998,8,1,12,30,1.0750442,,,,,,,,,,,,,, +1998,8,1,13,30,1.9760183,,,,,,,,,,,,,, +1998,8,1,14,30,2.3932433,,,,,,,,,,,,,, +1998,8,1,15,30,2.385584,,,,,,,,,,,,,, +1998,8,1,16,30,2.1463866,,,,,,,,,,,,,, +1998,8,1,17,30,1.4671263,,,,,,,,,,,,,, +1998,8,1,18,30,0.20580152,,,,,,,,,,,,,, +1998,8,1,19,30,1.4733837,,,,,,,,,,,,,, +1998,8,1,20,30,2.4640834,,,,,,,,,,,,,, +1998,8,1,21,30,2.8069282,,,,,,,,,,,,,, +1998,8,1,22,30,2.715303,,,,,,,,,,,,,, +1998,8,1,23,30,2.171159,,,,,,,,,,,,,, +1998,8,2,0,30,1.203256,,,,,,,,,,,,,, +1998,8,2,1,30,0.07887928,,,,,,,,,,,,,, +1998,8,2,2,30,0.9176893,,,,,,,,,,,,,, +1998,8,2,3,30,1.3988785,,,,,,,,,,,,,, +1998,8,2,4,30,1.4932848,,,,,,,,,,,,,, +1998,8,2,5,30,1.3973731,,,,,,,,,,,,,, +1998,8,2,6,30,0.91307557,,,,,,,,,,,,,, +1998,8,2,7,30,0.15519151,,,,,,,,,,,,,, +1998,8,2,8,30,1.0913522,,,,,,,,,,,,,, +1998,8,2,9,30,1.5329125,,,,,,,,,,,,,, +1998,8,2,10,30,1.4079082,,,,,,,,,,,,,, +1998,8,2,11,30,0.8503808,,,,,,,,,,,,,, +1998,8,2,12,30,0.09812029,,,,,,,,,,,,,, +1998,8,2,13,30,1.2093987,,,,,,,,,,,,,, +1998,8,2,14,30,2.0960867,,,,,,,,,,,,,, +1998,8,2,15,30,2.4563406,,,,,,,,,,,,,, +1998,8,2,16,30,2.4210515,,,,,,,,,,,,,, +1998,8,2,17,30,2.1266081,,,,,,,,,,,,,, +1998,8,2,18,30,1.2837574,,,,,,,,,,,,,, +1998,8,2,19,30,0.29076388,,,,,,,,,,,,,, +1998,8,2,20,30,1.8100678,,,,,,,,,,,,,, +1998,8,2,21,30,2.6787205,,,,,,,,,,,,,, +1998,8,2,22,30,2.9007392,,,,,,,,,,,,,, +1998,8,2,23,30,2.6804962,,,,,,,,,,,,,, +1998,8,3,0,30,1.9856141,,,,,,,,,,,,,, +1998,8,3,1,30,0.8901559,,,,,,,,,,,,,, +1998,8,3,2,30,0.33130848,,,,,,,,,,,,,, +1998,8,3,3,30,1.2517246,,,,,,,,,,,,,, +1998,8,3,4,30,1.638794,,,,,,,,,,,,,, +1998,8,3,5,30,1.6763111,,,,,,,,,,,,,, +1998,8,3,6,30,1.4963307,,,,,,,,,,,,,, +1998,8,3,7,30,0.8152258,,,,,,,,,,,,,, +1998,8,3,8,30,0.39744514,,,,,,,,,,,,,, +1998,8,3,9,30,1.3884461,,,,,,,,,,,,,, +1998,8,3,10,30,1.7228409,,,,,,,,,,,,,, +1998,8,3,11,30,1.479203,,,,,,,,,,,,,, +1998,8,3,12,30,0.8078208,,,,,,,,,,,,,, +1998,8,3,13,30,0.24807413,,,,,,,,,,,,,, +1998,8,3,14,30,1.3877147,,,,,,,,,,,,,, +1998,8,3,15,30,2.1960235,,,,,,,,,,,,,, +1998,8,3,16,30,2.4688509,,,,,,,,,,,,,, +1998,8,3,17,30,2.381387,,,,,,,,,,,,,, +1998,8,3,18,30,1.9724705,,,,,,,,,,,,,, +1998,8,3,19,30,0.9297985,,,,,,,,,,,,,, +1998,8,3,20,30,0.7220055,,,,,,,,,,,,,, +1998,8,3,21,30,2.134689,,,,,,,,,,,,,, +1998,8,3,22,30,2.7885566,,,,,,,,,,,,,, +1998,8,3,23,30,2.8462658,,,,,,,,,,,,,, +1998,8,4,0,30,2.479672,,,,,,,,,,,,,, +1998,8,4,1,30,1.6416576,,,,,,,,,,,,,, +1998,8,4,2,30,0.45374733,,,,,,,,,,,,,, +1998,8,4,3,30,0.7668212,,,,,,,,,,,,,, +1998,8,4,4,30,1.579523,,,,,,,,,,,,,, +1998,8,4,5,30,1.8378674,,,,,,,,,,,,,, +1998,8,4,6,30,1.7841747,,,,,,,,,,,,,, +1998,8,4,7,30,1.4602438,,,,,,,,,,,,,, +1998,8,4,8,30,0.56916237,,,,,,,,,,,,,, +1998,8,4,9,30,0.7450296,,,,,,,,,,,,,, +1998,8,4,10,30,1.6505505,,,,,,,,,,,,,, +1998,8,4,11,30,1.8288496,,,,,,,,,,,,,, +1998,8,4,12,30,1.4582719,,,,,,,,,,,,,, +1998,8,4,13,30,0.6773296,,,,,,,,,,,,,, +1998,8,4,14,30,0.44849634,,,,,,,,,,,,,, +1998,8,4,15,30,1.5397452,,,,,,,,,,,,,, +1998,8,4,16,30,2.2178245,,,,,,,,,,,,,, +1998,8,4,17,30,2.3901858,,,,,,,,,,,,,, +1998,8,4,18,30,2.2192209,,,,,,,,,,,,,, +1998,8,4,19,30,1.6454422,,,,,,,,,,,,,, +1998,8,4,20,30,0.4351874,,,,,,,,,,,,,, +1998,8,4,21,30,1.1883562,,,,,,,,,,,,,, +1998,8,4,22,30,2.345655,,,,,,,,,,,,,, +1998,8,4,23,30,2.7405934,,,,,,,,,,,,,, +1998,8,5,0,30,2.638995,,,,,,,,,,,,,, +1998,8,5,1,30,2.133427,,,,,,,,,,,,,, +1998,8,5,2,30,1.1725562,,,,,,,,,,,,,, +1998,8,5,3,30,0.07679109,,,,,,,,,,,,,, +1998,8,5,4,30,1.2067531,,,,,,,,,,,,,, +1998,8,5,5,30,1.8547863,,,,,,,,,,,,,, +1998,8,5,6,30,1.9650561,,,,,,,,,,,,,, +1998,8,5,7,30,1.7952029,,,,,,,,,,,,,, +1998,8,5,8,30,1.2989955,,,,,,,,,,,,,, +1998,8,5,9,30,0.2623543,,,,,,,,,,,,,, +1998,8,5,10,30,1.0754629,,,,,,,,,,,,,, +1998,8,5,11,30,1.8147205,,,,,,,,,,,,,, +1998,8,5,12,30,1.8319676,,,,,,,,,,,,,, +1998,8,5,13,30,1.3551445,,,,,,,,,,,,,, +1998,8,5,14,30,0.50004995,,,,,,,,,,,,,, +1998,8,5,15,30,0.63038695,,,,,,,,,,,,,, +1998,8,5,16,30,1.5992134,,,,,,,,,,,,,, +1998,8,5,17,30,2.1226258,,,,,,,,,,,,,, +1998,8,5,18,30,2.190651,,,,,,,,,,,,,, +1998,8,5,19,30,1.9058628,,,,,,,,,,,,,, +1998,8,5,20,30,1.1625775,,,,,,,,,,,,,, +1998,8,5,21,30,0.18095082,,,,,,,,,,,,,, +1998,8,5,22,30,1.5538025,,,,,,,,,,,,,, +1998,8,5,23,30,2.3769119,,,,,,,,,,,,,, +1998,8,6,0,30,2.5371528,,,,,,,,,,,,,, +1998,8,6,1,30,2.3067043,,,,,,,,,,,,,, +1998,8,6,2,30,1.6730988,,,,,,,,,,,,,, +1998,8,6,3,30,0.6229244,,,,,,,,,,,,,, +1998,8,6,4,30,0.59449345,,,,,,,,,,,,,, +1998,8,6,5,30,1.5880097,,,,,,,,,,,,,, +1998,8,6,6,30,2.0411875,,,,,,,,,,,,,, +1998,8,6,7,30,2.0048041,,,,,,,,,,,,,, +1998,8,6,8,30,1.7113069,,,,,,,,,,,,,, +1998,8,6,9,30,1.0529712,,,,,,,,,,,,,, +1998,8,6,10,30,0.16928644,,,,,,,,,,,,,, +1998,8,6,11,30,1.317599,,,,,,,,,,,,,, +1998,8,6,12,30,1.8636351,,,,,,,,,,,,,, +1998,8,6,13,30,1.7525944,,,,,,,,,,,,,, +1998,8,6,14,30,1.2090516,,,,,,,,,,,,,, +1998,8,6,15,30,0.3362335,,,,,,,,,,,,,, +1998,8,6,16,30,0.7309835,,,,,,,,,,,,,, +1998,8,6,17,30,1.5292625,,,,,,,,,,,,,, +1998,8,6,18,30,1.900428,,,,,,,,,,,,,, +1998,8,6,19,30,1.8677299,,,,,,,,,,,,,, +1998,8,6,20,30,1.4651246,,,,,,,,,,,,,, +1998,8,6,21,30,0.6153637,,,,,,,,,,,,,, +1998,8,6,22,30,0.6313753,,,,,,,,,,,,,, +1998,8,6,23,30,1.7273995,,,,,,,,,,,,,, +1998,8,7,0,30,2.2269986,,,,,,,,,,,,,, +1998,8,7,1,30,2.2179341,,,,,,,,,,,,,, +1998,8,7,2,30,1.883927,,,,,,,,,,,,,, +1998,8,7,3,30,1.1386425,,,,,,,,,,,,,, +1998,8,7,4,30,0.07798534,,,,,,,,,,,,,, +1998,8,7,5,30,1.06022,,,,,,,,,,,,,, +1998,8,7,6,30,1.8594801,,,,,,,,,,,,,, +1998,8,7,7,30,2.1209557,,,,,,,,,,,,,, +1998,8,7,8,30,1.9569867,,,,,,,,,,,,,, +1998,8,7,9,30,1.5514098,,,,,,,,,,,,,, +1998,8,7,10,30,0.77355206,,,,,,,,,,,,,, +1998,8,7,11,30,0.43478543,,,,,,,,,,,,,, +1998,8,7,12,30,1.4515481,,,,,,,,,,,,,, +1998,8,7,13,30,1.8255873,,,,,,,,,,,,,, +1998,8,7,14,30,1.6363726,,,,,,,,,,,,,, +1998,8,7,15,30,1.0669637,,,,,,,,,,,,,, +1998,8,7,16,30,0.2344195,,,,,,,,,,,,,, +1998,8,7,17,30,0.716947,,,,,,,,,,,,,, +1998,8,7,18,30,1.3316402,,,,,,,,,,,,,, +1998,8,7,19,30,1.5773433,,,,,,,,,,,,,, +1998,8,7,20,30,1.4655802,,,,,,,,,,,,,, +1998,8,7,21,30,0.9835846,,,,,,,,,,,,,, +1998,8,7,22,30,0.16505079,,,,,,,,,,,,,, +1998,8,7,23,30,0.9238068,,,,,,,,,,,,,, +1998,8,8,0,30,1.6916158,,,,,,,,,,,,,, +1998,8,8,1,30,1.9439424,,,,,,,,,,,,,, +1998,8,8,2,30,1.8295584,,,,,,,,,,,,,, +1998,8,8,3,30,1.4076791,,,,,,,,,,,,,, +1998,8,8,4,30,0.5904242,,,,,,,,,,,,,, +1998,8,8,5,30,0.45265785,,,,,,,,,,,,,, +1998,8,8,6,30,1.4026552,,,,,,,,,,,,,, +1998,8,8,7,30,1.9975178,,,,,,,,,,,,,, +1998,8,8,8,30,2.096355,,,,,,,,,,,,,, +1998,8,8,9,30,1.8341875,,,,,,,,,,,,,, +1998,8,8,10,30,1.344835,,,,,,,,,,,,,, +1998,8,8,11,30,0.5059603,,,,,,,,,,,,,, +1998,8,8,12,30,0.6495902,,,,,,,,,,,,,, +1998,8,8,13,30,1.5043327,,,,,,,,,,,,,, +1998,8,8,14,30,1.7528903,,,,,,,,,,,,,, +1998,8,8,15,30,1.528436,,,,,,,,,,,,,, +1998,8,8,16,30,0.9625468,,,,,,,,,,,,,, +1998,8,8,17,30,0.20470965,,,,,,,,,,,,,, +1998,8,8,18,30,0.58988565,,,,,,,,,,,,,, +1998,8,8,19,30,1.0471203,,,,,,,,,,,,,, +1998,8,8,20,30,1.2190363,,,,,,,,,,,,,, +1998,8,8,21,30,1.0713265,,,,,,,,,,,,,, +1998,8,8,22,30,0.5739324,,,,,,,,,,,,,, +1998,8,8,23,30,0.24026386,,,,,,,,,,,,,, +1998,8,9,0,30,1.0025004,,,,,,,,,,,,,, +1998,8,9,1,30,1.4935507,,,,,,,,,,,,,, +1998,8,9,2,30,1.5917385,,,,,,,,,,,,,, +1998,8,9,3,30,1.4159288,,,,,,,,,,,,,, +1998,8,9,4,30,0.9295023,,,,,,,,,,,,,, +1998,8,9,5,30,0.11136689,,,,,,,,,,,,,, +1998,8,9,6,30,0.8269127,,,,,,,,,,,,,, +1998,8,9,7,30,1.5963017,,,,,,,,,,,,,, +1998,8,9,8,30,2.0111408,,,,,,,,,,,,,, +1998,8,9,9,30,1.9882189,,,,,,,,,,,,,, +1998,8,9,10,30,1.6628573,,,,,,,,,,,,,, +1998,8,9,11,30,1.125678,,,,,,,,,,,,,, +1998,8,9,12,30,0.28235415,,,,,,,,,,,,,, +1998,8,9,13,30,0.8105356,,,,,,,,,,,,,, +1998,8,9,14,30,1.5246208,,,,,,,,,,,,,, +1998,8,9,15,30,1.6911638,,,,,,,,,,,,,, +1998,8,9,16,30,1.4546721,,,,,,,,,,,,,, +1998,8,9,17,30,0.91186535,,,,,,,,,,,,,, +1998,8,9,18,30,0.23806827,,,,,,,,,,,,,, +1998,8,9,19,30,0.3850028,,,,,,,,,,,,,, +1998,8,9,20,30,0.74979955,,,,,,,,,,,,,, +1998,8,9,21,30,0.91444236,,,,,,,,,,,,,, +1998,8,9,22,30,0.7744087,,,,,,,,,,,,,, +1998,8,9,23,30,0.31297925,,,,,,,,,,,,,, +1998,8,10,0,30,0.35245115,,,,,,,,,,,,,, +1998,8,10,1,30,0.9079291,,,,,,,,,,,,,, +1998,8,10,2,30,1.210233,,,,,,,,,,,,,, +1998,8,10,3,30,1.2324946,,,,,,,,,,,,,, +1998,8,10,4,30,1.0268825,,,,,,,,,,,,,, +1998,8,10,5,30,0.51382583,,,,,,,,,,,,,, +1998,8,10,6,30,0.2672725,,,,,,,,,,,,,, +1998,8,10,7,30,1.0525594,,,,,,,,,,,,,, +1998,8,10,8,30,1.6603512,,,,,,,,,,,,,, +1998,8,10,9,30,1.9376686,,,,,,,,,,,,,, +1998,8,10,10,30,1.8359821,,,,,,,,,,,,,, +1998,8,10,11,30,1.482465,,,,,,,,,,,,,, +1998,8,10,12,30,0.9229461,,,,,,,,,,,,,, +1998,8,10,13,30,0.14988588,,,,,,,,,,,,,, +1998,8,10,14,30,0.94906366,,,,,,,,,,,,,, +1998,8,10,15,30,1.5513918,,,,,,,,,,,,,, +1998,8,10,16,30,1.6621482,,,,,,,,,,,,,, +1998,8,10,17,30,1.4244963,,,,,,,,,,,,,, +1998,8,10,18,30,0.9208406,,,,,,,,,,,,,, +1998,8,10,19,30,0.3342435,,,,,,,,,,,,,, +1998,8,10,20,30,0.16739833,,,,,,,,,,,,,, +1998,8,10,21,30,0.52622515,,,,,,,,,,,,,, +1998,8,10,22,30,0.7347435,,,,,,,,,,,,,, +1998,8,10,23,30,0.61591965,,,,,,,,,,,,,, +1998,8,11,0,30,0.20643732,,,,,,,,,,,,,, +1998,8,11,1,30,0.32544535,,,,,,,,,,,,,, +1998,8,11,2,30,0.7192181,,,,,,,,,,,,,, +1998,8,11,3,30,0.9217582,,,,,,,,,,,,,, +1998,8,11,4,30,0.9265162,,,,,,,,,,,,,, +1998,8,11,5,30,0.7172583,,,,,,,,,,,,,, +1998,8,11,6,30,0.21288213,,,,,,,,,,,,,, +1998,8,11,7,30,0.49219862,,,,,,,,,,,,,, +1998,8,11,8,30,1.158392,,,,,,,,,,,,,, +1998,8,11,9,30,1.6476507,,,,,,,,,,,,,, +1998,8,11,10,30,1.8339756,,,,,,,,,,,,,, +1998,8,11,11,30,1.6920655,,,,,,,,,,,,,, +1998,8,11,12,30,1.3324143,,,,,,,,,,,,,, +1998,8,11,13,30,0.7489927,,,,,,,,,,,,,, +1998,8,11,14,30,0.19708535,,,,,,,,,,,,,, +1998,8,11,15,30,1.090325,,,,,,,,,,,,,, +1998,8,11,16,30,1.600785,,,,,,,,,,,,,, +1998,8,11,17,30,1.6719834,,,,,,,,,,,,,, +1998,8,11,18,30,1.4441975,,,,,,,,,,,,,, +1998,8,11,19,30,0.9853834,,,,,,,,,,,,,, +1998,8,11,20,30,0.46288568,,,,,,,,,,,,,, +1998,8,11,21,30,0.032444596,,,,,,,,,,,,,, +1998,8,11,22,30,0.43850756,,,,,,,,,,,,,, +1998,8,11,23,30,0.6940144,,,,,,,,,,,,,, +1998,8,12,0,30,0.575347,,,,,,,,,,,,,, +1998,8,12,1,30,0.20616357,,,,,,,,,,,,,, +1998,8,12,2,30,0.22536695,,,,,,,,,,,,,, +1998,8,12,3,30,0.5200828,,,,,,,,,,,,,, +1998,8,12,4,30,0.7013473,,,,,,,,,,,,,, +1998,8,12,5,30,0.7272048,,,,,,,,,,,,,, +1998,8,12,6,30,0.52450883,,,,,,,,,,,,,, +1998,8,12,7,30,0.053493302,,,,,,,,,,,,,, +1998,8,12,8,30,0.6132687,,,,,,,,,,,,,, +1998,8,12,9,30,1.2059288,,,,,,,,,,,,,, +1998,8,12,10,30,1.6255922,,,,,,,,,,,,,, +1998,8,12,11,30,1.760698,,,,,,,,,,,,,, +1998,8,12,12,30,1.601924,,,,,,,,,,,,,, +1998,8,12,13,30,1.2312369,,,,,,,,,,,,,, +1998,8,12,14,30,0.5965976,,,,,,,,,,,,,, +1998,8,12,15,30,0.3836704,,,,,,,,,,,,,, +1998,8,12,16,30,1.244764,,,,,,,,,,,,,, +1998,8,12,17,30,1.6786556,,,,,,,,,,,,,, +1998,8,12,18,30,1.7280391,,,,,,,,,,,,,, +1998,8,12,19,30,1.5161889,,,,,,,,,,,,,, +1998,8,12,20,30,1.079526,,,,,,,,,,,,,, +1998,8,12,21,30,0.5578306,,,,,,,,,,,,,, +1998,8,12,22,30,0.046731375,,,,,,,,,,,,,, +1998,8,12,23,30,0.49310628,,,,,,,,,,,,,, +1998,8,13,0,30,0.7508182,,,,,,,,,,,,,, +1998,8,13,1,30,0.60247916,,,,,,,,,,,,,, +1998,8,13,2,30,0.26424974,,,,,,,,,,,,,, +1998,8,13,3,30,0.13384879,,,,,,,,,,,,,, +1998,8,13,4,30,0.38342896,,,,,,,,,,,,,, +1998,8,13,5,30,0.60545963,,,,,,,,,,,,,, +1998,8,13,6,30,0.65810364,,,,,,,,,,,,,, +1998,8,13,7,30,0.44332212,,,,,,,,,,,,,, +1998,8,13,8,30,0.0889813,,,,,,,,,,,,,, +1998,8,13,9,30,0.6905684,,,,,,,,,,,,,, +1998,8,13,10,30,1.2627132,,,,,,,,,,,,,, +1998,8,13,11,30,1.6528127,,,,,,,,,,,,,, +1998,8,13,12,30,1.7571094,,,,,,,,,,,,,, +1998,8,13,13,30,1.5790588,,,,,,,,,,,,,, +1998,8,13,14,30,1.1668805,,,,,,,,,,,,,, +1998,8,13,15,30,0.44721428,,,,,,,,,,,,,, +1998,8,13,16,30,0.59564674,,,,,,,,,,,,,, +1998,8,13,17,30,1.421226,,,,,,,,,,,,,, +1998,8,13,18,30,1.7968441,,,,,,,,,,,,,, +1998,8,13,19,30,1.8366406,,,,,,,,,,,,,, +1998,8,13,20,30,1.6212673,,,,,,,,,,,,,, +1998,8,13,21,30,1.1502244,,,,,,,,,,,,,, +1998,8,13,22,30,0.55453026,,,,,,,,,,,,,, +1998,8,13,23,30,0.090656586,,,,,,,,,,,,,, +1998,8,14,0,30,0.64852667,,,,,,,,,,,,,, +1998,8,14,1,30,0.84984475,,,,,,,,,,,,,, +1998,8,14,2,30,0.659054,,,,,,,,,,,,,, +1998,8,14,3,30,0.34543878,,,,,,,,,,,,,, +1998,8,14,4,30,0.10163741,,,,,,,,,,,,,, +1998,8,14,5,30,0.3651531,,,,,,,,,,,,,, +1998,8,14,6,30,0.650874,,,,,,,,,,,,,, +1998,8,14,7,30,0.6964449,,,,,,,,,,,,,, +1998,8,14,8,30,0.42985973,,,,,,,,,,,,,, +1998,8,14,9,30,0.1364783,,,,,,,,,,,,,, +1998,8,14,10,30,0.78445625,,,,,,,,,,,,,, +1998,8,14,11,30,1.377985,,,,,,,,,,,,,, +1998,8,14,12,30,1.7543774,,,,,,,,,,,,,, +1998,8,14,13,30,1.8199656,,,,,,,,,,,,,, +1998,8,14,14,30,1.5982842,,,,,,,,,,,,,, +1998,8,14,15,30,1.1061342,,,,,,,,,,,,,, +1998,8,14,16,30,0.28310096,,,,,,,,,,,,,, +1998,8,14,17,30,0.8446282,,,,,,,,,,,,,, +1998,8,14,18,30,1.6383791,,,,,,,,,,,,,, +1998,8,14,19,30,1.966115,,,,,,,,,,,,,, +1998,8,14,20,30,1.9810928,,,,,,,,,,,,,, +1998,8,14,21,30,1.7087281,,,,,,,,,,,,,, +1998,8,14,22,30,1.1351777,,,,,,,,,,,,,, +1998,8,14,23,30,0.41898245,,,,,,,,,,,,,, +1998,8,15,0,30,0.3162013,,,,,,,,,,,,,, +1998,8,15,1,30,0.8554252,,,,,,,,,,,,,, +1998,8,15,2,30,0.96228504,,,,,,,,,,,,,, +1998,8,15,3,30,0.7357816,,,,,,,,,,,,,, +1998,8,15,4,30,0.42080417,,,,,,,,,,,,,, +1998,8,15,5,30,0.09954245,,,,,,,,,,,,,, +1998,8,15,6,30,0.48703784,,,,,,,,,,,,,, +1998,8,15,7,30,0.80840605,,,,,,,,,,,,,, +1998,8,15,8,30,0.7933073,,,,,,,,,,,,,, +1998,8,15,9,30,0.4347909,,,,,,,,,,,,,, +1998,8,15,10,30,0.2028229,,,,,,,,,,,,,, +1998,8,15,11,30,0.93407565,,,,,,,,,,,,,, +1998,8,15,12,30,1.5633616,,,,,,,,,,,,,, +1998,8,15,13,30,1.908481,,,,,,,,,,,,,, +1998,8,15,14,30,1.9070761,,,,,,,,,,,,,, +1998,8,15,15,30,1.6141818,,,,,,,,,,,,,, +1998,8,15,16,30,1.0089633,,,,,,,,,,,,,, +1998,8,15,17,30,0.14455605,,,,,,,,,,,,,, +1998,8,15,18,30,1.1572988,,,,,,,,,,,,,, +1998,8,15,19,30,1.910237,,,,,,,,,,,,,, +1998,8,15,20,30,2.1695535,,,,,,,,,,,,,, +1998,8,15,21,30,2.1095834,,,,,,,,,,,,,, +1998,8,15,22,30,1.7137821,,,,,,,,,,,,,, +1998,8,15,23,30,0.9912712,,,,,,,,,,,,,, +1998,8,16,0,30,0.15767439,,,,,,,,,,,,,, +1998,8,16,1,30,0.6291102,,,,,,,,,,,,,, +1998,8,16,2,30,1.0876276,,,,,,,,,,,,,, +1998,8,16,3,30,1.0915129,,,,,,,,,,,,,, +1998,8,16,4,30,0.8325307,,,,,,,,,,,,,, +1998,8,16,5,30,0.45856562,,,,,,,,,,,,,, +1998,8,16,6,30,0.13295338,,,,,,,,,,,,,, +1998,8,16,7,30,0.7291068,,,,,,,,,,,,,, +1998,8,16,8,30,1.0275595,,,,,,,,,,,,,, +1998,8,16,9,30,0.9016159,,,,,,,,,,,,,, +1998,8,16,10,30,0.42401877,,,,,,,,,,,,,, +1998,8,16,11,30,0.31914264,,,,,,,,,,,,,, +1998,8,16,12,30,1.1444066,,,,,,,,,,,,,, +1998,8,16,13,30,1.7869442,,,,,,,,,,,,,, +1998,8,16,14,30,2.059709,,,,,,,,,,,,,, +1998,8,16,15,30,1.9660938,,,,,,,,,,,,,, +1998,8,16,16,30,1.5839472,,,,,,,,,,,,,, +1998,8,16,17,30,0.83471763,,,,,,,,,,,,,, +1998,8,16,18,30,0.3744674,,,,,,,,,,,,,, +1998,8,16,19,30,1.5477061,,,,,,,,,,,,,, +1998,8,16,20,30,2.2142856,,,,,,,,,,,,,, +1998,8,16,21,30,2.3503737,,,,,,,,,,,,,, +1998,8,16,22,30,2.15471,,,,,,,,,,,,,, +1998,8,16,23,30,1.5891874,,,,,,,,,,,,,, +1998,8,17,0,30,0.707106,,,,,,,,,,,,,, +1998,8,17,1,30,0.24809198,,,,,,,,,,,,,, +1998,8,17,2,30,1.0013491,,,,,,,,,,,,,, +1998,8,17,3,30,1.340207,,,,,,,,,,,,,, +1998,8,17,4,30,1.2445471,,,,,,,,,,,,,, +1998,8,17,5,30,0.93089354,,,,,,,,,,,,,, +1998,8,17,6,30,0.42211646,,,,,,,,,,,,,, +1998,8,17,7,30,0.36055642,,,,,,,,,,,,,, +1998,8,17,8,30,1.0491132,,,,,,,,,,,,,, +1998,8,17,9,30,1.2578413,,,,,,,,,,,,,, +1998,8,17,10,30,0.9901926,,,,,,,,,,,,,, +1998,8,17,11,30,0.38271314,,,,,,,,,,,,,, +1998,8,17,12,30,0.4857449,,,,,,,,,,,,,, +1998,8,17,13,30,1.3848205,,,,,,,,,,,,,, +1998,8,17,14,30,1.9903734,,,,,,,,,,,,,, +1998,8,17,15,30,2.1535392,,,,,,,,,,,,,, +1998,8,17,16,30,1.9620011,,,,,,,,,,,,,, +1998,8,17,17,30,1.4744612,,,,,,,,,,,,,, +1998,8,17,18,30,0.54913145,,,,,,,,,,,,,, +1998,8,17,19,30,0.81374246,,,,,,,,,,,,,, +1998,8,17,20,30,1.9817083,,,,,,,,,,,,,, +1998,8,17,21,30,2.480907,,,,,,,,,,,,,, +1998,8,17,22,30,2.4364843,,,,,,,,,,,,,, +1998,8,17,23,30,2.069026,,,,,,,,,,,,,, +1998,8,18,0,30,1.3209692,,,,,,,,,,,,,, +1998,8,18,1,30,0.29593673,,,,,,,,,,,,,, +1998,8,18,2,30,0.7217441,,,,,,,,,,,,,, +1998,8,18,3,30,1.4102253,,,,,,,,,,,,,, +1998,8,18,4,30,1.6038077,,,,,,,,,,,,,, +1998,8,18,5,30,1.4046043,,,,,,,,,,,,,, +1998,8,18,6,30,0.98956406,,,,,,,,,,,,,, +1998,8,18,7,30,0.2846148,,,,,,,,,,,,,, +1998,8,18,8,30,0.70400673,,,,,,,,,,,,,, +1998,8,18,9,30,1.3968294,,,,,,,,,,,,,, +1998,8,18,10,30,1.4620029,,,,,,,,,,,,,, +1998,8,18,11,30,1.0459967,,,,,,,,,,,,,, +1998,8,18,12,30,0.31343022,,,,,,,,,,,,,, +1998,8,18,13,30,0.6776053,,,,,,,,,,,,,, +1998,8,18,14,30,1.6044575,,,,,,,,,,,,,, +1998,8,18,15,30,2.1211693,,,,,,,,,,,,,, +1998,8,18,16,30,2.1632688,,,,,,,,,,,,,, +1998,8,18,17,30,1.8795784,,,,,,,,,,,,,, +1998,8,18,18,30,1.2603681,,,,,,,,,,,,,, +1998,8,18,19,30,0.17245631,,,,,,,,,,,,,, +1998,8,18,20,30,1.3287406,,,,,,,,,,,,,, +1998,8,18,21,30,2.3706682,,,,,,,,,,,,,, +1998,8,18,22,30,2.626007,,,,,,,,,,,,,, +1998,8,18,23,30,2.3819065,,,,,,,,,,,,,, +1998,8,19,0,30,1.8422699,,,,,,,,,,,,,, +1998,8,19,1,30,0.9195889,,,,,,,,,,,,,, +1998,8,19,2,30,0.24797359,,,,,,,,,,,,,, +1998,8,19,3,30,1.2558882,,,,,,,,,,,,,, +1998,8,19,4,30,1.8192132,,,,,,,,,,,,,, +1998,8,19,5,30,1.8479964,,,,,,,,,,,,,, +1998,8,19,6,30,1.5304959,,,,,,,,,,,,,, +1998,8,19,7,30,0.9610726,,,,,,,,,,,,,, +1998,8,19,8,30,0.12286445,,,,,,,,,,,,,, +1998,8,19,9,30,1.1125425,,,,,,,,,,,,,, +1998,8,19,10,30,1.7245481,,,,,,,,,,,,,, +1998,8,19,11,30,1.6198654,,,,,,,,,,,,,, +1998,8,19,12,30,1.0696805,,,,,,,,,,,,,, +1998,8,19,13,30,0.23146515,,,,,,,,,,,,,, +1998,8,19,14,30,0.8574206,,,,,,,,,,,,,, +1998,8,19,15,30,1.7569126,,,,,,,,,,,,,, +1998,8,19,16,30,2.1546636,,,,,,,,,,,,,, +1998,8,19,17,30,2.0871778,,,,,,,,,,,,,, +1998,8,19,18,30,1.7102995,,,,,,,,,,,,,, +1998,8,19,19,30,0.9339673,,,,,,,,,,,,,, +1998,8,19,20,30,0.38905135,,,,,,,,,,,,,, +1998,8,19,21,30,1.8128799,,,,,,,,,,,,,, +1998,8,19,22,30,2.6122983,,,,,,,,,,,,,, +1998,8,19,23,30,2.6010404,,,,,,,,,,,,,, +1998,8,20,0,30,2.1855917,,,,,,,,,,,,,, +1998,8,20,1,30,1.4902222,,,,,,,,,,,,,, +1998,8,20,2,30,0.41059074,,,,,,,,,,,,,, +1998,8,20,3,30,0.8362503,,,,,,,,,,,,,, +1998,8,20,4,30,1.7894671,,,,,,,,,,,,,, +1998,8,20,5,30,2.1750321,,,,,,,,,,,,,, +1998,8,20,6,30,2.0292578,,,,,,,,,,,,,, +1998,8,20,7,30,1.5766659,,,,,,,,,,,,,, +1998,8,20,8,30,0.8163293,,,,,,,,,,,,,, +1998,8,20,9,30,0.3773667,,,,,,,,,,,,,, +1998,8,20,10,30,1.5293864,,,,,,,,,,,,,, +1998,8,20,11,30,1.9936984,,,,,,,,,,,,,, +1998,8,20,12,30,1.7263057,,,,,,,,,,,,,, +1998,8,20,13,30,1.0711887,,,,,,,,,,,,,, +1998,8,20,14,30,0.15851519,,,,,,,,,,,,,, +1998,8,20,15,30,0.9901325,,,,,,,,,,,,,, +1998,8,20,16,30,1.8151811,,,,,,,,,,,,,, +1998,8,20,17,30,2.0891776,,,,,,,,,,,,,, +1998,8,20,18,30,1.9292015,,,,,,,,,,,,,, +1998,8,20,19,30,1.4520315,,,,,,,,,,,,,, +1998,8,20,20,30,0.52768433,,,,,,,,,,,,,, +1998,8,20,21,30,0.8730752,,,,,,,,,,,,,, +1998,8,20,22,30,2.1498508,,,,,,,,,,,,,, +1998,8,20,23,30,2.6483703,,,,,,,,,,,,,, +1998,8,21,0,30,2.4149778,,,,,,,,,,,,,, +1998,8,21,1,30,1.8761158,,,,,,,,,,,,,, +1998,8,21,2,30,1.0396408,,,,,,,,,,,,,, +1998,8,21,3,30,0.19349182,,,,,,,,,,,,,, +1998,8,21,4,30,1.4301887,,,,,,,,,,,,,, +1998,8,21,5,30,2.2478151,,,,,,,,,,,,,, +1998,8,21,6,30,2.4256952,,,,,,,,,,,,,, +1998,8,21,7,30,2.111963,,,,,,,,,,,,,, +1998,8,21,8,30,1.5174592,,,,,,,,,,,,,, +1998,8,21,9,30,0.56586707,,,,,,,,,,,,,, +1998,8,21,10,30,0.78209484,,,,,,,,,,,,,, +1998,8,21,11,30,1.8918854,,,,,,,,,,,,,, +1998,8,21,12,30,2.1810765,,,,,,,,,,,,,, +1998,8,21,13,30,1.7885916,,,,,,,,,,,,,, +1998,8,21,14,30,1.0650007,,,,,,,,,,,,,, +1998,8,21,15,30,0.11436037,,,,,,,,,,,,,, +1998,8,21,16,30,1.0498512,,,,,,,,,,,,,, +1998,8,21,17,30,1.7676862,,,,,,,,,,,,,, +1998,8,21,18,30,1.929573,,,,,,,,,,,,,, +1998,8,21,19,30,1.6945353,,,,,,,,,,,,,, +1998,8,21,20,30,1.1269189,,,,,,,,,,,,,, +1998,8,21,21,30,0.15774688,,,,,,,,,,,,,, +1998,8,21,22,30,1.2411029,,,,,,,,,,,,,, +1998,8,21,23,30,2.2694016,,,,,,,,,,,,,, +1998,8,22,0,30,2.490364,,,,,,,,,,,,,, +1998,8,22,1,30,2.1147027,,,,,,,,,,,,,, +1998,8,22,2,30,1.4893677,,,,,,,,,,,,,, +1998,8,22,3,30,0.53303504,,,,,,,,,,,,,, +1998,8,22,4,30,0.7654327,,,,,,,,,,,,,, +1998,8,22,5,30,1.9388006,,,,,,,,,,,,,, +1998,8,22,6,30,2.567058,,,,,,,,,,,,,, +1998,8,22,7,30,2.5420578,,,,,,,,,,,,,, +1998,8,22,8,30,2.0856729,,,,,,,,,,,,,, +1998,8,22,9,30,1.3644187,,,,,,,,,,,,,, +1998,8,22,10,30,0.2705947,,,,,,,,,,,,,, +1998,8,22,11,30,1.1532485,,,,,,,,,,,,,, +1998,8,22,12,30,2.1510358,,,,,,,,,,,,,, +1998,8,22,13,30,2.2839978,,,,,,,,,,,,,, +1998,8,22,14,30,1.8210783,,,,,,,,,,,,,, +1998,8,22,15,30,1.0639951,,,,,,,,,,,,,, +1998,8,22,16,30,0.10005323,,,,,,,,,,,,,, +1998,8,22,17,30,1.0159636,,,,,,,,,,,,,, +1998,8,22,18,30,1.6102365,,,,,,,,,,,,,, +1998,8,22,19,30,1.6865637,,,,,,,,,,,,,, +1998,8,22,20,30,1.4062672,,,,,,,,,,,,,, +1998,8,22,21,30,0.7922126,,,,,,,,,,,,,, +1998,8,22,22,30,0.26202694,,,,,,,,,,,,,, +1998,8,22,23,30,1.4147023,,,,,,,,,,,,,, +1998,8,23,0,30,2.1745272,,,,,,,,,,,,,, +1998,8,23,1,30,2.1979148,,,,,,,,,,,,,, +1998,8,23,2,30,1.7538639,,,,,,,,,,,,,, +1998,8,23,3,30,1.0664532,,,,,,,,,,,,,, +1998,8,23,4,30,0.080089815,,,,,,,,,,,,,, +1998,8,23,5,30,1.255564,,,,,,,,,,,,,, +1998,8,23,6,30,2.2891092,,,,,,,,,,,,,, +1998,8,23,7,30,2.717457,,,,,,,,,,,,,, +1998,8,23,8,30,2.5272982,,,,,,,,,,,,,, +1998,8,23,9,30,1.9726126,,,,,,,,,,,,,, +1998,8,23,10,30,1.16812,,,,,,,,,,,,,, +1998,8,23,11,30,0.118766464,,,,,,,,,,,,,, +1998,8,23,12,30,1.4227467,,,,,,,,,,,,,, +1998,8,23,13,30,2.2894578,,,,,,,,,,,,,, +1998,8,23,14,30,2.31758,,,,,,,,,,,,,, +1998,8,23,15,30,1.8377609,,,,,,,,,,,,,, +1998,8,23,16,30,1.0795066,,,,,,,,,,,,,, +1998,8,23,17,30,0.11847466,,,,,,,,,,,,,, +1998,8,23,18,30,0.87245595,,,,,,,,,,,,,, +1998,8,23,19,30,1.3538454,,,,,,,,,,,,,, +1998,8,23,20,30,1.3935838,,,,,,,,,,,,,, +1998,8,23,21,30,1.1171157,,,,,,,,,,,,,, +1998,8,23,22,30,0.5224163,,,,,,,,,,,,,, +1998,8,23,23,30,0.42101264,,,,,,,,,,,,,, +1998,8,24,0,30,1.3827131,,,,,,,,,,,,,, +1998,8,24,1,30,1.9219553,,,,,,,,,,,,,, +1998,8,24,2,30,1.8416322,,,,,,,,,,,,,, +1998,8,24,3,30,1.3828766,,,,,,,,,,,,,, +1998,8,24,4,30,0.6644176,,,,,,,,,,,,,, +1998,8,24,5,30,0.406566,,,,,,,,,,,,,, +1998,8,24,6,30,1.5818453,,,,,,,,,,,,,, +1998,8,24,7,30,2.449043,,,,,,,,,,,,,, +1998,8,24,8,30,2.7093449,,,,,,,,,,,,,, +1998,8,24,9,30,2.4150493,,,,,,,,,,,,,, +1998,8,24,10,30,1.8240681,,,,,,,,,,,,,, +1998,8,24,11,30,0.9977597,,,,,,,,,,,,,, +1998,8,24,12,30,0.25456607,,,,,,,,,,,,,, +1998,8,24,13,30,1.5646639,,,,,,,,,,,,,, +1998,8,24,14,30,2.3230186,,,,,,,,,,,,,, +1998,8,24,15,30,2.3050199,,,,,,,,,,,,,, +1998,8,24,16,30,1.8518255,,,,,,,,,,,,,, +1998,8,24,17,30,1.1293945,,,,,,,,,,,,,, +1998,8,24,18,30,0.21579202,,,,,,,,,,,,,, +1998,8,24,19,30,0.62422836,,,,,,,,,,,,,, +1998,8,24,20,30,1.0433215,,,,,,,,,,,,,, +1998,8,24,21,30,1.1146233,,,,,,,,,,,,,, +1998,8,24,22,30,0.8937111,,,,,,,,,,,,,, +1998,8,24,23,30,0.37355912,,,,,,,,,,,,,, +1998,8,25,0,30,0.41825524,,,,,,,,,,,,,, +1998,8,25,1,30,1.185061,,,,,,,,,,,,,, +1998,8,25,2,30,1.5861722,,,,,,,,,,,,,, +1998,8,25,3,30,1.4863892,,,,,,,,,,,,,, +1998,8,25,4,30,1.0568273,,,,,,,,,,,,,, +1998,8,25,5,30,0.35241136,,,,,,,,,,,,,, +1998,8,25,6,30,0.6605837,,,,,,,,,,,,,, +1998,8,25,7,30,1.7129891,,,,,,,,,,,,,, +1998,8,25,8,30,2.433742,,,,,,,,,,,,,, +1998,8,25,9,30,2.5864043,,,,,,,,,,,,,, +1998,8,25,10,30,2.2615433,,,,,,,,,,,,,, +1998,8,25,11,30,1.7021873,,,,,,,,,,,,,, +1998,8,25,12,30,0.90502864,,,,,,,,,,,,,, +1998,8,25,13,30,0.33694905,,,,,,,,,,,,,, +1998,8,25,14,30,1.5981343,,,,,,,,,,,,,, +1998,8,25,15,30,2.2869058,,,,,,,,,,,,,, +1998,8,25,16,30,2.2726183,,,,,,,,,,,,,, +1998,8,25,17,30,1.8840554,,,,,,,,,,,,,, +1998,8,25,18,30,1.237879,,,,,,,,,,,,,, +1998,8,25,19,30,0.41541514,,,,,,,,,,,,,, +1998,8,25,20,30,0.31935373,,,,,,,,,,,,,, +1998,8,25,21,30,0.7591678,,,,,,,,,,,,,, +1998,8,25,22,30,0.9224698,,,,,,,,,,,,,, +1998,8,25,23,30,0.7837253,,,,,,,,,,,,,, +1998,8,26,0,30,0.3641602,,,,,,,,,,,,,, +1998,8,26,1,30,0.26660722,,,,,,,,,,,,,, +1998,8,26,2,30,0.88495445,,,,,,,,,,,,,, +1998,8,26,3,30,1.2417215,,,,,,,,,,,,,, +1998,8,26,4,30,1.1946604,,,,,,,,,,,,,, +1998,8,26,5,30,0.8342369,,,,,,,,,,,,,, +1998,8,26,6,30,0.18553792,,,,,,,,,,,,,, +1998,8,26,7,30,0.7344605,,,,,,,,,,,,,, +1998,8,26,8,30,1.6706756,,,,,,,,,,,,,, +1998,8,26,9,30,2.2970557,,,,,,,,,,,,,, +1998,8,26,10,30,2.414499,,,,,,,,,,,,,, +1998,8,26,11,30,2.1294827,,,,,,,,,,,,,, +1998,8,26,12,30,1.6506803,,,,,,,,,,,,,, +1998,8,26,13,30,0.8980058,,,,,,,,,,,,,, +1998,8,26,14,30,0.343692,,,,,,,,,,,,,, +1998,8,26,15,30,1.5680918,,,,,,,,,,,,,, +1998,8,26,16,30,2.2230802,,,,,,,,,,,,,, +1998,8,26,17,30,2.2538018,,,,,,,,,,,,,, +1998,8,26,18,30,1.9633243,,,,,,,,,,,,,, +1998,8,26,19,30,1.4152329,,,,,,,,,,,,,, +1998,8,26,20,30,0.6756552,,,,,,,,,,,,,, +1998,8,26,21,30,0.059138954,,,,,,,,,,,,,, +1998,8,26,22,30,0.58700573,,,,,,,,,,,,,, +1998,8,26,23,30,0.86094654,,,,,,,,,,,,,, +1998,8,27,0,30,0.7978796,,,,,,,,,,,,,, +1998,8,27,1,30,0.4859117,,,,,,,,,,,,,, +1998,8,27,2,30,0.098263055,,,,,,,,,,,,,, +1998,8,27,3,30,0.55600023,,,,,,,,,,,,,, +1998,8,27,4,30,0.9631634,,,,,,,,,,,,,, +1998,8,27,5,30,1.0236269,,,,,,,,,,,,,, +1998,8,27,6,30,0.75534725,,,,,,,,,,,,,, +1998,8,27,7,30,0.17848852,,,,,,,,,,,,,, +1998,8,27,8,30,0.6546998,,,,,,,,,,,,,, +1998,8,27,9,30,1.5189413,,,,,,,,,,,,,, +1998,8,27,10,30,2.11677,,,,,,,,,,,,,, +1998,8,27,11,30,2.2638361,,,,,,,,,,,,,, +1998,8,27,12,30,2.0628977,,,,,,,,,,,,,, +1998,8,27,13,30,1.6730257,,,,,,,,,,,,,, +1998,8,27,14,30,0.9438256,,,,,,,,,,,,,, +1998,8,27,15,30,0.3215024,,,,,,,,,,,,,, +1998,8,27,16,30,1.5257988,,,,,,,,,,,,,, +1998,8,27,17,30,2.1780179,,,,,,,,,,,,,, +1998,8,27,18,30,2.2869236,,,,,,,,,,,,,, +1998,8,27,19,30,2.105299,,,,,,,,,,,,,, +1998,8,27,20,30,1.6311514,,,,,,,,,,,,,, +1998,8,27,21,30,0.9078684,,,,,,,,,,,,,, +1998,8,27,22,30,0.13202545,,,,,,,,,,,,,, +1998,8,27,23,30,0.5737158,,,,,,,,,,,,,, +1998,8,28,0,30,0.92791814,,,,,,,,,,,,,, +1998,8,28,1,30,0.91882885,,,,,,,,,,,,,, +1998,8,28,2,30,0.709728,,,,,,,,,,,,,, +1998,8,28,3,30,0.3176956,,,,,,,,,,,,,, +1998,8,28,4,30,0.28314066,,,,,,,,,,,,,, +1998,8,28,5,30,0.81767046,,,,,,,,,,,,,, +1998,8,28,6,30,1.0046722,,,,,,,,,,,,,, +1998,8,28,7,30,0.8185198,,,,,,,,,,,,,, +1998,8,28,8,30,0.29629797,,,,,,,,,,,,,, +1998,8,28,9,30,0.49040747,,,,,,,,,,,,,, +1998,8,28,10,30,1.3446144,,,,,,,,,,,,,, +1998,8,28,11,30,1.9718354,,,,,,,,,,,,,, +1998,8,28,12,30,2.182344,,,,,,,,,,,,,, +1998,8,28,13,30,2.066482,,,,,,,,,,,,,, +1998,8,28,14,30,1.7351387,,,,,,,,,,,,,, +1998,8,28,15,30,0.99016273,,,,,,,,,,,,,, +1998,8,28,16,30,0.31741685,,,,,,,,,,,,,, +1998,8,28,17,30,1.5225743,,,,,,,,,,,,,, +1998,8,28,18,30,2.197321,,,,,,,,,,,,,, +1998,8,28,19,30,2.3926435,,,,,,,,,,,,,, +1998,8,28,20,30,2.2838445,,,,,,,,,,,,,, +1998,8,28,21,30,1.8115085,,,,,,,,,,,,,, +1998,8,28,22,30,1.0177927,,,,,,,,,,,,,, +1998,8,28,23,30,0.11386929,,,,,,,,,,,,,, +1998,8,29,0,30,0.7115108,,,,,,,,,,,,,, +1998,8,29,1,30,1.0917225,,,,,,,,,,,,,, +1998,8,29,2,30,1.1177064,,,,,,,,,,,,,, +1998,8,29,3,30,0.9880161,,,,,,,,,,,,,, +1998,8,29,4,30,0.5954617,,,,,,,,,,,,,, +1998,8,29,5,30,0.16921267,,,,,,,,,,,,,, +1998,8,29,6,30,0.8399129,,,,,,,,,,,,,, +1998,8,29,7,30,1.1255258,,,,,,,,,,,,,, +1998,8,29,8,30,0.97964203,,,,,,,,,,,,,, +1998,8,29,9,30,0.4703309,,,,,,,,,,,,,, +1998,8,29,10,30,0.33009744,,,,,,,,,,,,,, +1998,8,29,11,30,1.2292697,,,,,,,,,,,,,, +1998,8,29,12,30,1.911123,,,,,,,,,,,,,, +1998,8,29,13,30,2.173507,,,,,,,,,,,,,, +1998,8,29,14,30,2.1070762,,,,,,,,,,,,,, +1998,8,29,15,30,1.78669,,,,,,,,,,,,,, +1998,8,29,16,30,0.98442113,,,,,,,,,,,,,, +1998,8,29,17,30,0.3765168,,,,,,,,,,,,,, +1998,8,29,18,30,1.6036747,,,,,,,,,,,,,, +1998,8,29,19,30,2.3024478,,,,,,,,,,,,,, +1998,8,29,20,30,2.545107,,,,,,,,,,,,,, +1998,8,29,21,30,2.4276094,,,,,,,,,,,,,, +1998,8,29,22,30,1.8709099,,,,,,,,,,,,,, +1998,8,29,23,30,0.94774324,,,,,,,,,,,,,, +1998,8,30,0,30,0.131141,,,,,,,,,,,,,, +1998,8,30,1,30,0.9599293,,,,,,,,,,,,,, +1998,8,30,2,30,1.3150735,,,,,,,,,,,,,, +1998,8,30,3,30,1.3602314,,,,,,,,,,,,,, +1998,8,30,4,30,1.2575065,,,,,,,,,,,,,, +1998,8,30,5,30,0.7616141,,,,,,,,,,,,,, +1998,8,30,6,30,0.22009185,,,,,,,,,,,,,, +1998,8,30,7,30,1.0152001,,,,,,,,,,,,,, +1998,8,30,8,30,1.335141,,,,,,,,,,,,,, +1998,8,30,9,30,1.1723266,,,,,,,,,,,,,, +1998,8,30,10,30,0.62502563,,,,,,,,,,,,,, +1998,8,30,11,30,0.2521667,,,,,,,,,,,,,, +1998,8,30,12,30,1.2153445,,,,,,,,,,,,,, +1998,8,30,13,30,1.9302164,,,,,,,,,,,,,, +1998,8,30,14,30,2.1986747,,,,,,,,,,,,,, +1998,8,30,15,30,2.135603,,,,,,,,,,,,,, +1998,8,30,16,30,1.778785,,,,,,,,,,,,,, +1998,8,30,17,30,0.87884617,,,,,,,,,,,,,, +1998,8,30,18,30,0.54742706,,,,,,,,,,,,,, +1998,8,30,19,30,1.7854834,,,,,,,,,,,,,, +1998,8,30,20,30,2.4630198,,,,,,,,,,,,,, +1998,8,30,21,30,2.670485,,,,,,,,,,,,,, +1998,8,30,22,30,2.4534965,,,,,,,,,,,,,, +1998,8,30,23,30,1.75473,,,,,,,,,,,,,, +1998,8,31,0,30,0.6914861,,,,,,,,,,,,,, +1998,8,31,1,30,0.4648761,,,,,,,,,,,,,, +1998,8,31,2,30,1.2718508,,,,,,,,,,,,,, +1998,8,31,3,30,1.564622,,,,,,,,,,,,,, +1998,8,31,4,30,1.6039698,,,,,,,,,,,,,, +1998,8,31,5,30,1.4484379,,,,,,,,,,,,,, +1998,8,31,6,30,0.7585783,,,,,,,,,,,,,, +1998,8,31,7,30,0.41747147,,,,,,,,,,,,,, +1998,8,31,8,30,1.288836,,,,,,,,,,,,,, +1998,8,31,9,30,1.5645721,,,,,,,,,,,,,, +1998,8,31,10,30,1.3315871,,,,,,,,,,,,,, +1998,8,31,11,30,0.70179594,,,,,,,,,,,,,, +1998,8,31,12,30,0.282718,,,,,,,,,,,,,, +1998,8,31,13,30,1.2866924,,,,,,,,,,,,,, +1998,8,31,14,30,1.9783386,,,,,,,,,,,,,, +1998,8,31,15,30,2.2041154,,,,,,,,,,,,,, +2014,8,31,16,30,2.107215,,,,,,,,,,,,,, +2014,8,31,17,30,1.6670755,,,,,,,,,,,,,, +2014,8,31,18,30,0.6362991,,,,,,,,,,,,,, +2014,8,31,19,30,0.8466385,,,,,,,,,,,,,, +2014,8,31,20,30,2.0282102,,,,,,,,,,,,,, +2014,8,31,21,30,2.5986507,,,,,,,,,,,,,, +2014,8,31,22,30,2.6841896,,,,,,,,,,,,,, +2014,8,31,23,30,2.309583,,,,,,,,,,,,,, +2014,9,1,0,30,1.4549887,,,,,,,,,,,,,, +2014,9,1,1,30,0.28096703,,,,,,,,,,,,,, +2014,9,1,2,30,0.89227706,,,,,,,,,,,,,, +2014,9,1,3,30,1.6038862,,,,,,,,,,,,,, +2014,9,1,4,30,1.8069975,,,,,,,,,,,,,, +2014,9,1,5,30,1.7995011,,,,,,,,,,,,,, +2014,9,1,6,30,1.5030415,,,,,,,,,,,,,, +2014,9,1,7,30,0.57544076,,,,,,,,,,,,,, +2014,9,1,8,30,0.7461548,,,,,,,,,,,,,, +2014,9,1,9,30,1.5860155,,,,,,,,,,,,,, +2014,9,1,10,30,1.7510011,,,,,,,,,,,,,, +2014,9,1,11,30,1.413122,,,,,,,,,,,,,, +2014,9,1,12,30,0.6789514,,,,,,,,,,,,,, +2014,9,1,13,30,0.39163572,,,,,,,,,,,,,, +2014,9,1,14,30,1.3832765,,,,,,,,,,,,,, +2014,9,1,15,30,1.9934448,,,,,,,,,,,,,, +2014,9,1,16,30,2.148188,,,,,,,,,,,,,, +2014,9,1,17,30,1.9860321,,,,,,,,,,,,,, +2014,9,1,18,30,1.4159117,,,,,,,,,,,,,, +2014,9,1,19,30,0.26744527,,,,,,,,,,,,,, +2014,9,1,20,30,1.223212,,,,,,,,,,,,,, +2014,9,1,21,30,2.2401052,,,,,,,,,,,,,, +2014,9,1,22,30,2.6213403,,,,,,,,,,,,,, +2014,9,1,23,30,2.5370207,,,,,,,,,,,,,, +2014,9,2,0,30,1.9914486,,,,,,,,,,,,,, +2014,9,2,1,30,0.9974057,,,,,,,,,,,,,, +2014,9,2,2,30,0.2534586,,,,,,,,,,,,,, +2014,9,2,3,30,1.3521148,,,,,,,,,,,,,, +2014,9,2,4,30,1.9131308,,,,,,,,,,,,,, +2014,9,2,5,30,2.0048194,,,,,,,,,,,,,, +2014,9,2,6,30,1.8992901,,,,,,,,,,,,,, +2014,9,2,7,30,1.3918127,,,,,,,,,,,,,, +2014,9,2,8,30,0.2752084,,,,,,,,,,,,,, +2014,9,2,9,30,1.128495,,,,,,,,,,,,,, +2014,9,2,10,30,1.83675,,,,,,,,,,,,,, +2014,9,2,11,30,1.8558862,,,,,,,,,,,,,, +2014,9,2,12,30,1.404653,,,,,,,,,,,,,, +2014,9,2,13,30,0.5764507,,,,,,,,,,,,,, +2014,9,2,14,30,0.5257991,,,,,,,,,,,,,, +2014,9,2,15,30,1.4406676,,,,,,,,,,,,,, +2014,9,2,16,30,1.9364849,,,,,,,,,,,,,, +2014,9,2,17,30,2.0091043,,,,,,,,,,,,,, +2014,9,2,18,30,1.7472041,,,,,,,,,,,,,, +2014,9,2,19,30,1.0203149,,,,,,,,,,,,,, +2014,9,2,20,30,0.26848742,,,,,,,,,,,,,, +2014,9,2,21,30,1.570709,,,,,,,,,,,,,, +2014,9,2,22,30,2.3250184,,,,,,,,,,,,,, +2014,9,2,23,30,2.4859052,,,,,,,,,,,,,, +2014,9,3,0,30,2.2317047,,,,,,,,,,,,,, +2014,9,3,1,30,1.5282304,,,,,,,,,,,,,, +2014,9,3,2,30,0.42772332,,,,,,,,,,,,,, +2014,9,3,3,30,0.820495,,,,,,,,,,,,,, +2014,9,3,4,30,1.7800144,,,,,,,,,,,,,, +2014,9,3,5,30,2.1552236,,,,,,,,,,,,,, +2014,9,3,6,30,2.119845,,,,,,,,,,,,,, +2014,9,3,7,30,1.867903,,,,,,,,,,,,,, +2014,9,3,8,30,1.1200325,,,,,,,,,,,,,, +2014,9,3,9,30,0.27600214,,,,,,,,,,,,,, +2014,9,3,10,30,1.4818547,,,,,,,,,,,,,, +2014,9,3,11,30,1.997,,,,,,,,,,,,,, +2014,9,3,12,30,1.8724709,,,,,,,,,,,,,, +2014,9,3,13,30,1.3237967,,,,,,,,,,,,,, +2014,9,3,14,30,0.43834624,,,,,,,,,,,,,, +2014,9,3,15,30,0.6327485,,,,,,,,,,,,,, +2014,9,3,16,30,1.4243786,,,,,,,,,,,,,, +2014,9,3,17,30,1.8004014,,,,,,,,,,,,,, +2014,9,3,18,30,1.7815682,,,,,,,,,,,,,, +2014,9,3,19,30,1.3920262,,,,,,,,,,,,,, +2014,9,3,20,30,0.5329643,,,,,,,,,,,,,, +2014,9,3,21,30,0.72137415,,,,,,,,,,,,,, +2014,9,3,22,30,1.7799727,,,,,,,,,,,,,, +2014,9,3,23,30,2.2379222,,,,,,,,,,,,,, +2014,9,4,0,30,2.206236,,,,,,,,,,,,,, +2014,9,4,1,30,1.8049539,,,,,,,,,,,,,, +2014,9,4,2,30,0.9656714,,,,,,,,,,,,,, +2014,9,4,3,30,0.19960897,,,,,,,,,,,,,, +2014,9,4,4,30,1.3560679,,,,,,,,,,,,,, +2014,9,4,5,30,2.1113317,,,,,,,,,,,,,, +2014,9,4,6,30,2.2910361,,,,,,,,,,,,,, +2014,9,4,7,30,2.1202931,,,,,,,,,,,,,, +2014,9,4,8,30,1.6907943,,,,,,,,,,,,,, +2014,9,4,9,30,0.72766453,,,,,,,,,,,,,, +2014,9,4,10,30,0.695085,,,,,,,,,,,,,, +2014,9,4,11,30,1.7476715,,,,,,,,,,,,,, +2014,9,4,12,30,2.0579355,,,,,,,,,,,,,, +2014,9,4,13,30,1.8197536,,,,,,,,,,,,,, +2014,9,4,14,30,1.2006546,,,,,,,,,,,,,, +2014,9,4,15,30,0.3045505,,,,,,,,,,,,,, +2014,9,4,16,30,0.68550503,,,,,,,,,,,,,, +2014,9,4,17,30,1.3356669,,,,,,,,,,,,,, +2014,9,4,18,30,1.5993922,,,,,,,,,,,,,, +2014,9,4,19,30,1.4800004,,,,,,,,,,,,,, +2014,9,4,20,30,0.9657537,,,,,,,,,,,,,, +2014,9,4,21,30,0.12771925,,,,,,,,,,,,,, +2014,9,4,22,30,1.0509312,,,,,,,,,,,,,, +2014,9,4,23,30,1.798638,,,,,,,,,,,,,, +2014,9,5,0,30,2.0023036,,,,,,,,,,,,,, +2014,9,5,1,30,1.8313481,,,,,,,,,,,,,, +2014,9,5,2,30,1.3039062,,,,,,,,,,,,,, +2014,9,5,3,30,0.36506432,,,,,,,,,,,,,, +2014,9,5,4,30,0.7818133,,,,,,,,,,,,,, +2014,9,5,5,30,1.7771909,,,,,,,,,,,,,, +2014,9,5,6,30,2.298488,,,,,,,,,,,,,, +2014,9,5,7,30,2.2967088,,,,,,,,,,,,,, +2014,9,5,8,30,1.9907076,,,,,,,,,,,,,, +2014,9,5,9,30,1.3834864,,,,,,,,,,,,,, +2014,9,5,10,30,0.29588544,,,,,,,,,,,,,, +2014,9,5,11,30,1.0780805,,,,,,,,,,,,,, +2014,9,5,12,30,1.9043458,,,,,,,,,,,,,, +2014,9,5,13,30,2.0398831,,,,,,,,,,,,,, +2014,9,5,14,30,1.7243025,,,,,,,,,,,,,, +2014,9,5,15,30,1.0574982,,,,,,,,,,,,,, +2014,9,5,16,30,0.1957358,,,,,,,,,,,,,, +2014,9,5,17,30,0.68318653,,,,,,,,,,,,,, +2014,9,5,18,30,1.1952916,,,,,,,,,,,,,, +2014,9,5,19,30,1.3600967,,,,,,,,,,,,,, +2014,9,5,20,30,1.1453187,,,,,,,,,,,,,, +2014,9,5,21,30,0.5511645,,,,,,,,,,,,,, +2014,9,5,22,30,0.35368067,,,,,,,,,,,,,, +2014,9,5,23,30,1.1901159,,,,,,,,,,,,,, +2014,9,6,0,30,1.6511513,,,,,,,,,,,,,, +2014,9,6,1,30,1.6815256,,,,,,,,,,,,,, +2014,9,6,2,30,1.4133283,,,,,,,,,,,,,, +2014,9,6,3,30,0.77968824,,,,,,,,,,,,,, +2014,9,6,4,30,0.21055436,,,,,,,,,,,,,, +2014,9,6,5,30,1.2502395,,,,,,,,,,,,,, +2014,9,6,6,30,2.0307007,,,,,,,,,,,,,, +2014,9,6,7,30,2.3266468,,,,,,,,,,,,,, +2014,9,6,8,30,2.172475,,,,,,,,,,,,,, +2014,9,6,9,30,1.7445158,,,,,,,,,,,,,, +2014,9,6,10,30,0.9960267,,,,,,,,,,,,,, +2014,9,6,11,30,0.21767327,,,,,,,,,,,,,, +2014,9,6,12,30,1.365687,,,,,,,,,,,,,, +2014,9,6,13,30,1.9652113,,,,,,,,,,,,,, +2014,9,6,14,30,1.9731874,,,,,,,,,,,,,, +2014,9,6,15,30,1.6031014,,,,,,,,,,,,,, +2014,9,6,16,30,0.905488,,,,,,,,,,,,,, +2014,9,6,17,30,0.11827115,,,,,,,,,,,,,, +2014,9,6,18,30,0.63443196,,,,,,,,,,,,,, +2014,9,6,19,30,1.0302765,,,,,,,,,,,,,, +2014,9,6,20,30,1.1200457,,,,,,,,,,,,,, +2014,9,6,21,30,0.836051,,,,,,,,,,,,,, +2014,9,6,22,30,0.23286247,,,,,,,,,,,,,, +2014,9,6,23,30,0.5501426,,,,,,,,,,,,,, +2014,9,7,0,30,1.1565294,,,,,,,,,,,,,, +2014,9,7,1,30,1.4088428,,,,,,,,,,,,,, +2014,9,7,2,30,1.338742,,,,,,,,,,,,,, +2014,9,7,3,30,0.99590623,,,,,,,,,,,,,, +2014,9,7,4,30,0.28993228,,,,,,,,,,,,,, +2014,9,7,5,30,0.67021644,,,,,,,,,,,,,, +2014,9,7,6,30,1.5534432,,,,,,,,,,,,,, +2014,9,7,7,30,2.1107364,,,,,,,,,,,,,, +2014,9,7,8,30,2.2181914,,,,,,,,,,,,,, +2014,9,7,9,30,1.9495472,,,,,,,,,,,,,, +2014,9,7,10,30,1.4306653,,,,,,,,,,,,,, +2014,9,7,11,30,0.6014939,,,,,,,,,,,,,, +2014,9,7,12,30,0.5690964,,,,,,,,,,,,,, +2014,9,7,13,30,1.5519611,,,,,,,,,,,,,, +2014,9,7,14,30,1.9608018,,,,,,,,,,,,,, +2014,9,7,15,30,1.8800886,,,,,,,,,,,,,, +2014,9,7,16,30,1.4652755,,,,,,,,,,,,,, +2014,9,7,17,30,0.76052463,,,,,,,,,,,,,, +2014,9,7,18,30,0.072662905,,,,,,,,,,,,,, +2014,9,7,19,30,0.5507926,,,,,,,,,,,,,, +2014,9,7,20,30,0.8725443,,,,,,,,,,,,,, +2014,9,7,21,30,0.9199201,,,,,,,,,,,,,, +2014,9,7,22,30,0.59978366,,,,,,,,,,,,,, +2014,9,7,23,30,0.12864184,,,,,,,,,,,,,, +2014,9,8,0,30,0.6000599,,,,,,,,,,,,,, +2014,9,8,1,30,1.0174601,,,,,,,,,,,,,, +2014,9,8,2,30,1.1449256,,,,,,,,,,,,,, +2014,9,8,3,30,1.0195339,,,,,,,,,,,,,, +2014,9,8,4,30,0.61963063,,,,,,,,,,,,,, +2014,9,8,5,30,0.12473722,,,,,,,,,,,,,, +2014,9,8,6,30,0.98802626,,,,,,,,,,,,,, +2014,9,8,7,30,1.6931589,,,,,,,,,,,,,, +2014,9,8,8,30,2.0562615,,,,,,,,,,,,,, +2014,9,8,9,30,2.027252,,,,,,,,,,,,,, +2014,9,8,10,30,1.688831,,,,,,,,,,,,,, +2014,9,8,11,30,1.1197187,,,,,,,,,,,,,, +2014,9,8,12,30,0.27565807,,,,,,,,,,,,,, +2014,9,8,13,30,0.8467412,,,,,,,,,,,,,, +2014,9,8,14,30,1.6578,,,,,,,,,,,,,, +2014,9,8,15,30,1.9192848,,,,,,,,,,,,,, +2014,9,8,16,30,1.7752771,,,,,,,,,,,,,, +2014,9,8,17,30,1.3305895,,,,,,,,,,,,,, +2014,9,8,18,30,0.6534833,,,,,,,,,,,,,, +2014,9,8,19,30,0.0529181,,,,,,,,,,,,,, +2014,9,8,20,30,0.45501384,,,,,,,,,,,,,, +2014,9,8,21,30,0.7563535,,,,,,,,,,,,,, +2014,9,8,22,30,0.78529775,,,,,,,,,,,,,, +2014,9,8,23,30,0.45047712,,,,,,,,,,,,,, +2014,9,9,0,30,0.14593938,,,,,,,,,,,,,, +2014,9,9,1,30,0.54998416,,,,,,,,,,,,,, +2014,9,9,2,30,0.84445095,,,,,,,,,,,,,, +2014,9,9,3,30,0.9120591,,,,,,,,,,,,,, +2014,9,9,4,30,0.7570249,,,,,,,,,,,,,, +2014,9,9,5,30,0.3241481,,,,,,,,,,,,,, +2014,9,9,6,30,0.40893403,,,,,,,,,,,,,, +2014,9,9,7,30,1.1661094,,,,,,,,,,,,,, +2014,9,9,8,30,1.7127692,,,,,,,,,,,,,, +2014,9,9,9,30,1.9335785,,,,,,,,,,,,,, +2014,9,9,10,30,1.8256931,,,,,,,,,,,,,, +2014,9,9,11,30,1.4609675,,,,,,,,,,,,,, +2014,9,9,12,30,0.8696537,,,,,,,,,,,,,, +2014,9,9,13,30,0.13658208,,,,,,,,,,,,,, +2014,9,9,14,30,1.0466384,,,,,,,,,,,,,, +2014,9,9,15,30,1.7110447,,,,,,,,,,,,,, +2014,9,9,16,30,1.863534,,,,,,,,,,,,,, +2014,9,9,17,30,1.6822878,,,,,,,,,,,,,, +2014,9,9,18,30,1.2365185,,,,,,,,,,,,,, +2014,9,9,19,30,0.6134919,,,,,,,,,,,,,, +2014,9,9,20,30,0.069424465,,,,,,,,,,,,,, +2014,9,9,21,30,0.38587856,,,,,,,,,,,,,, +2014,9,9,22,30,0.7062639,,,,,,,,,,,,,, +2014,9,9,23,30,0.71669006,,,,,,,,,,,,,, +2014,9,10,0,30,0.3769693,,,,,,,,,,,,,, +2014,9,10,1,30,0.13644834,,,,,,,,,,,,,, +2014,9,10,2,30,0.452672,,,,,,,,,,,,,, +2014,9,10,3,30,0.69093764,,,,,,,,,,,,,, +2014,9,10,4,30,0.74535525,,,,,,,,,,,,,, +2014,9,10,5,30,0.5765296,,,,,,,,,,,,,, +2014,9,10,6,30,0.14436288,,,,,,,,,,,,,, +2014,9,10,7,30,0.5807751,,,,,,,,,,,,,, +2014,9,10,8,30,1.2403646,,,,,,,,,,,,,, +2014,9,10,9,30,1.6739995,,,,,,,,,,,,,, +2014,9,10,10,30,1.8138945,,,,,,,,,,,,,, +2014,9,10,11,30,1.6781576,,,,,,,,,,,,,, +2014,9,10,12,30,1.3114936,,,,,,,,,,,,,, +2014,9,10,13,30,0.6964508,,,,,,,,,,,,,, +2014,9,10,14,30,0.2614658,,,,,,,,,,,,,, +2014,9,10,15,30,1.1933706,,,,,,,,,,,,,, +2014,9,10,16,30,1.7397299,,,,,,,,,,,,,, +2014,9,10,17,30,1.8229872,,,,,,,,,,,,,, +2014,9,10,18,30,1.6380091,,,,,,,,,,,,,, +2014,9,10,19,30,1.2141613,,,,,,,,,,,,,, +2014,9,10,20,30,0.6351911,,,,,,,,,,,,,, +2014,9,10,21,30,0.10508249,,,,,,,,,,,,,, +2014,9,10,22,30,0.38666305,,,,,,,,,,,,,, +2014,9,10,23,30,0.72846043,,,,,,,,,,,,,, +2014,9,11,0,30,0.70336455,,,,,,,,,,,,,, +2014,9,11,1,30,0.36904615,,,,,,,,,,,,,, +2014,9,11,2,30,0.108662054,,,,,,,,,,,,,, +2014,9,11,3,30,0.34815305,,,,,,,,,,,,,, +2014,9,11,4,30,0.59648347,,,,,,,,,,,,,, +2014,9,11,5,30,0.66803837,,,,,,,,,,,,,, +2014,9,11,6,30,0.48816577,,,,,,,,,,,,,, +2014,9,11,7,30,0.098334365,,,,,,,,,,,,,, +2014,9,11,8,30,0.65822995,,,,,,,,,,,,,, +2014,9,11,9,30,1.2574604,,,,,,,,,,,,,, +2014,9,11,10,30,1.6355883,,,,,,,,,,,,,, +2014,9,11,11,30,1.7493103,,,,,,,,,,,,,, +2014,9,11,12,30,1.612951,,,,,,,,,,,,,, +2014,9,11,13,30,1.237747,,,,,,,,,,,,,, +2014,9,11,14,30,0.5752116,,,,,,,,,,,,,, +2014,9,11,15,30,0.4195551,,,,,,,,,,,,,, +2014,9,11,16,30,1.3175226,,,,,,,,,,,,,, +2014,9,11,17,30,1.7785835,,,,,,,,,,,,,, +2014,9,11,18,30,1.8350229,,,,,,,,,,,,,, +2014,9,11,19,30,1.6675345,,,,,,,,,,,,,, +2014,9,11,20,30,1.251941,,,,,,,,,,,,,, +2014,9,11,21,30,0.66329604,,,,,,,,,,,,,, +2014,9,11,22,30,0.08854704,,,,,,,,,,,,,, +2014,9,11,23,30,0.48654628,,,,,,,,,,,,,, +2014,9,12,0,30,0.81896716,,,,,,,,,,,,,, +2014,9,12,1,30,0.74522203,,,,,,,,,,,,,, +2014,9,12,2,30,0.4303092,,,,,,,,,,,,,, +2014,9,12,3,30,0.11355702,,,,,,,,,,,,,, +2014,9,12,4,30,0.27490035,,,,,,,,,,,,,, +2014,9,12,5,30,0.59364885,,,,,,,,,,,,,, +2014,9,12,6,30,0.6896173,,,,,,,,,,,,,, +2014,9,12,7,30,0.48618278,,,,,,,,,,,,,, +2014,9,12,8,30,0.09282089,,,,,,,,,,,,,, +2014,9,12,9,30,0.6714126,,,,,,,,,,,,,, +2014,9,12,10,30,1.2612426,,,,,,,,,,,,,, +2014,9,12,11,30,1.6368138,,,,,,,,,,,,,, +2014,9,12,12,30,1.7529981,,,,,,,,,,,,,, +2014,9,12,13,30,1.6106129,,,,,,,,,,,,,, +2014,9,12,14,30,1.2000916,,,,,,,,,,,,,, +2014,9,12,15,30,0.46565142,,,,,,,,,,,,,, +2014,9,12,16,30,0.5807258,,,,,,,,,,,,,, +2014,9,12,17,30,1.4561212,,,,,,,,,,,,,, +2014,9,12,18,30,1.8667781,,,,,,,,,,,,,, +2014,9,12,19,30,1.9201488,,,,,,,,,,,,,, +2014,9,12,20,30,1.7502909,,,,,,,,,,,,,, +2014,9,12,21,30,1.2860876,,,,,,,,,,,,,, +2014,9,12,22,30,0.616639,,,,,,,,,,,,,, +2014,9,12,23,30,0.10207472,,,,,,,,,,,,,, +2014,9,13,0,30,0.69426787,,,,,,,,,,,,,, +2014,9,13,1,30,0.9771469,,,,,,,,,,,,,, +2014,9,13,2,30,0.8564499,,,,,,,,,,,,,, +2014,9,13,3,30,0.5640858,,,,,,,,,,,,,, +2014,9,13,4,30,0.20993297,,,,,,,,,,,,,, +2014,9,13,5,30,0.2810856,,,,,,,,,,,,,, +2014,9,13,6,30,0.7041419,,,,,,,,,,,,,, +2014,9,13,7,30,0.8088891,,,,,,,,,,,,,, +2014,9,13,8,30,0.5630539,,,,,,,,,,,,,, +2014,9,13,9,30,0.060258698,,,,,,,,,,,,,, +2014,9,13,10,30,0.65562093,,,,,,,,,,,,,, +2014,9,13,11,30,1.285126,,,,,,,,,,,,,, +2014,9,13,12,30,1.6859299,,,,,,,,,,,,,, +2014,9,13,13,30,1.7977663,,,,,,,,,,,,,, +2014,9,13,14,30,1.6244009,,,,,,,,,,,,,, +2014,9,13,15,30,1.1542959,,,,,,,,,,,,,, +2014,9,13,16,30,0.33387178,,,,,,,,,,,,,, +2014,9,13,17,30,0.779017,,,,,,,,,,,,,, +2014,9,13,18,30,1.647289,,,,,,,,,,,,,, +2014,9,13,19,30,2.0224485,,,,,,,,,,,,,, +2014,9,13,20,30,2.0515428,,,,,,,,,,,,,, +2014,9,13,21,30,1.8163608,,,,,,,,,,,,,, +2014,9,13,22,30,1.2324244,,,,,,,,,,,,,, +2014,9,13,23,30,0.43153772,,,,,,,,,,,,,, +2014,9,14,0,30,0.39030603,,,,,,,,,,,,,, +2014,9,14,1,30,1.0029032,,,,,,,,,,,,,, +2014,9,14,2,30,1.2046932,,,,,,,,,,,,,, +2014,9,14,3,30,1.0435233,,,,,,,,,,,,,, +2014,9,14,4,30,0.7435749,,,,,,,,,,,,,, +2014,9,14,5,30,0.27582029,,,,,,,,,,,,,, +2014,9,14,6,30,0.41233855,,,,,,,,,,,,,, +2014,9,14,7,30,0.93419105,,,,,,,,,,,,,, +2014,9,14,8,30,1.0148132,,,,,,,,,,,,,, +2014,9,14,9,30,0.70548904,,,,,,,,,,,,,, +2014,9,14,10,30,0.115345374,,,,,,,,,,,,,, +2014,9,14,11,30,0.6483449,,,,,,,,,,,,,, +2014,9,14,12,30,1.3437502,,,,,,,,,,,,,, +2014,9,14,13,30,1.7611315,,,,,,,,,,,,,, +2014,9,14,14,30,1.8397875,,,,,,,,,,,,,, +2014,9,14,15,30,1.615394,,,,,,,,,,,,,, +2014,9,14,16,30,1.0715126,,,,,,,,,,,,,, +2014,9,14,17,30,0.16879979,,,,,,,,,,,,,, +2014,9,14,18,30,1.0476065,,,,,,,,,,,,,, +2014,9,14,19,30,1.9043722,,,,,,,,,,,,,, +2014,9,14,20,30,2.2139208,,,,,,,,,,,,,, +2014,9,14,21,30,2.1561728,,,,,,,,,,,,,, +2014,9,14,22,30,1.7835207,,,,,,,,,,,,,, +2014,9,14,23,30,1.031697,,,,,,,,,,,,,, +2014,9,15,0,30,0.104546115,,,,,,,,,,,,,, +2014,9,15,1,30,0.82108366,,,,,,,,,,,,,, +2014,9,15,2,30,1.390167,,,,,,,,,,,,,, +2014,9,15,3,30,1.4884617,,,,,,,,,,,,,, +2014,9,15,4,30,1.2787827,,,,,,,,,,,,,, +2014,9,15,5,30,0.9030204,,,,,,,,,,,,,, +2014,9,15,6,30,0.23417926,,,,,,,,,,,,,, +2014,9,15,7,30,0.69219315,,,,,,,,,,,,,, +2014,9,15,8,30,1.2673439,,,,,,,,,,,,,, +2014,9,15,9,30,1.2780472,,,,,,,,,,,,,, +2014,9,15,10,30,0.88115627,,,,,,,,,,,,,, +2014,9,15,11,30,0.20537075,,,,,,,,,,,,,, +2014,9,15,12,30,0.67620385,,,,,,,,,,,,,, +2014,9,15,13,30,1.4290891,,,,,,,,,,,,,, +2014,9,15,14,30,1.8286641,,,,,,,,,,,,,, +2014,9,15,15,30,1.849789,,,,,,,,,,,,,, +2014,9,15,16,30,1.567931,,,,,,,,,,,,,, +2014,9,15,17,30,0.9322243,,,,,,,,,,,,,, +2014,9,15,18,30,0.17904839,,,,,,,,,,,,,, +2014,9,15,19,30,1.3930912,,,,,,,,,,,,,, +2014,9,15,20,30,2.188514,,,,,,,,,,,,,, +2014,9,15,21,30,2.364413,,,,,,,,,,,,,, +2014,9,15,22,30,2.1552596,,,,,,,,,,,,,, +2014,9,15,23,30,1.6024587,,,,,,,,,,,,,, +2014,9,16,0,30,0.67066467,,,,,,,,,,,,,, +2014,9,16,1,30,0.42826882,,,,,,,,,,,,,, +2014,9,16,2,30,1.3470299,,,,,,,,,,,,,, +2014,9,16,3,30,1.8121097,,,,,,,,,,,,,, +2014,9,16,4,30,1.7867994,,,,,,,,,,,,,, +2014,9,16,5,30,1.4982381,,,,,,,,,,,,,, +2014,9,16,6,30,0.95925677,,,,,,,,,,,,,, +2014,9,16,7,30,0.12927361,,,,,,,,,,,,,, +2014,9,16,8,30,1.1091726,,,,,,,,,,,,,, +2014,9,16,9,30,1.6573445,,,,,,,,,,,,,, +2014,9,16,10,30,1.5502546,,,,,,,,,,,,,, +2014,9,16,11,30,1.0439198,,,,,,,,,,,,,, +2014,9,16,12,30,0.261499,,,,,,,,,,,,,, +2014,9,16,13,30,0.74324286,,,,,,,,,,,,,, +2014,9,16,14,30,1.5185912,,,,,,,,,,,,,, +2014,9,16,15,30,1.8651873,,,,,,,,,,,,,, +2014,9,16,16,30,1.8219658,,,,,,,,,,,,,, +2014,9,16,17,30,1.4746313,,,,,,,,,,,,,, +2014,9,16,18,30,0.71640503,,,,,,,,,,,,,, +2014,9,16,19,30,0.52254736,,,,,,,,,,,,,, +2014,9,16,20,30,1.7702723,,,,,,,,,,,,,, +2014,9,16,21,30,2.4156675,,,,,,,,,,,,,, +2014,9,16,22,30,2.3959956,,,,,,,,,,,,,, +2014,9,16,23,30,2.0089493,,,,,,,,,,,,,, +2014,9,17,0,30,1.2719724,,,,,,,,,,,,,, +2014,9,17,1,30,0.17995588,,,,,,,,,,,,,, +2014,9,17,2,30,1.0224656,,,,,,,,,,,,,, +2014,9,17,3,30,1.8995603,,,,,,,,,,,,,, +2014,9,17,4,30,2.2043517,,,,,,,,,,,,,, +2014,9,17,5,30,2.0375285,,,,,,,,,,,,,, +2014,9,17,6,30,1.6257298,,,,,,,,,,,,,, +2014,9,17,7,30,0.84789026,,,,,,,,,,,,,, +2014,9,17,8,30,0.4356583,,,,,,,,,,,,,, +2014,9,17,9,30,1.605684,,,,,,,,,,,,,, +2014,9,17,10,30,2.0346565,,,,,,,,,,,,,, +2014,9,17,11,30,1.777878,,,,,,,,,,,,,, +2014,9,17,12,30,1.1536877,,,,,,,,,,,,,, +2014,9,17,13,30,0.25935227,,,,,,,,,,,,,, +2014,9,17,14,30,0.83433914,,,,,,,,,,,,,, +2014,9,17,15,30,1.5887655,,,,,,,,,,,,,, +2014,9,17,16,30,1.8628356,,,,,,,,,,,,,, +2014,9,17,17,30,1.7549124,,,,,,,,,,,,,, +2014,9,17,18,30,1.3196692,,,,,,,,,,,,,, +2014,9,17,19,30,0.41740212,,,,,,,,,,,,,, +2014,9,17,20,30,0.92618835,,,,,,,,,,,,,, +2014,9,17,21,30,2.088866,,,,,,,,,,,,,, +2014,9,17,22,30,2.5030892,,,,,,,,,,,,,, +2014,9,17,23,30,2.27559,,,,,,,,,,,,,, +2014,9,18,0,30,1.7272373,,,,,,,,,,,,,, +2014,9,18,1,30,0.82340467,,,,,,,,,,,,,, +2014,9,18,2,30,0.4286715,,,,,,,,,,,,,, +2014,9,18,3,30,1.6445067,,,,,,,,,,,,,, +2014,9,18,4,30,2.3943107,,,,,,,,,,,,,, +2014,9,18,5,30,2.5001168,,,,,,,,,,,,,, +2014,9,18,6,30,2.1824276,,,,,,,,,,,,,, +2014,9,18,7,30,1.6054945,,,,,,,,,,,,,, +2014,9,18,8,30,0.55735207,,,,,,,,,,,,,, +2014,9,18,9,30,0.9491237,,,,,,,,,,,,,, +2014,9,18,10,30,2.0886016,,,,,,,,,,,,,, +2014,9,18,11,30,2.3290977,,,,,,,,,,,,,, +2014,9,18,12,30,1.9242222,,,,,,,,,,,,,, +2014,9,18,13,30,1.1948977,,,,,,,,,,,,,, +2014,9,18,14,30,0.2082562,,,,,,,,,,,,,, +2014,9,18,15,30,0.92444307,,,,,,,,,,,,,, +2014,9,18,16,30,1.6200736,,,,,,,,,,,,,, +2014,9,18,17,30,1.8147942,,,,,,,,,,,,,, +2014,9,18,18,30,1.6348978,,,,,,,,,,,,,, +2014,9,18,19,30,1.0896627,,,,,,,,,,,,,, +2014,9,18,20,30,0.12960431,,,,,,,,,,,,,, +2014,9,18,21,30,1.2911595,,,,,,,,,,,,,, +2014,9,18,22,30,2.2586927,,,,,,,,,,,,,, +2014,9,18,23,30,2.418011,,,,,,,,,,,,,, +2014,9,19,0,30,2.0243886,,,,,,,,,,,,,, +2014,9,19,1,30,1.3485873,,,,,,,,,,,,,, +2014,9,19,2,30,0.3087373,,,,,,,,,,,,,, +2014,9,19,3,30,1.0391346,,,,,,,,,,,,,, +2014,9,19,4,30,2.2010264,,,,,,,,,,,,,, +2014,9,19,5,30,2.754561,,,,,,,,,,,,,, +2014,9,19,6,30,2.6542747,,,,,,,,,,,,,, +2014,9,19,7,30,2.1898212,,,,,,,,,,,,,, +2014,9,19,8,30,1.4271711,,,,,,,,,,,,,, +2014,9,19,9,30,0.17660642,,,,,,,,,,,,,, +2014,9,19,10,30,1.4738187,,,,,,,,,,,,,, +2014,9,19,11,30,2.4627492,,,,,,,,,,,,,, +2014,9,19,12,30,2.4988968,,,,,,,,,,,,,, +2014,9,19,13,30,1.9842329,,,,,,,,,,,,,, +2014,9,19,14,30,1.1785638,,,,,,,,,,,,,, +2014,9,19,15,30,0.14075695,,,,,,,,,,,,,, +2014,9,19,16,30,0.98321104,,,,,,,,,,,,,, +2014,9,19,17,30,1.5921212,,,,,,,,,,,,,, +2014,9,19,18,30,1.70624,,,,,,,,,,,,,, +2014,9,19,19,30,1.448226,,,,,,,,,,,,,, +2014,9,19,20,30,0.802106,,,,,,,,,,,,,, +2014,9,19,21,30,0.30943042,,,,,,,,,,,,,, +2014,9,19,22,30,1.5235201,,,,,,,,,,,,,, +2014,9,19,23,30,2.2396245,,,,,,,,,,,,,, +2014,9,20,0,30,2.1886578,,,,,,,,,,,,,, +2014,9,20,1,30,1.6923825,,,,,,,,,,,,,, +2014,9,20,2,30,0.91899025,,,,,,,,,,,,,, +2014,9,20,3,30,0.25628304,,,,,,,,,,,,,, +2014,9,20,4,30,1.5863621,,,,,,,,,,,,,, +2014,9,20,5,30,2.607204,,,,,,,,,,,,,, +2014,9,20,6,30,2.9358497,,,,,,,,,,,,,, +2014,9,20,7,30,2.6562572,,,,,,,,,,,,,, +2014,9,20,8,30,2.065598,,,,,,,,,,,,,, +2014,9,20,9,30,1.1351213,,,,,,,,,,,,,, +2014,9,20,10,30,0.35789657,,,,,,,,,,,,,, +2014,9,20,11,30,1.8939903,,,,,,,,,,,,,, +2014,9,20,12,30,2.671022,,,,,,,,,,,,,, +2014,9,20,13,30,2.545803,,,,,,,,,,,,,, +2014,9,20,14,30,1.9787222,,,,,,,,,,,,,, +2014,9,20,15,30,1.1298616,,,,,,,,,,,,,, +2014,9,20,16,30,0.09443536,,,,,,,,,,,,,, +2014,9,20,17,30,0.97732294,,,,,,,,,,,,,, +2014,9,20,18,30,1.4857924,,,,,,,,,,,,,, +2014,9,20,19,30,1.5298066,,,,,,,,,,,,,, +2014,9,20,20,30,1.2097225,,,,,,,,,,,,,, +2014,9,20,21,30,0.51639456,,,,,,,,,,,,,, +2014,9,20,22,30,0.5422239,,,,,,,,,,,,,, +2014,9,20,23,30,1.5725547,,,,,,,,,,,,,, +2014,9,21,0,30,2.0561588,,,,,,,,,,,,,, +2014,9,21,1,30,1.8771569,,,,,,,,,,,,,, +2014,9,21,2,30,1.3320045,,,,,,,,,,,,,, +2014,9,21,3,30,0.4912498,,,,,,,,,,,,,, +2014,9,21,4,30,0.7222892,,,,,,,,,,,,,, +2014,9,21,5,30,1.9840511,,,,,,,,,,,,,, +2014,9,21,6,30,2.8123713,,,,,,,,,,,,,, +2014,9,21,7,30,2.9356058,,,,,,,,,,,,,, +2014,9,21,8,30,2.5291703,,,,,,,,,,,,,, +2014,9,21,9,30,1.8537605,,,,,,,,,,,,,, +2014,9,21,10,30,0.81572855,,,,,,,,,,,,,, +2014,9,21,11,30,0.725445,,,,,,,,,,,,,, +2014,9,21,12,30,2.1381912,,,,,,,,,,,,,, +2014,9,21,13,30,2.7142313,,,,,,,,,,,,,, +2014,9,21,14,30,2.5037498,,,,,,,,,,,,,, +2014,9,21,15,30,1.9361105,,,,,,,,,,,,,, +2014,9,21,16,30,1.0784814,,,,,,,,,,,,,, +2014,9,21,17,30,0.08508632,,,,,,,,,,,,,, +2014,9,21,18,30,0.8813257,,,,,,,,,,,,,, +2014,9,21,19,30,1.3025246,,,,,,,,,,,,,, +2014,9,21,20,30,1.3104812,,,,,,,,,,,,,, +2014,9,21,21,30,0.9724513,,,,,,,,,,,,,, +2014,9,21,22,30,0.30906838,,,,,,,,,,,,,, +2014,9,21,23,30,0.62217677,,,,,,,,,,,,,, +2014,9,22,0,30,1.4488121,,,,,,,,,,,,,, +2014,9,22,1,30,1.7728838,,,,,,,,,,,,,, +2014,9,22,2,30,1.5479902,,,,,,,,,,,,,, +2014,9,22,3,30,0.99305546,,,,,,,,,,,,,, +2014,9,22,4,30,0.13413152,,,,,,,,,,,,,, +2014,9,22,5,30,1.0544916,,,,,,,,,,,,,, +2014,9,22,6,30,2.1788318,,,,,,,,,,,,,, +2014,9,22,7,30,2.8127382,,,,,,,,,,,,,, +2014,9,22,8,30,2.7878606,,,,,,,,,,,,,, +2014,9,22,9,30,2.3234677,,,,,,,,,,,,,, +2014,9,22,10,30,1.6248661,,,,,,,,,,,,,, +2014,9,22,11,30,0.5604289,,,,,,,,,,,,,, +2014,9,22,12,30,0.948851,,,,,,,,,,,,,, +2014,9,22,13,30,2.202981,,,,,,,,,,,,,, +2014,9,22,14,30,2.637084,,,,,,,,,,,,,, +2014,9,22,15,30,2.4142547,,,,,,,,,,,,,, +2014,9,22,16,30,1.8831152,,,,,,,,,,,,,, +2014,9,22,17,30,1.0571811,,,,,,,,,,,,,, +2014,9,22,18,30,0.11680055,,,,,,,,,,,,,, +2014,9,22,19,30,0.7003792,,,,,,,,,,,,,, +2014,9,22,20,30,1.0838125,,,,,,,,,,,,,, +2014,9,22,21,30,1.1076792,,,,,,,,,,,,,, +2014,9,22,22,30,0.8031584,,,,,,,,,,,,,, +2014,9,22,23,30,0.23040882,,,,,,,,,,,,,, +2014,9,23,0,30,0.5391865,,,,,,,,,,,,,, +2014,9,23,1,30,1.206308,,,,,,,,,,,,,, +2014,9,23,2,30,1.4619414,,,,,,,,,,,,,, +2014,9,23,3,30,1.2566506,,,,,,,,,,,,,, +2014,9,23,4,30,0.7273389,,,,,,,,,,,,,, +2014,9,23,5,30,0.13018677,,,,,,,,,,,,,, +2014,9,23,6,30,1.1999279,,,,,,,,,,,,,, +2014,9,23,7,30,2.1667109,,,,,,,,,,,,,, +2014,9,23,8,30,2.6478539,,,,,,,,,,,,,, +2014,9,23,9,30,2.5533226,,,,,,,,,,,,,, +2014,9,23,10,30,2.1062407,,,,,,,,,,,,,, +2014,9,23,11,30,1.4481275,,,,,,,,,,,,,, +2014,9,23,12,30,0.41940498,,,,,,,,,,,,,, +2014,9,23,13,30,1.0219848,,,,,,,,,,,,,, +2014,9,23,14,30,2.1378307,,,,,,,,,,,,,, +2014,9,23,15,30,2.4972777,,,,,,,,,,,,,, +2014,9,23,16,30,2.313869,,,,,,,,,,,,,, +2014,9,23,17,30,1.8487679,,,,,,,,,,,,,, +2014,9,23,18,30,1.0951365,,,,,,,,,,,,,, +2014,9,23,19,30,0.23428616,,,,,,,,,,,,,, +2014,9,23,20,30,0.48671705,,,,,,,,,,,,,, +2014,9,23,21,30,0.90310353,,,,,,,,,,,,,, +2014,9,23,22,30,0.98459417,,,,,,,,,,,,,, +2014,9,23,23,30,0.7457427,,,,,,,,,,,,,, +2014,9,24,0,30,0.28887632,,,,,,,,,,,,,, +2014,9,24,1,30,0.33038193,,,,,,,,,,,,,, +2014,9,24,2,30,0.9148278,,,,,,,,,,,,,, +2014,9,24,3,30,1.1875393,,,,,,,,,,,,,, +2014,9,24,4,30,1.0505183,,,,,,,,,,,,,, +2014,9,24,5,30,0.5808582,,,,,,,,,,,,,, +2014,9,24,6,30,0.2040494,,,,,,,,,,,,,, +2014,9,24,7,30,1.1587946,,,,,,,,,,,,,, +2014,9,24,8,30,1.9916614,,,,,,,,,,,,,, +2014,9,24,9,30,2.389027,,,,,,,,,,,,,, +2014,9,24,10,30,2.3064466,,,,,,,,,,,,,, +2014,9,24,11,30,1.9392574,,,,,,,,,,,,,, +2014,9,24,12,30,1.3574618,,,,,,,,,,,,,, +2014,9,24,13,30,0.38016233,,,,,,,,,,,,,, +2014,9,24,14,30,0.99438363,,,,,,,,,,,,,, +2014,9,24,15,30,2.00937,,,,,,,,,,,,,, +2014,9,24,16,30,2.3470926,,,,,,,,,,,,,, +2014,9,24,17,30,2.2382693,,,,,,,,,,,,,, +2014,9,24,18,30,1.8624538,,,,,,,,,,,,,, +2014,9,24,19,30,1.1981215,,,,,,,,,,,,,, +2014,9,24,20,30,0.40630436,,,,,,,,,,,,,, +2014,9,24,21,30,0.32581815,,,,,,,,,,,,,, +2014,9,24,22,30,0.82721317,,,,,,,,,,,,,, +2014,9,24,23,30,0.9729552,,,,,,,,,,,,,, +2014,9,25,0,30,0.8070736,,,,,,,,,,,,,, +2014,9,25,1,30,0.46868372,,,,,,,,,,,,,, +2014,9,25,2,30,0.09957995,,,,,,,,,,,,,, +2014,9,25,3,30,0.6450709,,,,,,,,,,,,,, +2014,9,25,4,30,1.0027125,,,,,,,,,,,,,, +2014,9,25,5,30,0.9626981,,,,,,,,,,,,,, +2014,9,25,6,30,0.5718689,,,,,,,,,,,,,, +2014,9,25,7,30,0.13050666,,,,,,,,,,,,,, +2014,9,25,8,30,0.97877055,,,,,,,,,,,,,, +2014,9,25,9,30,1.7317044,,,,,,,,,,,,,, +2014,9,25,10,30,2.121662,,,,,,,,,,,,,, +2014,9,25,11,30,2.1127074,,,,,,,,,,,,,, +2014,9,25,12,30,1.850242,,,,,,,,,,,,,, +2014,9,25,13,30,1.3367587,,,,,,,,,,,,,, +2014,9,25,14,30,0.39060372,,,,,,,,,,,,,, +2014,9,25,15,30,0.9303783,,,,,,,,,,,,,, +2014,9,25,16,30,1.87795,,,,,,,,,,,,,, +2014,9,25,17,30,2.2337613,,,,,,,,,,,,,, +2014,9,25,18,30,2.220904,,,,,,,,,,,,,, +2014,9,25,19,30,1.9329408,,,,,,,,,,,,,, +2014,9,25,20,30,1.3278185,,,,,,,,,,,,,, +2014,9,25,21,30,0.5347816,,,,,,,,,,,,,, +2014,9,25,22,30,0.2914378,,,,,,,,,,,,,, +2014,9,25,23,30,0.881396,,,,,,,,,,,,,, +2014,9,26,0,30,1.0667983,,,,,,,,,,,,,, +2014,9,26,1,30,0.96853656,,,,,,,,,,,,,, +2014,9,26,2,30,0.72776073,,,,,,,,,,,,,, +2014,9,26,3,30,0.23149255,,,,,,,,,,,,,, +2014,9,26,4,30,0.46399698,,,,,,,,,,,,,, +2014,9,26,5,30,0.9424656,,,,,,,,,,,,,, +2014,9,26,6,30,0.99973047,,,,,,,,,,,,,, +2014,9,26,7,30,0.6812178,,,,,,,,,,,,,, +2014,9,26,8,30,0.06723748,,,,,,,,,,,,,, +2014,9,26,9,30,0.73813003,,,,,,,,,,,,,, +2014,9,26,10,30,1.4765779,,,,,,,,,,,,,, +2014,9,26,11,30,1.9174473,,,,,,,,,,,,,, +2014,9,26,12,30,2.0001967,,,,,,,,,,,,,, +2014,9,26,13,30,1.8197334,,,,,,,,,,,,,, +2014,9,26,14,30,1.3369744,,,,,,,,,,,,,, +2014,9,26,15,30,0.3951178,,,,,,,,,,,,,, +2014,9,26,16,30,0.88479507,,,,,,,,,,,,,, +2014,9,26,17,30,1.7950032,,,,,,,,,,,,,, +2014,9,26,18,30,2.1961596,,,,,,,,,,,,,, +2014,9,26,19,30,2.2709122,,,,,,,,,,,,,, +2014,9,26,20,30,2.0249305,,,,,,,,,,,,,, +2014,9,26,21,30,1.4068804,,,,,,,,,,,,,, +2014,9,26,22,30,0.53324705,,,,,,,,,,,,,, +2014,9,26,23,30,0.40967378,,,,,,,,,,,,,, +2014,9,27,0,30,1.0498244,,,,,,,,,,,,,, +2014,9,27,1,30,1.2409217,,,,,,,,,,,,,, +2014,9,27,2,30,1.2002916,,,,,,,,,,,,,, +2014,9,27,3,30,1.0094835,,,,,,,,,,,,,, +2014,9,27,4,30,0.4413507,,,,,,,,,,,,,, +2014,9,27,5,30,0.4218762,,,,,,,,,,,,,, +2014,9,27,6,30,1.0143527,,,,,,,,,,,,,, +2014,9,27,7,30,1.1404626,,,,,,,,,,,,,, +2014,9,27,8,30,0.8666302,,,,,,,,,,,,,, +2014,9,27,9,30,0.28313392,,,,,,,,,,,,,, +2014,9,27,10,30,0.5220789,,,,,,,,,,,,,, +2014,9,27,11,30,1.2968382,,,,,,,,,,,,,, +2014,9,27,12,30,1.8041912,,,,,,,,,,,,,, +2014,9,27,13,30,1.9479024,,,,,,,,,,,,,, +2014,9,27,14,30,1.7994759,,,,,,,,,,,,,, +2014,9,27,15,30,1.3087089,,,,,,,,,,,,,, +2014,9,27,16,30,0.35321167,,,,,,,,,,,,,, +2014,9,27,17,30,0.9017731,,,,,,,,,,,,,, +2014,9,27,18,30,1.7989296,,,,,,,,,,,,,, +2014,9,27,19,30,2.242138,,,,,,,,,,,,,, +2014,9,27,20,30,2.3494644,,,,,,,,,,,,,, +2014,9,27,21,30,2.0638814,,,,,,,,,,,,,, +2014,9,27,22,30,1.3561512,,,,,,,,,,,,,, +2014,9,27,23,30,0.3610177,,,,,,,,,,,,,, +2014,9,28,0,30,0.66881555,,,,,,,,,,,,,, +2014,9,28,1,30,1.2976583,,,,,,,,,,,,,, +2014,9,28,2,30,1.4675394,,,,,,,,,,,,,, +2014,9,28,3,30,1.464185,,,,,,,,,,,,,, +2014,9,28,4,30,1.2477515,,,,,,,,,,,,,, +2014,9,28,5,30,0.52311623,,,,,,,,,,,,,, +2014,9,28,6,30,0.52957517,,,,,,,,,,,,,, +2014,9,28,7,30,1.1992804,,,,,,,,,,,,,, +2014,9,28,8,30,1.3465043,,,,,,,,,,,,,, +2014,9,28,9,30,1.076465,,,,,,,,,,,,,, +2014,9,28,10,30,0.47917563,,,,,,,,,,,,,, +2014,9,28,11,30,0.39163786,,,,,,,,,,,,,, +2014,9,28,12,30,1.2155992,,,,,,,,,,,,,, +2014,9,28,13,30,1.7573764,,,,,,,,,,,,,, +2014,9,28,14,30,1.9072266,,,,,,,,,,,,,, +2014,9,28,15,30,1.7465899,,,,,,,,,,,,,, +2014,9,28,16,30,1.2205904,,,,,,,,,,,,,, +2014,9,28,17,30,0.24386051,,,,,,,,,,,,,, +2014,9,28,18,30,1.0127518,,,,,,,,,,,,,, +2014,9,28,19,30,1.8932018,,,,,,,,,,,,,, +2014,9,28,20,30,2.3271425,,,,,,,,,,,,,, +2014,9,28,21,30,2.3782005,,,,,,,,,,,,,, +2014,9,28,22,30,1.9739939,,,,,,,,,,,,,, +2014,9,28,23,30,1.132431,,,,,,,,,,,,,, +2014,9,29,0,30,0.05937598,,,,,,,,,,,,,, +2014,9,29,1,30,1.0310175,,,,,,,,,,,,,, +2014,9,29,2,30,1.5879519,,,,,,,,,,,,,, +2014,9,29,3,30,1.717564,,,,,,,,,,,,,, +2014,9,29,4,30,1.7099333,,,,,,,,,,,,,, +2014,9,29,5,30,1.3740227,,,,,,,,,,,,,, +2014,9,29,6,30,0.4409604,,,,,,,,,,,,,, +2014,9,29,7,30,0.7743473,,,,,,,,,,,,,, +2014,9,29,8,30,1.459342,,,,,,,,,,,,,, +2014,9,29,9,30,1.5723765,,,,,,,,,,,,,, +2014,9,29,10,30,1.2596116,,,,,,,,,,,,,, +2014,9,29,11,30,0.5986403,,,,,,,,,,,,,, +2014,9,29,12,30,0.35706776,,,,,,,,,,,,,, +2014,9,29,13,30,1.2063309,,,,,,,,,,,,,, +2014,9,29,14,30,1.7268794,,,,,,,,,,,,,, +2014,9,29,15,30,1.8395939,,,,,,,,,,,,,, +2014,9,29,16,30,1.6407465,,,,,,,,,,,,,, +2014,9,29,17,30,1.0539668,,,,,,,,,,,,,, +2014,9,29,18,30,0.13545579,,,,,,,,,,,,,, +2014,9,29,19,30,1.2154392,,,,,,,,,,,,,, +2014,9,29,20,30,2.0277457,,,,,,,,,,,,,, +2014,9,29,21,30,2.3683288,,,,,,,,,,,,,, +2014,9,29,22,30,2.2821603,,,,,,,,,,,,,, +2014,9,29,23,30,1.717301,,,,,,,,,,,,,, +2014,9,30,0,30,0.73862183,,,,,,,,,,,,,, +2014,9,30,1,30,0.45960855,,,,,,,,,,,,,, +2014,9,30,2,30,1.4453455,,,,,,,,,,,,,, +2014,9,30,3,30,1.8834072,,,,,,,,,,,,,, +2014,9,30,4,30,1.9529114,,,,,,,,,,,,,, +2014,9,30,5,30,1.8764975,,,,,,,,,,,,,, +2014,9,30,6,30,1.3306843,,,,,,,,,,,,,, +2014,9,30,7,30,0.23557918,,,,,,,,,,,,,, +2014,9,30,8,30,1.1247292,,,,,,,,,,,,,, +2014,9,30,9,30,1.7444175,,,,,,,,,,,,,, +2014,9,30,10,30,1.7721256,,,,,,,,,,,,,, +2014,9,30,11,30,1.374966,,,,,,,,,,,,,, +2014,9,30,12,30,0.6200304,,,,,,,,,,,,,, +2014,9,30,13,30,0.39213425,,,,,,,,,,,,,, +2014,9,30,14,30,1.2223474,,,,,,,,,,,,,, +2014,9,30,15,30,1.6772623,,,,,,,,,,,,,, +2006,9,30,16,30,1.7340963,,,,,,,,,,,,,, +2006,9,30,17,30,1.4745227,,,,,,,,,,,,,, +2006,9,30,18,30,0.79659235,,,,,,,,,,,,,, +2006,9,30,19,30,0.34266046,,,,,,,,,,,,,, +2006,9,30,20,30,1.4561945,,,,,,,,,,,,,, +2006,9,30,21,30,2.117344,,,,,,,,,,,,,, +2006,9,30,22,30,2.2927327,,,,,,,,,,,,,, +2006,9,30,23,30,2.0308979,,,,,,,,,,,,,, +2006,10,1,0,30,1.3032085,,,,,,,,,,,,,, +2006,10,1,1,30,0.21499157,,,,,,,,,,,,,, +2006,10,1,2,30,0.9951245,,,,,,,,,,,,,, +2006,10,1,3,30,1.8534977,,,,,,,,,,,,,, +2006,10,1,4,30,2.1412241,,,,,,,,,,,,,, +2006,10,1,5,30,2.1243024,,,,,,,,,,,,,, +2006,10,1,6,30,1.9024416,,,,,,,,,,,,,, +2006,10,1,7,30,1.0870512,,,,,,,,,,,,,, +2006,10,1,8,30,0.3684771,,,,,,,,,,,,,, +2006,10,1,9,30,1.5208567,,,,,,,,,,,,,, +2006,10,1,10,30,1.9990314,,,,,,,,,,,,,, +2006,10,1,11,30,1.9059277,,,,,,,,,,,,,, +2006,10,1,12,30,1.3994306,,,,,,,,,,,,,, +2006,10,1,13,30,0.55155057,,,,,,,,,,,,,, +2006,10,1,14,30,0.46700445,,,,,,,,,,,,,, +2006,10,1,15,30,1.233162,,,,,,,,,,,,,, +2006,10,1,16,30,1.6044441,,,,,,,,,,,,,, +2006,10,1,17,30,1.5936364,,,,,,,,,,,,,, +2006,10,1,18,30,1.2406973,,,,,,,,,,,,,, +2006,10,1,19,30,0.456007,,,,,,,,,,,,,, +2006,10,1,20,30,0.6890909,,,,,,,,,,,,,, +2006,10,1,21,30,1.6491358,,,,,,,,,,,,,, +2006,10,1,22,30,2.0923011,,,,,,,,,,,,,, +2006,10,1,23,30,2.0787132,,,,,,,,,,,,,, +2006,10,2,0,30,1.644302,,,,,,,,,,,,,, +2006,10,2,1,30,0.7725049,,,,,,,,,,,,,, +2006,10,2,2,30,0.39504272,,,,,,,,,,,,,, +2006,10,2,3,30,1.5256851,,,,,,,,,,,,,, +2006,10,2,4,30,2.1929333,,,,,,,,,,,,,, +2006,10,2,5,30,2.3152084,,,,,,,,,,,,,, +2006,10,2,6,30,2.179336,,,,,,,,,,,,,, +2006,10,2,7,30,1.7425947,,,,,,,,,,,,,, +2006,10,2,8,30,0.6573975,,,,,,,,,,,,,, +2006,10,2,9,30,0.86214066,,,,,,,,,,,,,, +2006,10,2,10,30,1.8863875,,,,,,,,,,,,,, +2006,10,2,11,30,2.173848,,,,,,,,,,,,,, +2006,10,2,12,30,1.9484146,,,,,,,,,,,,,, +2006,10,2,13,30,1.3291042,,,,,,,,,,,,,, +2006,10,2,14,30,0.41589555,,,,,,,,,,,,,, +2006,10,2,15,30,0.562409,,,,,,,,,,,,,, +2006,10,2,16,30,1.2361509,,,,,,,,,,,,,, +2006,10,2,17,30,1.517578,,,,,,,,,,,,,, +2006,10,2,18,30,1.4152714,,,,,,,,,,,,,, +2006,10,2,19,30,0.93876123,,,,,,,,,,,,,, +2006,10,2,20,30,0.13170394,,,,,,,,,,,,,, +2006,10,2,21,30,0.9990824,,,,,,,,,,,,,, +2006,10,2,22,30,1.7251778,,,,,,,,,,,,,, +2006,10,2,23,30,1.938522,,,,,,,,,,,,,, +2006,10,3,0,30,1.7559904,,,,,,,,,,,,,, +2006,10,3,1,30,1.1678845,,,,,,,,,,,,,, +2006,10,3,2,30,0.18386078,,,,,,,,,,,,,, +2006,10,3,3,30,0.9929859,,,,,,,,,,,,,, +2006,10,3,4,30,1.970165,,,,,,,,,,,,,, +2006,10,3,5,30,2.409782,,,,,,,,,,,,,, +2006,10,3,6,30,2.3662186,,,,,,,,,,,,,, +2006,10,3,7,30,2.0773687,,,,,,,,,,,,,, +2006,10,3,8,30,1.388418,,,,,,,,,,,,,, +2006,10,3,9,30,0.18178274,,,,,,,,,,,,,, +2006,10,3,10,30,1.3674676,,,,,,,,,,,,,, +2006,10,3,11,30,2.151744,,,,,,,,,,,,,, +2006,10,3,12,30,2.240641,,,,,,,,,,,,,, +2006,10,3,13,30,1.8927397,,,,,,,,,,,,,, +2006,10,3,14,30,1.1718944,,,,,,,,,,,,,, +2006,10,3,15,30,0.23743364,,,,,,,,,,,,,, +2006,10,3,16,30,0.6704682,,,,,,,,,,,,,, +2006,10,3,17,30,1.2361555,,,,,,,,,,,,,, +2006,10,3,18,30,1.4142191,,,,,,,,,,,,,, +2006,10,3,19,30,1.1914947,,,,,,,,,,,,,, +2006,10,3,20,30,0.5921501,,,,,,,,,,,,,, +2006,10,3,21,30,0.33446258,,,,,,,,,,,,,, +2006,10,3,22,30,1.2003019,,,,,,,,,,,,,, +2006,10,3,23,30,1.6703393,,,,,,,,,,,,,, +2006,10,4,0,30,1.6929146,,,,,,,,,,,,,, +2006,10,4,1,30,1.3723818,,,,,,,,,,,,,, +2006,10,4,2,30,0.6486958,,,,,,,,,,,,,, +2006,10,4,3,30,0.41431624,,,,,,,,,,,,,, +2006,10,4,4,30,1.5087216,,,,,,,,,,,,,, +2006,10,4,5,30,2.2661762,,,,,,,,,,,,,, +2006,10,4,6,30,2.4749436,,,,,,,,,,,,,, +2006,10,4,7,30,2.2737327,,,,,,,,,,,,,, +2006,10,4,8,30,1.8081434,,,,,,,,,,,,,, +2006,10,4,9,30,0.8849889,,,,,,,,,,,,,, +2006,10,4,10,30,0.5500444,,,,,,,,,,,,,, +2006,10,4,11,30,1.7729065,,,,,,,,,,,,,, +2006,10,4,12,30,2.2800624,,,,,,,,,,,,,, +2006,10,4,13,30,2.1996384,,,,,,,,,,,,,, +2006,10,4,14,30,1.7462031,,,,,,,,,,,,,, +2006,10,4,15,30,0.9423016,,,,,,,,,,,,,, +2006,10,4,16,30,0.07737301,,,,,,,,,,,,,, +2006,10,4,17,30,0.77773917,,,,,,,,,,,,,, +2006,10,4,18,30,1.2221152,,,,,,,,,,,,,, +2006,10,4,19,30,1.2796729,,,,,,,,,,,,,, +2006,10,4,20,30,0.92744225,,,,,,,,,,,,,, +2006,10,4,21,30,0.254398,,,,,,,,,,,,,, +2006,10,4,22,30,0.60875106,,,,,,,,,,,,,, +2006,10,4,23,30,1.2709395,,,,,,,,,,,,,, +2006,10,5,0,30,1.5207903,,,,,,,,,,,,,, +2006,10,5,1,30,1.4051344,,,,,,,,,,,,,, +2006,10,5,2,30,0.9648468,,,,,,,,,,,,,, +2006,10,5,3,30,0.1319671,,,,,,,,,,,,,, +2006,10,5,4,30,0.93926495,,,,,,,,,,,,,, +2006,10,5,5,30,1.8805666,,,,,,,,,,,,,, +2006,10,5,6,30,2.3894706,,,,,,,,,,,,,, +2006,10,5,7,30,2.3910692,,,,,,,,,,,,,, +2006,10,5,8,30,2.0456665,,,,,,,,,,,,,, +2006,10,5,9,30,1.4073546,,,,,,,,,,,,,, +2006,10,5,10,30,0.3379411,,,,,,,,,,,,,, +2006,10,5,11,30,1.0630285,,,,,,,,,,,,,, +2006,10,5,12,30,2.0227616,,,,,,,,,,,,,, +2006,10,5,13,30,2.2782815,,,,,,,,,,,,,, +2006,10,5,14,30,2.0718603,,,,,,,,,,,,,, +2006,10,5,15,30,1.5259744,,,,,,,,,,,,,, +2006,10,5,16,30,0.6694552,,,,,,,,,,,,,, +2006,10,5,17,30,0.23611477,,,,,,,,,,,,,, +2006,10,5,18,30,0.8534193,,,,,,,,,,,,,, +2006,10,5,19,30,1.1714675,,,,,,,,,,,,,, +2006,10,5,20,30,1.1069505,,,,,,,,,,,,,, +2006,10,5,21,30,0.6501614,,,,,,,,,,,,,, +2006,10,5,22,30,0.14954321,,,,,,,,,,,,,, +2006,10,5,23,30,0.7749468,,,,,,,,,,,,,, +2006,10,6,0,30,1.2360961,,,,,,,,,,,,,, +2006,10,6,1,30,1.3255465,,,,,,,,,,,,,, +2006,10,6,2,30,1.1069734,,,,,,,,,,,,,, +2006,10,6,3,30,0.558057,,,,,,,,,,,,,, +2006,10,6,4,30,0.35051394,,,,,,,,,,,,,, +2006,10,6,5,30,1.3489358,,,,,,,,,,,,,, +2006,10,6,6,30,2.085438,,,,,,,,,,,,,, +2006,10,6,7,30,2.35593,,,,,,,,,,,,,, +2006,10,6,8,30,2.1897547,,,,,,,,,,,,,, +2006,10,6,9,30,1.7245657,,,,,,,,,,,,,, +2006,10,6,10,30,0.95398223,,,,,,,,,,,,,, +2006,10,6,11,30,0.24481654,,,,,,,,,,,,,, +2006,10,6,12,30,1.4352843,,,,,,,,,,,,,, +2006,10,6,13,30,2.1194222,,,,,,,,,,,,,, +2006,10,6,14,30,2.1835923,,,,,,,,,,,,,, +2006,10,6,15,30,1.8866985,,,,,,,,,,,,,, +2006,10,6,16,30,1.2648913,,,,,,,,,,,,,, +2006,10,6,17,30,0.4073646,,,,,,,,,,,,,, +2006,10,6,18,30,0.3804894,,,,,,,,,,,,,, +2006,10,6,19,30,0.8668479,,,,,,,,,,,,,, +2006,10,6,20,30,1.0757319,,,,,,,,,,,,,, +2006,10,6,21,30,0.9117404,,,,,,,,,,,,,, +2006,10,6,22,30,0.3994062,,,,,,,,,,,,,, +2006,10,6,23,30,0.2905813,,,,,,,,,,,,,, +2006,10,7,0,30,0.83404,,,,,,,,,,,,,, +2006,10,7,1,30,1.1367228,,,,,,,,,,,,,, +2006,10,7,2,30,1.1173856,,,,,,,,,,,,,, +2006,10,7,3,30,0.81389457,,,,,,,,,,,,,, +2006,10,7,4,30,0.18470922,,,,,,,,,,,,,, +2006,10,7,5,30,0.74543357,,,,,,,,,,,,,, +2006,10,7,6,30,1.617697,,,,,,,,,,,,,, +2006,10,7,7,30,2.136538,,,,,,,,,,,,,, +2006,10,7,8,30,2.2088692,,,,,,,,,,,,,, +2006,10,7,9,30,1.9251604,,,,,,,,,,,,,, +2006,10,7,10,30,1.3807724,,,,,,,,,,,,,, +2006,10,7,11,30,0.54056966,,,,,,,,,,,,,, +2006,10,7,12,30,0.6316919,,,,,,,,,,,,,, +2006,10,7,13,30,1.6533203,,,,,,,,,,,,,, +2006,10,7,14,30,2.1051528,,,,,,,,,,,,,, +2006,10,7,15,30,2.0401103,,,,,,,,,,,,,, +2006,10,7,16,30,1.6800944,,,,,,,,,,,,,, +2006,10,7,17,30,1.0172894,,,,,,,,,,,,,, +2006,10,7,18,30,0.22032359,,,,,,,,,,,,,, +2006,10,7,19,30,0.43525892,,,,,,,,,,,,,, +2006,10,7,20,30,0.819528,,,,,,,,,,,,,, +2006,10,7,21,30,0.9570025,,,,,,,,,,,,,, +2006,10,7,22,30,0.72870195,,,,,,,,,,,,,, +2006,10,7,23,30,0.2141269,,,,,,,,,,,,,, +2006,10,8,0,30,0.3730284,,,,,,,,,,,,,, +2006,10,8,1,30,0.8088726,,,,,,,,,,,,,, +2006,10,8,2,30,1.0061425,,,,,,,,,,,,,, +2006,10,8,3,30,0.9152697,,,,,,,,,,,,,, +2006,10,8,4,30,0.5455926,,,,,,,,,,,,,, +2006,10,8,5,30,0.1748235,,,,,,,,,,,,,, +2006,10,8,6,30,1.0266659,,,,,,,,,,,,,, +2006,10,8,7,30,1.743625,,,,,,,,,,,,,, +2006,10,8,8,30,2.0689723,,,,,,,,,,,,,, +2006,10,8,9,30,2.0051672,,,,,,,,,,,,,, +2006,10,8,10,30,1.6626295,,,,,,,,,,,,,, +2006,10,8,11,30,1.0848862,,,,,,,,,,,,,, +2006,10,8,12,30,0.24091351,,,,,,,,,,,,,, +2006,10,8,13,30,0.90088034,,,,,,,,,,,,,, +2006,10,8,14,30,1.7521639,,,,,,,,,,,,,, +2006,10,8,15,30,2.0311391,,,,,,,,,,,,,, +2006,10,8,16,30,1.8886597,,,,,,,,,,,,,, +2006,10,8,17,30,1.4982898,,,,,,,,,,,,,, +2006,10,8,18,30,0.8425355,,,,,,,,,,,,,, +2006,10,8,19,30,0.13740838,,,,,,,,,,,,,, +2006,10,8,20,30,0.41384593,,,,,,,,,,,,,, +2006,10,8,21,30,0.75682074,,,,,,,,,,,,,, +2006,10,8,22,30,0.8596138,,,,,,,,,,,,,, +2006,10,8,23,30,0.5985512,,,,,,,,,,,,,, +2006,10,9,0,30,0.13663839,,,,,,,,,,,,,, +2006,10,9,1,30,0.36852702,,,,,,,,,,,,,, +2006,10,9,2,30,0.7259969,,,,,,,,,,,,,, +2006,10,9,3,30,0.87349904,,,,,,,,,,,,,, +2006,10,9,4,30,0.74352294,,,,,,,,,,,,,, +2006,10,9,5,30,0.3375456,,,,,,,,,,,,,, +2006,10,9,6,30,0.39034238,,,,,,,,,,,,,, +2006,10,9,7,30,1.1727728,,,,,,,,,,,,,, +2006,10,9,8,30,1.7409251,,,,,,,,,,,,,, +2006,10,9,9,30,1.9290667,,,,,,,,,,,,,, +2006,10,9,10,30,1.8037717,,,,,,,,,,,,,, +2006,10,9,11,30,1.4567782,,,,,,,,,,,,,, +2006,10,9,12,30,0.8732195,,,,,,,,,,,,,, +2006,10,9,13,30,0.1324366,,,,,,,,,,,,,, +2006,10,9,14,30,1.0689253,,,,,,,,,,,,,, +2006,10,9,15,30,1.7794235,,,,,,,,,,,,,, +2006,10,9,16,30,1.9418392,,,,,,,,,,,,,, +2006,10,9,17,30,1.7696346,,,,,,,,,,,,,, +2006,10,9,18,30,1.385929,,,,,,,,,,,,,, +2006,10,9,19,30,0.76689374,,,,,,,,,,,,,, +2006,10,9,20,30,0.129635,,,,,,,,,,,,,, +2006,10,9,21,30,0.38803378,,,,,,,,,,,,,, +2006,10,9,22,30,0.7453497,,,,,,,,,,,,,, +2006,10,9,23,30,0.82926047,,,,,,,,,,,,,, +2006,10,10,0,30,0.5583348,,,,,,,,,,,,,, +2006,10,10,1,30,0.14609142,,,,,,,,,,,,,, +2006,10,10,2,30,0.28086072,,,,,,,,,,,,,, +2006,10,10,3,30,0.62258977,,,,,,,,,,,,,, +2006,10,10,4,30,0.7780945,,,,,,,,,,,,,, +2006,10,10,5,30,0.6398014,,,,,,,,,,,,,, +2006,10,10,6,30,0.22718415,,,,,,,,,,,,,, +2006,10,10,7,30,0.47981405,,,,,,,,,,,,,, +2006,10,10,8,30,1.1785982,,,,,,,,,,,,,, +2006,10,10,9,30,1.6403271,,,,,,,,,,,,,, +2006,10,10,10,30,1.769219,,,,,,,,,,,,,, +2006,10,10,11,30,1.6505156,,,,,,,,,,,,,, +2006,10,10,12,30,1.3277302,,,,,,,,,,,,,, +2006,10,10,13,30,0.7367749,,,,,,,,,,,,,, +2006,10,10,14,30,0.21086125,,,,,,,,,,,,,, +2006,10,10,15,30,1.174403,,,,,,,,,,,,,, +2006,10,10,16,30,1.7777469,,,,,,,,,,,,,, +2006,10,10,17,30,1.8775952,,,,,,,,,,,,,, +2006,10,10,18,30,1.7172263,,,,,,,,,,,,,, +2006,10,10,19,30,1.3555267,,,,,,,,,,,,,, +2006,10,10,20,30,0.7554307,,,,,,,,,,,,,, +2006,10,10,21,30,0.12550548,,,,,,,,,,,,,, +2006,10,10,22,30,0.44570583,,,,,,,,,,,,,, +2006,10,10,23,30,0.8376419,,,,,,,,,,,,,, +2006,10,11,0,30,0.8975657,,,,,,,,,,,,,, +2006,10,11,1,30,0.6323115,,,,,,,,,,,,,, +2006,10,11,2,30,0.2667473,,,,,,,,,,,,,, +2006,10,11,3,30,0.15423423,,,,,,,,,,,,,, +2006,10,11,4,30,0.55594903,,,,,,,,,,,,,, +2006,10,11,5,30,0.7695422,,,,,,,,,,,,,, +2006,10,11,6,30,0.6446271,,,,,,,,,,,,,, +2006,10,11,7,30,0.23262708,,,,,,,,,,,,,, +2006,10,11,8,30,0.42372292,,,,,,,,,,,,,, +2006,10,11,9,30,1.066839,,,,,,,,,,,,,, +2006,10,11,10,30,1.4924382,,,,,,,,,,,,,, +2006,10,11,11,30,1.6377165,,,,,,,,,,,,,, +2006,10,11,12,30,1.562052,,,,,,,,,,,,,, +2006,10,11,13,30,1.2578834,,,,,,,,,,,,,, +2006,10,11,14,30,0.643236,,,,,,,,,,,,,, +2006,10,11,15,30,0.31539196,,,,,,,,,,,,,, +2006,10,11,16,30,1.2529511,,,,,,,,,,,,,, +2006,10,11,17,30,1.7877796,,,,,,,,,,,,,, +2006,10,11,18,30,1.8723288,,,,,,,,,,,,,, +2006,10,11,19,30,1.7364118,,,,,,,,,,,,,, +2006,10,11,20,30,1.3659486,,,,,,,,,,,,,, +2006,10,11,21,30,0.7233156,,,,,,,,,,,,,, +2006,10,11,22,30,0.06967072,,,,,,,,,,,,,, +2006,10,11,23,30,0.6430416,,,,,,,,,,,,,, +2006,10,12,0,30,1.0524939,,,,,,,,,,,,,, +2006,10,12,1,30,1.0739071,,,,,,,,,,,,,, +2006,10,12,2,30,0.8195259,,,,,,,,,,,,,, +2006,10,12,3,30,0.47130093,,,,,,,,,,,,,, +2006,10,12,4,30,0.10166448,,,,,,,,,,,,,, +2006,10,12,5,30,0.5933656,,,,,,,,,,,,,, +2006,10,12,6,30,0.89073294,,,,,,,,,,,,,, +2006,10,12,7,30,0.78463644,,,,,,,,,,,,,, +2006,10,12,8,30,0.37417474,,,,,,,,,,,,,, +2006,10,12,9,30,0.24845526,,,,,,,,,,,,,, +2006,10,12,10,30,0.8953171,,,,,,,,,,,,,, +2006,10,12,11,30,1.3577611,,,,,,,,,,,,,, +2006,10,12,12,30,1.5622611,,,,,,,,,,,,,, +2006,10,12,13,30,1.5243747,,,,,,,,,,,,,, +2006,10,12,14,30,1.2152839,,,,,,,,,,,,,, +2006,10,12,15,30,0.5654515,,,,,,,,,,,,,, +2006,10,12,16,30,0.41378888,,,,,,,,,,,,,, +2006,10,12,17,30,1.341361,,,,,,,,,,,,,, +2006,10,12,18,30,1.8466688,,,,,,,,,,,,,, +2006,10,12,19,30,1.9330105,,,,,,,,,,,,,, +2006,10,12,20,30,1.7853775,,,,,,,,,,,,,, +2006,10,12,21,30,1.3381217,,,,,,,,,,,,,, +2006,10,12,22,30,0.58427787,,,,,,,,,,,,,, +2006,10,12,23,30,0.27097994,,,,,,,,,,,,,, +2006,10,13,0,30,0.9883153,,,,,,,,,,,,,, +2006,10,13,1,30,1.3731619,,,,,,,,,,,,,, +2006,10,13,2,30,1.3396533,,,,,,,,,,,,,, +2006,10,13,3,30,1.0820272,,,,,,,,,,,,,, +2006,10,13,4,30,0.67489296,,,,,,,,,,,,,, +2006,10,13,5,30,0.11518501,,,,,,,,,,,,,, +2006,10,13,6,30,0.7855164,,,,,,,,,,,,,, +2006,10,13,7,30,1.1568253,,,,,,,,,,,,,, +2006,10,13,8,30,1.0520282,,,,,,,,,,,,,, +2006,10,13,9,30,0.629017,,,,,,,,,,,,,, +2006,10,13,10,30,0.055001177,,,,,,,,,,,,,, +2006,10,13,11,30,0.74053204,,,,,,,,,,,,,, +2006,10,13,12,30,1.2820847,,,,,,,,,,,,,, +2006,10,13,13,30,1.5418698,,,,,,,,,,,,,, +2006,10,13,14,30,1.5117546,,,,,,,,,,,,,, +2006,10,13,15,30,1.1791558,,,,,,,,,,,,,, +2006,10,13,16,30,0.48742905,,,,,,,,,,,,,, +2006,10,13,17,30,0.5321244,,,,,,,,,,,,,, +2006,10,13,18,30,1.4765937,,,,,,,,,,,,,, +2006,10,13,19,30,1.9660689,,,,,,,,,,,,,, +2006,10,13,20,30,2.0213923,,,,,,,,,,,,,, +2006,10,13,21,30,1.7910044,,,,,,,,,,,,,, +2006,10,13,22,30,1.2007427,,,,,,,,,,,,,, +2006,10,13,23,30,0.29711398,,,,,,,,,,,,,, +2006,10,14,0,30,0.6858204,,,,,,,,,,,,,, +2006,10,14,1,30,1.4446577,,,,,,,,,,,,,, +2006,10,14,2,30,1.753061,,,,,,,,,,,,,, +2006,10,14,3,30,1.6469215,,,,,,,,,,,,,, +2006,10,14,4,30,1.3468779,,,,,,,,,,,,,, +2006,10,14,5,30,0.78234994,,,,,,,,,,,,,, +2006,10,14,6,30,0.21678051,,,,,,,,,,,,,, +2006,10,14,7,30,1.1442368,,,,,,,,,,,,,, +2006,10,14,8,30,1.5389574,,,,,,,,,,,,,, +2006,10,14,9,30,1.3933088,,,,,,,,,,,,,, +2006,10,14,10,30,0.91674125,,,,,,,,,,,,,, +2006,10,14,11,30,0.21001032,,,,,,,,,,,,,, +2006,10,14,12,30,0.6603407,,,,,,,,,,,,,, +2006,10,14,13,30,1.2778937,,,,,,,,,,,,,, +2006,10,14,14,30,1.5573525,,,,,,,,,,,,,, +2006,10,14,15,30,1.5073321,,,,,,,,,,,,,, +2006,10,14,16,30,1.1404322,,,,,,,,,,,,,, +2006,10,14,17,30,0.38868457,,,,,,,,,,,,,, +2006,10,14,18,30,0.70366657,,,,,,,,,,,,,, +2006,10,14,19,30,1.6721966,,,,,,,,,,,,,, +2006,10,14,20,30,2.110593,,,,,,,,,,,,,, +2006,10,14,21,30,2.0677283,,,,,,,,,,,,,, +2006,10,14,22,30,1.6911768,,,,,,,,,,,,,, +2006,10,14,23,30,0.926626,,,,,,,,,,,,,, +2006,10,15,0,30,0.15316339,,,,,,,,,,,,,, +2006,10,15,1,30,1.216406,,,,,,,,,,,,,, +2006,10,15,2,30,1.944124,,,,,,,,,,,,,, +2006,10,15,3,30,2.1269066,,,,,,,,,,,,,, +2006,10,15,4,30,1.9291849,,,,,,,,,,,,,, +2006,10,15,5,30,1.5285919,,,,,,,,,,,,,, +2006,10,15,6,30,0.7159827,,,,,,,,,,,,,, +2006,10,15,7,30,0.57067245,,,,,,,,,,,,,, +2006,10,15,8,30,1.6287464,,,,,,,,,,,,,, +2006,10,15,9,30,1.9643536,,,,,,,,,,,,,, +2006,10,15,10,30,1.725132,,,,,,,,,,,,,, +2006,10,15,11,30,1.1492121,,,,,,,,,,,,,, +2006,10,15,12,30,0.3105587,,,,,,,,,,,,,, +2006,10,15,13,30,0.66988677,,,,,,,,,,,,,, +2006,10,15,14,30,1.327853,,,,,,,,,,,,,, +2006,10,15,15,30,1.5883998,,,,,,,,,,,,,, +2006,10,15,16,30,1.502254,,,,,,,,,,,,,, +2006,10,15,17,30,1.0824655,,,,,,,,,,,,,, +2006,10,15,18,30,0.24193287,,,,,,,,,,,,,, +2006,10,15,19,30,0.94287884,,,,,,,,,,,,,, +2006,10,15,20,30,1.8935988,,,,,,,,,,,,,, +2006,10,15,21,30,2.209772,,,,,,,,,,,,,, +2006,10,15,22,30,2.0124195,,,,,,,,,,,,,, +2006,10,15,23,30,1.4669828,,,,,,,,,,,,,, +2006,10,16,0,30,0.5339571,,,,,,,,,,,,,, +2006,10,16,1,30,0.67696667,,,,,,,,,,,,,, +2006,10,16,2,30,1.7884138,,,,,,,,,,,,,, +2006,10,16,3,30,2.4063823,,,,,,,,,,,,,, +2006,10,16,4,30,2.4288452,,,,,,,,,,,,,, +2006,10,16,5,30,2.1224887,,,,,,,,,,,,,, +2006,10,16,6,30,1.5582078,,,,,,,,,,,,,, +2006,10,16,7,30,0.44917884,,,,,,,,,,,,,, +2006,10,16,8,30,1.0931362,,,,,,,,,,,,,, +2006,10,16,9,30,2.1488304,,,,,,,,,,,,,, +2006,10,16,10,30,2.3392935,,,,,,,,,,,,,, +2006,10,16,11,30,1.9698222,,,,,,,,,,,,,, +2006,10,16,12,30,1.2706665,,,,,,,,,,,,,, +2006,10,16,13,30,0.2996583,,,,,,,,,,,,,, +2006,10,16,14,30,0.74905413,,,,,,,,,,,,,, +2006,10,16,15,30,1.4015983,,,,,,,,,,,,,, +2006,10,16,16,30,1.617348,,,,,,,,,,,,,, +2006,10,16,17,30,1.4789324,,,,,,,,,,,,,, +2006,10,16,18,30,0.9752963,,,,,,,,,,,,,, +2006,10,16,19,30,0.11452715,,,,,,,,,,,,,, +2006,10,16,20,30,1.2178131,,,,,,,,,,,,,, +2006,10,16,21,30,2.0676408,,,,,,,,,,,,,, +2006,10,16,22,30,2.2014968,,,,,,,,,,,,,, +2006,10,16,23,30,1.8393517,,,,,,,,,,,,,, +2006,10,17,0,30,1.1406121,,,,,,,,,,,,,, +2006,10,17,1,30,0.09004797,,,,,,,,,,,,,, +2006,10,17,2,30,1.2468235,,,,,,,,,,,,,, +2006,10,17,3,30,2.3181055,,,,,,,,,,,,,, +2006,10,17,4,30,2.759529,,,,,,,,,,,,,, +2006,10,17,5,30,2.6121488,,,,,,,,,,,,,, +2006,10,17,6,30,2.1840713,,,,,,,,,,,,,, +2006,10,17,7,30,1.4051074,,,,,,,,,,,,,, +2006,10,17,8,30,0.13880464,,,,,,,,,,,,,, +2006,10,17,9,30,1.6748922,,,,,,,,,,,,,, +2006,10,17,10,30,2.5929897,,,,,,,,,,,,,, +2006,10,17,11,30,2.5877268,,,,,,,,,,,,,, +2006,10,17,12,30,2.089994,,,,,,,,,,,,,, +2006,10,17,13,30,1.2763174,,,,,,,,,,,,,, +2006,10,17,14,30,0.20814943,,,,,,,,,,,,,, +2006,10,17,15,30,0.85931414,,,,,,,,,,,,,, +2006,10,17,16,30,1.4672886,,,,,,,,,,,,,, +2006,10,17,17,30,1.6208782,,,,,,,,,,,,,, +2006,10,17,18,30,1.4081247,,,,,,,,,,,,,, +2006,10,17,19,30,0.79876375,,,,,,,,,,,,,, +2006,10,17,20,30,0.27650398,,,,,,,,,,,,,, +2006,10,17,21,30,1.455576,,,,,,,,,,,,,, +2006,10,17,22,30,2.1267552,,,,,,,,,,,,,, +2006,10,17,23,30,2.0696807,,,,,,,,,,,,,, +2006,10,18,0,30,1.5750148,,,,,,,,,,,,,, +2006,10,18,1,30,0.7529322,,,,,,,,,,,,,, +2006,10,18,2,30,0.45839557,,,,,,,,,,,,,, +2006,10,18,3,30,1.7820385,,,,,,,,,,,,,, +2006,10,18,4,30,2.7273068,,,,,,,,,,,,,, +2006,10,18,5,30,2.9591134,,,,,,,,,,,,,, +2006,10,18,6,30,2.6586404,,,,,,,,,,,,,, +2006,10,18,7,30,2.1003795,,,,,,,,,,,,,, +2006,10,18,8,30,1.0890443,,,,,,,,,,,,,, +2006,10,18,9,30,0.5880828,,,,,,,,,,,,,, +2006,10,18,10,30,2.188116,,,,,,,,,,,,,, +2006,10,18,11,30,2.873106,,,,,,,,,,,,,, +2006,10,18,12,30,2.6837394,,,,,,,,,,,,,, +2006,10,18,13,30,2.0969818,,,,,,,,,,,,,, +2006,10,18,14,30,1.1983917,,,,,,,,,,,,,, +2006,10,18,15,30,0.09821894,,,,,,,,,,,,,, +2006,10,18,16,30,0.9578129,,,,,,,,,,,,,, +2006,10,18,17,30,1.4938805,,,,,,,,,,,,,, +2006,10,18,18,30,1.5717672,,,,,,,,,,,,,, +2006,10,18,19,30,1.271352,,,,,,,,,,,,,, +2006,10,18,20,30,0.5714655,,,,,,,,,,,,,, +2006,10,18,21,30,0.5209809,,,,,,,,,,,,,, +2006,10,18,22,30,1.5838244,,,,,,,,,,,,,, +2006,10,18,23,30,2.0503392,,,,,,,,,,,,,, +2006,10,19,0,30,1.8461332,,,,,,,,,,,,,, +2006,10,19,1,30,1.2643524,,,,,,,,,,,,,, +2006,10,19,2,30,0.35070354,,,,,,,,,,,,,, +2006,10,19,3,30,0.930209,,,,,,,,,,,,,, +2006,10,19,4,30,2.2049649,,,,,,,,,,,,,, +2006,10,19,5,30,2.9627516,,,,,,,,,,,,,, +2006,10,19,6,30,2.9952419,,,,,,,,,,,,,, +2006,10,19,7,30,2.575147,,,,,,,,,,,,,, +2006,10,19,8,30,1.8896065,,,,,,,,,,,,,, +2006,10,19,9,30,0.68184924,,,,,,,,,,,,,, +2006,10,19,10,30,1.090342,,,,,,,,,,,,,, +2006,10,19,11,30,2.5274985,,,,,,,,,,,,,, +2006,10,19,12,30,2.9609675,,,,,,,,,,,,,, +2006,10,19,13,30,2.653471,,,,,,,,,,,,,, +2006,10,19,14,30,2.0280077,,,,,,,,,,,,,, +2006,10,19,15,30,1.0779929,,,,,,,,,,,,,, +2006,10,19,16,30,0.10799893,,,,,,,,,,,,,, +2006,10,19,17,30,1.0070608,,,,,,,,,,,,,, +2006,10,19,18,30,1.4577396,,,,,,,,,,,,,, +2006,10,19,19,30,1.4592292,,,,,,,,,,,,,, +2006,10,19,20,30,1.0861957,,,,,,,,,,,,,, +2006,10,19,21,30,0.3527918,,,,,,,,,,,,,, +2006,10,19,22,30,0.67842585,,,,,,,,,,,,,, +2006,10,19,23,30,1.5728977,,,,,,,,,,,,,, +2006,10,20,0,30,1.869775,,,,,,,,,,,,,, +2006,10,20,1,30,1.583953,,,,,,,,,,,,,, +2006,10,20,2,30,0.9520817,,,,,,,,,,,,,, +2006,10,20,3,30,0.06168419,,,,,,,,,,,,,, +2006,10,20,4,30,1.3048046,,,,,,,,,,,,,, +2006,10,20,5,30,2.4554017,,,,,,,,,,,,,, +2006,10,20,6,30,3.0079012,,,,,,,,,,,,,, +2006,10,20,7,30,2.885958,,,,,,,,,,,,,, +2006,10,20,8,30,2.3878188,,,,,,,,,,,,,, +2006,10,20,9,30,1.6022074,,,,,,,,,,,,,, +2006,10,20,10,30,0.29825473,,,,,,,,,,,,,, +2006,10,20,11,30,1.4527082,,,,,,,,,,,,,, +2006,10,20,12,30,2.6532214,,,,,,,,,,,,,, +2006,10,20,13,30,2.890484,,,,,,,,,,,,,, +2006,10,20,14,30,2.5460231,,,,,,,,,,,,,, +2006,10,20,15,30,1.9176203,,,,,,,,,,,,,, +2006,10,20,16,30,0.9508952,,,,,,,,,,,,,, +2006,10,20,17,30,0.17463876,,,,,,,,,,,,,, +2006,10,20,18,30,0.985199,,,,,,,,,,,,,, +2006,10,20,19,30,1.3597643,,,,,,,,,,,,,, +2006,10,20,20,30,1.3074381,,,,,,,,,,,,,, +2006,10,20,21,30,0.9056031,,,,,,,,,,,,,, +2006,10,20,22,30,0.21119472,,,,,,,,,,,,,, +2006,10,20,23,30,0.7056786,,,,,,,,,,,,,, +2006,10,21,0,30,1.4443702,,,,,,,,,,,,,, +2006,10,21,1,30,1.6414112,,,,,,,,,,,,,, +2006,10,21,2,30,1.3321617,,,,,,,,,,,,,, +2006,10,21,3,30,0.68020433,,,,,,,,,,,,,, +2006,10,21,4,30,0.32387346,,,,,,,,,,,,,, +2006,10,21,5,30,1.5245054,,,,,,,,,,,,,, +2006,10,21,6,30,2.5083911,,,,,,,,,,,,,, +2006,10,21,7,30,2.8811007,,,,,,,,,,,,,, +2006,10,21,8,30,2.6680036,,,,,,,,,,,,,, +2006,10,21,9,30,2.141007,,,,,,,,,,,,,, +2006,10,21,10,30,1.3098412,,,,,,,,,,,,,, +2006,10,21,11,30,0.1557242,,,,,,,,,,,,,, +2006,10,21,12,30,1.6261593,,,,,,,,,,,,,, +2006,10,21,13,30,2.5975058,,,,,,,,,,,,,, +2006,10,21,14,30,2.7254434,,,,,,,,,,,,,, +2006,10,21,15,30,2.4024382,,,,,,,,,,,,,, +2006,10,21,16,30,1.7909721,,,,,,,,,,,,,, +2006,10,21,17,30,0.8493255,,,,,,,,,,,,,, +2006,10,21,18,30,0.17837563,,,,,,,,,,,,,, +2006,10,21,19,30,0.9014201,,,,,,,,,,,,,, +2006,10,21,20,30,1.2358776,,,,,,,,,,,,,, +2006,10,21,21,30,1.168321,,,,,,,,,,,,,, +2006,10,21,22,30,0.78878605,,,,,,,,,,,,,, +2006,10,21,23,30,0.1816258,,,,,,,,,,,,,, +2006,10,22,0,30,0.6099258,,,,,,,,,,,,,, +2006,10,22,1,30,1.2483327,,,,,,,,,,,,,, +2006,10,22,2,30,1.4178941,,,,,,,,,,,,,, +2006,10,22,3,30,1.1274987,,,,,,,,,,,,,, +2006,10,22,4,30,0.4881164,,,,,,,,,,,,,, +2006,10,22,5,30,0.4783383,,,,,,,,,,,,,, +2006,10,22,6,30,1.5644381,,,,,,,,,,,,,, +2006,10,22,7,30,2.3784652,,,,,,,,,,,,,, +2006,10,22,8,30,2.6271625,,,,,,,,,,,,,, +2006,10,22,9,30,2.392557,,,,,,,,,,,,,, +2006,10,22,10,30,1.8912073,,,,,,,,,,,,,, +2006,10,22,11,30,1.0755494,,,,,,,,,,,,,, +2006,10,22,12,30,0.27425933,,,,,,,,,,,,,, +2006,10,22,13,30,1.635938,,,,,,,,,,,,,, +2006,10,22,14,30,2.431546,,,,,,,,,,,,,, +2006,10,22,15,30,2.5235085,,,,,,,,,,,,,, +2006,10,22,16,30,2.250175,,,,,,,,,,,,,, +2006,10,22,17,30,1.6746162,,,,,,,,,,,,,, +2006,10,22,18,30,0.7996653,,,,,,,,,,,,,, +2006,10,22,19,30,0.12318196,,,,,,,,,,,,,, +2006,10,22,20,30,0.80201674,,,,,,,,,,,,,, +2006,10,22,21,30,1.1422865,,,,,,,,,,,,,, +2006,10,22,22,30,1.0921013,,,,,,,,,,,,,, +2006,10,22,23,30,0.77134895,,,,,,,,,,,,,, +2006,10,23,0,30,0.2646229,,,,,,,,,,,,,, +2006,10,23,1,30,0.42916328,,,,,,,,,,,,,, +2006,10,23,2,30,1.0379952,,,,,,,,,,,,,, +2006,10,23,3,30,1.2372916,,,,,,,,,,,,,, +2006,10,23,4,30,0.995347,,,,,,,,,,,,,, +2006,10,23,5,30,0.40168232,,,,,,,,,,,,,, +2006,10,23,6,30,0.4869958,,,,,,,,,,,,,, +2006,10,23,7,30,1.4377645,,,,,,,,,,,,,, +2006,10,23,8,30,2.1129806,,,,,,,,,,,,,, +2006,10,23,9,30,2.3094602,,,,,,,,,,,,,, +2006,10,23,10,30,2.1182854,,,,,,,,,,,,,, +2006,10,23,11,30,1.6857601,,,,,,,,,,,,,, +2006,10,23,12,30,0.92204267,,,,,,,,,,,,,, +2006,10,23,13,30,0.33327967,,,,,,,,,,,,,, +2006,10,23,14,30,1.5475321,,,,,,,,,,,,,, +2006,10,23,15,30,2.2243319,,,,,,,,,,,,,, +2006,10,23,16,30,2.3257082,,,,,,,,,,,,,, +2006,10,23,17,30,2.1160462,,,,,,,,,,,,,, +2006,10,23,18,30,1.5968603,,,,,,,,,,,,,, +2006,10,23,19,30,0.80537844,,,,,,,,,,,,,, +2006,10,23,20,30,0.06534015,,,,,,,,,,,,,, +2006,10,23,21,30,0.7509378,,,,,,,,,,,,,, +2006,10,23,22,30,1.1244013,,,,,,,,,,,,,, +2006,10,23,23,30,1.1039727,,,,,,,,,,,,,, +2006,10,24,0,30,0.85890615,,,,,,,,,,,,,, +2006,10,24,1,30,0.44372845,,,,,,,,,,,,,, +2006,10,24,2,30,0.21463498,,,,,,,,,,,,,, +2006,10,24,3,30,0.85992754,,,,,,,,,,,,,, +2006,10,24,4,30,1.125293,,,,,,,,,,,,,, +2006,10,24,5,30,0.94960517,,,,,,,,,,,,,, +2006,10,24,6,30,0.4238842,,,,,,,,,,,,,, +2006,10,24,7,30,0.3624943,,,,,,,,,,,,,, +2006,10,24,8,30,1.1890254,,,,,,,,,,,,,, +2006,10,24,9,30,1.781996,,,,,,,,,,,,,, +2006,10,24,10,30,1.9979637,,,,,,,,,,,,,, +2006,10,24,11,30,1.8921086,,,,,,,,,,,,,, +2006,10,24,12,30,1.5381138,,,,,,,,,,,,,, +2006,10,24,13,30,0.82739735,,,,,,,,,,,,,, +2006,10,24,14,30,0.3389125,,,,,,,,,,,,,, +2006,10,24,15,30,1.4241111,,,,,,,,,,,,,, +2006,10,24,16,30,2.026364,,,,,,,,,,,,,, +2006,10,24,17,30,2.1659179,,,,,,,,,,,,,, +2006,10,24,18,30,2.0267863,,,,,,,,,,,,,, +2006,10,24,19,30,1.5654871,,,,,,,,,,,,,, +2006,10,24,20,30,0.8281776,,,,,,,,,,,,,, +2006,10,24,21,30,0.07051693,,,,,,,,,,,,,, +2006,10,24,22,30,0.79659814,,,,,,,,,,,,,, +2006,10,24,23,30,1.1980029,,,,,,,,,,,,,, +2006,10,25,0,30,1.203875,,,,,,,,,,,,,, +2006,10,25,1,30,1.0361335,,,,,,,,,,,,,, +2006,10,25,2,30,0.6764764,,,,,,,,,,,,,, +2006,10,25,3,30,0.10786545,,,,,,,,,,,,,, +2006,10,25,4,30,0.7545854,,,,,,,,,,,,,, +2006,10,25,5,30,1.0991896,,,,,,,,,,,,,, +2006,10,25,6,30,0.99443495,,,,,,,,,,,,,, +2006,10,25,7,30,0.54677886,,,,,,,,,,,,,, +2006,10,25,8,30,0.14952348,,,,,,,,,,,,,, +2006,10,25,9,30,0.8844444,,,,,,,,,,,,,, +2006,10,25,10,30,1.463011,,,,,,,,,,,,,, +2006,10,25,11,30,1.7473156,,,,,,,,,,,,,, +2006,10,25,12,30,1.7274278,,,,,,,,,,,,,, +2006,10,25,13,30,1.4264998,,,,,,,,,,,,,, +2006,10,25,14,30,0.75281036,,,,,,,,,,,,,, +2006,10,25,15,30,0.3291456,,,,,,,,,,,,,, +2006,10,25,16,30,1.3098946,,,,,,,,,,,,,, +2006,10,25,17,30,1.8760786,,,,,,,,,,,,,, +2006,10,25,18,30,2.0704181,,,,,,,,,,,,,, +2006,10,25,19,30,1.9861253,,,,,,,,,,,,,, +2006,10,25,20,30,1.5458436,,,,,,,,,,,,,, +2006,10,25,21,30,0.79750484,,,,,,,,,,,,,, +2006,10,25,22,30,0.14482224,,,,,,,,,,,,,, +2006,10,25,23,30,0.95416033,,,,,,,,,,,,,, +2006,10,26,0,30,1.3532864,,,,,,,,,,,,,, +2006,10,26,1,30,1.3771424,,,,,,,,,,,,,, +2006,10,26,2,30,1.2716874,,,,,,,,,,,,,, +2006,10,26,3,30,0.9048885,,,,,,,,,,,,,, +2006,10,26,4,30,0.17728207,,,,,,,,,,,,,, +2006,10,26,5,30,0.75460064,,,,,,,,,,,,,, +2006,10,26,6,30,1.169985,,,,,,,,,,,,,, +2006,10,26,7,30,1.1281507,,,,,,,,,,,,,, +2006,10,26,8,30,0.7521121,,,,,,,,,,,,,, +2006,10,26,9,30,0.16650885,,,,,,,,,,,,,, +2006,10,26,10,30,0.5988584,,,,,,,,,,,,,, +2006,10,26,11,30,1.2174191,,,,,,,,,,,,,, +2006,10,26,12,30,1.5758384,,,,,,,,,,,,,, +2006,10,26,13,30,1.6045647,,,,,,,,,,,,,, +2006,10,26,14,30,1.3215505,,,,,,,,,,,,,, +2006,10,26,15,30,0.6745168,,,,,,,,,,,,,, +2006,10,26,16,30,0.32929558,,,,,,,,,,,,,, +2006,10,26,17,30,1.2383969,,,,,,,,,,,,,, +2006,10,26,18,30,1.8001044,,,,,,,,,,,,,, +2006,10,26,19,30,2.0374582,,,,,,,,,,,,,, +2006,10,26,20,30,1.9557072,,,,,,,,,,,,,, +2006,10,26,21,30,1.4715152,,,,,,,,,,,,,, +2006,10,26,22,30,0.64915717,,,,,,,,,,,,,, +2006,10,26,23,30,0.37070298,,,,,,,,,,,,,, +2006,10,27,0,30,1.2083172,,,,,,,,,,,,,, +2006,10,27,1,30,1.5671854,,,,,,,,,,,,,, +2006,10,27,2,30,1.5988655,,,,,,,,,,,,,, +2006,10,27,3,30,1.5162966,,,,,,,,,,,,,, +2006,10,27,4,30,1.0596836,,,,,,,,,,,,,, +2006,10,27,5,30,0.19973798,,,,,,,,,,,,,, +2006,10,27,6,30,0.879881,,,,,,,,,,,,,, +2006,10,27,7,30,1.3407762,,,,,,,,,,,,,, +2006,10,27,8,30,1.338889,,,,,,,,,,,,,, +2006,10,27,9,30,1.000876,,,,,,,,,,,,,, +2006,10,27,10,30,0.40930277,,,,,,,,,,,,,, +2006,10,27,11,30,0.39363307,,,,,,,,,,,,,, +2006,10,27,12,30,1.0703604,,,,,,,,,,,,,, +2006,10,27,13,30,1.4675714,,,,,,,,,,,,,, +2006,10,27,14,30,1.4984821,,,,,,,,,,,,,, +2006,10,27,15,30,1.213513,,,,,,,,,,,,,, +2006,10,27,16,30,0.5873145,,,,,,,,,,,,,, +2006,10,27,17,30,0.36238402,,,,,,,,,,,,,, +2006,10,27,18,30,1.2359294,,,,,,,,,,,,,, +2006,10,27,19,30,1.7962183,,,,,,,,,,,,,, +2006,10,27,20,30,2.0240726,,,,,,,,,,,,,, +2006,10,27,21,30,1.8705359,,,,,,,,,,,,,, +2006,10,27,22,30,1.2835225,,,,,,,,,,,,,, +2006,10,27,23,30,0.35754305,,,,,,,,,,,,,, +2006,10,28,0,30,0.7250103,,,,,,,,,,,,,, +2006,10,28,1,30,1.5239203,,,,,,,,,,,,,, +2006,10,28,2,30,1.8094339,,,,,,,,,,,,,, +2006,10,28,3,30,1.8304027,,,,,,,,,,,,,, +2006,10,28,4,30,1.7039217,,,,,,,,,,,,,, +2006,10,28,5,30,1.070795,,,,,,,,,,,,,, +2006,10,28,6,30,0.20403261,,,,,,,,,,,,,, +2006,10,28,7,30,1.13409,,,,,,,,,,,,,, +2006,10,28,8,30,1.5972234,,,,,,,,,,,,,, +2006,10,28,9,30,1.5926563,,,,,,,,,,,,,, +2006,10,28,10,30,1.2331779,,,,,,,,,,,,,, +2006,10,28,11,30,0.57524884,,,,,,,,,,,,,, +2006,10,28,12,30,0.29606825,,,,,,,,,,,,,, +2006,10,28,13,30,1.0127987,,,,,,,,,,,,,, +2006,10,28,14,30,1.3991535,,,,,,,,,,,,,, +2006,10,28,15,30,1.4038467,,,,,,,,,,,,,, +2006,10,28,16,30,1.108169,,,,,,,,,,,,,, +2006,10,28,17,30,0.48126417,,,,,,,,,,,,,, +2006,10,28,18,30,0.4550426,,,,,,,,,,,,,, +2006,10,28,19,30,1.3061737,,,,,,,,,,,,,, +2006,10,28,20,30,1.8235986,,,,,,,,,,,,,, +2006,10,28,21,30,1.9663112,,,,,,,,,,,,,, +2006,10,28,22,30,1.6795143,,,,,,,,,,,,,, +2006,10,28,23,30,0.96111786,,,,,,,,,,,,,, +2006,10,29,0,30,0.08624074,,,,,,,,,,,,,, +2006,10,29,1,30,1.1591508,,,,,,,,,,,,,, +2006,10,29,2,30,1.854862,,,,,,,,,,,,,, +2006,10,29,3,30,2.0417845,,,,,,,,,,,,,, +2006,10,29,4,30,2.0187352,,,,,,,,,,,,,, +2006,10,29,5,30,1.7626371,,,,,,,,,,,,,, +2006,10,29,6,30,0.8859643,,,,,,,,,,,,,, +2006,10,29,7,30,0.49616426,,,,,,,,,,,,,, +2006,10,29,8,30,1.4925345,,,,,,,,,,,,,, +2006,10,29,9,30,1.8951473,,,,,,,,,,,,,, +2006,10,29,10,30,1.8290546,,,,,,,,,,,,,, +2006,10,29,11,30,1.3816079,,,,,,,,,,,,,, +2006,10,29,12,30,0.6153268,,,,,,,,,,,,,, +2006,10,29,13,30,0.3065073,,,,,,,,,,,,,, +2006,10,29,14,30,1.0236956,,,,,,,,,,,,,, +2006,10,29,15,30,1.3626562,,,,,,,,,,,,,, +2006,10,29,16,30,1.3277447,,,,,,,,,,,,,, +2006,10,29,17,30,0.99861366,,,,,,,,,,,,,, +2006,10,29,18,30,0.33069474,,,,,,,,,,,,,, +2006,10,29,19,30,0.6218412,,,,,,,,,,,,,, +2006,10,29,20,30,1.4173412,,,,,,,,,,,,,, +2006,10,29,21,30,1.8230063,,,,,,,,,,,,,, +2006,10,29,22,30,1.8190941,,,,,,,,,,,,,, +2006,10,29,23,30,1.3723985,,,,,,,,,,,,,, +2006,10,30,0,30,0.522164,,,,,,,,,,,,,, +2006,10,30,1,30,0.58681285,,,,,,,,,,,,,, +2006,10,30,2,30,1.6116356,,,,,,,,,,,,,, +2006,10,30,3,30,2.1496668,,,,,,,,,,,,,, +2006,10,30,4,30,2.2201183,,,,,,,,,,,,,, +2006,10,30,5,30,2.1049304,,,,,,,,,,,,,, +2006,10,30,6,30,1.6325144,,,,,,,,,,,,,, +2006,10,30,7,30,0.49898,,,,,,,,,,,,,, +2006,10,30,8,30,0.97462845,,,,,,,,,,,,,, +2006,10,30,9,30,1.8898809,,,,,,,,,,,,,, +2006,10,30,10,30,2.162109,,,,,,,,,,,,,, +2006,10,30,11,30,1.9773505,,,,,,,,,,,,,, +2006,10,30,12,30,1.3951048,,,,,,,,,,,,,, +2006,10,30,13,30,0.5190973,,,,,,,,,,,,,, +2006,10,30,14,30,0.41555905,,,,,,,,,,,,,, +2006,10,30,15,30,1.0881462,,,,,,,,,,,,,, +2006,10,30,16,30,1.3578961,,,,,,,,,,,,,, +2006,10,30,17,30,1.2601937,,,,,,,,,,,,,, +2006,10,30,18,30,0.8519368,,,,,,,,,,,,,, +2006,10,30,19,30,0.14528227,,,,,,,,,,,,,, +2006,10,30,20,30,0.84297925,,,,,,,,,,,,,, +2006,10,30,21,30,1.515833,,,,,,,,,,,,,, +2006,10,30,22,30,1.7528498,,,,,,,,,,,,,, +2006,10,30,23,30,1.5779915,,,,,,,,,,,,,, +2006,10,31,0,30,0.971986,,,,,,,,,,,,,, +2006,10,31,1,30,0.042045116,,,,,,,,,,,,,, +2006,10,31,2,30,1.1255845,,,,,,,,,,,,,, +2006,10,31,3,30,2.0160136,,,,,,,,,,,,,, +2006,10,31,4,30,2.3608708,,,,,,,,,,,,,, +2006,10,31,5,30,2.3028328,,,,,,,,,,,,,, +2006,10,31,6,30,2.0375047,,,,,,,,,,,,,, +2006,10,31,7,30,1.2861252,,,,,,,,,,,,,, +2006,10,31,8,30,0.19737957,,,,,,,,,,,,,, +2006,10,31,9,30,1.5154588,,,,,,,,,,,,,, +2006,10,31,10,30,2.2326264,,,,,,,,,,,,,, +2006,10,31,11,30,2.3231528,,,,,,,,,,,,,, +2006,10,31,12,30,1.986099,,,,,,,,,,,,,, +2006,10,31,13,30,1.2569739,,,,,,,,,,,,,, +2006,10,31,14,30,0.30608717,,,,,,,,,,,,,, +2006,10,31,15,30,0.6006675,,,,,,,,,,,,,, +2012,10,31,16,30,1.1913122,,,,,,,,,,,,,, +2012,10,31,17,30,1.3653489,,,,,,,,,,,,,, +2012,10,31,18,30,1.1620271,,,,,,,,,,,,,, +2012,10,31,19,30,0.63136,,,,,,,,,,,,,, +2012,10,31,20,30,0.23658681,,,,,,,,,,,,,, +2012,10,31,21,30,1.0684925,,,,,,,,,,,,,, +2012,10,31,22,30,1.5573893,,,,,,,,,,,,,, +2012,10,31,23,30,1.6072693,,,,,,,,,,,,,, +2012,11,1,0,30,1.2653779,,,,,,,,,,,,,, +2012,11,1,1,30,0.50895107,,,,,,,,,,,,,, +2012,11,1,2,30,0.55415905,,,,,,,,,,,,,, +2012,11,1,3,30,1.6262823,,,,,,,,,,,,,, +2012,11,1,4,30,2.3154218,,,,,,,,,,,,,, +2012,11,1,5,30,2.4568055,,,,,,,,,,,,,, +2012,11,1,6,30,2.258767,,,,,,,,,,,,,, +2012,11,1,7,30,1.7870541,,,,,,,,,,,,,, +2012,11,1,8,30,0.7497939,,,,,,,,,,,,,, +2012,11,1,9,30,0.79555684,,,,,,,,,,,,,, +2012,11,1,10,30,1.9922829,,,,,,,,,,,,,, +2012,11,1,11,30,2.4381976,,,,,,,,,,,,,, +2012,11,1,12,30,2.3361466,,,,,,,,,,,,,, +2012,11,1,13,30,1.8434668,,,,,,,,,,,,,, +2012,11,1,14,30,0.98588973,,,,,,,,,,,,,, +2012,11,1,15,30,0.055298895,,,,,,,,,,,,,, +2012,11,1,16,30,0.8249014,,,,,,,,,,,,,, +2012,11,1,17,30,1.2980292,,,,,,,,,,,,,, +2012,11,1,18,30,1.3382058,,,,,,,,,,,,,, +2012,11,1,19,30,0.9889507,,,,,,,,,,,,,, +2012,11,1,20,30,0.33428475,,,,,,,,,,,,,, +2012,11,1,21,30,0.5403515,,,,,,,,,,,,,, +2012,11,1,22,30,1.2452348,,,,,,,,,,,,,, +2012,11,1,23,30,1.5261289,,,,,,,,,,,,,, +2012,11,2,0,30,1.4018965,,,,,,,,,,,,,, +2012,11,2,1,30,0.90239066,,,,,,,,,,,,,, +2012,11,2,2,30,0.02499694,,,,,,,,,,,,,, +2012,11,2,3,30,1.0911534,,,,,,,,,,,,,, +2012,11,2,4,30,2.028483,,,,,,,,,,,,,, +2012,11,2,5,30,2.4774356,,,,,,,,,,,,,, +2012,11,2,6,30,2.4256923,,,,,,,,,,,,,, +2012,11,2,7,30,2.072437,,,,,,,,,,,,,, +2012,11,2,8,30,1.3627044,,,,,,,,,,,,,, +2012,11,2,9,30,0.17843993,,,,,,,,,,,,,, +2012,11,2,10,30,1.404199,,,,,,,,,,,,,, +2012,11,2,11,30,2.3074582,,,,,,,,,,,,,, +2012,11,2,12,30,2.4751456,,,,,,,,,,,,,, +2012,11,2,13,30,2.20768,,,,,,,,,,,,,, +2012,11,2,14,30,1.5749505,,,,,,,,,,,,,, +2012,11,2,15,30,0.62835324,,,,,,,,,,,,,, +2012,11,2,16,30,0.34081352,,,,,,,,,,,,,, +2012,11,2,17,30,1.0328457,,,,,,,,,,,,,, +2012,11,2,18,30,1.3532519,,,,,,,,,,,,,, +2012,11,2,19,30,1.2298024,,,,,,,,,,,,,, +2012,11,2,20,30,0.72994655,,,,,,,,,,,,,, +2012,11,2,21,30,0.13314128,,,,,,,,,,,,,, +2012,11,2,22,30,0.8202202,,,,,,,,,,,,,, +2012,11,2,23,30,1.3404949,,,,,,,,,,,,,, +2012,11,3,0,30,1.4268734,,,,,,,,,,,,,, +2012,11,3,1,30,1.1491128,,,,,,,,,,,,,, +2012,11,3,2,30,0.5000425,,,,,,,,,,,,,, +2012,11,3,3,30,0.50035906,,,,,,,,,,,,,, +2012,11,3,4,30,1.5599209,,,,,,,,,,,,,, +2012,11,3,5,30,2.2926288,,,,,,,,,,,,,, +2012,11,3,6,30,2.496693,,,,,,,,,,,,,, +2012,11,3,7,30,2.2714562,,,,,,,,,,,,,, +2012,11,3,8,30,1.7524573,,,,,,,,,,,,,, +2012,11,3,9,30,0.82417756,,,,,,,,,,,,,, +2012,11,3,10,30,0.59076726,,,,,,,,,,,,,, +2012,11,3,11,30,1.8616478,,,,,,,,,,,,,, +2012,11,3,12,30,2.4289076,,,,,,,,,,,,,, +2012,11,3,13,30,2.371382,,,,,,,,,,,,,, +2012,11,3,14,30,1.9784117,,,,,,,,,,,,,, +2012,11,3,15,30,1.229185,,,,,,,,,,,,,, +2012,11,3,16,30,0.25810272,,,,,,,,,,,,,, +2012,11,3,17,30,0.62567973,,,,,,,,,,,,,, +2012,11,3,18,30,1.1633617,,,,,,,,,,,,,, +2012,11,3,19,30,1.3144,,,,,,,,,,,,,, +2012,11,3,20,30,1.0317097,,,,,,,,,,,,,, +2012,11,3,21,30,0.42487845,,,,,,,,,,,,,, +2012,11,3,22,30,0.35363322,,,,,,,,,,,,,, +2012,11,3,23,30,1.0135379,,,,,,,,,,,,,, +2012,11,4,0,30,1.3454508,,,,,,,,,,,,,, +2012,11,4,1,30,1.2682545,,,,,,,,,,,,,, +2012,11,4,2,30,0.85391396,,,,,,,,,,,,,, +2012,11,4,3,30,0.08434456,,,,,,,,,,,,,, +2012,11,4,4,30,0.97274935,,,,,,,,,,,,,, +2012,11,4,5,30,1.9123724,,,,,,,,,,,,,, +2012,11,4,6,30,2.4030147,,,,,,,,,,,,,, +2012,11,4,7,30,2.3860002,,,,,,,,,,,,,, +2012,11,4,8,30,2.0127814,,,,,,,,,,,,,, +2012,11,4,9,30,1.3415904,,,,,,,,,,,,,, +2012,11,4,10,30,0.28703013,,,,,,,,,,,,,, +2012,11,4,11,30,1.1185052,,,,,,,,,,,,,, +2012,11,4,12,30,2.1204007,,,,,,,,,,,,,, +2012,11,4,13,30,2.3923502,,,,,,,,,,,,,, +2012,11,4,14,30,2.1850164,,,,,,,,,,,,,, +2012,11,4,15,30,1.6976894,,,,,,,,,,,,,, +2012,11,4,16,30,0.86767596,,,,,,,,,,,,,, +2012,11,4,17,30,0.12610705,,,,,,,,,,,,,, +2012,11,4,18,30,0.81007063,,,,,,,,,,,,,, +2012,11,4,19,30,1.185642,,,,,,,,,,,,,, +2012,11,4,20,30,1.1860602,,,,,,,,,,,,,, +2012,11,4,21,30,0.78717256,,,,,,,,,,,,,, +2012,11,4,22,30,0.16122921,,,,,,,,,,,,,, +2012,11,4,23,30,0.5666464,,,,,,,,,,,,,, +2012,11,5,0,30,1.0962322,,,,,,,,,,,,,, +2012,11,5,1,30,1.2683598,,,,,,,,,,,,,, +2012,11,5,2,30,1.0618863,,,,,,,,,,,,,, +2012,11,5,3,30,0.533709,,,,,,,,,,,,,, +2012,11,5,4,30,0.34365398,,,,,,,,,,,,,, +2012,11,5,5,30,1.353815,,,,,,,,,,,,,, +2012,11,5,6,30,2.1117225,,,,,,,,,,,,,, +2012,11,5,7,30,2.36224,,,,,,,,,,,,,, +2012,11,5,8,30,2.1707115,,,,,,,,,,,,,, +2012,11,5,9,30,1.6893501,,,,,,,,,,,,,, +2012,11,5,10,30,0.9128684,,,,,,,,,,,,,, +2012,11,5,11,30,0.27200356,,,,,,,,,,,,,, +2012,11,5,12,30,1.4784834,,,,,,,,,,,,,, +2012,11,5,13,30,2.2044954,,,,,,,,,,,,,, +2012,11,5,14,30,2.2636094,,,,,,,,,,,,,, +2012,11,5,15,30,1.9683641,,,,,,,,,,,,,, +2012,11,5,16,30,1.4116957,,,,,,,,,,,,,, +2012,11,5,17,30,0.5549602,,,,,,,,,,,,,, +2012,11,5,18,30,0.32373405,,,,,,,,,,,,,, +2012,11,5,19,30,0.8768657,,,,,,,,,,,,,, +2012,11,5,20,30,1.1262518,,,,,,,,,,,,,, +2012,11,5,21,30,1.0233947,,,,,,,,,,,,,, +2012,11,5,22,30,0.5698778,,,,,,,,,,,,,, +2012,11,5,23,30,0.13896269,,,,,,,,,,,,,, +2012,11,6,0,30,0.66336143,,,,,,,,,,,,,, +2012,11,6,1,30,1.0751735,,,,,,,,,,,,,, +2012,11,6,2,30,1.1348399,,,,,,,,,,,,,, +2012,11,6,3,30,0.83717,,,,,,,,,,,,,, +2012,11,6,4,30,0.23878746,,,,,,,,,,,,,, +2012,11,6,5,30,0.6721662,,,,,,,,,,,,,, +2012,11,6,6,30,1.5860927,,,,,,,,,,,,,, +2012,11,6,7,30,2.1375084,,,,,,,,,,,,,, +2012,11,6,8,30,2.1903636,,,,,,,,,,,,,, +2012,11,6,9,30,1.8929392,,,,,,,,,,,,,, +2012,11,6,10,30,1.3611023,,,,,,,,,,,,,, +2012,11,6,11,30,0.54228437,,,,,,,,,,,,,, +2012,11,6,12,30,0.6135314,,,,,,,,,,,,,, +2012,11,6,13,30,1.6726726,,,,,,,,,,,,,, +2012,11,6,14,30,2.1714294,,,,,,,,,,,,,, +2012,11,6,15,30,2.0977921,,,,,,,,,,,,,, +2012,11,6,16,30,1.7564957,,,,,,,,,,,,,, +2012,11,6,17,30,1.1627796,,,,,,,,,,,,,, +2012,11,6,18,30,0.33600467,,,,,,,,,,,,,, +2012,11,6,19,30,0.4221682,,,,,,,,,,,,,, +2012,11,6,20,30,0.8747778,,,,,,,,,,,,,, +2012,11,6,21,30,1.0577619,,,,,,,,,,,,,, +2012,11,6,22,30,0.9018701,,,,,,,,,,,,,, +2012,11,6,23,30,0.4480607,,,,,,,,,,,,,, +2012,11,7,0,30,0.15609281,,,,,,,,,,,,,, +2012,11,7,1,30,0.63995993,,,,,,,,,,,,,, +2012,11,7,2,30,0.9880384,,,,,,,,,,,,,, +2012,11,7,3,30,0.99300784,,,,,,,,,,,,,, +2012,11,7,4,30,0.64856344,,,,,,,,,,,,,, +2012,11,7,5,30,0.07948758,,,,,,,,,,,,,, +2012,11,7,6,30,0.8533255,,,,,,,,,,,,,, +2012,11,7,7,30,1.6295468,,,,,,,,,,,,,, +2012,11,7,8,30,1.9969494,,,,,,,,,,,,,, +2012,11,7,9,30,1.9322866,,,,,,,,,,,,,, +2012,11,7,10,30,1.6119372,,,,,,,,,,,,,, +2012,11,7,11,30,1.0873615,,,,,,,,,,,,,, +2012,11,7,12,30,0.27716175,,,,,,,,,,,,,, +2012,11,7,13,30,0.8326972,,,,,,,,,,,,,, +2012,11,7,14,30,1.7404989,,,,,,,,,,,,,, +2012,11,7,15,30,2.0732875,,,,,,,,,,,,,, +2012,11,7,16,30,1.9293792,,,,,,,,,,,,,, +2012,11,7,17,30,1.5764275,,,,,,,,,,,,,, +2012,11,7,18,30,0.9807289,,,,,,,,,,,,,, +2012,11,7,19,30,0.20926397,,,,,,,,,,,,,, +2012,11,7,20,30,0.46688086,,,,,,,,,,,,,, +2012,11,7,21,30,0.89163,,,,,,,,,,,,,, +2012,11,7,22,30,1.0567526,,,,,,,,,,,,,, +2012,11,7,23,30,0.8802597,,,,,,,,,,,,,, +2012,11,8,0,30,0.45821238,,,,,,,,,,,,,, +2012,11,8,1,30,0.10753842,,,,,,,,,,,,,, +2012,11,8,2,30,0.5393964,,,,,,,,,,,,,, +2012,11,8,3,30,0.89922154,,,,,,,,,,,,,, +2012,11,8,4,30,0.9075211,,,,,,,,,,,,,, +2012,11,8,5,30,0.5607001,,,,,,,,,,,,,, +2012,11,8,6,30,0.09721378,,,,,,,,,,,,,, +2012,11,8,7,30,0.842334,,,,,,,,,,,,,, +2012,11,8,8,30,1.4843318,,,,,,,,,,,,,, +2012,11,8,9,30,1.7385143,,,,,,,,,,,,,, +2012,11,8,10,30,1.6574442,,,,,,,,,,,,,, +2012,11,8,11,30,1.3858883,,,,,,,,,,,,,, +2012,11,8,12,30,0.8986368,,,,,,,,,,,,,, +2012,11,8,13,30,0.14196596,,,,,,,,,,,,,, +2012,11,8,14,30,0.94434273,,,,,,,,,,,,,, +2012,11,8,15,30,1.7241471,,,,,,,,,,,,,, +2012,11,8,16,30,1.9487798,,,,,,,,,,,,,, +2012,11,8,17,30,1.7864786,,,,,,,,,,,,,, +2012,11,8,18,30,1.4491676,,,,,,,,,,,,,, +2012,11,8,19,30,0.8638654,,,,,,,,,,,,,, +2012,11,8,20,30,0.12526292,,,,,,,,,,,,,, +2012,11,8,21,30,0.54712486,,,,,,,,,,,,,, +2012,11,8,22,30,1.0030174,,,,,,,,,,,,,, +2012,11,8,23,30,1.1664027,,,,,,,,,,,,,, +2012,11,9,0,30,0.9808432,,,,,,,,,,,,,, +2012,11,9,1,30,0.5984687,,,,,,,,,,,,,, +2012,11,9,2,30,0.14046274,,,,,,,,,,,,,, +2012,11,9,3,30,0.4365942,,,,,,,,,,,,,, +2012,11,9,4,30,0.8827373,,,,,,,,,,,,,, +2012,11,9,5,30,0.93817425,,,,,,,,,,,,,, +2012,11,9,6,30,0.6220189,,,,,,,,,,,,,, +2012,11,9,7,30,0.07180479,,,,,,,,,,,,,, +2012,11,9,8,30,0.6461056,,,,,,,,,,,,,, +2012,11,9,9,30,1.206895,,,,,,,,,,,,,, +2012,11,9,10,30,1.4483006,,,,,,,,,,,,,, +2012,11,9,11,30,1.4374366,,,,,,,,,,,,,, +2012,11,9,12,30,1.2448938,,,,,,,,,,,,,, +2012,11,9,13,30,0.7900726,,,,,,,,,,,,,, +2012,11,9,14,30,0.113400206,,,,,,,,,,,,,, +2012,11,9,15,30,0.97757643,,,,,,,,,,,,,, +2012,11,9,16,30,1.662735,,,,,,,,,,,,,, +2012,11,9,17,30,1.8370628,,,,,,,,,,,,,, +2012,11,9,18,30,1.6956863,,,,,,,,,,,,,, +2012,11,9,19,30,1.374328,,,,,,,,,,,,,, +2012,11,9,20,30,0.7711976,,,,,,,,,,,,,, +2012,11,9,21,30,0.047118533,,,,,,,,,,,,,, +2012,11,9,22,30,0.7324663,,,,,,,,,,,,,, +2012,11,9,23,30,1.2376096,,,,,,,,,,,,,, +2012,11,10,0,30,1.3852637,,,,,,,,,,,,,, +2012,11,10,1,30,1.1880311,,,,,,,,,,,,,, +2012,11,10,2,30,0.82837325,,,,,,,,,,,,,, +2012,11,10,3,30,0.31065583,,,,,,,,,,,,,, +2012,11,10,4,30,0.41530052,,,,,,,,,,,,,, +2012,11,10,5,30,0.9961108,,,,,,,,,,,,,, +2012,11,10,6,30,1.1163734,,,,,,,,,,,,,, +2012,11,10,7,30,0.84343684,,,,,,,,,,,,,, +2012,11,10,8,30,0.32529938,,,,,,,,,,,,,, +2012,11,10,9,30,0.33617938,,,,,,,,,,,,,, +2012,11,10,10,30,0.8993559,,,,,,,,,,,,,, +2012,11,10,11,30,1.2177669,,,,,,,,,,,,,, +2012,11,10,12,30,1.313339,,,,,,,,,,,,,, +2012,11,10,13,30,1.1826866,,,,,,,,,,,,,, +2012,11,10,14,30,0.74086833,,,,,,,,,,,,,, +2012,11,10,15,30,0.115548566,,,,,,,,,,,,,, +2012,11,10,16,30,0.9653452,,,,,,,,,,,,,, +2012,11,10,17,30,1.6033528,,,,,,,,,,,,,, +2012,11,10,18,30,1.7782984,,,,,,,,,,,,,, +2012,11,10,19,30,1.6638426,,,,,,,,,,,,,, +2012,11,10,20,30,1.3186129,,,,,,,,,,,,,, +2012,11,10,21,30,0.64288664,,,,,,,,,,,,,, +2012,11,10,22,30,0.23520657,,,,,,,,,,,,,, +2012,11,10,23,30,1.0427586,,,,,,,,,,,,,, +2012,11,11,0,30,1.5746078,,,,,,,,,,,,,, +2012,11,11,1,30,1.6764971,,,,,,,,,,,,,, +2012,11,11,2,30,1.4565766,,,,,,,,,,,,,, +2012,11,11,3,30,1.0772107,,,,,,,,,,,,,, +2012,11,11,4,30,0.41796383,,,,,,,,,,,,,, +2012,11,11,5,30,0.53743327,,,,,,,,,,,,,, +2012,11,11,6,30,1.2609785,,,,,,,,,,,,,, +2012,11,11,7,30,1.4316074,,,,,,,,,,,,,, +2012,11,11,8,30,1.1860602,,,,,,,,,,,,,, +2012,11,11,9,30,0.6816673,,,,,,,,,,,,,, +2012,11,11,10,30,0.08686438,,,,,,,,,,,,,, +2012,11,11,11,30,0.6659213,,,,,,,,,,,,,, +2012,11,11,12,30,1.1015353,,,,,,,,,,,,,, +2012,11,11,13,30,1.2824411,,,,,,,,,,,,,, +2012,11,11,14,30,1.1749591,,,,,,,,,,,,,, +2012,11,11,15,30,0.7332467,,,,,,,,,,,,,, +2012,11,11,16,30,0.118657984,,,,,,,,,,,,,, +2012,11,11,17,30,0.9535471,,,,,,,,,,,,,, +2012,11,11,18,30,1.5959442,,,,,,,,,,,,,, +2012,11,11,19,30,1.7887428,,,,,,,,,,,,,, +2012,11,11,20,30,1.6613948,,,,,,,,,,,,,, +2012,11,11,21,30,1.2305843,,,,,,,,,,,,,, +2012,11,11,22,30,0.4359003,,,,,,,,,,,,,, +2012,11,11,23,30,0.55884194,,,,,,,,,,,,,, +2012,11,12,0,30,1.4512348,,,,,,,,,,,,,, +2012,11,12,1,30,1.9609588,,,,,,,,,,,,,, +2012,11,12,2,30,1.9851065,,,,,,,,,,,,,, +2012,11,12,3,30,1.7256426,,,,,,,,,,,,,, +2012,11,12,4,30,1.2661831,,,,,,,,,,,,,, +2012,11,12,5,30,0.3867682,,,,,,,,,,,,,, +2012,11,12,6,30,0.8269895,,,,,,,,,,,,,, +2012,11,12,7,30,1.6562698,,,,,,,,,,,,,, +2012,11,12,8,30,1.8305649,,,,,,,,,,,,,, +2012,11,12,9,30,1.5684403,,,,,,,,,,,,,, +2012,11,12,10,30,1.016094,,,,,,,,,,,,,, +2012,11,12,11,30,0.25823992,,,,,,,,,,,,,, +2012,11,12,12,30,0.5638549,,,,,,,,,,,,,, +2012,11,12,13,30,1.0999689,,,,,,,,,,,,,, +2012,11,12,14,30,1.315387,,,,,,,,,,,,,, +2012,11,12,15,30,1.2004082,,,,,,,,,,,,,, +2012,11,12,16,30,0.75028074,,,,,,,,,,,,,, +2012,11,12,17,30,0.11999567,,,,,,,,,,,,,, +2012,11,12,18,30,0.9935931,,,,,,,,,,,,,, +2012,11,12,19,30,1.6631969,,,,,,,,,,,,,, +2012,11,12,20,30,1.8399966,,,,,,,,,,,,,, +2012,11,12,21,30,1.6352831,,,,,,,,,,,,,, +2012,11,12,22,30,1.0719874,,,,,,,,,,,,,, +2012,11,12,23,30,0.14905968,,,,,,,,,,,,,, +2012,11,13,0,30,0.97194415,,,,,,,,,,,,,, +2012,11,13,1,30,1.904012,,,,,,,,,,,,,, +2012,11,13,2,30,2.332892,,,,,,,,,,,,,, +2012,11,13,3,30,2.255734,,,,,,,,,,,,,, +2012,11,13,4,30,1.9363607,,,,,,,,,,,,,, +2012,11,13,5,30,1.3301079,,,,,,,,,,,,,, +2012,11,13,6,30,0.21208104,,,,,,,,,,,,,, +2012,11,13,7,30,1.2662547,,,,,,,,,,,,,, +2012,11,13,8,30,2.120273,,,,,,,,,,,,,, +2012,11,13,9,30,2.2297363,,,,,,,,,,,,,, +2012,11,13,10,30,1.8955777,,,,,,,,,,,,,, +2012,11,13,11,30,1.2372134,,,,,,,,,,,,,, +2012,11,13,12,30,0.33109584,,,,,,,,,,,,,, +2012,11,13,13,30,0.5908444,,,,,,,,,,,,,, +2012,11,13,14,30,1.1771008,,,,,,,,,,,,,, +2012,11,13,15,30,1.3813484,,,,,,,,,,,,,, +2012,11,13,16,30,1.2414118,,,,,,,,,,,,,, +2012,11,13,17,30,0.7622865,,,,,,,,,,,,,, +2012,11,13,18,30,0.13599315,,,,,,,,,,,,,, +2012,11,13,19,30,1.1112937,,,,,,,,,,,,,, +2012,11,13,20,30,1.7775857,,,,,,,,,,,,,, +2012,11,13,21,30,1.8736769,,,,,,,,,,,,,, +2012,11,13,22,30,1.5430634,,,,,,,,,,,,,, +2012,11,13,23,30,0.8359186,,,,,,,,,,,,,, +2012,11,14,0,30,0.24142513,,,,,,,,,,,,,, +2012,11,14,1,30,1.4314083,,,,,,,,,,,,,, +2012,11,14,2,30,2.3379388,,,,,,,,,,,,,, +2012,11,14,3,30,2.6336906,,,,,,,,,,,,,, +2012,11,14,4,30,2.4475534,,,,,,,,,,,,,, +2012,11,14,5,30,2.0448675,,,,,,,,,,,,,, +2012,11,14,6,30,1.2297138,,,,,,,,,,,,,, +2012,11,14,7,30,0.2827008,,,,,,,,,,,,,, +2012,11,14,8,30,1.7926506,,,,,,,,,,,,,, +2012,11,14,9,30,2.562692,,,,,,,,,,,,,, +2012,11,14,10,30,2.5425096,,,,,,,,,,,,,, +2012,11,14,11,30,2.0981052,,,,,,,,,,,,,, +2012,11,14,12,30,1.3083446,,,,,,,,,,,,,, +2012,11,14,13,30,0.2721101,,,,,,,,,,,,,, +2012,11,14,14,30,0.70703924,,,,,,,,,,,,,, +2012,11,14,15,30,1.2906142,,,,,,,,,,,,,, +2012,11,14,16,30,1.4551809,,,,,,,,,,,,,, +2012,11,14,17,30,1.2720528,,,,,,,,,,,,,, +2012,11,14,18,30,0.72949564,,,,,,,,,,,,,, +2012,11,14,19,30,0.23179062,,,,,,,,,,,,,, +2012,11,14,20,30,1.2826748,,,,,,,,,,,,,, +2012,11,14,21,30,1.8772911,,,,,,,,,,,,,, +2012,11,14,22,30,1.8413435,,,,,,,,,,,,,, +2012,11,14,23,30,1.3759083,,,,,,,,,,,,,, +2012,11,15,0,30,0.54042244,,,,,,,,,,,,,, +2012,11,15,1,30,0.64830494,,,,,,,,,,,,,, +2012,11,15,2,30,1.884724,,,,,,,,,,,,,, +2012,11,15,3,30,2.6929588,,,,,,,,,,,,,, +2012,11,15,4,30,2.8269508,,,,,,,,,,,,,, +2012,11,15,5,30,2.5401692,,,,,,,,,,,,,, +2012,11,15,6,30,2.0248437,,,,,,,,,,,,,, +2012,11,15,7,30,0.9582819,,,,,,,,,,,,,, +2012,11,15,8,30,0.7836915,,,,,,,,,,,,,, +2012,11,15,9,30,2.3071024,,,,,,,,,,,,,, +2012,11,15,10,30,2.8913434,,,,,,,,,,,,,, +2012,11,15,11,30,2.713444,,,,,,,,,,,,,, +2012,11,15,12,30,2.1578472,,,,,,,,,,,,,, +2012,11,15,13,30,1.2481682,,,,,,,,,,,,,, +2012,11,15,14,30,0.1325249,,,,,,,,,,,,,, +2012,11,15,15,30,0.86334294,,,,,,,,,,,,,, +2012,11,15,16,30,1.4060842,,,,,,,,,,,,,, +2012,11,15,17,30,1.5098085,,,,,,,,,,,,,, +2012,11,15,18,30,1.2592881,,,,,,,,,,,,,, +2012,11,15,19,30,0.62689644,,,,,,,,,,,,,, +2012,11,15,20,30,0.41231117,,,,,,,,,,,,,, +2012,11,15,21,30,1.4474443,,,,,,,,,,,,,, +2012,11,15,22,30,1.9091511,,,,,,,,,,,,,, +2012,11,15,23,30,1.7327254,,,,,,,,,,,,,, +2012,11,16,0,30,1.1539007,,,,,,,,,,,,,, +2012,11,16,1,30,0.21704681,,,,,,,,,,,,,, +2012,11,16,2,30,1.0609916,,,,,,,,,,,,,, +2012,11,16,3,30,2.2732,,,,,,,,,,,,,, +2012,11,16,4,30,2.9243166,,,,,,,,,,,,,, +2012,11,16,5,30,2.9009266,,,,,,,,,,,,,, +2012,11,16,6,30,2.527219,,,,,,,,,,,,,, +2012,11,16,7,30,1.8665416,,,,,,,,,,,,,, +2012,11,16,8,30,0.55267125,,,,,,,,,,,,,, +2012,11,16,9,30,1.3260385,,,,,,,,,,,,,, +2012,11,16,10,30,2.7018106,,,,,,,,,,,,,, +2012,11,16,11,30,3.0483594,,,,,,,,,,,,,, +2012,11,16,12,30,2.738169,,,,,,,,,,,,,, +2012,11,16,13,30,2.0999823,,,,,,,,,,,,,, +2012,11,16,14,30,1.1000378,,,,,,,,,,,,,, +2012,11,16,15,30,0.095552996,,,,,,,,,,,,,, +2012,11,16,16,30,1.0195729,,,,,,,,,,,,,, +2012,11,16,17,30,1.4938706,,,,,,,,,,,,,, +2012,11,16,18,30,1.5172918,,,,,,,,,,,,,, +2012,11,16,19,30,1.1834275,,,,,,,,,,,,,, +2012,11,16,20,30,0.46738863,,,,,,,,,,,,,, +2012,11,16,21,30,0.6031951,,,,,,,,,,,,,, +2012,11,16,22,30,1.5491749,,,,,,,,,,,,,, +2012,11,16,23,30,1.8592966,,,,,,,,,,,,,, +2012,11,17,0,30,1.5713503,,,,,,,,,,,,,, +2012,11,17,1,30,0.90742886,,,,,,,,,,,,,, +2012,11,17,2,30,0.13799207,,,,,,,,,,,,,, +2012,11,17,3,30,1.4270537,,,,,,,,,,,,,, +2012,11,17,4,30,2.5426326,,,,,,,,,,,,,, +2012,11,17,5,30,3.0111613,,,,,,,,,,,,,, +2012,11,17,6,30,2.8602324,,,,,,,,,,,,,, +2012,11,17,7,30,2.4075782,,,,,,,,,,,,,, +2012,11,17,8,30,1.5833623,,,,,,,,,,,,,, +2012,11,17,9,30,0.16226898,,,,,,,,,,,,,, +2012,11,17,10,30,1.7824056,,,,,,,,,,,,,, +2012,11,17,11,30,2.903076,,,,,,,,,,,,,, +2012,11,17,12,30,3.033223,,,,,,,,,,,,,, +2012,11,17,13,30,2.6514163,,,,,,,,,,,,,, +2012,11,17,14,30,1.9613724,,,,,,,,,,,,,, +2012,11,17,15,30,0.9026984,,,,,,,,,,,,,, +2012,11,17,16,30,0.27764815,,,,,,,,,,,,,, +2012,11,17,17,30,1.1442604,,,,,,,,,,,,,, +2012,11,17,18,30,1.5301591,,,,,,,,,,,,,, +2012,11,17,19,30,1.4653203,,,,,,,,,,,,,, +2012,11,17,20,30,1.0574408,,,,,,,,,,,,,, +2012,11,17,21,30,0.29904282,,,,,,,,,,,,,, +2012,11,17,22,30,0.7423755,,,,,,,,,,,,,, +2012,11,17,23,30,1.5652759,,,,,,,,,,,,,, +2012,11,18,0,30,1.7490776,,,,,,,,,,,,,, +2012,11,18,1,30,1.3908354,,,,,,,,,,,,,, +2012,11,18,2,30,0.6660499,,,,,,,,,,,,,, +2012,11,18,3,30,0.42628747,,,,,,,,,,,,,, +2012,11,18,4,30,1.6928513,,,,,,,,,,,,,, +2012,11,18,5,30,2.6573985,,,,,,,,,,,,,, +2012,11,18,6,30,2.9542012,,,,,,,,,,,,,, +2012,11,18,7,30,2.714014,,,,,,,,,,,,,, +2012,11,18,8,30,2.1881447,,,,,,,,,,,,,, +2012,11,18,9,30,1.2212863,,,,,,,,,,,,,, +2012,11,18,10,30,0.42041993,,,,,,,,,,,,,, +2012,11,18,11,30,2.0639555,,,,,,,,,,,,,, +2012,11,18,12,30,2.902753,,,,,,,,,,,,,, +2012,11,18,13,30,2.8919246,,,,,,,,,,,,,, +2012,11,18,14,30,2.4939904,,,,,,,,,,,,,, +2012,11,18,15,30,1.7681013,,,,,,,,,,,,,, +2012,11,18,16,30,0.68697804,,,,,,,,,,,,,, +2012,11,18,17,30,0.43862718,,,,,,,,,,,,,, +2012,11,18,18,30,1.2157257,,,,,,,,,,,,,, +2012,11,18,19,30,1.5100993,,,,,,,,,,,,,, +2012,11,18,20,30,1.3709608,,,,,,,,,,,,,, +2012,11,18,21,30,0.9240473,,,,,,,,,,,,,, +2012,11,18,22,30,0.17976645,,,,,,,,,,,,,, +2012,11,18,23,30,0.79736936,,,,,,,,,,,,,, +2012,11,19,0,30,1.5061653,,,,,,,,,,,,,, +2012,11,19,1,30,1.6103151,,,,,,,,,,,,,, +2012,11,19,2,30,1.217686,,,,,,,,,,,,,, +2012,11,19,3,30,0.4580626,,,,,,,,,,,,,, +2012,11,19,4,30,0.6411609,,,,,,,,,,,,,, +2012,11,19,5,30,1.817071,,,,,,,,,,,,,, +2012,11,19,6,30,2.6063457,,,,,,,,,,,,,, +2012,11,19,7,30,2.7670712,,,,,,,,,,,,,, +2012,11,19,8,30,2.4753404,,,,,,,,,,,,,, +2012,11,19,9,30,1.8956999,,,,,,,,,,,,,, +2012,11,19,10,30,0.85185766,,,,,,,,,,,,,, +2012,11,19,11,30,0.73829514,,,,,,,,,,,,,, +2012,11,19,12,30,2.1486812,,,,,,,,,,,,,, +2012,11,19,13,30,2.7512956,,,,,,,,,,,,,, +2012,11,19,14,30,2.6808267,,,,,,,,,,,,,, +2012,11,19,15,30,2.2912204,,,,,,,,,,,,,, +2012,11,19,16,30,1.5411376,,,,,,,,,,,,,, +2012,11,19,17,30,0.48570067,,,,,,,,,,,,,, +2012,11,19,18,30,0.5480784,,,,,,,,,,,,,, +2012,11,19,19,30,1.2342846,,,,,,,,,,,,,, +2012,11,19,20,30,1.4563346,,,,,,,,,,,,,, +2012,11,19,21,30,1.2744712,,,,,,,,,,,,,, +2012,11,19,22,30,0.83290637,,,,,,,,,,,,,, +2012,11,19,23,30,0.14526704,,,,,,,,,,,,,, +2012,11,20,0,30,0.7656219,,,,,,,,,,,,,, +2012,11,20,1,30,1.3969119,,,,,,,,,,,,,, +2012,11,20,2,30,1.467864,,,,,,,,,,,,,, +2012,11,20,3,30,1.0700047,,,,,,,,,,,,,, +2012,11,20,4,30,0.30972755,,,,,,,,,,,,,, +2012,11,20,5,30,0.7436892,,,,,,,,,,,,,, +2012,11,20,6,30,1.780186,,,,,,,,,,,,,, +2012,11,20,7,30,2.4003172,,,,,,,,,,,,,, +2012,11,20,8,30,2.474559,,,,,,,,,,,,,, +2012,11,20,9,30,2.1717744,,,,,,,,,,,,,, +2012,11,20,10,30,1.5783383,,,,,,,,,,,,,, +2012,11,20,11,30,0.54226905,,,,,,,,,,,,,, +2012,11,20,12,30,0.9148194,,,,,,,,,,,,,, +2012,11,20,13,30,2.077638,,,,,,,,,,,,,, +2012,11,20,14,30,2.5180144,,,,,,,,,,,,,, +2012,11,20,15,30,2.4389973,,,,,,,,,,,,,, +2012,11,20,16,30,2.0605712,,,,,,,,,,,,,, +2012,11,20,17,30,1.3119133,,,,,,,,,,,,,, +2012,11,20,18,30,0.3293919,,,,,,,,,,,,,, +2012,11,20,19,30,0.60577166,,,,,,,,,,,,,, +2012,11,20,20,30,1.2283337,,,,,,,,,,,,,, +2012,11,20,21,30,1.4085515,,,,,,,,,,,,,, +2012,11,20,22,30,1.2183574,,,,,,,,,,,,,, +2012,11,20,23,30,0.8188856,,,,,,,,,,,,,, +2012,11,21,0,30,0.1855699,,,,,,,,,,,,,, +2012,11,21,1,30,0.6662169,,,,,,,,,,,,,, +2012,11,21,2,30,1.2653339,,,,,,,,,,,,,, +2012,11,21,3,30,1.3400826,,,,,,,,,,,,,, +2012,11,21,4,30,0.9639142,,,,,,,,,,,,,, +2012,11,21,5,30,0.24171844,,,,,,,,,,,,,, +2012,11,21,6,30,0.7136181,,,,,,,,,,,,,, +2012,11,21,7,30,1.5861958,,,,,,,,,,,,,, +2012,11,21,8,30,2.0720916,,,,,,,,,,,,,, +2012,11,21,9,30,2.1193147,,,,,,,,,,,,,, +2012,11,21,10,30,1.8491704,,,,,,,,,,,,,, +2012,11,21,11,30,1.285784,,,,,,,,,,,,,, +2012,11,21,12,30,0.3268432,,,,,,,,,,,,,, +2012,11,21,13,30,0.9670865,,,,,,,,,,,,,, +2012,11,21,14,30,1.9148241,,,,,,,,,,,,,, +2012,11,21,15,30,2.2557454,,,,,,,,,,,,,, +2012,11,21,16,30,2.1905634,,,,,,,,,,,,,, +2012,11,21,17,30,1.8290933,,,,,,,,,,,,,, +2012,11,21,18,30,1.117322,,,,,,,,,,,,,, +2012,11,21,19,30,0.22587733,,,,,,,,,,,,,, +2012,11,21,20,30,0.64423496,,,,,,,,,,,,,, +2012,11,21,21,30,1.2405616,,,,,,,,,,,,,, +2012,11,21,22,30,1.4024045,,,,,,,,,,,,,, +2012,11,21,23,30,1.2305382,,,,,,,,,,,,,, +2012,11,22,0,30,0.8937386,,,,,,,,,,,,,, +2012,11,22,1,30,0.30278185,,,,,,,,,,,,,, +2012,11,22,2,30,0.5351614,,,,,,,,,,,,,, +2012,11,22,3,30,1.1427515,,,,,,,,,,,,,, +2012,11,22,4,30,1.247688,,,,,,,,,,,,,, +2012,11,22,5,30,0.91941404,,,,,,,,,,,,,, +2012,11,22,6,30,0.27492425,,,,,,,,,,,,,, +2012,11,22,7,30,0.5491377,,,,,,,,,,,,,, +2012,11,22,8,30,1.266318,,,,,,,,,,,,,, +2012,11,22,9,30,1.6804768,,,,,,,,,,,,,, +2012,11,22,10,30,1.7617476,,,,,,,,,,,,,, +2012,11,22,11,30,1.5559547,,,,,,,,,,,,,, +2012,11,22,12,30,1.0461613,,,,,,,,,,,,,, +2012,11,22,13,30,0.20668547,,,,,,,,,,,,,, +2012,11,22,14,30,0.9349421,,,,,,,,,,,,,, +2012,11,22,15,30,1.710489,,,,,,,,,,,,,, +2012,11,22,16,30,1.9976038,,,,,,,,,,,,,, +2012,11,22,17,30,1.9610958,,,,,,,,,,,,,, +2012,11,22,18,30,1.6295372,,,,,,,,,,,,,, +2012,11,22,19,30,0.97211915,,,,,,,,,,,,,, +2012,11,22,20,30,0.14809296,,,,,,,,,,,,,, +2012,11,22,21,30,0.712129,,,,,,,,,,,,,, +2012,11,22,22,30,1.3048742,,,,,,,,,,,,,, +2012,11,22,23,30,1.4560279,,,,,,,,,,,,,, +2012,11,23,0,30,1.3190707,,,,,,,,,,,,,, +2012,11,23,1,30,1.0438174,,,,,,,,,,,,,, +2012,11,23,2,30,0.46013513,,,,,,,,,,,,,, +2012,11,23,3,30,0.42457232,,,,,,,,,,,,,, +2012,11,23,4,30,1.0670693,,,,,,,,,,,,,, +2012,11,23,5,30,1.2188047,,,,,,,,,,,,,, +2012,11,23,6,30,0.96160996,,,,,,,,,,,,,, +2012,11,23,7,30,0.42541498,,,,,,,,,,,,,, +2012,11,23,8,30,0.27982584,,,,,,,,,,,,,, +2012,11,23,9,30,0.88508475,,,,,,,,,,,,,, +2012,11,23,10,30,1.3046949,,,,,,,,,,,,,, +2012,11,23,11,30,1.4615301,,,,,,,,,,,,,, +2012,11,23,12,30,1.3214742,,,,,,,,,,,,,, +2012,11,23,13,30,0.8649405,,,,,,,,,,,,,, +2012,11,23,14,30,0.15472081,,,,,,,,,,,,,, +2012,11,23,15,30,0.8490211,,,,,,,,,,,,,, +2012,11,23,16,30,1.4986004,,,,,,,,,,,,,, +2012,11,23,17,30,1.7730758,,,,,,,,,,,,,, +2012,11,23,18,30,1.7772363,,,,,,,,,,,,,, +2012,11,23,19,30,1.4744837,,,,,,,,,,,,,, +2012,11,23,20,30,0.8503149,,,,,,,,,,,,,, +2012,11,23,21,30,0.06327402,,,,,,,,,,,,,, +2012,11,23,22,30,0.8476837,,,,,,,,,,,,,, +2012,11,23,23,30,1.4329392,,,,,,,,,,,,,, +2012,11,24,0,30,1.5688622,,,,,,,,,,,,,, +2012,11,24,1,30,1.4710526,,,,,,,,,,,,,, +2012,11,24,2,30,1.2277712,,,,,,,,,,,,,, +2012,11,24,3,30,0.59173876,,,,,,,,,,,,,, +2012,11,24,4,30,0.39241394,,,,,,,,,,,,,, +2012,11,24,5,30,1.0789188,,,,,,,,,,,,,, +2012,11,24,6,30,1.2844586,,,,,,,,,,,,,, +2012,11,24,7,30,1.1099349,,,,,,,,,,,,,, +2012,11,24,8,30,0.67820454,,,,,,,,,,,,,, +2012,11,24,9,30,0.15321477,,,,,,,,,,,,,, +2012,11,24,10,30,0.5330492,,,,,,,,,,,,,, +2012,11,24,11,30,1.0199221,,,,,,,,,,,,,, +2012,11,24,12,30,1.253442,,,,,,,,,,,,,, +2012,11,24,13,30,1.1531575,,,,,,,,,,,,,, +2012,11,24,14,30,0.7430788,,,,,,,,,,,,,, +2012,11,24,15,30,0.13814849,,,,,,,,,,,,,, +2012,11,24,16,30,0.73490155,,,,,,,,,,,,,, +2012,11,24,17,30,1.3151802,,,,,,,,,,,,,, +2012,11,24,18,30,1.6111053,,,,,,,,,,,,,, +2012,11,24,19,30,1.6466253,,,,,,,,,,,,,, +2012,11,24,20,30,1.3405625,,,,,,,,,,,,,, +2012,11,24,21,30,0.7010408,,,,,,,,,,,,,, +2012,11,24,22,30,0.17799929,,,,,,,,,,,,,, +2012,11,24,23,30,1.0630519,,,,,,,,,,,,,, +2012,11,25,0,30,1.6149204,,,,,,,,,,,,,, +2012,11,25,1,30,1.7247505,,,,,,,,,,,,,, +2012,11,25,2,30,1.6517242,,,,,,,,,,,,,, +2012,11,25,3,30,1.3811998,,,,,,,,,,,,,, +2012,11,25,4,30,0.6254821,,,,,,,,,,,,,, +2012,11,25,5,30,0.4787067,,,,,,,,,,,,,, +2012,11,25,6,30,1.2103602,,,,,,,,,,,,,, +2012,11,25,7,30,1.4624959,,,,,,,,,,,,,, +2012,11,25,8,30,1.3546121,,,,,,,,,,,,,, +2012,11,25,9,30,0.97659856,,,,,,,,,,,,,, +2012,11,25,10,30,0.40890127,,,,,,,,,,,,,, +2012,11,25,11,30,0.29630235,,,,,,,,,,,,,, +2012,11,25,12,30,0.8685565,,,,,,,,,,,,,, +2012,11,25,13,30,1.1418222,,,,,,,,,,,,,, +2012,11,25,14,30,1.0513878,,,,,,,,,,,,,, +2012,11,25,15,30,0.685036,,,,,,,,,,,,,, +2012,11,25,16,30,0.14080715,,,,,,,,,,,,,, +2012,11,25,17,30,0.6336214,,,,,,,,,,,,,, +2012,11,25,18,30,1.2019585,,,,,,,,,,,,,, +2012,11,25,19,30,1.5228101,,,,,,,,,,,,,, +2012,11,25,20,30,1.5458436,,,,,,,,,,,,,, +2012,11,25,21,30,1.183966,,,,,,,,,,,,,, +2012,11,25,22,30,0.48202187,,,,,,,,,,,,,, +2012,11,25,23,30,0.45436892,,,,,,,,,,,,,, +2012,11,26,0,30,1.3443625,,,,,,,,,,,,,, +2012,11,26,1,30,1.8263581,,,,,,,,,,,,,, +2012,11,26,2,30,1.8943523,,,,,,,,,,,,,, +2012,11,26,3,30,1.8091469,,,,,,,,,,,,,, +2012,11,26,4,30,1.4325796,,,,,,,,,,,,,, +2012,11,26,5,30,0.50563645,,,,,,,,,,,,,, +2012,11,26,6,30,0.7105345,,,,,,,,,,,,,, +2012,11,26,7,30,1.4682122,,,,,,,,,,,,,, +2012,11,26,8,30,1.7345263,,,,,,,,,,,,,, +2012,11,26,9,30,1.6385629,,,,,,,,,,,,,, +2012,11,26,10,30,1.2280966,,,,,,,,,,,,,, +2012,11,26,11,30,0.56834185,,,,,,,,,,,,,, +2012,11,26,12,30,0.22140655,,,,,,,,,,,,,, +2012,11,26,13,30,0.85139525,,,,,,,,,,,,,, +2012,11,26,14,30,1.1147039,,,,,,,,,,,,,, +2012,11,26,15,30,1.0154101,,,,,,,,,,,,,, +2012,11,26,16,30,0.6793856,,,,,,,,,,,,,, +2012,11,26,17,30,0.15071279,,,,,,,,,,,,,, +2012,11,26,18,30,0.6028393,,,,,,,,,,,,,, +2012,11,26,19,30,1.1841738,,,,,,,,,,,,,, +2012,11,26,20,30,1.4880399,,,,,,,,,,,,,, +2012,11,26,21,30,1.4341782,,,,,,,,,,,,,, +2012,11,26,22,30,0.9694406,,,,,,,,,,,,,, +2012,11,26,23,30,0.18133494,,,,,,,,,,,,,, +2012,11,27,0,30,0.8156009,,,,,,,,,,,,,, +2012,11,27,1,30,1.6600599,,,,,,,,,,,,,, +2012,11,27,2,30,2.0343432,,,,,,,,,,,,,, +2012,11,27,3,30,2.04,,,,,,,,,,,,,, +2012,11,27,4,30,1.8867514,,,,,,,,,,,,,, +2012,11,27,5,30,1.3229076,,,,,,,,,,,,,, +2012,11,27,6,30,0.2460614,,,,,,,,,,,,,, +2012,11,27,7,30,1.0918151,,,,,,,,,,,,,, +2012,11,27,8,30,1.8158424,,,,,,,,,,,,,, +2012,11,27,9,30,2.0337608,,,,,,,,,,,,,, +2012,11,27,10,30,1.8675721,,,,,,,,,,,,,, +2012,11,27,11,30,1.3387096,,,,,,,,,,,,,, +2012,11,27,12,30,0.5480594,,,,,,,,,,,,,, +2012,11,27,13,30,0.31140882,,,,,,,,,,,,,, +2012,11,27,14,30,0.9408984,,,,,,,,,,,,,, +2012,11,27,15,30,1.1536927,,,,,,,,,,,,,, +2012,11,27,16,30,1.0270298,,,,,,,,,,,,,, +2012,11,27,17,30,0.6763817,,,,,,,,,,,,,, +2012,11,27,18,30,0.13193505,,,,,,,,,,,,,, +2012,11,27,19,30,0.6857232,,,,,,,,,,,,,, +2012,11,27,20,30,1.2481394,,,,,,,,,,,,,, +2012,11,27,21,30,1.46467,,,,,,,,,,,,,, +2012,11,27,22,30,1.2781371,,,,,,,,,,,,,, +2012,11,27,23,30,0.68269265,,,,,,,,,,,,,, +2012,11,28,0,30,0.2251821,,,,,,,,,,,,,, +2012,11,28,1,30,1.2291143,,,,,,,,,,,,,, +2012,11,28,2,30,1.9689173,,,,,,,,,,,,,, +2012,11,28,3,30,2.2042222,,,,,,,,,,,,,, +2012,11,28,4,30,2.1242335,,,,,,,,,,,,,, +2012,11,28,5,30,1.8357731,,,,,,,,,,,,,, +2012,11,28,6,30,1.0202897,,,,,,,,,,,,,, +2012,11,28,7,30,0.3834334,,,,,,,,,,,,,, +2012,11,28,8,30,1.5679057,,,,,,,,,,,,,, +2012,11,28,9,30,2.1703029,,,,,,,,,,,,,, +2012,11,28,10,30,2.2638216,,,,,,,,,,,,,, +2012,11,28,11,30,1.951484,,,,,,,,,,,,,, +2012,11,28,12,30,1.2571323,,,,,,,,,,,,,, +2012,11,28,13,30,0.34991834,,,,,,,,,,,,,, +2012,11,28,14,30,0.5291872,,,,,,,,,,,,,, +2012,11,28,15,30,1.0965691,,,,,,,,,,,,,, +2012,11,28,16,30,1.225939,,,,,,,,,,,,,, +2012,11,28,17,30,1.0345198,,,,,,,,,,,,,, +2012,11,28,18,30,0.6011194,,,,,,,,,,,,,, +2012,11,28,19,30,0.15428312,,,,,,,,,,,,,, +2012,11,28,20,30,0.8746084,,,,,,,,,,,,,, +2012,11,28,21,30,1.3452053,,,,,,,,,,,,,, +2012,11,28,22,30,1.4109335,,,,,,,,,,,,,, +2012,11,28,23,30,1.0610676,,,,,,,,,,,,,, +2012,11,29,0,30,0.32230282,,,,,,,,,,,,,, +2012,11,29,1,30,0.67782694,,,,,,,,,,,,,, +2012,11,29,2,30,1.6516823,,,,,,,,,,,,,, +2012,11,29,3,30,2.2281833,,,,,,,,,,,,,, +2012,11,29,4,30,2.307529,,,,,,,,,,,,,, +2012,11,29,5,30,2.114873,,,,,,,,,,,,,, +2012,11,29,6,30,1.621368,,,,,,,,,,,,,, +2012,11,29,7,30,0.5357045,,,,,,,,,,,,,, +2012,11,29,8,30,0.9706377,,,,,,,,,,,,,, +2012,11,29,9,30,2.0373685,,,,,,,,,,,,,, +2012,11,29,10,30,2.4312282,,,,,,,,,,,,,, +2012,11,29,11,30,2.3448825,,,,,,,,,,,,,, +2012,11,29,12,30,1.8485224,,,,,,,,,,,,,, +2012,11,29,13,30,0.99395657,,,,,,,,,,,,,, +2012,11,29,14,30,0.046089638,,,,,,,,,,,,,, +2012,11,29,15,30,0.81288034,,,,,,,,,,,,,, +2012,11,29,16,30,1.2671907,,,,,,,,,,,,,, +2012,11,29,17,30,1.275971,,,,,,,,,,,,,, +2012,11,29,18,30,0.96786916,,,,,,,,,,,,,, +2012,11,29,19,30,0.40071902,,,,,,,,,,,,,, +2012,11,29,20,30,0.41230384,,,,,,,,,,,,,, +2012,11,29,21,30,1.1108493,,,,,,,,,,,,,, +2012,11,29,22,30,1.4169638,,,,,,,,,,,,,, +2012,11,29,23,30,1.2985262,,,,,,,,,,,,,, +2012,11,30,0,30,0.7745356,,,,,,,,,,,,,, +2012,11,30,1,30,0.11778854,,,,,,,,,,,,,, +2012,11,30,2,30,1.1675996,,,,,,,,,,,,,, +2012,11,30,3,30,2.0324423,,,,,,,,,,,,,, +2012,11,30,4,30,2.403331,,,,,,,,,,,,,, +2012,11,30,5,30,2.3242543,,,,,,,,,,,,,, +2012,11,30,6,30,1.9834108,,,,,,,,,,,,,, +2012,11,30,7,30,1.2296691,,,,,,,,,,,,,, +2012,11,30,8,30,0.19279447,,,,,,,,,,,,,, +2012,11,30,9,30,1.581559,,,,,,,,,,,,,, +2012,11,30,10,30,2.3910546,,,,,,,,,,,,,, +2012,11,30,11,30,2.5302508,,,,,,,,,,,,,, +2012,11,30,12,30,2.2533123,,,,,,,,,,,,,, +2012,11,30,13,30,1.5781053,,,,,,,,,,,,,, +2012,11,30,14,30,0.6065316,,,,,,,,,,,,,, +2012,11,30,15,30,0.37385038,,,,,,,,,,,,,, +2012,11,30,16,30,1.0949044,,,,,,,,,,,,,, +2012,11,30,17,30,1.3916738,,,,,,,,,,,,,, +2012,11,30,18,30,1.2429599,,,,,,,,,,,,,, +2012,11,30,19,30,0.78223217,,,,,,,,,,,,,, +2012,11,30,20,30,0.13146678,,,,,,,,,,,,,, +2012,11,30,21,30,0.7546522,,,,,,,,,,,,,, +2012,11,30,22,30,1.3168374,,,,,,,,,,,,,, +2012,11,30,23,30,1.418236,,,,,,,,,,,,,, +2012,12,1,0,30,1.1109171,,,,,,,,,,,,,, +2012,12,1,1,30,0.41328484,,,,,,,,,,,,,, +2012,12,1,2,30,0.6022944,,,,,,,,,,,,,, +2012,12,1,3,30,1.6417434,,,,,,,,,,,,,, +2012,12,1,4,30,2.3223634,,,,,,,,,,,,,, +2012,12,1,5,30,2.4727085,,,,,,,,,,,,,, +2012,12,1,6,30,2.237193,,,,,,,,,,,,,, +2012,12,1,7,30,1.7079451,,,,,,,,,,,,,, +2012,12,1,8,30,0.6860694,,,,,,,,,,,,,, +2012,12,1,9,30,0.837438,,,,,,,,,,,,,, +2012,12,1,10,30,2.0833163,,,,,,,,,,,,,, +2012,12,1,11,30,2.5619552,,,,,,,,,,,,,, +2012,12,1,12,30,2.4635935,,,,,,,,,,,,,, +2012,12,1,13,30,2.0221066,,,,,,,,,,,,,, +2012,12,1,14,30,1.1976452,,,,,,,,,,,,,, +2012,12,1,15,30,0.1797764,,,,,,,,,,,,,, +2012,12,1,16,30,0.7453847,,,,,,,,,,,,,, +2012,12,1,17,30,1.3102667,,,,,,,,,,,,,, +2012,12,1,18,30,1.4185534,,,,,,,,,,,,,, +2012,12,1,19,30,1.0979276,,,,,,,,,,,,,, +2012,12,1,20,30,0.49369588,,,,,,,,,,,,,, +2012,12,1,21,30,0.3192677,,,,,,,,,,,,,, +2012,12,1,22,30,1.0631248,,,,,,,,,,,,,, +2012,12,1,23,30,1.4313631,,,,,,,,,,,,,, +2012,12,2,0,30,1.3267515,,,,,,,,,,,,,, +2012,12,2,1,30,0.8432385,,,,,,,,,,,,,, +2012,12,2,2,30,0.028771043,,,,,,,,,,,,,, +2012,12,2,3,30,1.1003785,,,,,,,,,,,,,, +2012,12,2,4,30,2.0373247,,,,,,,,,,,,,, +2012,12,2,5,30,2.483701,,,,,,,,,,,,,, +2012,12,2,6,30,2.42358,,,,,,,,,,,,,, +2012,12,2,7,30,2.0309849,,,,,,,,,,,,,, +2012,12,2,8,30,1.2912327,,,,,,,,,,,,,, +2012,12,2,9,30,0.15737881,,,,,,,,,,,,,, +2012,12,2,10,30,1.4514612,,,,,,,,,,,,,, +2012,12,2,11,30,2.394406,,,,,,,,,,,,,, +2012,12,2,12,30,2.5531018,,,,,,,,,,,,,, +2012,12,2,13,30,2.279549,,,,,,,,,,,,,, +2012,12,2,14,30,1.7067394,,,,,,,,,,,,,, +2012,12,2,15,30,0.77173245,,,,,,,,,,,,,, +2012,12,2,16,30,0.27650192,,,,,,,,,,,,,, +2012,12,2,17,30,1.0398666,,,,,,,,,,,,,, +2012,12,2,18,30,1.4168428,,,,,,,,,,,,,, +2012,12,2,19,30,1.3360019,,,,,,,,,,,,,, +2012,12,2,20,30,0.8679646,,,,,,,,,,,,,, +2012,12,2,21,30,0.18604904,,,,,,,,,,,,,, +2012,12,2,22,30,0.6421056,,,,,,,,,,,,,, +2012,12,2,23,30,1.2655504,,,,,,,,,,,,,, +2012,12,3,0,30,1.4306333,,,,,,,,,,,,,, +2012,12,3,1,30,1.1472324,,,,,,,,,,,,,, +2012,12,3,2,30,0.51431245,,,,,,,,,,,,,, +2012,12,3,3,30,0.45930114,,,,,,,,,,,,,, +2012,12,3,4,30,1.5379825,,,,,,,,,,,,,, +2012,12,3,5,30,2.2937884,,,,,,,,,,,,,, +2012,12,3,6,30,2.4935322,,,,,,,,,,,,,, +2012,12,3,7,30,2.2503092,,,,,,,,,,,,,, +2012,12,3,8,30,1.707669,,,,,,,,,,,,,, +2012,12,3,9,30,0.7824362,,,,,,,,,,,,,, +2012,12,3,10,30,0.60486734,,,,,,,,,,,,,, +2012,12,3,11,30,1.9008272,,,,,,,,,,,,,, +2012,12,3,12,30,2.5029857,,,,,,,,,,,,,, +2012,12,3,13,30,2.4191642,,,,,,,,,,,,,, +2012,12,3,14,30,2.034712,,,,,,,,,,,,,, +2012,12,3,15,30,1.3532892,,,,,,,,,,,,,, +2012,12,3,16,30,0.360651,,,,,,,,,,,,,, +2012,12,3,17,30,0.617585,,,,,,,,,,,,,, +2012,12,3,18,30,1.2236707,,,,,,,,,,,,,, +2012,12,3,19,30,1.4181267,,,,,,,,,,,,,, +2012,12,3,20,30,1.1835757,,,,,,,,,,,,,, +2012,12,3,21,30,0.6240013,,,,,,,,,,,,,, +2012,12,3,22,30,0.16602871,,,,,,,,,,,,,, +2012,12,3,23,30,0.86030304,,,,,,,,,,,,,, +2012,12,4,0,30,1.339442,,,,,,,,,,,,,, +2012,12,4,1,30,1.3333881,,,,,,,,,,,,,, +2012,12,4,2,30,0.91557586,,,,,,,,,,,,,, +2012,12,4,3,30,0.17935215,,,,,,,,,,,,,, +2012,12,4,4,30,0.8497402,,,,,,,,,,,,,, +2012,12,4,5,30,1.8367608,,,,,,,,,,,,,, +2012,12,4,6,30,2.367532,,,,,,,,,,,,,, +2012,12,4,7,30,2.347304,,,,,,,,,,,,,, +2012,12,4,8,30,1.9660591,,,,,,,,,,,,,, +2012,12,4,9,30,1.3075434,,,,,,,,,,,,,, +2012,12,4,10,30,0.28333455,,,,,,,,,,,,,, +2012,12,4,11,30,1.091024,,,,,,,,,,,,,, +2012,12,4,12,30,2.145085,,,,,,,,,,,,,, +2012,12,4,13,30,2.452758,,,,,,,,,,,,,, +2012,12,4,14,30,2.2197113,,,,,,,,,,,,,, +2012,12,4,15,30,1.7626331,,,,,,,,,,,,,, +2012,12,4,16,30,0.99454564,,,,,,,,,,,,,, +2012,12,4,17,30,0.078785524,,,,,,,,,,,,,, +2012,12,4,18,30,0.8606346,,,,,,,,,,,,,, +2012,12,4,19,30,1.3111341,,,,,,,,,,,,,, +2012,12,4,20,30,1.3638132,,,,,,,,,,,,,, +2012,12,4,21,30,1.0313627,,,,,,,,,,,,,, +2012,12,4,22,30,0.44194,,,,,,,,,,,,,, +2012,12,4,23,30,0.28677753,,,,,,,,,,,,,, +2012,12,5,0,30,0.9505464,,,,,,,,,,,,,, +2012,12,5,1,30,1.3138435,,,,,,,,,,,,,, +2012,12,5,2,30,1.1938533,,,,,,,,,,,,,, +2012,12,5,3,30,0.69489455,,,,,,,,,,,,,, +2012,12,5,4,30,0.11437528,,,,,,,,,,,,,, +2012,12,5,5,30,1.10306,,,,,,,,,,,,,, +2012,12,5,6,30,1.9366173,,,,,,,,,,,,,, +2012,12,5,7,30,2.245917,,,,,,,,,,,,,, +2012,12,5,8,30,2.0699873,,,,,,,,,,,,,, +2012,12,5,9,30,1.6183771,,,,,,,,,,,,,, +2012,12,5,10,30,0.90744704,,,,,,,,,,,,,, +2012,12,5,11,30,0.2029314,,,,,,,,,,,,,, +2012,12,5,12,30,1.4016937,,,,,,,,,,,,,, +2012,12,5,13,30,2.204258,,,,,,,,,,,,,, +2012,12,5,14,30,2.301396,,,,,,,,,,,,,, +2012,12,5,15,30,1.989322,,,,,,,,,,,,,, +2012,12,5,16,30,1.47955,,,,,,,,,,,,,, +2012,12,5,17,30,0.661356,,,,,,,,,,,,,, +2012,12,5,18,30,0.31506926,,,,,,,,,,,,,, +2012,12,5,19,30,1.018245,,,,,,,,,,,,,, +2012,12,5,20,30,1.3571595,,,,,,,,,,,,,, +2012,12,5,21,30,1.3217015,,,,,,,,,,,,,, +2012,12,5,22,30,0.94337237,,,,,,,,,,,,,, +2012,12,5,23,30,0.36708468,,,,,,,,,,,,,, +2012,12,6,0,30,0.31755313,,,,,,,,,,,,,, +2012,12,6,1,30,0.9454544,,,,,,,,,,,,,, +2012,12,6,2,30,1.2530006,,,,,,,,,,,,,, +2012,12,6,3,30,1.0827986,,,,,,,,,,,,,, +2012,12,6,4,30,0.55601054,,,,,,,,,,,,,, +2012,12,6,5,30,0.24400559,,,,,,,,,,,,,, +2012,12,6,6,30,1.1596342,,,,,,,,,,,,,, +2012,12,6,7,30,1.8185723,,,,,,,,,,,,,, +2012,12,6,8,30,1.9616524,,,,,,,,,,,,,, +2012,12,6,9,30,1.7253134,,,,,,,,,,,,,, +2012,12,6,10,30,1.2835772,,,,,,,,,,,,,, +2012,12,6,11,30,0.5859333,,,,,,,,,,,,,, +2012,12,6,12,30,0.4665691,,,,,,,,,,,,,, +2012,12,6,13,30,1.5337927,,,,,,,,,,,,,, +2012,12,6,14,30,2.1260414,,,,,,,,,,,,,, +2012,12,6,15,30,2.0926585,,,,,,,,,,,,,, +2012,12,6,16,30,1.7468933,,,,,,,,,,,,,, +2012,12,6,17,30,1.2066455,,,,,,,,,,,,,, +2012,12,6,18,30,0.38197303,,,,,,,,,,,,,, +2012,12,6,19,30,0.51757616,,,,,,,,,,,,,, +2012,12,6,20,30,1.141722,,,,,,,,,,,,,, +2012,12,6,21,30,1.4251387,,,,,,,,,,,,,, +2012,12,6,22,30,1.3426471,,,,,,,,,,,,,, +2012,12,6,23,30,0.95321894,,,,,,,,,,,,,, +2012,12,7,0,30,0.40630174,,,,,,,,,,,,,, +2012,12,7,1,30,0.26058397,,,,,,,,,,,,,, +2012,12,7,2,30,0.9101184,,,,,,,,,,,,,, +2012,12,7,3,30,1.2284824,,,,,,,,,,,,,, +2012,12,7,4,30,1.0613158,,,,,,,,,,,,,, +2012,12,7,5,30,0.5512141,,,,,,,,,,,,,, +2012,12,7,6,30,0.2002972,,,,,,,,,,,,,, +2012,12,7,7,30,1.0065724,,,,,,,,,,,,,, +2012,12,7,8,30,1.5210811,,,,,,,,,,,,,, +2012,12,7,9,30,1.5964984,,,,,,,,,,,,,, +2012,12,7,10,30,1.4023638,,,,,,,,,,,,,, +2012,12,7,11,30,1.0318182,,,,,,,,,,,,,, +2012,12,7,12,30,0.382928,,,,,,,,,,,,,, +2012,12,7,13,30,0.59715164,,,,,,,,,,,,,, +2012,12,7,14,30,1.5215176,,,,,,,,,,,,,, +2012,12,7,15,30,1.9598713,,,,,,,,,,,,,, +2012,12,7,16,30,1.8625495,,,,,,,,,,,,,, +2012,12,7,17,30,1.5194652,,,,,,,,,,,,,, +2012,12,7,18,30,0.9733922,,,,,,,,,,,,,, +2012,12,7,19,30,0.16748394,,,,,,,,,,,,,, +2012,12,7,20,30,0.6855568,,,,,,,,,,,,,, +2012,12,7,21,30,1.287611,,,,,,,,,,,,,, +2012,12,7,22,30,1.5539267,,,,,,,,,,,,,, +2012,12,7,23,30,1.4434985,,,,,,,,,,,,,, +2012,12,8,0,30,1.0608997,,,,,,,,,,,,,, +2012,12,8,1,30,0.53527105,,,,,,,,,,,,,, +2012,12,8,2,30,0.17482857,,,,,,,,,,,,,, +2012,12,8,3,30,0.91370267,,,,,,,,,,,,,, +2012,12,8,4,30,1.291741,,,,,,,,,,,,,, +2012,12,8,5,30,1.1610196,,,,,,,,,,,,,, +2012,12,8,6,30,0.698342,,,,,,,,,,,,,, +2012,12,8,7,30,0.044559587,,,,,,,,,,,,,, +2012,12,8,8,30,0.6904039,,,,,,,,,,,,,, +2012,12,8,9,30,1.138582,,,,,,,,,,,,,, +2012,12,8,10,30,1.2581217,,,,,,,,,,,,,, +2012,12,8,11,30,1.1766427,,,,,,,,,,,,,, +2012,12,8,12,30,0.8914151,,,,,,,,,,,,,, +2012,12,8,13,30,0.29286423,,,,,,,,,,,,,, +2012,12,8,14,30,0.60712713,,,,,,,,,,,,,, +2012,12,8,15,30,1.4102137,,,,,,,,,,,,,, +2012,12,8,16,30,1.75707,,,,,,,,,,,,,, +2012,12,8,17,30,1.6560061,,,,,,,,,,,,,, +2012,12,8,18,30,1.3427541,,,,,,,,,,,,,, +2012,12,8,19,30,0.7970704,,,,,,,,,,,,,, +2012,12,8,20,30,0.04531084,,,,,,,,,,,,,, +2012,12,8,21,30,0.8629166,,,,,,,,,,,,,, +2012,12,8,22,30,1.487579,,,,,,,,,,,,,, +2012,12,8,23,30,1.7465616,,,,,,,,,,,,,, +2012,12,9,0,30,1.611413,,,,,,,,,,,,,, +2012,12,9,1,30,1.2400566,,,,,,,,,,,,,, +2012,12,9,2,30,0.7022192,,,,,,,,,,,,,, +2012,12,9,3,30,0.13536455,,,,,,,,,,,,,, +2012,12,9,4,30,1.0047334,,,,,,,,,,,,,, +2012,12,9,5,30,1.461689,,,,,,,,,,,,,, +2012,12,9,6,30,1.380547,,,,,,,,,,,,,, +2012,12,9,7,30,0.9781011,,,,,,,,,,,,,, +2012,12,9,8,30,0.37244907,,,,,,,,,,,,,, +2012,12,9,9,30,0.31253082,,,,,,,,,,,,,, +2012,12,9,10,30,0.79060835,,,,,,,,,,,,,, +2012,12,9,11,30,1.0341121,,,,,,,,,,,,,, +2012,12,9,12,30,1.0747769,,,,,,,,,,,,,, +2012,12,9,13,30,0.8482795,,,,,,,,,,,,,, +2012,12,9,14,30,0.28983968,,,,,,,,,,,,,, +2012,12,9,15,30,0.5294344,,,,,,,,,,,,,, +2012,12,9,16,30,1.2529444,,,,,,,,,,,,,, +2012,12,9,17,30,1.5784361,,,,,,,,,,,,,, +2012,12,9,18,30,1.5198164,,,,,,,,,,,,,, +2012,12,9,19,30,1.2355698,,,,,,,,,,,,,, +2012,12,9,20,30,0.66613686,,,,,,,,,,,,,, +2012,12,9,21,30,0.1952913,,,,,,,,,,,,,, +2012,12,9,22,30,1.0788901,,,,,,,,,,,,,, +2012,12,9,23,30,1.7410357,,,,,,,,,,,,,, +2012,12,10,0,30,1.9801931,,,,,,,,,,,,,, +2012,12,10,1,30,1.8167095,,,,,,,,,,,,,, +2012,12,10,2,30,1.4479152,,,,,,,,,,,,,, +2012,12,10,3,30,0.84607315,,,,,,,,,,,,,, +2012,12,10,4,30,0.17532097,,,,,,,,,,,,,, +2012,12,10,5,30,1.2025683,,,,,,,,,,,,,, +2012,12,10,6,30,1.7297693,,,,,,,,,,,,,, +2012,12,10,7,30,1.6922462,,,,,,,,,,,,,, +2012,12,10,8,30,1.3367499,,,,,,,,,,,,,, +2012,12,10,9,30,0.74834883,,,,,,,,,,,,,, +2012,12,10,10,30,0.096026,,,,,,,,,,,,,, +2012,12,10,11,30,0.57100207,,,,,,,,,,,,,, +2012,12,10,12,30,0.95513725,,,,,,,,,,,,,, +2012,12,10,13,30,1.075574,,,,,,,,,,,,,, +2012,12,10,14,30,0.87424004,,,,,,,,,,,,,, +2012,12,10,15,30,0.35270172,,,,,,,,,,,,,, +2012,12,10,16,30,0.40576512,,,,,,,,,,,,,, +2012,12,10,17,30,1.1140885,,,,,,,,,,,,,, +2012,12,10,18,30,1.48078,,,,,,,,,,,,,, +2012,12,10,19,30,1.4730469,,,,,,,,,,,,,, +2012,12,10,20,30,1.1811485,,,,,,,,,,,,,, +2012,12,10,21,30,0.54865175,,,,,,,,,,,,,, +2012,12,10,22,30,0.3817023,,,,,,,,,,,,,, +2012,12,10,23,30,1.3397274,,,,,,,,,,,,,, +2012,12,11,0,30,2.026329,,,,,,,,,,,,,, +2012,12,11,1,30,2.2214766,,,,,,,,,,,,,, +2012,12,11,2,30,2.0238767,,,,,,,,,,,,,, +2012,12,11,3,30,1.6372178,,,,,,,,,,,,,, +2012,12,11,4,30,0.91394645,,,,,,,,,,,,,, +2012,12,11,5,30,0.32354861,,,,,,,,,,,,,, +2012,12,11,6,30,1.503805,,,,,,,,,,,,,, +2012,12,11,7,30,2.0689282,,,,,,,,,,,,,, +2012,12,11,8,30,2.0471976,,,,,,,,,,,,,, +2012,12,11,9,30,1.695583,,,,,,,,,,,,,, +2012,12,11,10,30,1.0557282,,,,,,,,,,,,,, +2012,12,11,11,30,0.2507933,,,,,,,,,,,,,, +2012,12,11,12,30,0.5120705,,,,,,,,,,,,,, +2012,12,11,13,30,0.9970559,,,,,,,,,,,,,, +2012,12,11,14,30,1.1416385,,,,,,,,,,,,,, +2012,12,11,15,30,0.94850034,,,,,,,,,,,,,, +2012,12,11,16,30,0.4584764,,,,,,,,,,,,,, +2012,12,11,17,30,0.29188365,,,,,,,,,,,,,, +2012,12,11,18,30,1.0552156,,,,,,,,,,,,,, +2012,12,11,19,30,1.4858685,,,,,,,,,,,,,, +2012,12,11,20,30,1.4907575,,,,,,,,,,,,,, +2012,12,11,21,30,1.1390513,,,,,,,,,,,,,, +2012,12,11,22,30,0.41463193,,,,,,,,,,,,,, +2012,12,11,23,30,0.6057162,,,,,,,,,,,,,, +2012,12,12,0,30,1.6360229,,,,,,,,,,,,,, +2012,12,12,1,30,2.3129325,,,,,,,,,,,,,, +2012,12,12,2,30,2.4369485,,,,,,,,,,,,,, +2012,12,12,3,30,2.2005086,,,,,,,,,,,,,, +2012,12,12,4,30,1.7668161,,,,,,,,,,,,,, +2012,12,12,5,30,0.86757725,,,,,,,,,,,,,, +2012,12,12,6,30,0.6009967,,,,,,,,,,,,,, +2012,12,12,7,30,1.8870245,,,,,,,,,,,,,, +2012,12,12,8,30,2.434221,,,,,,,,,,,,,, +2012,12,12,9,30,2.3795645,,,,,,,,,,,,,, +2012,12,12,10,30,1.973162,,,,,,,,,,,,,, +2012,12,12,11,30,1.2225852,,,,,,,,,,,,,, +2012,12,12,12,30,0.27495778,,,,,,,,,,,,,, +2012,12,12,13,30,0.58971924,,,,,,,,,,,,,, +2012,12,12,14,30,1.1145208,,,,,,,,,,,,,, +2012,12,12,15,30,1.2451923,,,,,,,,,,,,,, +2012,12,12,16,30,1.053009,,,,,,,,,,,,,, +2012,12,12,17,30,0.5642943,,,,,,,,,,,,,, +2012,12,12,18,30,0.24689977,,,,,,,,,,,,,, +2012,12,12,19,30,1.1046731,,,,,,,,,,,,,, +2012,12,12,20,30,1.5663561,,,,,,,,,,,,,, +2012,12,12,21,30,1.5224435,,,,,,,,,,,,,, +2012,12,12,22,30,1.0734713,,,,,,,,,,,,,, +2012,12,12,23,30,0.24924524,,,,,,,,,,,,,, +2012,12,13,0,30,0.8691738,,,,,,,,,,,,,, +2012,12,13,1,30,1.9478576,,,,,,,,,,,,,, +2012,12,13,2,30,2.5672479,,,,,,,,,,,,,, +2012,12,13,3,30,2.6003637,,,,,,,,,,,,,, +2012,12,13,4,30,2.323528,,,,,,,,,,,,,, +2012,12,13,5,30,1.8040167,,,,,,,,,,,,,, +2012,12,13,6,30,0.68360937,,,,,,,,,,,,,, +2012,12,13,7,30,0.99834394,,,,,,,,,,,,,, +2012,12,13,8,30,2.3064215,,,,,,,,,,,,,, +2012,12,13,9,30,2.7617395,,,,,,,,,,,,,, +2012,12,13,10,30,2.6219726,,,,,,,,,,,,,, +2012,12,13,11,30,2.1151586,,,,,,,,,,,,,, +2012,12,13,12,30,1.2305605,,,,,,,,,,,,,, +2012,12,13,13,30,0.16724026,,,,,,,,,,,,,, +2012,12,13,14,30,0.756346,,,,,,,,,,,,,, +2012,12,13,15,30,1.2701766,,,,,,,,,,,,,, +2012,12,13,16,30,1.3660104,,,,,,,,,,,,,, +2012,12,13,17,30,1.1565882,,,,,,,,,,,,,, +2012,12,13,18,30,0.6161114,,,,,,,,,,,,,, +2012,12,13,19,30,0.30941048,,,,,,,,,,,,,, +2012,12,13,20,30,1.2413839,,,,,,,,,,,,,, +2012,12,13,21,30,1.6670297,,,,,,,,,,,,,, +2012,12,13,22,30,1.5259644,,,,,,,,,,,,,, +2012,12,13,23,30,0.969211,,,,,,,,,,,,,, +2012,12,14,0,30,0.06558141,,,,,,,,,,,,,, +2012,12,14,1,30,1.1637521,,,,,,,,,,,,,, +2012,12,14,2,30,2.243773,,,,,,,,,,,,,, +2012,12,14,3,30,2.7580476,,,,,,,,,,,,,, +2012,12,14,4,30,2.6976357,,,,,,,,,,,,,, +2012,12,14,5,30,2.3763022,,,,,,,,,,,,,, +2012,12,14,6,30,1.7203245,,,,,,,,,,,,,, +2012,12,14,7,30,0.36851782,,,,,,,,,,,,,, +2012,12,14,8,30,1.4714818,,,,,,,,,,,,,, +2012,12,14,9,30,2.6877131,,,,,,,,,,,,,, +2012,12,14,10,30,2.9832208,,,,,,,,,,,,,, +2012,12,14,11,30,2.7310824,,,,,,,,,,,,,, +2012,12,14,12,30,2.1106303,,,,,,,,,,,,,, +2012,12,14,13,30,1.1037772,,,,,,,,,,,,,, +2012,12,14,14,30,0.061784707,,,,,,,,,,,,,, +2012,12,14,15,30,0.97002316,,,,,,,,,,,,,, +2012,12,14,16,30,1.4360324,,,,,,,,,,,,,, +2012,12,14,17,30,1.476646,,,,,,,,,,,,,, +2012,12,14,18,30,1.2163872,,,,,,,,,,,,,, +2012,12,14,19,30,0.57574314,,,,,,,,,,,,,, +2012,12,14,20,30,0.4684609,,,,,,,,,,,,,, +2012,12,14,21,30,1.4116143,,,,,,,,,,,,,, +2012,12,14,22,30,1.7398258,,,,,,,,,,,,,, +2012,12,14,23,30,1.4853852,,,,,,,,,,,,,, +2012,12,15,0,30,0.8271963,,,,,,,,,,,,,, +2012,12,15,1,30,0.21152464,,,,,,,,,,,,,, +2012,12,15,2,30,1.4642118,,,,,,,,,,,,,, +2012,12,15,3,30,2.4836142,,,,,,,,,,,,,, +2012,12,15,4,30,2.8635314,,,,,,,,,,,,,, +2012,12,15,5,30,2.7224755,,,,,,,,,,,,,, +2012,12,15,6,30,2.338266,,,,,,,,,,,,,, +2012,12,15,7,30,1.4946449,,,,,,,,,,,,,, +2012,12,15,8,30,0.19067535,,,,,,,,,,,,,, +2012,12,15,9,30,1.9367195,,,,,,,,,,,,,, +2012,12,15,10,30,2.9472728,,,,,,,,,,,,,, +2012,12,15,11,30,3.0559077,,,,,,,,,,,,,, +2012,12,15,12,30,2.7025743,,,,,,,,,,,,,, +2012,12,15,13,30,1.9802201,,,,,,,,,,,,,, +2012,12,15,14,30,0.87841254,,,,,,,,,,,,,, +2012,12,15,15,30,0.31356582,,,,,,,,,,,,,, +2012,12,15,16,30,1.196833,,,,,,,,,,,,,, +2012,12,15,17,30,1.5817524,,,,,,,,,,,,,, +2012,12,15,18,30,1.5431044,,,,,,,,,,,,,, +2012,12,15,19,30,1.2005583,,,,,,,,,,,,,, +2012,12,15,20,30,0.44432956,,,,,,,,,,,,,, +2012,12,15,21,30,0.6761998,,,,,,,,,,,,,, +2012,12,15,22,30,1.5602758,,,,,,,,,,,,,, +2012,12,15,23,30,1.762133,,,,,,,,,,,,,, +2012,12,16,0,30,1.4041677,,,,,,,,,,,,,, +2012,12,16,1,30,0.6550542,,,,,,,,,,,,,, +2012,12,16,2,30,0.46590868,,,,,,,,,,,,,, +2012,12,16,3,30,1.7278786,,,,,,,,,,,,,, +2012,12,16,4,30,2.6287534,,,,,,,,,,,,,, +2012,12,16,5,30,2.8717299,,,,,,,,,,,,,, +2012,12,16,6,30,2.6635847,,,,,,,,,,,,,, +2012,12,16,7,30,2.183332,,,,,,,,,,,,,, +2012,12,16,8,30,1.1322309,,,,,,,,,,,,,, +2012,12,16,9,30,0.6447834,,,,,,,,,,,,,, +2012,12,16,10,30,2.2933028,,,,,,,,,,,,,, +2012,12,16,11,30,3.0313916,,,,,,,,,,,,,, +2012,12,16,12,30,2.9820974,,,,,,,,,,,,,, +2012,12,16,13,30,2.5595481,,,,,,,,,,,,,, +2012,12,16,14,30,1.7503805,,,,,,,,,,,,,, +2012,12,16,15,30,0.5860557,,,,,,,,,,,,,, +2012,12,16,16,30,0.5962163,,,,,,,,,,,,,, +2012,12,16,17,30,1.4012369,,,,,,,,,,,,,, +2012,12,16,18,30,1.6768728,,,,,,,,,,,,,, +2012,12,16,19,30,1.5438449,,,,,,,,,,,,,, +2012,12,16,20,30,1.1103075,,,,,,,,,,,,,, +2012,12,16,21,30,0.2649138,,,,,,,,,,,,,, +2012,12,16,22,30,0.87316924,,,,,,,,,,,,,, +2012,12,16,23,30,1.650844,,,,,,,,,,,,,, +2012,12,17,0,30,1.7315524,,,,,,,,,,,,,, +2012,12,17,1,30,1.2913034,,,,,,,,,,,,,, +2012,12,17,2,30,0.4666391,,,,,,,,,,,,,, +2012,12,17,3,30,0.70300084,,,,,,,,,,,,,, +2012,12,17,4,30,1.9052824,,,,,,,,,,,,,, +2012,12,17,5,30,2.650382,,,,,,,,,,,,,, +2012,12,17,6,30,2.7723782,,,,,,,,,,,,,, +2012,12,17,7,30,2.5003376,,,,,,,,,,,,,, +2012,12,17,8,30,1.8987261,,,,,,,,,,,,,, +2012,12,17,9,30,0.6845914,,,,,,,,,,,,,, +2012,12,17,10,30,1.0796965,,,,,,,,,,,,,, +2012,12,17,11,30,2.4698014,,,,,,,,,,,,,, +2012,12,17,12,30,2.9430754,,,,,,,,,,,,,, +2012,12,17,13,30,2.7972379,,,,,,,,,,,,,, +2012,12,17,14,30,2.3271756,,,,,,,,,,,,,, +2012,12,17,15,30,1.4428861,,,,,,,,,,,,,, +2012,12,17,16,30,0.2652218,,,,,,,,,,,,,, +2012,12,17,17,30,0.86151445,,,,,,,,,,,,,, +2012,12,17,18,30,1.5511607,,,,,,,,,,,,,, +2012,12,17,19,30,1.707386,,,,,,,,,,,,,, +2012,12,17,20,30,1.486143,,,,,,,,,,,,,, +2012,12,17,21,30,0.9810565,,,,,,,,,,,,,, +2012,12,17,22,30,0.12667142,,,,,,,,,,,,,, +2012,12,17,23,30,1.0101279,,,,,,,,,,,,,, +2012,12,18,0,30,1.6681535,,,,,,,,,,,,,, +2012,12,18,1,30,1.6544892,,,,,,,,,,,,,, +2012,12,18,2,30,1.1579487,,,,,,,,,,,,,, +2012,12,18,3,30,0.28675053,,,,,,,,,,,,,, +2012,12,18,4,30,0.8756406,,,,,,,,,,,,,, +2012,12,18,5,30,1.953319,,,,,,,,,,,,,, +2012,12,18,6,30,2.5305917,,,,,,,,,,,,,, +2012,12,18,7,30,2.5546448,,,,,,,,,,,,,, +2012,12,18,8,30,2.2204375,,,,,,,,,,,,,, +2012,12,18,9,30,1.5103714,,,,,,,,,,,,,, +2012,12,18,10,30,0.25757188,,,,,,,,,,,,,, +2012,12,18,11,30,1.3765467,,,,,,,,,,,,,, +2012,12,18,12,30,2.4570343,,,,,,,,,,,,,, +2012,12,18,13,30,2.7296176,,,,,,,,,,,,,, +2012,12,18,14,30,2.538912,,,,,,,,,,,,,, +2012,12,18,15,30,2.022821,,,,,,,,,,,,,, +2012,12,18,16,30,1.0872552,,,,,,,,,,,,,, +2012,12,18,17,30,0.0833117,,,,,,,,,,,,,, +2012,12,18,18,30,1.0722377,,,,,,,,,,,,,, +2012,12,18,19,30,1.6347393,,,,,,,,,,,,,, +2012,12,18,20,30,1.6859146,,,,,,,,,,,,,, +2012,12,18,21,30,1.4031875,,,,,,,,,,,,,, +2012,12,18,22,30,0.86357754,,,,,,,,,,,,,, +2012,12,18,23,30,0.11488278,,,,,,,,,,,,,, +2012,12,19,0,30,1.0615089,,,,,,,,,,,,,, +2012,12,19,1,30,1.6158539,,,,,,,,,,,,,, +2012,12,19,2,30,1.544137,,,,,,,,,,,,,, +2012,12,19,3,30,1.0230054,,,,,,,,,,,,,, +2012,12,19,4,30,0.15287937,,,,,,,,,,,,,, +2012,12,19,5,30,0.93841046,,,,,,,,,,,,,, +2012,12,19,6,30,1.8439648,,,,,,,,,,,,,, +2012,12,19,7,30,2.2660441,,,,,,,,,,,,,, +2012,12,19,8,30,2.2230806,,,,,,,,,,,,,, +2012,12,19,9,30,1.8468008,,,,,,,,,,,,,, +2012,12,19,10,30,1.0859663,,,,,,,,,,,,,, +2012,12,19,11,30,0.19595475,,,,,,,,,,,,,, +2012,12,19,12,30,1.5016701,,,,,,,,,,,,,, +2012,12,19,13,30,2.297577,,,,,,,,,,,,,, +2012,12,19,14,30,2.444363,,,,,,,,,,,,,, +2012,12,19,15,30,2.2305503,,,,,,,,,,,,,, +2012,12,19,16,30,1.6702335,,,,,,,,,,,,,, +2012,12,19,17,30,0.73134375,,,,,,,,,,,,,, +2012,12,19,18,30,0.3357461,,,,,,,,,,,,,, +2012,12,19,19,30,1.2148398,,,,,,,,,,,,,, +2012,12,19,20,30,1.6670063,,,,,,,,,,,,,, +2012,12,19,21,30,1.6435993,,,,,,,,,,,,,, +2012,12,19,22,30,1.3362302,,,,,,,,,,,,,, +2012,12,19,23,30,0.8003682,,,,,,,,,,,,,, +2012,12,20,0,30,0.13201794,,,,,,,,,,,,,, +2012,12,20,1,30,1.0325341,,,,,,,,,,,,,, +2012,12,20,2,30,1.5166893,,,,,,,,,,,,,, +2012,12,20,3,30,1.4250652,,,,,,,,,,,,,, +2012,12,20,4,30,0.9166101,,,,,,,,,,,,,, +2012,12,20,5,30,0.110354766,,,,,,,,,,,,,, +2012,12,20,6,30,0.8576722,,,,,,,,,,,,,, +2012,12,20,7,30,1.5746237,,,,,,,,,,,,,, +2012,12,20,8,30,1.8829851,,,,,,,,,,,,,, +2012,12,20,9,30,1.819493,,,,,,,,,,,,,, +2012,12,20,10,30,1.4435503,,,,,,,,,,,,,, +2012,12,20,11,30,0.70662636,,,,,,,,,,,,,, +2012,12,20,12,30,0.41254765,,,,,,,,,,,,,, +2012,12,20,13,30,1.4731925,,,,,,,,,,,,,, +2012,12,20,14,30,2.0465164,,,,,,,,,,,,,, +2012,12,20,15,30,2.1230419,,,,,,,,,,,,,, +2012,12,20,16,30,1.8937279,,,,,,,,,,,,,, +2012,12,20,17,30,1.3130654,,,,,,,,,,,,,, +2012,12,20,18,30,0.42669398,,,,,,,,,,,,,, +2012,12,20,19,30,0.5263955,,,,,,,,,,,,,, +2012,12,20,20,30,1.305618,,,,,,,,,,,,,, +2012,12,20,21,30,1.6780056,,,,,,,,,,,,,, +2012,12,20,22,30,1.6128199,,,,,,,,,,,,,, +2012,12,20,23,30,1.3164413,,,,,,,,,,,,,, +2012,12,21,0,30,0.8081207,,,,,,,,,,,,,, +2012,12,21,1,30,0.134487,,,,,,,,,,,,,, +2012,12,21,2,30,0.95984316,,,,,,,,,,,,,, +2012,12,21,3,30,1.4109792,,,,,,,,,,,,,, +2012,12,21,4,30,1.3337144,,,,,,,,,,,,,, +2012,12,21,5,30,0.8767802,,,,,,,,,,,,,, +2012,12,21,6,30,0.17927934,,,,,,,,,,,,,, +2012,12,21,7,30,0.627092,,,,,,,,,,,,,, +2012,12,21,8,30,1.1846462,,,,,,,,,,,,,, +2012,12,21,9,30,1.4507568,,,,,,,,,,,,,, +2012,12,21,10,30,1.4222213,,,,,,,,,,,,,, +2012,12,21,11,30,1.0887632,,,,,,,,,,,,,, +2012,12,21,12,30,0.4319459,,,,,,,,,,,,,, +2012,12,21,13,30,0.5059083,,,,,,,,,,,,,, +2012,12,21,14,30,1.3290366,,,,,,,,,,,,,, +2012,12,21,15,30,1.7469597,,,,,,,,,,,,,, +2012,12,21,16,30,1.7936348,,,,,,,,,,,,,, +2012,12,21,17,30,1.5652614,,,,,,,,,,,,,, +2012,12,21,18,30,1.0022681,,,,,,,,,,,,,, +2012,12,21,19,30,0.19900858,,,,,,,,,,,,,, +2012,12,21,20,30,0.663442,,,,,,,,,,,,,, +2012,12,21,21,30,1.3767967,,,,,,,,,,,,,, +2012,12,21,22,30,1.6952426,,,,,,,,,,,,,, +2012,12,21,23,30,1.6150137,,,,,,,,,,,,,, +2012,12,22,0,30,1.3532985,,,,,,,,,,,,,, +2012,12,22,1,30,0.8686492,,,,,,,,,,,,,, +2012,12,22,2,30,0.1530409,,,,,,,,,,,,,, +2012,12,22,3,30,0.9001978,,,,,,,,,,,,,, +2012,12,22,4,30,1.3474488,,,,,,,,,,,,,, +2012,12,22,5,30,1.3110833,,,,,,,,,,,,,, +2012,12,22,6,30,0.9382513,,,,,,,,,,,,,, +2012,12,22,7,30,0.36581695,,,,,,,,,,,,,, +2012,12,22,8,30,0.29169452,,,,,,,,,,,,,, +2012,12,22,9,30,0.7630018,,,,,,,,,,,,,, +2012,12,22,10,30,1.069094,,,,,,,,,,,,,, +2012,12,22,11,30,1.1126107,,,,,,,,,,,,,, +2012,12,22,12,30,0.837581,,,,,,,,,,,,,, +2012,12,22,13,30,0.28544003,,,,,,,,,,,,,, +2012,12,22,14,30,0.47680458,,,,,,,,,,,,,, +2012,12,22,15,30,1.1094028,,,,,,,,,,,,,, +2012,12,22,16,30,1.4394963,,,,,,,,,,,,,, +2012,12,22,17,30,1.495466,,,,,,,,,,,,,, +2012,12,22,18,30,1.2899611,,,,,,,,,,,,,, +2012,12,22,19,30,0.765975,,,,,,,,,,,,,, +2012,12,22,20,30,0.04333359,,,,,,,,,,,,,, +2012,12,22,21,30,0.78355116,,,,,,,,,,,,,, +2012,12,22,22,30,1.4578441,,,,,,,,,,,,,, +2012,12,22,23,30,1.7350432,,,,,,,,,,,,,, +2012,12,23,0,30,1.6563126,,,,,,,,,,,,,, +2012,12,23,1,30,1.4293916,,,,,,,,,,,,,, +2012,12,23,2,30,0.9319216,,,,,,,,,,,,,, +2012,12,23,3,30,0.16909006,,,,,,,,,,,,,, +2012,12,23,4,30,0.90946895,,,,,,,,,,,,,, +2012,12,23,5,30,1.369174,,,,,,,,,,,,,, +2012,12,23,6,30,1.3894203,,,,,,,,,,,,,, +2012,12,23,7,30,1.112066,,,,,,,,,,,,,, +2012,12,23,8,30,0.64650595,,,,,,,,,,,,,, +2012,12,23,9,30,0.15121928,,,,,,,,,,,,,, +2012,12,23,10,30,0.42516318,,,,,,,,,,,,,, +2012,12,23,11,30,0.8254442,,,,,,,,,,,,,, +2012,12,23,12,30,0.93515587,,,,,,,,,,,,,, +2012,12,23,13,30,0.7073265,,,,,,,,,,,,,, +2012,12,23,14,30,0.25587294,,,,,,,,,,,,,, +2012,12,23,15,30,0.3589274,,,,,,,,,,,,,, +2012,12,23,16,30,0.86655015,,,,,,,,,,,,,, +2012,12,23,17,30,1.1791672,,,,,,,,,,,,,, +2012,12,23,18,30,1.2742101,,,,,,,,,,,,,, +2012,12,23,19,30,1.0933251,,,,,,,,,,,,,, +2012,12,23,20,30,0.5933287,,,,,,,,,,,,,, +2012,12,23,21,30,0.12444635,,,,,,,,,,,,,, +2012,12,23,22,30,0.9232251,,,,,,,,,,,,,, +2012,12,23,23,30,1.5670382,,,,,,,,,,,,,, +2012,12,24,0,30,1.8027022,,,,,,,,,,,,,, +2012,12,24,1,30,1.7266448,,,,,,,,,,,,,, +2012,12,24,2,30,1.5045261,,,,,,,,,,,,,, +2012,12,24,3,30,0.9350971,,,,,,,,,,,,,, +2012,12,24,4,30,0.1724062,,,,,,,,,,,,,, +2012,12,24,5,30,1.0253221,,,,,,,,,,,,,, +2012,12,24,6,30,1.5001576,,,,,,,,,,,,,, +2012,12,24,7,30,1.5738564,,,,,,,,,,,,,, +2012,12,24,8,30,1.3639042,,,,,,,,,,,,,, +2012,12,24,9,30,0.93588626,,,,,,,,,,,,,, +2012,12,24,10,30,0.3760336,,,,,,,,,,,,,, +2012,12,24,11,30,0.26218188,,,,,,,,,,,,,, +2012,12,24,12,30,0.75315195,,,,,,,,,,,,,, +2012,12,24,13,30,0.886083,,,,,,,,,,,,,, +2012,12,24,14,30,0.68561256,,,,,,,,,,,,,, +2012,12,24,15,30,0.3162024,,,,,,,,,,,,,, +2012,12,24,16,30,0.21818466,,,,,,,,,,,,,, +2012,12,24,17,30,0.67512,,,,,,,,,,,,,, +2012,12,24,18,30,1.0251777,,,,,,,,,,,,,, +2012,12,24,19,30,1.1538182,,,,,,,,,,,,,, +2012,12,24,20,30,0.9638976,,,,,,,,,,,,,, +2012,12,24,21,30,0.44546112,,,,,,,,,,,,,, +2012,12,24,22,30,0.29551485,,,,,,,,,,,,,, +2012,12,24,23,30,1.1082184,,,,,,,,,,,,,, +2012,12,25,0,30,1.7112474,,,,,,,,,,,,,, +2012,12,25,1,30,1.8932451,,,,,,,,,,,,,, +2012,12,25,2,30,1.8020538,,,,,,,,,,,,,, +2012,12,25,3,30,1.5304811,,,,,,,,,,,,,, +2012,12,25,4,30,0.82731724,,,,,,,,,,,,,, +2012,12,25,5,30,0.33556128,,,,,,,,,,,,,, +2012,12,25,6,30,1.259771,,,,,,,,,,,,,, +2012,12,25,7,30,1.7330055,,,,,,,,,,,,,, +2012,12,25,8,30,1.8255771,,,,,,,,,,,,,, +2012,12,25,9,30,1.6107843,,,,,,,,,,,,,, +2012,12,25,10,30,1.1215419,,,,,,,,,,,,,, +2012,12,25,11,30,0.44470906,,,,,,,,,,,,,, +2012,12,25,12,30,0.30033147,,,,,,,,,,,,,, +2012,12,25,13,30,0.8251702,,,,,,,,,,,,,, +2012,12,25,14,30,0.9303011,,,,,,,,,,,,,, +2012,12,25,15,30,0.7391721,,,,,,,,,,,,,, +2012,12,25,16,30,0.41322488,,,,,,,,,,,,,, +2012,12,25,17,30,0.13911708,,,,,,,,,,,,,, +2012,12,25,18,30,0.61260116,,,,,,,,,,,,,, +2012,12,25,19,30,1.0048339,,,,,,,,,,,,,, +2012,12,25,20,30,1.1162194,,,,,,,,,,,,,, +2012,12,25,21,30,0.86109006,,,,,,,,,,,,,, +2012,12,25,22,30,0.276592,,,,,,,,,,,,,, +2012,12,25,23,30,0.5265774,,,,,,,,,,,,,, +2012,12,26,0,30,1.3502867,,,,,,,,,,,,,, +2012,12,26,1,30,1.8845301,,,,,,,,,,,,,, +2012,12,26,2,30,1.9909881,,,,,,,,,,,,,, +2012,12,26,3,30,1.8519971,,,,,,,,,,,,,, +2012,12,26,4,30,1.4663675,,,,,,,,,,,,,, +2012,12,26,5,30,0.5838932,,,,,,,,,,,,,, +2012,12,26,6,30,0.67075914,,,,,,,,,,,,,, +2012,12,26,7,30,1.593084,,,,,,,,,,,,,, +2012,12,26,8,30,2.02019,,,,,,,,,,,,,, +2012,12,26,9,30,2.0636897,,,,,,,,,,,,,, +2012,12,26,10,30,1.7511959,,,,,,,,,,,,,, +2012,12,26,11,30,1.1206958,,,,,,,,,,,,,, +2012,12,26,12,30,0.30764878,,,,,,,,,,,,,, +2012,12,26,13,30,0.49886507,,,,,,,,,,,,,, +2012,12,26,14,30,0.9808444,,,,,,,,,,,,,, +2012,12,26,15,30,1.0206741,,,,,,,,,,,,,, +2012,12,26,16,30,0.813046,,,,,,,,,,,,,, +2012,12,26,17,30,0.4599557,,,,,,,,,,,,,, +2012,12,26,18,30,0.13805327,,,,,,,,,,,,,, +2012,12,26,19,30,0.7114486,,,,,,,,,,,,,, +2012,12,26,20,30,1.0892869,,,,,,,,,,,,,, +2012,12,26,21,30,1.1093041,,,,,,,,,,,,,, +2012,12,26,22,30,0.7356413,,,,,,,,,,,,,, +2012,12,26,23,30,0.06414558,,,,,,,,,,,,,, +2012,12,27,0,30,0.8369628,,,,,,,,,,,,,, +2012,12,27,1,30,1.6413647,,,,,,,,,,,,,, +2012,12,27,2,30,2.0653872,,,,,,,,,,,,,, +2012,12,27,3,30,2.0723891,,,,,,,,,,,,,, +2012,12,27,4,30,1.8460125,,,,,,,,,,,,,, +2012,12,27,5,30,1.282018,,,,,,,,,,,,,, +2012,12,27,6,30,0.23820905,,,,,,,,,,,,,, +2012,12,27,7,30,1.1288313,,,,,,,,,,,,,, +2012,12,27,8,30,1.9693073,,,,,,,,,,,,,, +2012,12,27,9,30,2.28124,,,,,,,,,,,,,, +2012,12,27,10,30,2.1969907,,,,,,,,,,,,,, +2012,12,27,11,30,1.7151874,,,,,,,,,,,,,, +2012,12,27,12,30,0.9188081,,,,,,,,,,,,,, +2012,12,27,13,30,0.03931398,,,,,,,,,,,,,, +2012,12,27,14,30,0.78050506,,,,,,,,,,,,,, +2012,12,27,15,30,1.1568899,,,,,,,,,,,,,, +2012,12,27,16,30,1.1056887,,,,,,,,,,,,,, +2012,12,27,17,30,0.8368942,,,,,,,,,,,,,, +2012,12,27,18,30,0.37860316,,,,,,,,,,,,,, +2012,12,27,19,30,0.31498963,,,,,,,,,,,,,, +2012,12,27,20,30,0.93121994,,,,,,,,,,,,,, +2012,12,27,21,30,1.207523,,,,,,,,,,,,,, +2012,12,27,22,30,1.0727575,,,,,,,,,,,,,, +2012,12,27,23,30,0.5446761,,,,,,,,,,,,,, +2012,12,28,0,30,0.2877285,,,,,,,,,,,,,, +2012,12,28,1,30,1.2208331,,,,,,,,,,,,,, +2012,12,28,2,30,1.9481701,,,,,,,,,,,,,, +2012,12,28,3,30,2.2204504,,,,,,,,,,,,,, +2012,12,28,4,30,2.1106884,,,,,,,,,,,,,, +2012,12,28,5,30,1.7520916,,,,,,,,,,,,,, +2012,12,28,6,30,0.95436734,,,,,,,,,,,,,, +2012,12,28,7,30,0.400908,,,,,,,,,,,,,, +2012,12,28,8,30,1.6405461,,,,,,,,,,,,,, +2012,12,28,9,30,2.3052678,,,,,,,,,,,,,, +2012,12,28,10,30,2.4343765,,,,,,,,,,,,,, +2012,12,28,11,30,2.1692524,,,,,,,,,,,,,, +2012,12,28,12,30,1.4958693,,,,,,,,,,,,,, +2012,12,28,13,30,0.5636828,,,,,,,,,,,,,, +2012,12,28,14,30,0.38063878,,,,,,,,,,,,,, +2012,12,28,15,30,1.0720801,,,,,,,,,,,,,, +2012,12,28,16,30,1.3017758,,,,,,,,,,,,,, +2012,12,28,17,30,1.1349887,,,,,,,,,,,,,, +2012,12,28,18,30,0.752421,,,,,,,,,,,,,, +2012,12,28,19,30,0.16158755,,,,,,,,,,,,,, +2012,12,28,20,30,0.6396095,,,,,,,,,,,,,, +2012,12,28,21,30,1.1836387,,,,,,,,,,,,,, +2012,12,28,22,30,1.2828197,,,,,,,,,,,,,, +2012,12,28,23,30,0.9603896,,,,,,,,,,,,,, +2012,12,29,0,30,0.26178962,,,,,,,,,,,,,, +2012,12,29,1,30,0.69813836,,,,,,,,,,,,,, +2012,12,29,2,30,1.6374747,,,,,,,,,,,,,, +2012,12,29,3,30,2.2183669,,,,,,,,,,,,,, +2012,12,29,4,30,2.314495,,,,,,,,,,,,,, +2012,12,29,5,30,2.0756822,,,,,,,,,,,,,, +2012,12,29,6,30,1.5335062,,,,,,,,,,,,,, +2012,12,29,7,30,0.48185268,,,,,,,,,,,,,, +2012,12,29,8,30,1.0067841,,,,,,,,,,,,,, +2012,12,29,9,30,2.115291,,,,,,,,,,,,,, +2012,12,29,10,30,2.520619,,,,,,,,,,,,,, +2012,12,29,11,30,2.4364574,,,,,,,,,,,,,, +2012,12,29,12,30,1.9818037,,,,,,,,,,,,,, +2012,12,29,13,30,1.1377373,,,,,,,,,,,,,, +2012,12,29,14,30,0.1352413,,,,,,,,,,,,,, +2012,12,29,15,30,0.776847,,,,,,,,,,,,,, +2012,12,29,16,30,1.3205049,,,,,,,,,,,,,, +2012,12,29,17,30,1.3789655,,,,,,,,,,,,,, +2012,12,29,18,30,1.0752852,,,,,,,,,,,,,, +2012,12,29,19,30,0.5459529,,,,,,,,,,,,,, +2012,12,29,20,30,0.23477249,,,,,,,,,,,,,, +2012,12,29,21,30,0.998391,,,,,,,,,,,,,, +2012,12,29,22,30,1.3782885,,,,,,,,,,,,,, +2012,12,29,23,30,1.2648858,,,,,,,,,,,,,, +2012,12,30,0,30,0.75284576,,,,,,,,,,,,,, +2012,12,30,1,30,0.11360959,,,,,,,,,,,,,, +2012,12,30,2,30,1.1574237,,,,,,,,,,,,,, +2012,12,30,3,30,2.018153,,,,,,,,,,,,,, +2012,12,30,4,30,2.3985085,,,,,,,,,,,,,, +2012,12,30,5,30,2.3171878,,,,,,,,,,,,,, +2012,12,30,6,30,1.9325832,,,,,,,,,,,,,, +2012,12,30,7,30,1.1619494,,,,,,,,,,,,,, +2012,12,30,8,30,0.21490929,,,,,,,,,,,,,, +2012,12,30,9,30,1.6198349,,,,,,,,,,,,,, +2012,12,30,10,30,2.46051,,,,,,,,,,,,,, +2012,12,30,11,30,2.575246,,,,,,,,,,,,,, +2012,12,30,12,30,2.2979085,,,,,,,,,,,,,, +2012,12,30,13,30,1.6750126,,,,,,,,,,,,,, +2012,12,30,14,30,0.6992261,,,,,,,,,,,,,, +2012,12,30,15,30,0.34813854,,,,,,,,,,,,,, +2012,12,30,16,30,1.1356553,,,,,,,,,,,,,, +2012,12,30,17,30,1.4935455,,,,,,,,,,,,,, +2012,12,30,18,30,1.3733197,,,,,,,,,,,,,, +2012,12,30,19,30,0.92785186,,,,,,,,,,,,,, +2012,12,30,20,30,0.26132327,,,,,,,,,,,,,, +2012,12,30,21,30,0.60957134,,,,,,,,,,,,,, +2012,12,30,22,30,1.2952645,,,,,,,,,,,,,, +2012,12,30,23,30,1.4625921,,,,,,,,,,,,,, +2012,12,31,0,30,1.1452478,,,,,,,,,,,,,, +2012,12,31,1,30,0.46553835,,,,,,,,,,,,,, +2012,12,31,2,30,0.5316762,,,,,,,,,,,,,, +2012,12,31,3,30,1.5886081,,,,,,,,,,,,,, +2012,12,31,4,30,2.2899947,,,,,,,,,,,,,, +2012,12,31,5,30,2.4501832,,,,,,,,,,,,,, +2012,12,31,6,30,2.2045972,,,,,,,,,,,,,, +2012,12,31,7,30,1.6543872,,,,,,,,,,,,,, +2012,12,31,8,30,0.65037763,,,,,,,,,,,,,, +2012,12,31,9,30,0.8383921,,,,,,,,,,,,,, +2012,12,31,10,30,2.12047,,,,,,,,,,,,,, +2012,12,31,11,30,2.620574,,,,,,,,,,,,,, +2012,12,31,12,30,2.4828808,,,,,,,,,,,,,, +2012,12,31,13,30,2.058798,,,,,,,,,,,,,, +2012,12,31,14,30,1.2911476,,,,,,,,,,,,,, +2012,12,31,15,30,0.23505875,,,,,,,,,,,,,, +2008,12,31,16,30,0.78573483,,,,,,,,,,,,,, +2008,12,31,17,30,1.423305,,,,,,,,,,,,,, +2008,12,31,18,30,1.5817568,,,,,,,,,,,,,, +2008,12,31,19,30,1.2973683,,,,,,,,,,,,,, +2008,12,31,20,30,0.7285456,,,,,,,,,,,,,, +2008,12,31,21,30,0.13518524,,,,,,,,,,,,,, +2008,12,31,22,30,0.93706787,,,,,,,,,,,,,, +2008,12,31,23,30,1.4786706,,,,,,,,,,,,,, diff --git a/hopp/simulation/technologies/csp/pySSC_daotk/ssc_wrap.py b/hopp/simulation/technologies/csp/pySSC_daotk/ssc_wrap.py index 6c931d28f..6d68ba11f 100644 --- a/hopp/simulation/technologies/csp/pySSC_daotk/ssc_wrap.py +++ b/hopp/simulation/technologies/csp/pySSC_daotk/ssc_wrap.py @@ -63,7 +63,7 @@ def __init__(self, tech_name, financial_name, defaults=None): self.params = {} self.params['tech_model'] = self.tech_name self.params['financial_model'] = self.financial_name - + def set(self, param_dict): if 'is_elec_heat_dur_off' in param_dict and type(param_dict['is_elec_heat_dur_off']) == list: param_dict['is_elec_heat_dur_off'] = param_dict['is_elec_heat_dur_off'][0] diff --git a/hopp/simulation/technologies/dispatch/__init__.py b/hopp/simulation/technologies/dispatch/__init__.py index 1a2b6c417..4670540f9 100644 --- a/hopp/simulation/technologies/dispatch/__init__.py +++ b/hopp/simulation/technologies/dispatch/__init__.py @@ -12,6 +12,9 @@ from hopp.simulation.technologies.dispatch.power_sources.wave_dispatch import ( WaveDispatch, ) +from hopp.simulation.technologies.dispatch.power_sources.tidal_dispatch import ( + TidalDispatch, +) from hopp.simulation.technologies.dispatch.grid_dispatch import GridDispatch from hopp.simulation.technologies.dispatch.hybrid_dispatch_options import ( diff --git a/hopp/simulation/technologies/dispatch/hybrid_dispatch.py b/hopp/simulation/technologies/dispatch/hybrid_dispatch.py index ae9727f01..b73a0d1fc 100644 --- a/hopp/simulation/technologies/dispatch/hybrid_dispatch.py +++ b/hopp/simulation/technologies/dispatch/hybrid_dispatch.py @@ -235,6 +235,10 @@ def wind_generation(self) -> list: @property def wave_generation(self) -> list: return [self.blocks[t].wave_generation.value for t in self.blocks.index_set()] + + @property + def tidal_generation(self) -> list: + return [self.blocks[t].tidal_generation.value for t in self.blocks.index_set()] @property def tower_generation(self) -> list: diff --git a/hopp/simulation/technologies/dispatch/hybrid_dispatch_builder_solver.py b/hopp/simulation/technologies/dispatch/hybrid_dispatch_builder_solver.py index eabac4fc3..725297547 100644 --- a/hopp/simulation/technologies/dispatch/hybrid_dispatch_builder_solver.py +++ b/hopp/simulation/technologies/dispatch/hybrid_dispatch_builder_solver.py @@ -696,7 +696,7 @@ def battery_heuristic(self): required_keys = ["desired_load"] if self.site.follow_desired_schedule: # Get difference between baseload demand and power generation and control scenario variables - load_value = self.site.desired_schedule + load_value = grid_limit load_difference = [ (load_value[x] - tot_gen[x]) for x in range(len(tot_gen)) ] diff --git a/hopp/simulation/technologies/dispatch/power_sources/__init__.py b/hopp/simulation/technologies/dispatch/power_sources/__init__.py index ea7bd3306..94ddf9dcf 100644 --- a/hopp/simulation/technologies/dispatch/power_sources/__init__.py +++ b/hopp/simulation/technologies/dispatch/power_sources/__init__.py @@ -8,3 +8,6 @@ from hopp.simulation.technologies.dispatch.power_sources.wave_dispatch import ( WaveDispatch, ) +from hopp.simulation.technologies.dispatch.power_sources.tidal_dispatch import ( + TidalDispatch, +) diff --git a/hopp/simulation/technologies/dispatch/power_sources/tidal_dispatch.py b/hopp/simulation/technologies/dispatch/power_sources/tidal_dispatch.py new file mode 100644 index 000000000..a2b682a5e --- /dev/null +++ b/hopp/simulation/technologies/dispatch/power_sources/tidal_dispatch.py @@ -0,0 +1,110 @@ +from typing import Union +from pyomo.environ import ConcreteModel, Expression, NonNegativeReals, Set, units, Var +from pyomo.network import Port + +import PySAM.MhkTidal as MhkTidal + +from hopp.simulation.technologies.financial import FinancialModelType +from hopp.simulation.technologies.dispatch.power_sources.power_source_dispatch import ( + PowerSourceDispatch, +) + + +class TidalDispatch(PowerSourceDispatch): + tidal_obj: Union[Expression, float] + _system_model: MhkTidal.MhkTidal + _financial_model: FinancialModelType + """Dispatch optimization model for mhk tidal power source.""" + + def __init__( + self, + pyomo_model: ConcreteModel, + indexed_set: Set, + system_model: MhkTidal.MhkTidal, + financial_model: FinancialModelType, + block_set_name: str = "tidal", + ): + """Initialize TidalDispatch. + + Args: + pyomo_model (ConcreteModel): Pyomo concrete model. + indexed_set (Set): Indexed set. + system_model (MhkTidal.MhkTidal): System model. + financial_model (FinancialModelType): Financial model. + block_set_name (str): Name of the block set. + + """ + super().__init__( + pyomo_model, + indexed_set, + system_model, + financial_model, + block_set_name=block_set_name, + ) + + def max_gross_profit_objective(self, hybrid_blocks): + """MHK tidal instance of maximum gross profit objective. + + Args: + hybrid_blocks (Pyomo.block): A generalized container for defining hierarchical + models by adding modeling components as attributes. + + """ + self.obj = Expression( + expr=sum( + -(1 / hybrid_blocks[t].time_weighting_factor) + * self.blocks[t].time_duration + * self.blocks[t].cost_per_generation + * hybrid_blocks[t].tidal_generation + for t in hybrid_blocks.index_set() + ) + ) + + def min_operating_cost_objective(self, hybrid_blocks): + """MHK tidal instance of minimum operating cost objective. + + Args: + hybrid_blocks (Pyomo.block): A generalized container for defining hierarchical + models by adding modeling components as attributes. + + """ + self.obj = sum( + hybrid_blocks[t].time_weighting_factor + * self.blocks[t].time_duration + * self.blocks[t].cost_per_generation + * hybrid_blocks[t].tidal_generation + for t in hybrid_blocks.index_set() + ) + + def _create_variables(self, hybrid): + """Create MHK tidal variables to add to hybrid plant instance. + + Args: + hybrid: Hybrid plant instance. + + Returns: + tuple: Tuple containing created variables. + - generation: Generation from given technology. + - load: Load from given technology. + + """ + hybrid.tidal_generation = Var( + doc="Power generation of tidal devices [MW]", + domain=NonNegativeReals, + units=units.MW, + initialize=0.0, + ) + return hybrid.tidal_generation, 0 + + def _create_port(self, hybrid): + """Create mhk tidal port to add to hybrid plant instance. + + Args: + hybrid: Hybrid plant instance. + + Returns: + Port: MHK tidal Port object. + + """ + hybrid.tidal_port = Port(initialize={"generation": hybrid.tidal_generation}) + return hybrid.tidal_port diff --git a/hopp/simulation/technologies/financial/mhk_cost_model.py b/hopp/simulation/technologies/financial/mhk_cost_model.py index 719b78588..57c7ffe0d 100644 --- a/hopp/simulation/technologies/financial/mhk_cost_model.py +++ b/hopp/simulation/technologies/financial/mhk_cost_model.py @@ -16,8 +16,9 @@ class MHKCostModelInputs(BaseClass): Configuration class for MHK Cost Model. Args: - reference_model_num: Reference model number from Sandia - Project (3, 5, or 6). + reference_model_num: Reference model number from the + Department of Energy Reference Model Project + (1, 3, 5, or 6). water_depth: Water depth in meters distance_to_shore: Distance to shore in meters number_rows: Number of rows in the device layout @@ -25,6 +26,19 @@ class MHKCostModelInputs(BaseClass): (default 'device_spacing') cable_system_overbuild: Cable system overbuild percentage (default 10%) + Note: + More information about the reference models and their + associated costs can be found in the + [Reference Model Project](https://energy.sandia.gov/programs/renewable-energy/water-power/projects/reference-model-project-rmp/) + + The supported reference models in this cost model are: + - Reference Model 1: Tidal Current Turbine + - Reference Model 3: Wave Point Absorber + - Reference Model 5: Oscillating Surge Flap + - Reference Model 6: Oscillating Water Column + + Additional MHK cost model information can be found + through the [System Advisor Model](https://sam.nrel.gov/) """ reference_model_num: int water_depth: float = field(validator=gt_zero) @@ -41,7 +55,7 @@ class MHKCosts(BaseClass): A class for calculating the costs associated with Marine Hydrokinetic (MHK) energy systems. This class initializes and configures cost calculations for MHK systems based on provided input parameters. - It uses the PySAM library for cost modeling which is based on the [Sandia Reference Model Project](https://energy.sandia.gov/programs/renewable-energy/water-power/projects/reference-model-project-rmp/). + It uses the PySAM library for cost modeling which is based on the [Department of Energy Reference Model Project](https://energy.sandia.gov/programs/renewable-energy/water-power/projects/reference-model-project-rmp/). Args: mhk_config: MHK system configuration parameters. @@ -75,7 +89,11 @@ def __attrs_post_init__(self): self._device_spacing = self.cost_model_inputs.device_spacing self._cable_sys_overbuild = self.cost_model_inputs.cable_system_overbuild - self._ref_model_num = "RM"+str(self.cost_model_inputs.reference_model_num) + ref_model_numbers = {1,3,5,6} + if self.cost_model_inputs.reference_model_num in ref_model_numbers: + self._ref_model_num = f"RM{self.cost_model_inputs.reference_model_num}" + else: + raise ValueError("reference_model_num can be 1, 3, 5 or 6") if self.cost_model_inputs.row_spacing is None: self._row_spacing = self.cost_model_inputs.device_spacing @@ -126,7 +144,12 @@ def initialize(self): else: raise Exception("Layout must be square or rectangular. Modify 'number_rows' or 'num_devices'.") self._cost_model.value("lib_wave_device", self._ref_model_num) - self._cost_model.value("marine_energy_tech", 0) + if self._ref_model_num == "RM3" or self._ref_model_num == "RM5" or self._ref_model_num == "RM6": + self._cost_model.value("marine_energy_tech", 0) # Wave + elif self._ref_model_num == "RM1": + self._cost_model.value('marine_energy_tech',1) # Tidal + else: + self._cost_model.value("marine_energy_tech", 0) # Generic self._cost_model.value("library_or_input_wec", 0) # Inter-array cable length, m # The total length of cable used within the array of devices @@ -199,11 +222,12 @@ def ref_model_num(self): @ref_model_num.setter def ref_model_num(self, ref_model_number: int): - if ref_model_number == 3 or ref_model_number == 5 or ref_model_number == 6: - self._ref_model_num = "RM"+ str(ref_model_number) + model_numbers = {1,3,5,6} + if ref_model_number in model_numbers: + self._ref_model_num = f"RM{ref_model_number}" self.initialize() else: - raise NotImplementedError + raise ValueError(f"Reference model number {ref_model_number} is not supported. Choose from {model_numbers}.") @property def library_or_input_wec(self): @@ -211,7 +235,8 @@ def library_or_input_wec(self): @library_or_input_wec.setter def library_or_input_wec(self): - if self.ref_model_num == 3 or self.ref_model_num == 5 or self.ref_model_num == 6: + model_numbers = {1,3,5,6} + if self.ref_model_num in model_numbers: self._cost_model.value("library_or_input_wec", 0) else: raise NotImplementedError diff --git a/hopp/simulation/technologies/grid.py b/hopp/simulation/technologies/grid.py index d654f0dab..d54d489be 100644 --- a/hopp/simulation/technologies/grid.py +++ b/hopp/simulation/technologies/grid.py @@ -50,7 +50,7 @@ class Grid(PowerSource): schedule_curtailed: NDArrayFloat = field(init=False) schedule_curtailed_percentage: float = field(init=False, default=0.) total_gen_max_feasible_year1: NDArrayFloat = field(init=False) - config_name: Optional[str] = field(default="GenericSystemSingleOwner") + config_name: Optional[str] = field(default="CustomGenerationProfileSingleOwner") def __attrs_post_init__(self): """ @@ -145,12 +145,12 @@ def simulate_grid_connection( max(schedule - gen, 0) for schedule, gen in zip(desired_schedule, self.generation_profile) ]) - self.missed_load_percentage = sum(self.missed_load)/sum(desired_schedule) * 100 + self.missed_load_percentage = (sum(self.missed_load)/sum(desired_schedule)) * 100 # Calculate curtailed schedule and curtailed schedule percentage self.schedule_curtailed = np.array([gen - schedule if gen > schedule else 0. for (gen, schedule) in zip(total_gen, lifetime_schedule)]) - self.schedule_curtailed_percentage = sum(self.schedule_curtailed)/sum(lifetime_schedule) * 100 + self.schedule_curtailed_percentage = (sum(self.schedule_curtailed)/sum(lifetime_schedule)) * 100 # NOTE: This is currently only happening for load following, would be good to make it more general # i.e. so that this analysis can be used when load following isn't being used (without storage) diff --git a/hopp/simulation/technologies/layout/pv_layout.py b/hopp/simulation/technologies/layout/pv_layout.py index d491740e9..df375581a 100644 --- a/hopp/simulation/technologies/layout/pv_layout.py +++ b/hopp/simulation/technologies/layout/pv_layout.py @@ -96,7 +96,7 @@ def _set_system_layout(self): self._system_model.SystemDesign.inverter_count = n_inverters logger.info(f"Solar Layout set for {self.module_power * self.num_modules} kw") - self._system_model.AdjustmentFactors.constant = self.flicker_loss * 100 # percent + self._system_model.AdjustmentFactors.adjust_constant = self.flicker_loss * 100 # percent def compute_pv_layout(self, solar_kw: float, diff --git a/hopp/simulation/technologies/layout/pv_layout_tools.py b/hopp/simulation/technologies/layout/pv_layout_tools.py index 9265cf897..14559ffe1 100644 --- a/hopp/simulation/technologies/layout/pv_layout_tools.py +++ b/hopp/simulation/technologies/layout/pv_layout_tools.py @@ -8,10 +8,15 @@ from shapely.prepared import ( PreparedGeometry, ) +from shapely.geometry.base import BaseGeometry +from shapely.geometry import Point, LineString, Polygon +from shapely.prepared import prep +from shapely.affinity import translate +from typing import Optional from hopp.simulation.technologies.layout.layout_tools import * from hopp.simulation.technologies.sites.site_info import SiteInfo -from hopp.simulation.technologies.layout.wind_layout_tools import * +from hopp.simulation.technologies.layout.wind_layout_tools import make_grid_lines def find_best_gcr( @@ -156,7 +161,7 @@ def place_solar_strands(max_num_modules: int, grid_lines = make_grid_lines( site_shape, translate(center, xoff=raw_phase_offset), - np.pi / 2, # N-S orientation + np.rad2deg(np.pi / 2), # N-S orientation interrow_spacing ) diff --git a/hopp/simulation/technologies/layout/pv_module.py b/hopp/simulation/technologies/layout/pv_module.py index 0b4035fab..d2fdd7064 100644 --- a/hopp/simulation/technologies/layout/pv_module.py +++ b/hopp/simulation/technologies/layout/pv_module.py @@ -38,18 +38,33 @@ def get_module_attribs(model: Union[pv_simple.Pvwattsv8, pv_detailed.Pvsamv1, di Returns the module attributes for either the PVsamv1 or PVWattsv8 models, see: https://nrel-pysam.readthedocs.io/en/main/modules/Pvsamv1.html#module-group - :param model: PVsamv1 or PVWattsv8 model or parameter dictionary - :param only_ref_vals: if True, only return the reference values (e.g., I_sc_ref) - :return: dict, with keys (if only_ref_values is True, otherwise will include all model-specific parameters): - area [m2] - aspect_ratio [-] - length [m] - I_mp_ref [A] - I_sc_ref [A] - P_mp_ref [kW] - V_mp_ref [V] - V_oc_ref [V] - width [m] + This function extracts module attributes from a given PV model or parameter dictionary. + If `only_ref_vals` is set to True, only the reference values (e.g., `I_sc_ref`, `V_mp_ref`) + are returned; otherwise, all model-specific parameters are included. + + Args: + model (Union[pv_simple.Pvwattsv8, pv_detailed.Pvsamv1, dict]): + The PV model (PVsamv1 or PVWattsv8) or a dictionary of parameters. + only_ref_vals (bool, optional): + If True, only returns the reference values. If False, includes all model-specific parameters. + Defaults to True. + + Returns: + dict: A dictionary containing module attributes. If `only_ref_vals` is True, the dictionary includes: + - `area` (float): Module area [m²]. + - `aspect_ratio` (float): Module aspect ratio [-]. + - `length` (float): Module length [m]. + - `width` (float): Module width [m]. + - `I_mp_ref` (float): Reference current at maximum power point [A]. + - `I_sc_ref` (float): Reference short-circuit current [A]. + - `P_mp_ref` (float): Reference power at maximum power point [kW]. + - `V_mp_ref` (float): Reference voltage at maximum power point [V]. + - `V_oc_ref` (float): Reference open-circuit voltage [V]. + + If `only_ref_vals` is False, additional model-specific attributes are included. + + Raises: + Exception: If the module model number is not recognized. """ MODEL_PREFIX = ['spe', 'cec', '6par', 'snl', 'sd11par', 'mlm'] @@ -153,10 +168,21 @@ def get_module_attribs(model: Union[pv_simple.Pvwattsv8, pv_detailed.Pvsamv1, di def set_module_attribs(model: Union[pv_simple.Pvwattsv8, pv_detailed.Pvsamv1], params: dict): """ Sets the module model parameters for either the PVsamv1 or PVWattsv8 models. - Will raise exception if not all required parameters are provided. - - :param model: PVWattsv8 or PVsamv1 model - :param params: dictionary of parameters + + This function assigns the required parameters to the given model. It verifies that all + necessary parameters are provided based on the selected module type and raises an + exception if any required parameters are missing. + + Args: + model (Union[pv_simple.Pvwattsv8, pv_detailed.Pvsamv1]): + The PVWattsv8 or PVsamv1 model instance. + params (dict): + Dictionary containing parameter key-value pairs required for the respective + module model. + + Raises: + Exception: If not all required parameters are provided or if the module model + number is unrecognized. """ if isinstance(model, pv_simple.Pvwattsv8): @@ -193,7 +219,6 @@ def set_module_attribs(model: Union[pv_simple.Pvwattsv8, pv_detailed.Pvsamv1], p 'cec_adjust', 'cec_alpha_sc', 'cec_beta_oc', - 'cec_gamma_r', 'cec_i_l_ref', 'cec_i_mp_ref', 'cec_i_o_ref', diff --git a/hopp/simulation/technologies/layout/wind_layout.py b/hopp/simulation/technologies/layout/wind_layout.py index b0e046a0a..54436aec9 100644 --- a/hopp/simulation/technologies/layout/wind_layout.py +++ b/hopp/simulation/technologies/layout/wind_layout.py @@ -1,101 +1,326 @@ from __future__ import annotations -from typing import Union, NamedTuple -import numpy as np +from typing import Union, Optional + import matplotlib.pyplot as plt +import numpy as np +from attrs import define, field, validators from shapely.geometry import Polygon, Point, MultiPolygon +from shapely.geometry.base import BaseGeometry from shapely.affinity import scale -import PySAM.Windpower as windpower -from hopp.utilities.log import hybrid_logger as logger +import PySAM.Windpower as windpower +from hopp.simulation.base import BaseClass from hopp.simulation.technologies.layout.wind_layout_tools import ( get_best_grid, get_evenly_spaced_points_along_border, - subtract_turbine_exclusion_zone + subtract_turbine_exclusion_zone, + make_site_boundary_for_square_grid_layout, + create_grid, + check_turbines_in_site, + adjust_site_for_box_grid_layout ) -from hopp.simulation.technologies.sites.site_info import SiteInfo - - -class WindBoundaryGridParameters(NamedTuple): - """ - border_spacing: spacing along border = (1 + border_spacing) * min spacing - border_offset: turbine border spacing offset as ratio of border spacing (0, 1) - grid_angle: turbine inner grid rotation (0, pi) [radians] - grid_aspect_power: grid aspect ratio [cols / rows] = 2^grid_aspect_power - row_phase_offset: inner grid phase offset (0,1) (20% suggested) +from hopp.simulation.technologies.sites.site_shape_tools import plot_site_polygon +from hopp.simulation.technologies.wind.floris import Floris +from hopp.utilities.log import hybrid_logger as logger +from hopp.utilities.validators import contains, range_val + + +@define +class WindBasicGridParameters(BaseClass): + """Configuration class for 'basicgrid' wind layout. + + Args: + row_D_spacing (float, Optional): rotor diameter multiplier for spacing between rows of + turbines (y direction). Defaults to 5.0. + turbine_D_spacing (float, Optional): rotor diameter multiplier for spacing between + turbines in a row (x direction). Defaults to 5.0. + grid_angle (float, Optional): grid rotation angle in degrees where 0 is North, increasing + clockwise. Defaults to 0.0. + row_phase_offset (float, Optional): offset of turbines along row from one row to the next. + Value must be between 0 and 1. Defaults to 0.0. + site_boundary_constrained (bool, Optional): whether to constrain the layout to the site. + Defaults to False. """ - border_spacing: float - border_offset: float - grid_angle: float - grid_aspect_power: float - row_phase_offset: float + row_D_spacing: Optional[float] = field(default=5.0) + turbine_D_spacing: Optional[float] = field(default=5.0) + grid_angle: Optional[float] = field(default=0.0) + row_phase_offset: Optional[float] = field(default=0.0, validator=range_val(0.0, 1.0)) + site_boundary_constrained: Optional[bool] = field(default=False) + +@define +class WindBoundaryGridParameters(BaseClass): + """Configuration class for 'boundarygrid' wind layout. + + Args: + border_spacing (float): border spacing ratio for turbines placed along border. + Defaults to 0.0; spacing along border = (1 + border_spacing) * min spacing. + border_offset (float): turbine border spacing offset as ratio of border spacing (0, 1). + Defaults to 0.0 + border_spacing_m (float, Optional): spacing along border in meters. Is used to calculate + ``border_spacing`` if ``min_spacing_m`` is also input. + min_spacing_m (float, Optional): minimum spacing between turbines in meters. + Defaults to 0.0. + min_spacing_D (float, Optional): minimum spacing between turbines as a multiplier of rotor diameter. + Defaults to 2.0. + max_spacing_m (float, Optional): maximum spacing between turbines in meters. + Defaults to 2e6. + max_spacing_D (float, Optional): maximum spacing between turbines as a multiplier of rotor diameter. + Defaults to 20.0. + grid_angle (float): turbine inner grid rotation (0, 180) [degrees] + grid_aspect_power (float, Optional): used to calculate grid_aspect_ratio. + grid aspect ratio [cols / rows] = 2^grid_aspect_power. + ``grid_aspect_ratio = np.exp(grid_aspect_power)``. + grid_aspect_ratio (float, Optional): cols / rows of turbine grid. Defaults to 1.0 + if neither ``grid_aspect_ratio`` or ``grid_aspect_power`` are provided. + row_phase_offset (float): inner grid phase offset (0,1). 20% suggested. + Value must be between 0 and 1. Defaults to 0.2 + """ -class WindCustomParameters(NamedTuple): + #TODO: rename to border_spacing_ratio? + border_spacing: float = field(default=0.0) + #TODO: rename to border_offset_ratio? + border_offset: float = field(default = 0.0, validator = range_val(0.0, 1.0)) + border_spacing_m: Optional[float] = field(default = None) + + min_spacing_m: Optional[float] = field(default = 0.0, validator=validators.instance_of((float, type(None)))) + min_spacing_D: Optional[float] = field(default = 2.0, validator=validators.instance_of((float, type(None)))) + max_spacing_m: Optional[float] = field(default = 2e6, validator=validators.instance_of((float, type(None)))) + max_spacing_D: Optional[float] = field(default = 20.0, validator=validators.instance_of((float, type(None)))) + + grid_angle: float = field(default=0.0, validator=range_val(0.0, 180.0)) + grid_aspect_power: Optional[float] = field(default=None) + grid_aspect_ratio: Optional[float] = field(default=None) + row_phase_offset: float = field(default=0.2, validator=range_val(0.0, 1.0)) + + min_spacing: float = field(init = False) #min spacing in meters + max_spacing: float = field(init = False) #max spacing in meters + def __attrs_post_init__(self): + """ + Post-initialization hook for setting up additional attributes. + This method initializes the following attributes: + - grid_aspect_ratio (float): The aspect ratio of the turbine grid (cols / rows). + If `grid_aspect_ratio` is None, it is set to 1 if `grid_aspect_power` is None, + otherwise it is set to the exponential of `grid_aspect_power`. + - border_spacing (float): The turbine border spacing offset as a ratio of border spacing (0, 1). + Defaults to 0.0. Calculated as (border_spacing_m / min_spacing_m) - 1. + - min_spacing (float): The minimum spacing between turbines in meters. It takes the maximum of + `min_spacing_m` and `min_spacing_D * rotor_diameter`. + - max_spacing (float): The maximum spacing between turbines in meters. It takes the maximum of + `max_spacing_m` and `max_spacing_D * rotor_diameter`. + """ + + if self.grid_aspect_ratio is None: + #NOTE: unsure if this equation is correct given doc strong + self.grid_aspect_ratio = 1 if self.grid_aspect_power is None else np.exp( + self.grid_aspect_power + ) + + if self.min_spacing_m is not None and self.border_spacing_m is not None: + self.border_spacing = (self.border_spacing_m/self.min_spacing_m) - 1 + + def value(self, name: str, set_value=None): + """Set or retrieve an attribute of the class instance. + + If `set_value` is provided, the method sets the attribute `name` to `set_value`. + If `set_value` is not provided, the method retrieves the value of the attribute `name`. + + Args: + name (str): The name of the attribute to set or retrieve. + set_value (Optional): The value to set for the attribute `name`. + If `None`, the method retrieves the value of the attribute. Defaults to None. + + Returns: + The value of the attribute `name` if `set_value` is not provided. + """ + if set_value is not None: + self.__setattr__(name, set_value) + else: + return self.__getattribute__(name) + + def update_min_spacing_with_rotor_diameter(self,rotor_diameter: float): + """Update min_spacing based on rotor diameter. Sets min_spacing as the maximum + of min_spacing_m and rotor_diameter*min_spacing_D. + + Args: + rotor_diameter (float): rotor diameter in meters. + """ + min_spacing = max( + self.min_spacing_m, + rotor_diameter * self.min_spacing_D + ) + self.value("min_spacing", min_spacing) + +@define +class WindGridParameters(BaseClass): + """Configuration class for 'grid' wind layout. + + Args: + min_spacing_m (float, Optional): minimum spacing between turbines in meters. + Defaults to 0.0. + min_spacing_D (float, Optional): minimum spacing between turbines as a multiplier of rotor diameter. + Defaults to 2.0 """ - direct user input of the x and y coordinates + min_spacing_m: Optional[float] = field(default = 0.0) + min_spacing_D: Optional[float] = field(default = 2.0) + min_spacing: float = field(init = False) #min spacing in meters + + def update_min_spacing_with_rotor_diameter(self,rotor_diameter: float): + """update min_spacing based on rotor diameter. Sets min_spacing as the maximum + of min_spacing_m and rotor_diameter*min_spacing_D. + + Args: + rotor_diameter (float): rotor diameter in meters. + """ + self.min_spacing = max( + self.min_spacing_m, + rotor_diameter * self.min_spacing_D + ) + +@define +class WindCustomParameters(BaseClass): """ + Configuration class for 'custom' wind layout. - layout_x: list - layout_y: list - - -class WindLayout: + Args: + layout_x (list[float]): x-coordinates of turbines + layout_y (list[float]): y-coordinates of turbines """ + layout_x: list[float] + layout_y: list[float] + + +@define +class WindLayout(BaseClass): + """Class to manage wind farm layout. + + Args: + site_polygon (Polygon | BaseGeometry): site polygon shape. + _system_model (windpower.Windpower | Floris): pysam wind power object. Not currently + tested to work with floris. + layout_mode (str): layout choice: "boundarygrid", "grid", "custom", "basicgrid" + parameters ( + Union[ + WindBoundaryGridParameters, + WindCustomParameters, + WindBasicGridParameters, + WindGridParameters, + None, + dict + ] + ): wind layout parameters for the corresponding `layout_mode` + turbine_rating_kW (float, Optional): rating of a single turbine in kW. if not provided, + turbine power is estimated from the power-curve. """ - def __init__(self, - site_info: SiteInfo, - wind_source: windpower.Windpower, - layout_mode: str, - parameters: Union[WindBoundaryGridParameters, WindCustomParameters, None], - min_spacing: float = 200., - ): - """ - + site_polygon: Union[Polygon, BaseGeometry] + _system_model: Union[windpower.Windpower, Floris] + layout_mode: str = field( + validator=contains(['boundarygrid', 'grid', 'custom', 'basicgrid']), + converter=(str.strip, str.lower), + ) + parameters: Union[ + WindBoundaryGridParameters, + WindCustomParameters, + WindBasicGridParameters, + WindGridParameters, + dict, + ] + + turbine_rating_kW: Optional[float] = field(default=None) + + turb_pos_x: list[float] = field(init=False) + turb_pos_y: list[float] = field(init=False) + + def __attrs_post_init__(self): + """The following are initialized in this post init hook: + + - turb_pos_x (list[float]): x-coordinates of turbines + - turb_pos_y (list[float]): x-coordinates of turbines + + Note: these calculations are based on the default values of rotor diameter and turbine + layout. `min_spacing` and `max_spacing` are re-calculated in _get_system_config(). + `turb_pos_x` and `turb_pos_y` are reset in layout-specific functions. """ - self.site: SiteInfo = site_info - self._system_model: windpower.Windpower = wind_source - self.min_spacing = max(min_spacing, self._system_model.value("wind_turbine_rotor_diameter") * 2) - - if layout_mode not in ('boundarygrid', 'grid', 'custom'): - raise ValueError('Options for `layout_mode` are: "boundarygrid", "grid", "custom"') - self._layout_mode = layout_mode - - # layout design parameters - self.parameters = parameters - # turbine layout values - self.turb_pos_x = self._system_model.value("wind_farm_xCoordinates") - self.turb_pos_y = self._system_model.value("wind_farm_yCoordinates") + if isinstance(self._system_model, Floris): + self.turb_pos_x, self.turb_pos_y = self._system_model.wind_farm_layout + else: + self.turb_pos_x = self._system_model.value("wind_farm_xCoordinates") + self.turb_pos_y = self._system_model.value("wind_farm_yCoordinates") + + if isinstance(self.parameters, dict): + if self.layout_mode == 'boundarygrid': + self.parameters = WindBoundaryGridParameters.from_dict(self.parameters) + elif self.layout_mode == 'basicgrid': + self.parameters = WindBasicGridParameters.from_dict(self.parameters) + elif self.layout_mode == 'custom': + self.parameters = WindCustomParameters.from_dict(self.parameters) + elif self.layout_mode == 'grid': + self.parameters = WindGridParameters.from_dict(self.parameters) + elif self.parameters is None: + self.parameters = WindGridParameters() + + self._get_system_config() def _get_system_config(self): - self.min_spacing = max(self.min_spacing, self._system_model.value("wind_turbine_rotor_diameter") * 2) + """Update min and max spacing constraints in `parameters` based on actual rotor diameter of the wind turbine. + Only required if layout_mode is `grid` or `boundarygrid`. + """ + + if self.layout_mode == "boundarygrid" or self.layout_mode == "grid": + rotor_diameter = self._system_model.value("wind_turbine_rotor_diameter") + self.parameters.update_min_spacing_with_rotor_diameter(rotor_diameter) + if self.layout_mode == "boundarygrid": + max_spacing = max( + self.parameters.max_spacing_m, + rotor_diameter * self.parameters.max_spacing_D + ) + self.parameters.value("max_spacing", max_spacing) + def _set_system_layout(self): - self._system_model.value("wind_farm_xCoordinates", self.turb_pos_x) - self._system_model.value("wind_farm_yCoordinates", self.turb_pos_y) + """Set the number of turbines. System capacity gets modified as a result. + """ + if isinstance(self._system_model, Floris): + self._system_model.set_wind_farm_layout(self.turb_pos_x, self.turb_pos_y) + else: + self._system_model.value("wind_farm_xCoordinates", self.turb_pos_x) + self._system_model.value("wind_farm_yCoordinates", self.turb_pos_y) n_turbines = len(self.turb_pos_x) - turb_rating = max(self._system_model.value("wind_turbine_powercurve_powerout")) - self._system_model.value("system_capacity", n_turbines * turb_rating) - logger.info("Wind Layout set with {} turbines for {} kw system capacity".format(n_turbines, - n_turbines * turb_rating)) + if self.turbine_rating_kW is None: + turb_rating = max(self._system_model.value("wind_turbine_powercurve_powerout")) + self._system_model.value("system_capacity", n_turbines * turb_rating) + logger.info( + "Wind Layout set with {} turbines for {} kw system capacity".format( + n_turbines, n_turbines * turb_rating + ) + ) + else: + self._system_model.value("system_capacity", n_turbines * self.turbine_rating_kW) + logger.info( + "Wind Layout set with {} turbines for {} kw system capacity".format( + n_turbines, n_turbines * self.turbine_rating_kW + ) + ) + @property def rotor_diameter(self): return self._system_model.value("wind_turbine_rotor_diameter") - def reset_boundarygrid(self, - n_turbines, - parameters: WindBoundaryGridParameters, - exclusions: Polygon = None): - """ + def reset_boundarygrid(self, n_turbines, exclusions: Polygon=None): + """Create `boundarygrid` layout for input number of turbines. + Args: + n_turbines (int): number of turbines to include in layout. + exclusions (Polygon, Optional): exclusion area shape. Defaults to None. """ self._get_system_config() - wind_shape = Polygon(self.site.polygon.exterior) - if exclusions: + wind_shape = Polygon(self.site_polygon.exterior) + if exclusions is not None: wind_shape = wind_shape.difference(exclusions) # compute valid wind layout shape # place border turbines @@ -103,29 +328,32 @@ def reset_boundarygrid(self, if not isinstance(wind_shape, MultiPolygon): wind_shape = MultiPolygon([wind_shape, ]) - border_spacing = (parameters.border_spacing + 1) * self.min_spacing + border_spacing = (self.parameters.border_spacing + 1) * self.parameters.min_spacing for bounding_shape in wind_shape.geoms: turbine_positions.extend( get_evenly_spaced_points_along_border( bounding_shape.exterior, border_spacing, - parameters.border_offset, + self.parameters.border_offset, n_turbines - len(turbine_positions), - )) + ) + ) - valid_wind_shape = subtract_turbine_exclusion_zone(self.min_spacing, wind_shape, turbine_positions) + valid_wind_shape = subtract_turbine_exclusion_zone( + self.parameters.min_spacing, + wind_shape, turbine_positions, + ) # place interior grid turbines max_num_interior_turbines = n_turbines - len(turbine_positions) - grid_aspect = np.exp(parameters.grid_aspect_power) intrarow_spacing, grid_sites = get_best_grid( valid_wind_shape, wind_shape.centroid, - parameters.grid_angle, - grid_aspect, - parameters.row_phase_offset, - self.min_spacing * 10000, - self.min_spacing, + self.parameters.grid_angle, + self.parameters.grid_aspect_ratio, + self.parameters.row_phase_offset, + self.parameters.max_spacing, + self.parameters.min_spacing, max_num_interior_turbines, ) turbine_positions.extend(grid_sites) @@ -137,40 +365,43 @@ def reset_boundarygrid(self, self.turb_pos_x, self.turb_pos_y = xcoords, ycoords self._set_system_layout() - def reset_grid(self, - n_turbines): - """ - Set the number of turbines. System capacity gets modified as a result. - Wind turbines will be placed in a grid + def reset_grid(self, n_turbines): + """Create a `grid` layout for specified number of turbines within the `site_polygon`. + Spacing turbines based on `min_spacing` attribute. Does not use `parameters` attribute. - :param n_turbines: int + Args: + n_turbines (int): number of turbines to include in layout. """ self._get_system_config() xcoords = [] ycoords = [] - if not self.site.polygon: + if not self.site_polygon: raise ValueError("WindPlant set_num_turbines_in_grid requires site polygon") if n_turbines > 0: spacing = np.sqrt( - self.site.polygon.area / n_turbines) * self.site.polygon.envelope.area / self.site.polygon.area - spacing = max(spacing, self._system_model.value("wind_turbine_rotor_diameter") * 3) + self.site_polygon.area / n_turbines + ) * self.site_polygon.envelope.area / self.site_polygon.area + spacing = max(spacing, self.parameters.min_spacing) coords = [] while len(coords) < n_turbines: - envelope = Polygon(self.site.polygon.envelope) + envelope = Polygon(self.site_polygon.envelope) while len(coords) < n_turbines and envelope.area > spacing * spacing: d = 0 sub_boundary = envelope.boundary while d <= sub_boundary.length and len(coords) < n_turbines: coord = sub_boundary.interpolate(d) - if self.site.polygon.buffer(1e3).contains(coord): + if self.site_polygon.buffer(1e3).contains(coord): coords.append(coord) d += spacing if len(coords) < n_turbines: - envelope = scale(envelope, (envelope.bounds[2] - spacing) / envelope.bounds[2], - (envelope.bounds[3] - spacing) / envelope.bounds[3]) + envelope = scale( + envelope, + (envelope.bounds[2] - spacing) / envelope.bounds[2], + (envelope.bounds[3] - spacing) / envelope.bounds[3] + ) if len(coords) < n_turbines: spacing *= .95 coords = [] @@ -181,42 +412,175 @@ def reset_grid(self, self.turb_pos_x, self.turb_pos_y = xcoords, ycoords self._set_system_layout() - def set_layout_params(self, - wind_kw, - params: Union[WindBoundaryGridParameters, WindCustomParameters, None], - exclusions: Polygon = None): - self.parameters = params - n_turbines = int(np.floor(wind_kw / max(self._system_model.Turbine.wind_turbine_powercurve_powerout))) - if self._layout_mode == 'boundarygrid': - self.reset_boundarygrid(n_turbines, params, exclusions) - elif self._layout_mode == 'grid': + def reset_basic_grid(self,n_turbines): + """Create a most-square `basicgrid` layout for specified number of turbines. + requires parameters are `WindBasicGridParameters`. + Args: + n_turbines (int): number of turbines to include in layout. + """ + + self._get_system_config() + + interrow_spacing = self.parameters.row_D_spacing * self.rotor_diameter + intrarow_spacing = self.parameters.turbine_D_spacing * self.rotor_diameter + + data = make_site_boundary_for_square_grid_layout( + n_turbines, + self.rotor_diameter, + self.parameters.row_D_spacing, + self.parameters.turbine_D_spacing, + ) + vertices = np.array([np.array(v) for v in data['site_boundaries']['verts']]) + square_bounds = Polygon(vertices) + grid_position_square = create_grid(square_bounds, + square_bounds.centroid, + self.parameters.grid_angle, + intrarow_spacing, + interrow_spacing, + self.parameters.row_phase_offset, + int(n_turbines), + ) + + if self.parameters.site_boundary_constrained: + # 1) see if turbines are in the site polygon + xcoords_grid = [point.x for point in grid_position_square] + ycoords_grid = [point.y for point in grid_position_square] + x_ingrid, y_ingrid = check_turbines_in_site( + xcoords_grid, + ycoords_grid, + self.site_polygon, + ) + if len(x_ingrid)==n_turbines: + self.turb_pos_x, self.turb_pos_y = x_ingrid, y_ingrid + self._set_system_layout() + return + x,y = adjust_site_for_box_grid_layout( + self.site_polygon, + n_turbines, + interrow_spacing, + intrarow_spacing, + self.parameters.row_phase_offset, + self.parameters.grid_angle, + ) + if len(x) == n_turbines or len(x) > x_ingrid: + self.turb_pos_x, self.turb_pos_y = x_ingrid, y_ingrid + self._set_system_layout() + return + else: + # Use the largest min spacing to set the parameters + largest_min_spacing_D = max(self.parameters.row_D_spacing, self.parameters.turbine_D_spacing) + largest_min_spacing_m = max(interrow_spacing, intrarow_spacing) + original_parameters = self.parameters._get_model_dict() + self.parameters = WindGridParameters(min_spacing_D = largest_min_spacing_D, min_spacing_m=largest_min_spacing_m) + self.layout_mode = "grid" + self.parameters.update_min_spacing_with_rotor_diameter(self.rotor_diameter) + self.reset_grid(n_turbines) + self.layout_mode = "basicgrid" + self.parameters = original_parameters + + else: + # center on the site + xcoords_grid = [point.x for point in grid_position_square] + ycoords_grid = [point.y for point in grid_position_square] + x_center = (max(xcoords_grid) - min(xcoords_grid)) / 2 + y_center = (max(ycoords_grid) - min(ycoords_grid)) / 2 + x_shift = self.site_polygon.centroid.x - x_center + y_shift = self.site_polygon.centroid.y - y_center + xcoords = [x + x_shift for x in xcoords_grid] + ycoords = [y + y_shift for y in ycoords_grid] + self.turb_pos_x, self.turb_pos_y = xcoords, ycoords + self._set_system_layout() + + def set_layout_params( + self, + wind_kw, + params: Optional[ + Union[WindBoundaryGridParameters, WindBasicGridParameters, WindCustomParameters, WindGridParameters] + ], + exclusions: Polygon=None, + ): + """Set wind farm layout to accommodate input wind capacity. + + Args: + wind_kw (float): wind farm capacity in kW + params ( + Optional[ + Union[ + WindBoundaryGridParameters, + WindBasicGridParameters, + WindCustomParameters, + WindGridParameters, + ] + ] + ): wind farm parameters. + exclusions (Polygon, optional): exclusions in site. Only used if layout_mode is + 'boundarygrid'. Defaults to None. + """ + if params: + self.parameters = params + if isinstance(params,WindBoundaryGridParameters): + self.layout_mode = "boundarygrid" + elif isinstance(params,WindCustomParameters): + self.layout_mode = "custom" + elif isinstance(params,WindBasicGridParameters): + self.layout_mode = "basicgrid" + elif isinstance(params,WindGridParameters): + self.layout_mode = "grid" + + # If using FLORIS, set the turbine_rating_kW to the max power curve value + if self.turbine_rating_kW is None: + self.turbine_rating_kW = max( + self._system_model.value("wind_turbine_powercurve_powerout") + ) + + n_turbines = int(np.floor(wind_kw / self.turbine_rating_kW)) + + if self.layout_mode == 'boundarygrid': + self.reset_boundarygrid(n_turbines, exclusions) + elif self.layout_mode == 'grid': self.reset_grid(n_turbines) - elif self._layout_mode == 'custom': + elif self.layout_mode == 'basicgrid': + self.reset_basic_grid(n_turbines) + elif self.layout_mode == 'custom': self.turb_pos_x, self.turb_pos_y = self.parameters.layout_x, self.parameters.layout_y self._set_system_layout() - def set_num_turbines(self, - n_turbines: int): - """ - Changes number of turbines in the existing layout + def set_num_turbines(self, n_turbines: int): + """Set number of turbines and wind farm layout. + + Args: + n_turbines (int): number of turbines to include in layout. """ self._get_system_config() - if self._layout_mode == 'boundarygrid': - self.reset_boundarygrid(n_turbines, self.parameters) - elif self._layout_mode == 'grid': + if self.layout_mode == 'boundarygrid': + self.reset_boundarygrid(n_turbines) + elif self.layout_mode == 'grid': self.reset_grid(n_turbines) + elif self.layout_mode == 'basicgrid': + self.reset_basic_grid(n_turbines) + elif self.layout_mode == 'custom': + self.turb_pos_x, self.turb_pos_y = self.parameters.layout_x, self.parameters.layout_y + self._set_system_layout() - def plot(self, - figure=None, - axes=None, - turbine_color='b', - site_border_color='k', - site_alpha=0.95, - linewidth=4.0 - ): + def plot( + self, + figure=None, + axes=None, + turbine_color='b', + site_border_color='k', + site_alpha=0.95, + linewidth=4.0, + ): if not figure and not axes: - figure, axes = self.site.plot(figure, axes, site_border_color, site_alpha, linewidth) + figure, axes = plot_site_polygon( + self.site_polygon, + figure, + axes, + site_border_color, + site_alpha, + linewidth, + ) turb_pos_x = self._system_model.value("wind_farm_xCoordinates") turb_pos_y = self._system_model.value("wind_farm_yCoordinates") @@ -224,12 +588,11 @@ def plot(self, x, y = turb_pos_x[n], turb_pos_y[n] circle = plt.Circle( (x, y), - radius=self.rotor_diameter/2.0, - # linewidth=linewidth * 10, + radius=self.rotor_diameter / 2.0, color=turbine_color, fill=True, linewidth=linewidth, - ) + ) axes.add_patch(circle) return figure, axes diff --git a/hopp/simulation/technologies/layout/wind_layout_tools.py b/hopp/simulation/technologies/layout/wind_layout_tools.py index a2336ff20..a35204df6 100644 --- a/hopp/simulation/technologies/layout/wind_layout_tools.py +++ b/hopp/simulation/technologies/layout/wind_layout_tools.py @@ -1,4 +1,5 @@ import numpy as np +import pandas as pd from typing import Optional from shapely.affinity import rotate, translate @@ -6,9 +7,9 @@ from shapely.geometry.base import BaseGeometry from shapely.prepared import prep from shapely.ops import unary_union - +from shapely.geometry import Polygon, MultiPoint from hopp.simulation.technologies.layout.layout_tools import binary_search_float - +from hopp.simulation.technologies.sites.site_shape_tools import calc_dist_between_two_points_cartesian, rotate_shape def get_evenly_spaced_points_along_border(boundary: BaseGeometry, spacing: float, @@ -40,25 +41,40 @@ def make_grid_lines(site_shape: BaseGeometry, grid_angle: float, interrow_spacing: float ) -> list: - """ - Place parallel lines inside a site - :param site_shape: Polygon - :param center: where to center the grid - :param grid_angle: in degrees where 0 is east - :param interrow_spacing: distance between lines - :return: list of lines + """Place parallel lines inside a site. + + Process runs as follows: + + - `bounding_box_line`: line from (xmin,ymin) to (xmax,ymax) + - `base_line`: at y=0, x goes from negative to positive `bounding_box_line.length` + - `line_length`: `2x(bounding_box_line.length) = 2*(sqrt[(xmax-xmin)^2 + (ymax-ymin)^2])` + - shift `base_line` so ymax,ymin = center.y and (xmax - xmin)/2 = center.x + + Args: + site_shape (BaseGeometry): Polygon + center (Point): where to center the grid + grid_angle (float): in degrees where 0 is east + interrow_spacing (float): distance between lines + + Returns: + list[LineString]: grid lines as rows. """ if site_shape.is_empty: return [] + grid_angle = np.deg2rad(grid_angle) grid_angle = (grid_angle + np.pi) % (2 * np.pi) - np.pi # reset grid_angle to (-pi, pi) - bounds = site_shape.bounds + bounds = site_shape.bounds #(xmin,ymin,xmax,ymax) + #line from (xmin,ymin) to (xmax,ymax) bounding_box_line = LineString([(bounds[0], bounds[1]), (bounds[2], bounds[3])]) + #at y=0, x goes from negative to positive bounding_box_line.length base_line = LineString([(-bounding_box_line.length, 0), (bounding_box_line.length, 0)]) + # line_length = 2x(bounding_box_line.length) = 2*(sqrt[(xmax-xmin)^2 + (ymax-ymin)^2]) line_length = base_line.length base_line = rotate(base_line, -grid_angle, use_radians=True) + #shift baseline so ymax,ymin = center.y and (xmax - xmin)/2 = center.x base_line = translate(base_line, center.x, center.y) row_offset = Point( @@ -264,3 +280,172 @@ def subtract_turbine_exclusion_zone(min_spacing: float, each of the grid variables can change individually, however the discrete values remain fixed. """ + +def find_most_square_layout_dimensions(n_turbs): + """Calculate dimensions of the most-square shaped layout for + a given number of turbines. + + Args: + n_turbs (int): number of wind turbines. + + Returns: + 2-element tuple containing + + - **n_turbs_per_row** (int): number of turbines per row + - **n_rows** (int): number of rows in layout (rows are parallel to x-axis) + """ + n_turbs_per_row = np.floor_divide(n_turbs,np.sqrt(n_turbs)) + n_rows_min = n_turbs//n_turbs_per_row + remainder_turbs = n_turbs%n_turbs_per_row + if remainder_turbs>n_turbs_per_row: + n_extra_rows = np.ceil(remainder_turbs/n_turbs_per_row) + elif remainder_turbs==0: + n_extra_rows = 0 + else: + n_extra_rows = 1 + + n_rows = n_rows_min + n_extra_rows + + return n_turbs_per_row.astype(int),n_rows.astype(int) + +def make_site_boundary_for_square_grid_layout(n_turbs, rotor_diam,row_spacing, turbine_spacing): + """Generate coordinates for shape that would result in the most-square turbine layout. + + Args: + n_turbs (int): number of wind turbines + rotor_diam (float): rotor diameter of turbine in meters + row_spacing (int | float): spacing between rows as multiplier for rotor diameter + turbine_spacing (int | float): spacing between turbines in the same row + as multiplier for rotor diameter. + + Returns: + dict: coordinates for wind layout boundary, formatted as ``site_boundaries`` entry in ``site["data"]`` + """ + + + #distance between turbines in same row + intrarow_spacing = turbine_spacing*rotor_diam + #distance between rows + interrow_spacing = row_spacing*rotor_diam + + n_turbs_per_row,n_rows = find_most_square_layout_dimensions(n_turbs) + + center_x = ((n_turbs_per_row/2)*intrarow_spacing) + center_y = ((n_rows/2)*interrow_spacing) + (interrow_spacing*0.25) + x_dist_m = 2*center_x + y_dist_m = 2*center_y + + p0 = [0.0,0.0] + p1 = [0.0,y_dist_m] + p2 = [x_dist_m,y_dist_m] + p3 = [x_dist_m,0.0] + verts = [p0,p1,p2,p3] + return {"site_boundaries" : {"verts":verts, "verts_simple":verts}} + +def make_bounding_box_for_wind_layout(layout_x,layout_y): + """Get convex hull of wind layout. + + Args: + layout_x (List[float]): x-coordinates of turbines + layout_y (List[float]): y-coordinates of turbines + + Returns: + shapely.MultiPoint: convex hull of wind farm layout. + """ + + coords = [[x,y] for x,y in zip(layout_x,layout_y)] + multip = MultiPoint(coords) + return multip.convex_hull + + +def check_turbines_in_site(layout_x, layout_y, site_boundaries:BaseGeometry, tol=1e-3): + """Check that turbines are within site boundaries for a given tolerance. + + Args: + layout_x (List[float]): x-coordinates of turbines + layout_y (List[float]): y-coordinates of turbines + site_boundaries (BaseGeometry): Site polygon. + tol (float, Optional): distance tolerance in meters. Defaults to 1e-3. + + Returns: + 2-element tuple containing + + - **x_coords** (List[float]): x-coordinates of turbines within site boundaries. + - **y_coords** (List[float]): y-coordinates of turbines within site boundaries. + """ + n_decimals = len(str(int(1/tol)).split("1")[-1]) + x_coords = [] + y_coords = [] + for x,y in zip(layout_x,layout_y): + if site_boundaries.contains(Point(x,y)): + x_coords.append(x) + y_coords.append(y) + else: + if site_boundaries.distance(Point(x,y)) float: def modules_per_string(self, _modules_per_string: float): """Sets the modules per string and updates the system capacity.""" self._system_model.SystemDesign.subarray1_modules_per_string = _modules_per_string - self._system_model.SystemDesign.subarray2_modules_per_string = 0 - self._system_model.SystemDesign.subarray3_modules_per_string = 0 - self._system_model.SystemDesign.subarray4_modules_per_string = 0 # update system capacity directly to not recalculate the number of inverters, consistent with the SAM UI self._system_model.value('system_capacity', self.module_power * _modules_per_string * self.n_strings) @@ -392,18 +372,12 @@ def subarray1_modules_per_string(self, subarray1_modules_per_string_: float): @property def n_strings(self) -> float: """Total number of strings.""" - return self._system_model.SystemDesign.subarray1_nstrings \ - + self._system_model.SystemDesign.subarray2_nstrings \ - + self._system_model.SystemDesign.subarray3_nstrings \ - + self._system_model.SystemDesign.subarray4_nstrings + return self._system_model.SystemDesign.subarray1_nstrings @n_strings.setter def n_strings(self, _n_strings: float): """Sets the total number of strings and updates the system capacity.""" self._system_model.SystemDesign.subarray1_nstrings = _n_strings - self._system_model.SystemDesign.subarray2_nstrings = 0 - self._system_model.SystemDesign.subarray3_nstrings = 0 - self._system_model.SystemDesign.subarray4_nstrings = 0 # update system capacity directly to not recalculate the number of inverters, consistent with the SAM UI self._system_model.value('system_capacity', self.module_power * self.modules_per_string * _n_strings) diff --git a/hopp/simulation/technologies/pySSC_daotk/ssc_wrap.py b/hopp/simulation/technologies/pySSC_daotk/ssc_wrap.py index 6c931d28f..6d68ba11f 100644 --- a/hopp/simulation/technologies/pySSC_daotk/ssc_wrap.py +++ b/hopp/simulation/technologies/pySSC_daotk/ssc_wrap.py @@ -63,7 +63,7 @@ def __init__(self, tech_name, financial_name, defaults=None): self.params = {} self.params['tech_model'] = self.tech_name self.params['financial_model'] = self.financial_name - + def set(self, param_dict): if 'is_elec_heat_dur_off' in param_dict and type(param_dict['is_elec_heat_dur_off']) == list: param_dict['is_elec_heat_dur_off'] = param_dict['is_elec_heat_dur_off'][0] diff --git a/hopp/simulation/technologies/resource/__init__.py b/hopp/simulation/technologies/resource/__init__.py index 7a8ea8f0b..a26621e34 100644 --- a/hopp/simulation/technologies/resource/__init__.py +++ b/hopp/simulation/technologies/resource/__init__.py @@ -1,7 +1,10 @@ from hopp.simulation.technologies.resource.solar_resource import SolarResource from hopp.simulation.technologies.resource.wind_resource import WindResource from hopp.simulation.technologies.resource.wave_resource import WaveResource +from hopp.simulation.technologies.resource.tidal_resource import TidalResource from hopp.simulation.technologies.resource.elec_prices import ElectricityPrices from hopp.simulation.technologies.resource.resource import Resource from hopp.simulation.technologies.resource.greet_data import GREETData from hopp.simulation.technologies.resource.cambium_data import CambiumData +from hopp.simulation.technologies.resource.nsrdb_data import HPCSolarData +from hopp.simulation.technologies.resource.wind_toolkit_data import HPCWindData diff --git a/hopp/simulation/technologies/resource/nsrdb_data.py b/hopp/simulation/technologies/resource/nsrdb_data.py new file mode 100644 index 000000000..0b4b1180e --- /dev/null +++ b/hopp/simulation/technologies/resource/nsrdb_data.py @@ -0,0 +1,231 @@ +from rex import NSRDBX +from rex.sam_resource import SAMResource +import numpy as np +from hopp.simulation.technologies.resource.resource import Resource +from typing import Optional, Union +from pathlib import Path +import os +from hopp.utilities.validators import range_val +NSRDB_DEP = "/datasets/NSRDB/deprecated_v3/nsrdb_" + +# NOTE: Current version of PSM v3.2.2 which corresponds to /api/nsrdb/v2/solar/psm3-2-2-download +NSRDB_NEW = "/datasets/NSRDB/current/nsrdb_" + +# Pull Solar Resource Data directly from NSRDB on HPC +# To be called instead of SolarResource from hopp.simulation.technologies.resource +class HPCSolarData(Resource): + """ + Class to manage Solar Resource data from NSRDB Datasets. + + Attributes: + nsrdb_file: (str) path of file that resource data is pulled from. + site_gid: (int) id for NSRDB location that resource data was pulled from. + nsrdb_latitude: (float) latitude of NSRDB location corresponding to site_gid. + nsrdb_longitude: (float) longitude of NSRDB location corresponding to site_gid. + + """ + + + def __init__( + self, + lat: float, + lon: float, + year: int, + nsrdb_source_path: Union[str,Path] = "", + filepath: str = "", + ): + """Class to pull solar resource data from NSRDB datasets hosted on the HPC + + Args: + lat (float): latitude corresponding to location for solar resource data + lon (float): longitude corresponding to location for solar resource data + year (int): year for resource data. must be between 1998 and 2022 + nsrdb_source_path (Union[str,Path], optional): directory where NSRDB data is hosted on HPC. Defaults to "". + filepath (str, optional): filepath to NSRDB h5 file on HPC. Defaults to "". + - should be formatted as: /path/to/file/name_of_file.h5 + Raises: + ValueError: if year is not between 1998 and 2022 (inclusive) + FileNotFoundError: if nsrdb_file is not valid filepath + """ + + # NOTE: self.data must be compatible with PVWatts.SolarResource.solar_resource_data + # see: https://nrel-pysam.readthedocs.io/en/main/modules/Pvwattsv8.html#PySAM.Pvwattsv8.Pvwattsv8.SolarResource + super().__init__(lat, lon, year) + + if filepath == "" and nsrdb_source_path=="": + # use default filepath + self.nsrdb_file = NSRDB_NEW + f"{self.year}.h5" + elif filepath != "" and nsrdb_source_path == "": + # filepath (full h5 filepath) is provided by user + if ".h5" not in filepath: + filepath = filepath + ".h5" + self.nsrdb_file = str(filepath) + elif filepath == "" and nsrdb_source_path != "": + # directory of h5 files (nsrdb_source_path) is provided by user + self.nsrdb_file = os.path.join(str(nsrdb_source_path),f"nsrdb_{self.year}.h5") + else: + # use default filepaths + self.nsrdb_file = NSRDB_NEW + f"{self.year}.h5" + + # Check for valid year + if self.year < 1998 or self.year > 2022: + raise ValueError(f"Resource year for NSRDB Data must be between 1998 and 2022 but {self.year} was provided") + + # Check for valid filepath for NSRDB file + if not os.path.isfile(self.nsrdb_file): + raise FileNotFoundError(f"Cannot find NSRDB .h5 file, filepath {self.nsrdb_file} does not exist") + + # Pull data from HPC NSRDB dataset + self.download_resource() + + # Set solar resource data into SAM/PySAM digestible format + self.format_data() + + + def download_resource(self): + """load NSRDB h5 file using rex and get solar resource data for location + specified by (self.lat, self.lon) + """ + + # Open file with rex NSRDBX object + with NSRDBX(self.nsrdb_file, hsds=False) as f: + # get gid of location closest to given lat/lon coordinates + site_gid = f.lat_lon_gid((self.latitude,self.longitude)) + + # extract timezone, elevation, latitude and longitude from meta dataset with gid + self.time_zone = f.meta['timezone'].iloc[site_gid] + self.elevation = f.meta['elevation'].iloc[site_gid] + self.nsrdb_latitude = f.meta['latitude'].iloc[site_gid] + self.nsrdb_longitude = f.meta['longitude'].iloc[site_gid] + + # extract remaining datapoints: + # year, month, day, hour, minute, dn, df, gh, wspd,tdry, pres, tdew + + # 1) NOTE: datasets have readings at 0 and 30 minutes each hour, + # HOPP/SAM workflow requires only 30 minute reading values -> filter 0 minute readings with [1::2] + # 2) NOTE: datasets are not auto shifted by timezone offset + # -> wrap extraction in SAMResource.roll_timeseries(input_array, timezone, #steps in an hour=1) to roll timezones + # 3) NOTE: solar_resource.py code references solar_zenith_angle and RH = relative_humidity but I couldn't find them + # actually being utilized. Captured them below just in case. + self.year_arr = f.time_index.year.values[1::2] + self.month_arr = f.time_index.month.values[1::2] + self.day_arr = f.time_index.day.values[1::2] + self.hour_arr = f.time_index.hour.values[1::2] + self.minute_arr = f.time_index.minute.values[1::2] + self.dni_arr = SAMResource.roll_timeseries((f['dni', :, site_gid][1::2]), self.time_zone, 1) + self.dhi_arr = SAMResource.roll_timeseries((f['dhi', :, site_gid][1::2]), self.time_zone, 1) + self.ghi_arr = SAMResource.roll_timeseries((f['ghi', :, site_gid][1::2]), self.time_zone, 1) + self.wspd_arr = SAMResource.roll_timeseries((f['wind_speed', :, site_gid][1::2]), self.time_zone, 1) + self.tdry_arr = SAMResource.roll_timeseries((f['air_temperature', :, site_gid][1::2]), self.time_zone, 1) + # self.relative_humidity_arr = SAMResource.roll_timeseries((f['relative_humidity', :, site_gid][1::2]), self.time_zone, 1) + # self.solar_zenith_arr = SAMResource.roll_timeseries((f['solar_zenith_angle', :, site_gid][1::2]), self.time_zone, 1) + self.pres_arr = SAMResource.roll_timeseries((f['surface_pressure', :, site_gid][1::2]), self.time_zone, 1) + self.tdew_arr = SAMResource.roll_timeseries((f['dew_point', :, site_gid][1::2]), self.time_zone, 1) + + self.site_gid = site_gid + + + def format_data(self): + # Remove data from feb29 on leap years + if (self.year % 4) == 0: + feb29 = np.arange(1416,1440) + self.year_arr = np.delete(self.year_arr, feb29) + self.month_arr = np.delete(self.month_arr, feb29) + self.day_arr = np.delete(self.day_arr, feb29) + self.hour_arr = np.delete(self.hour_arr, feb29) + self.minute_arr = np.delete(self.minute_arr, feb29) + self.dni_arr = np.delete(self.dni_arr, feb29) + self.dhi_arr = np.delete(self.dhi_arr, feb29) + self.ghi_arr = np.delete(self.ghi_arr, feb29) + self.wspd_arr = np.delete(self.wspd_arr, feb29) + self.tdry_arr = np.delete(self.tdry_arr, feb29) + # self.relative_humidity_arr = np.delete(self.relative_humidity_arr, feb29) + # self.solar_zenith_arr = np.delete(self.solar_zenith_arr, feb29) + self.pres_arr = np.delete(self.pres_arr, feb29) + self.tdew_arr = np.delete(self.tdew_arr, feb29) + + # round to desired precision and convert to desired data type + # NOTE: unsure if SAM/PySAM is sensitive to data types and decimal precision. + # If not sensitive, can remove .astype() and round() to increase computational efficiency + self.time_zone = float(self.time_zone) + self.elevation = round(float(self.elevation), 0) + self.nsrdb_latitude = round(float(self.nsrdb_latitude), 2) + self.nsrdb_longitude = round(float(self.nsrdb_longitude),2) + self.year_arr = list(self.year_arr.astype(float, copy=False)) + self.month_arr = list(self.month_arr.astype(float, copy=False)) + self.day_arr = list(self.day_arr.astype(float, copy=False)) + self.hour_arr = list(self.hour_arr.astype(float, copy=False)) + self.minute_arr = list(self.minute_arr.astype(float, copy=False)) + self.dni_arr = list(self.dni_arr.astype(float, copy=False)) + self.dhi_arr = list(self.dhi_arr.astype(float, copy=False)) + self.ghi_arr = list(self.ghi_arr.astype(float, copy=False)) + self.wspd_arr = list(self.wspd_arr.astype(float, copy=False)) + self.tdry_arr = list(self.tdry_arr.astype(float, copy=False)) + # self.relative_humidity_arr = list(np.round(self.relative_humidity_arr, decimals=1)) + # self.solar_zenith_angle_arr = list(np.round(self.solar_zenith_angle_arr, decimals=1)) + self.pres_arr = list(self.pres_arr.astype(float, copy=False)) + self.tdew_arr = list(self.tdew_arr.astype(float, copy=False)) + + self.data = { + 'tz' : self.time_zone, + 'elev' : self.elevation, + 'lat' : self.nsrdb_latitude, + 'lon' : self.nsrdb_longitude, + 'year' : self.year_arr, + 'month' : self.month_arr, + 'day' : self.day_arr, + 'hour' : self.hour_arr, + 'minute' : self.minute_arr, + 'dn' : self.dni_arr, + 'df' : self.dhi_arr, + 'gh' : self.ghi_arr, + 'wspd' : self.wspd_arr, + 'tdry' : self.tdry_arr, + 'pres' : self.pres_arr, + 'tdew' : self.tdew_arr + } + + @Resource.data.setter + def data(self,data_dict): + """ + Sets data property with formatted solar resource data for SAM + data (dict): + :key tz (float): Time zone is for standard time in hours ahead of GMT + :key elev (float): Elevation is in meters above sea level + :key lat (float): degrees north of the equator + :key lon (float): degrees East of the prime meridian + :key year (list(int)): year + :key month (list(float)): number associated with month (1 = January) + :key day (list(float)): number indicating the day of month (Day = 1 is the first day of the month) + :key hour (list(float)): number indicating the hour of day (Hour = 0 is the first hour of the day) + :key minute (list(float)): number indicating minute of hour (Minute = 0 is the first minute of the hour) + :key dn (list(float)): Beam normal irradiance (W/m2) + :key df (list(float)): Diffuse horizontal irradiance (W/m2) + :key gh (list(float)): Global horizontal irradiance (W/m2) + :key wspd (list(float)): Wind speed at 10 meters above the ground (m/s) + :key tdry (list(float)): Ambient dry bulb temperature (°C) + :key pres (list(float)): Atmospheric pressure (millibar) + :key tdew (list(float)): Dew point temperature (°C) + """ + if "dn" not in data_dict.keys(): + dic = { + 'tz' : self.time_zone, + 'elev' : self.elevation, + 'lat' : self.nsrdb_latitude, + 'lon' : self.nsrdb_longitude, + 'year' : self.year_arr, + 'month' : self.month_arr, + 'day' : self.day_arr, + 'hour' : self.hour_arr, + 'minute' : self.minute_arr, + 'dn' : self.dni_arr, + 'df' : self.dhi_arr, + 'gh' : self.ghi_arr, + 'wspd' : self.wspd_arr, + 'tdry' : self.tdry_arr, + 'pres' : self.pres_arr, + 'tdew' : self.tdew_arr + } + self._data = dic + else: + self._data = data_dict \ No newline at end of file diff --git a/hopp/simulation/technologies/resource/resource.py b/hopp/simulation/technologies/resource/resource.py index 80806cd8c..c3f760d5e 100644 --- a/hopp/simulation/technologies/resource/resource.py +++ b/hopp/simulation/technologies/resource/resource.py @@ -3,6 +3,7 @@ import json import requests import time +from pathlib import Path from hopp import ROOT_DIR class Resource(metaclass=ABCMeta): @@ -45,22 +46,27 @@ def __init__(self, lat, lon, year, **kwargs): # update any passed in self.__dict__.update(kwargs) - self.filename = None + self.filename = None #: filepath of resource data file, defaults to None self._data = dict() def check_download_dir(self): + """Creates directory for the resource file if it does not exist. + """ + if not isinstance(self.filename,str): + self.filename = str(self.filename) if not os.path.isdir(os.path.dirname(self.filename)): os.makedirs(os.path.dirname(self.filename)) @staticmethod def call_api(url, filename): """ - Parameters - --------- - url: string - The API endpoint to return data from - filename: string - The filename where data should be written + Args: + url (str): The API endpoint to return data from + filename (str): The filename where data should be written + + Returns: + True if downloaded file successfully, False if encountered error in downloading + """ n_tries = 0 diff --git a/hopp/simulation/technologies/resource/solar_resource.py b/hopp/simulation/technologies/resource/solar_resource.py index 4262117f1..ac16a3c36 100644 --- a/hopp/simulation/technologies/resource/solar_resource.py +++ b/hopp/simulation/technologies/resource/solar_resource.py @@ -1,7 +1,7 @@ import os from collections import defaultdict from pathlib import Path -from typing import Union +from typing import Union, Optional import numpy as np import csv from PySAM.ResourceTools import SAM_CSV_to_solar_data @@ -17,18 +17,11 @@ class SolarResource(Resource): """ - Class to manage Solar Resource data. - - Args: - lat: latitude - lon: longitude - year: year - path_resource: directory where to save downloaded files - filepath: file path of resource file to load - use_api: Make an API call even if there's an existing file. Defaults to False - kwargs: extra kwargs - + Class to manage Solar Resource data from API calls or preloaded data. """ + + #: attributes of solar resource data to download from API call + solar_attributes: str = 'ghi,dhi,dni,wind_speed,air_temperature,solar_zenith_angle,surface_pressure,dew_point' def __init__( self, @@ -38,25 +31,41 @@ def __init__( path_resource: Union[str, Path] = ROOT_DIR / "simulation" / "resource_files", filepath: Union[str, Path] ="", use_api: bool = False, + resource_data: Optional[dict] = None, **kwargs ): + """Resource class to download solar resource data using API call or set with preloaded dictionary + + Args: + lat (float): latitude corresponding to location for solar resource data + lon (float): longitude corresponding to location for solar resource data + year (int): year for resource data. must be between 1998 and 2022 + path_resource (Union[str, Path], optional): filepath to resource_files directory. Defaults to ROOT_DIR/"simulation"/"resource_files". + filepath (Union[str, Path], optional): full filepath to solar resource data file. Defaults to "". + use_api (bool, optional): Make an API call even if there's an existing file. Defaults to False. + resource_data (Optional[dict], optional): dictionary of preloaded and formatted solar resource data. Defaults to None. + kwargs: extra kwargs + """ super().__init__(lat, lon, year) + # if resource_data is input as a dictionary then set_data + if isinstance(resource_data,dict): + self.data = resource_data + return + # if resource_data is not provided, download or load resource data + if isinstance(path_resource,str): + path_resource = Path(path_resource).resolve() if os.path.isdir(path_resource): self.path_resource = path_resource - - self.solar_attributes = 'ghi,dhi,dni,wind_speed,air_temperature,solar_zenith_angle,surface_pressure,dew_point' - - self.path_resource = os.path.join(self.path_resource, 'solar') + if path_resource.parts[-1]!="solar": + self.path_resource = self.path_resource/ 'solar' # Force override any internal definitions if passed in self.__dict__.update(kwargs) # resource_files files if filepath == "": - filepath = os.path.join(self.path_resource, - str(lat) + "_" + str(lon) + "_psmv3_" + str(self.interval) + "_" + str( - year) + ".csv") + filepath = self.path_resource / f"{self.latitude}_{self.longitude}_psmv3_{self.interval}_{self.year}.csv" self.filename = filepath self.check_download_dir() # FIXME: This breaks if weather file is in the same directory as caller @@ -69,6 +78,11 @@ def __init__( logger.info("SolarResource: {}".format(self.filename)) def download_resource(self): + """Download solar resource file from NSRDB API call + + Returns: + success (bool): whether API download was successful or not + """ url = '{base}?wkt=POINT({lon}+{lat})&names={year}&leap_day={leap}&interval={interval}&utc={utc}&full_name={name}&email={email}&affiliation={affiliation}&mailing_list={mailing_list}&reason={reason}&api_key={api}&attributes={attr}'.format( base=BASE_URL, year=self.year, lat=self.latitude, lon=self.longitude, leap=self.leap_year, interval=self.interval, utc=self.utc, name=self.name, email=get_developer_nrel_gov_email(), @@ -89,7 +103,7 @@ def format_data(self): self.data = self.filename @Resource.data.setter - def data(self, data_dict): + def data(self, data_info): """ Sets the solar resource data @@ -109,32 +123,36 @@ def data(self, data_dict): :key tdew: array, dew point temp [C] :key press: array, atmospheric pressure [mbar] """ - self._data = SAM_CSV_to_solar_data(data_dict) - # TODO: Update ResourceTools.py in pySAM to include pressure and dew point or relative humidity - with open(data_dict) as file_in: - wfd = defaultdict(list) - for i in range(2): - file_in.readline() - reader = csv.DictReader(file_in) - for row in reader: - for col, dat in row.items(): - if len(col) > 0: - wfd[col].append(float(dat)) - - if 'Dew Point' in wfd: - self._data['tdew'] = wfd.pop('Dew Point') - elif 'RH' in wfd: - self._data['rh'] = wfd.pop('RH') - elif 'Pressure' in wfd: - self._data['pres'] = wfd.pop('Pressure') - - - def roll_timezone(self, roll_hours, timezone): - """ - - :param roll_hours: - :param timezone: - :return: + if isinstance(data_info,dict): + self._data = data_info + self.filename = None + else: + self._data = SAM_CSV_to_solar_data(data_info) + # TODO: Update ResourceTools.py in pySAM to include pressure and dew point or relative humidity + with open(data_info) as file_in: + wfd = defaultdict(list) + for i in range(2): + file_in.readline() + reader = csv.DictReader(file_in) + for row in reader: + for col, dat in row.items(): + if len(col) > 0: + wfd[col].append(float(dat)) + + if 'Dew Point' in wfd: + self._data['tdew'] = wfd.pop('Dew Point') + elif 'RH' in wfd: + self._data['rh'] = wfd.pop('RH') + elif 'Pressure' in wfd: + self._data['pres'] = wfd.pop('Pressure') + + + def roll_timezone(self, roll_hours:Union[int,float], timezone:int): + """Roll weather data timezone. This function appears unused. + + Args: + roll_hours (Union[int,float]): number of hours to roll the timezone by + timezone (int): timezone for location """ rollable_keys = ['dn', 'df', 'gh', 'wspd', 'tdry'] for key in rollable_keys: diff --git a/hopp/simulation/technologies/resource/tidal_resource.py b/hopp/simulation/technologies/resource/tidal_resource.py new file mode 100644 index 000000000..13d87cefa --- /dev/null +++ b/hopp/simulation/technologies/resource/tidal_resource.py @@ -0,0 +1,161 @@ +import os +import pandas as pd +import PySAM.TidalFileReader as tidalfile + +from hopp.utilities.log import hybrid_logger as logger +from hopp.simulation.technologies.resource.resource import Resource + +class TidalResource(Resource): + """ + Class to manage Tidal Resource data. + + This class loads, processes, and formats tidal energy resource data, + either from a file or a provided dataset, for compatibility with + PySAM's tidal energy models. + """ + def __init__( + self, + lat: float, + lon: float, + year: int, + path_resource: str = "", + filepath: str = "", + **kwargs + ): + """ + Initializes the TidalResource object. + + Args: + lat (float): Latitude of the resource location. + lon (float): Longitude of the resource location. + year (int): Year of the resource data. + path_resource (str, optional): Directory where downloaded files are saved. Defaults to "". + filepath (str, optional): File path of the resource file to load. Defaults to "". + **kwargs: Additional keyword arguments. + + Notes: + The tidal resource data should be in the format: + - Rows 1 and 2: Header rows with location info. + - Row 3: Column headings for time-series data + - (`Year`, `Month`, `Day`, `Hour`, `Minute`, `Speed`). + - Rows 4+: Data values: + - `Speed` (current speed) in meters/second. + + Example file: + `hopp/simulation/resource_files/tidal/Tidal_resource_timeseries.csv` + """ + super().__init__(lat, lon, year) + + if os.path.isdir(path_resource): + self.path_resource = path_resource + + self.path_resource = os.path.join(self.path_resource, 'wave') + + self.__dict__.update(kwargs) + + # resource_files files + self.filename = filepath + self.format_data() + + logger.info("WaveResource: {}".format(self.filename)) + + def download_resource(self): + """ + Placeholder for downloading tidal resource data. + + Raises: + NotImplementedError: Currently, downloading functionality is not implemented. + """ + raise NotImplementedError + + def format_data(self): + """ + Formats tidal resource data as a dictionary for PySAM. + + Raises: + FileNotFoundError: If the specified resource file does not exist. + """ + if not os.path.isfile(self.filename): + raise FileNotFoundError(self.filename + " does not exist.") + + self.data = self.filename + + @Resource.data.setter + def data(self, data_file): + """ + Sets the tidal resource data in PySAM's tidal energy format. + + Args: + data_file (str): File path to the tidal resource data. + + Raises: + ValueError: If the resource time series contains sub-hourly data. + + The output dictionary includes: + - `speed` (list[float]): Current speed data [m/s]. + - `year` (list[int]): Year timestamps. + - `month` (list[int]): Month timestamps. + - `day` (list[int]): Day timestamps. + - `hour` (list[int]): Hour timestamps. + - `minute` (list[int]): Minute timestamps. + + If the time series is incomplete (less than 8760 hours), the function + linearly interpolates missing values to create a complete hourly dataset. + """ + tidalfile_model = tidalfile.new() + #Load resource file + tidalfile_model.WeatherReader.tidal_resource_filename = str(self.filename) + tidalfile_model.WeatherReader.tidal_resource_model_choice = 1 #Time-series=1 JPD=0 + + #Read in resource file, output time series arrays to pass to wave performance module + tidalfile_model.execute() + hours = tidalfile_model.Outputs.hour + + if len(hours) < 8760: + # Set up dataframe for data manipulation + df = pd.DataFrame() + df['year'] = tidalfile_model.Outputs.year + df['month'] = tidalfile_model.Outputs.month + df['day'] = tidalfile_model.Outputs.day + df['hour'] = tidalfile_model.Outputs.hour + df['minute'] = tidalfile_model.Outputs.minute + df['date_time'] = pd.to_datetime(dict(year=df.year, month=df.month, day=df.day, hour=df.hour, minute=df.minute)) + df = df.drop(['year','month','day','hour','minute'], axis=1) + df = df.set_index(['date_time']) + df['tidal_velocity'] = tidalfile_model.Outputs.tidal_velocity + + # Resample data and linearly interpolate to hourly data + data_df = df.resample("h").mean() + data_df = data_df.interpolate(method='linear') + + + # If data cannot interpolate last hours + if len(data_df['tidal_velocity']) < 8760: + last_hour = data_df.index.max() + missing_hours = 8760 - len(data_df['tidal_velocity']) + + missing_time = pd.date_range(last_hour + pd.Timedelta(hours=1),periods=missing_hours, freq='h') + missing_rows = pd.DataFrame(index=missing_time, columns=df.columns) + data_df = pd.concat([data_df, missing_rows]).sort_index() + data_df = data_df.ffill() # forward fill + + data_df = data_df.reset_index() + dic = dict() + + # Extract outputs + dic['tidal_velocity'] = data_df['tidal_velocity'] + print(data_df.head()) + dic['year'] = data_df['index'].dt.year + dic['month'] = data_df['index'].dt.month + dic['day'] = data_df['index'].dt.day + dic['hour'] = data_df['index'].dt.hour + dic['minute'] = data_df['index'].dt.minute + + elif len(hours) == 8760: + dic = dict() + # Extract outputs + dic['tidal_velocity'] = tidalfile_model.Outputs.tidal_velocity + else: + raise ValueError("Resource time-series cannot be subhourly.") + + self._data = dic \ No newline at end of file diff --git a/hopp/simulation/technologies/resource/wave_resource.py b/hopp/simulation/technologies/resource/wave_resource.py index 370df958c..a71f8afbf 100644 --- a/hopp/simulation/technologies/resource/wave_resource.py +++ b/hopp/simulation/technologies/resource/wave_resource.py @@ -7,7 +7,11 @@ class WaveResource(Resource): """ - Class to manage Wave Resource data + Class to manage Wave Resource data. + + This class loads, processes, and formats wave energy resource data, + either from a file or a provided dataset, for compatibility with + PySAM's wave energy models. """ def __init__( self, @@ -19,20 +23,27 @@ def __init__( **kwargs ): """ - lat (float): latitude - lon (float): longitude - year (int): year - path_resource (str): directory where to save downloaded files - filepath (str): file path of resource file to load - - see 'hopp/simulation/resource_files/wave/Wave_resource_timeseries.csv' for example wave resource file - file format for time series for wave energy resource data - rows 1 and 2: header rows containing info about location - row 3: headings for time series wave data - (month, day, hour, minute, wave height, wave period) - row 4 and higher: contains data itself - (significant) wave height in meters - wave (energy) period in seconds + Initializes the WaveResource object. + + Args: + lat (float): Latitude of the resource location. + lon (float): Longitude of the resource location. + year (int): Year of the resource data. + path_resource (str, optional): Directory where downloaded files are saved. Defaults to "". + filepath (str, optional): File path of the resource file to load. Defaults to "". + **kwargs: Additional keyword arguments. + + Notes: + The wave resource data should be in the format: + - Rows 1 and 2: Header rows with location info. + - Row 3: Column headings for time-series data + - (`Year`, `Month`, `Day`, `Hour`, `Minute`, `wave height`, `wave period`). + - Rows 4+: Data values: + - `wave height` (significant wave height) in meters. + - `wave period` (energy period) in seconds. + + Example file: + `hopp/simulation/resource_files/wave/Wave_resource_timeseries.csv` """ super().__init__(lat, lon, year) @@ -50,13 +61,24 @@ def __init__( logger.info("WaveResource: {}".format(self.filename)) def download_resource(self): - #TODO: Add ability to use MHKit for resource downloads - # https://mhkit-software.github.io/MHKiT/ + """ + Placeholder for downloading wave resource data. + + Raises: + NotImplementedError: Currently, downloading functionality is not implemented. + + Notes: + Future task: implement resource downloads using + [MHKit](https://mhkit-software.github.io/MHKiT/). + """ raise NotImplementedError def format_data(self): """ - Format as 'wave_resource_data' dictionary for use in PySAM. + Formats wave resource data as a dictionary for PySAM. + + Raises: + FileNotFoundError: If the specified resource file does not exist. """ if not os.path.isfile(self.filename): raise FileNotFoundError(self.filename + " does not exist.") @@ -66,14 +88,25 @@ def format_data(self): @Resource.data.setter def data(self, data_file): """ - Sets the wave resource data to a dictionary in the SAM Wave format: - - significant_wave_height: wave height time series data [m] - - energy period: wave period time series data [s] - - year - - month - - day - - hour - - minute + Sets the wave resource data in PySAM's wave energy format. + + Args: + data_file (str): File path to the wave resource data. + + Raises: + ValueError: If the resource time series contains sub-hourly data. + + The output dictionary includes: + - `significant_wave_height` (list[float]): Wave height time series data [m]. + - `energy_period` (list[float]): Wave period time series data [s]. + - `year` (list[int]): Year timestamps. + - `month` (list[int]): Month timestamps. + - `day` (list[int]): Day timestamps. + - `hour` (list[int]): Hour timestamps. + - `minute` (list[int]): Minute timestamps. + + If the time series is incomplete (less than 8760 hours), the function + linearly interpolates missing values to create a complete hourly dataset. """ wavefile_model = wavefile.new() #Load resource file @@ -99,7 +132,7 @@ def data(self, data_file): df['energy_period'] = wavefile_model.Outputs.energy_period # Resample data and linearly interpolate to hourly data - data_df = df.resample("H").mean() + data_df = df.resample("h").mean() data_df = data_df.interpolate(method='linear') # If data cannot interpolate last hours @@ -107,10 +140,10 @@ def data(self, data_file): last_hour = data_df.index.max() missing_hours = 8760 - len(data_df['energy_period']) - missing_time = pd.date_range(last_hour + pd.Timedelta(hours=1),periods=missing_hours, freq='H') + missing_time = pd.date_range(last_hour + pd.Timedelta(hours=1),periods=missing_hours, freq='h') missing_rows = pd.DataFrame(index=missing_time, columns=df.columns) data_df = pd.concat([data_df, missing_rows]).sort_index() - data_df = data_df.fillna(method='ffill') # forward fill + data_df = data_df.ffill() # forward fill data_df = data_df.reset_index() dic = dict() diff --git a/hopp/simulation/technologies/resource/wind_resource.py b/hopp/simulation/technologies/resource/wind_resource.py index 34c60f4b4..2110d27a0 100644 --- a/hopp/simulation/technologies/resource/wind_resource.py +++ b/hopp/simulation/technologies/resource/wind_resource.py @@ -1,6 +1,6 @@ import csv, os from pathlib import Path -from typing import Union +from typing import Union, Optional, List from PySAM.ResourceTools import SRW_to_wind_data from hopp.utilities.keys import get_developer_nrel_gov_key, get_developer_nrel_gov_email @@ -13,16 +13,19 @@ class WindResource(Resource): - """ Class to manage Wind Resource data - - Attributes: - hub_height_meters - the system height - TODO: if optimizer will modify hub height, need to download a range rather than a single - file_resource_heights - dictionary of heights and filenames to download from Wind Toolkit - filename - the combined resource filename + """ Class to manage Wind Resource data from API calls or preloaded data. """ - allowed_hub_height_meters = [10, 40, 60, 80, 100, 120, 140, 160, 200] + allowed_hub_height_meters: List[int] = [10, 40, 60, 80, 100, 120, 140, 160, 200] + + #: the hub-height for wind resource data (meters) + hub_height_meters: float + # TODO: if optimizer will modify hub height, need to download a range rather than a single + + #: dictionary of heights and filenames to download from Wind Toolkit + file_resource_heights: dict + + def __init__( self, lat: float, @@ -33,29 +36,38 @@ def __init__( filepath: Union[str, Path] ="", source: str ="WTK", use_api: bool = False, + resource_data: Optional[dict] = None, **kwargs ): - """ + """Resource class to download wind resource data using API call or set with preloaded dictionary Args: - lat: latitude - lon: longitude - year: year - wind_turbine_hub_ht: turbine hub height - path_resource: directory where to save downloaded files - filepath: file path of resource file to load - source: Which API to use. Options are TAP and WIND Toolkit (WTK). - use_api: Make an API call even if there's an existing file. Defaults to False + lat (float): latitude corresponding to location for wind resource data + lon (float): longitude corresponding to location for wind resource data + year (int): year for resource data. must be between 2007 and 2014 + wind_turbine_hub_ht (float): turbine hub height (m) + path_resource (Union[str, Path], optional): filepath to resource_files directory. Defaults to ROOT_DIR/"simulation"/"resource_files". + filepath (Union[str, Path], optional): file path of resource file to load + source (str): Which API to use. Options are TAP and WIND Toolkit (WTK). + use_api (bool, optional): Make an API call even if there's an existing file. Defaults to False. + resource_data (Optional[dict], optional): dictionary of preloaded and formatted wind resource data. Defaults to None. kwargs: extra kwargs """ - super().__init__(lat, lon, year) + super().__init__(lat, lon, year) + + # if resource_data is input as a dictionary then set_data + if isinstance(resource_data,dict): + self.data = resource_data + self.hub_height_meters = wind_turbine_hub_ht + return + # if resource_data is not provided, download or load resource data + if isinstance(path_resource,str): + path_resource = Path(path_resource).resolve() if os.path.isdir(path_resource): self.path_resource = path_resource - - self.path_resource = os.path.join(self.path_resource, 'wind') - - self.__dict__.update(kwargs) + if path_resource.parts[-1]!="wind": + self.path_resource = self.path_resource / 'wind' self.file_resource_heights = None self.update_height(wind_turbine_hub_ht) @@ -96,18 +108,18 @@ def calculate_heights_to_download(self): heights[0] = height_low heights.append(height_high) - file_resource_base = os.path.join(self.path_resource, str(self.latitude) + "_" + str(self.longitude) + "_windtoolkit_" + str( - self.year) + "_" + str(self.interval) + "min") - file_resource_full = file_resource_base + filename_base = f"{self.latitude}_{self.longitude}_windtoolkit_{self.year}_{self.interval}min" + file_resource_full = filename_base file_resource_heights = dict() for h in heights: - file_resource_heights[int(h)] = file_resource_base + '_' + str(int(h)) + 'm.srw' - file_resource_full += "_" + str(int(h)) + 'm' + h_int = int(h) + file_resource_heights[h_int] = self.path_resource/(filename_base + f'_{h_int}m.srw') + file_resource_full += f'_{h_int}m' file_resource_full += ".srw" self.file_resource_heights = file_resource_heights - self.filename = file_resource_full + self.filename = self.path_resource / file_resource_full def update_height(self, hub_height_meters): self.hub_height_meters = hub_height_meters @@ -183,9 +195,11 @@ def format_data(self): self.data = self.filename @Resource.data.setter - def data(self, data_file): + def data(self, data_info): """ Sets the wind resource data to a dictionary in SAM Wind format (see Pysam.ResourceTools.SRW_to_wind_data) """ - - self._data = SRW_to_wind_data(data_file) + if isinstance(data_info,dict): + self._data = data_info + else: + self._data = SRW_to_wind_data(data_info) diff --git a/hopp/simulation/technologies/resource/wind_toolkit_data.py b/hopp/simulation/technologies/resource/wind_toolkit_data.py new file mode 100644 index 000000000..5a4da7f40 --- /dev/null +++ b/hopp/simulation/technologies/resource/wind_toolkit_data.py @@ -0,0 +1,206 @@ +from rex import WindX +from rex.sam_resource import SAMResource +import numpy as np +from typing import Optional, Union +from pathlib import Path +import os +from hopp.simulation.technologies.resource.resource import Resource + +WTK_V10_BASE = "/datasets/WIND/conus/v1.0.0/wtk_conus_" +WTK_V11_BASE = "/datasets/WIND/conus/v1.1.0/wtk_conus_" + + +class HPCWindData(Resource): + """ + Class to manage Wind Resource data from Wind Toolkit Datasets + + Attributes: + wtk_file: (str) path of file that resource data is pulled from + site_gid: (int) id for Wind Toolkit location that resource data was pulled from + wtk_latitude: (float) latitude of Wind Toolkit location corresponding to site_gid + wtk_longitude: (float) longitude of Wind Toolkit location corresponding to site_gid + """ + + + def __init__( + self, + lat: float, + lon: float, + year: int, + wind_turbine_hub_ht: float, + wtk_source_path: Union[str,Path] = "", + filepath: str = "", + ): + """Class to pull wind resource data from WIND Toolkit datasets hosted on the HPC + + Args: + lat (float): latitude corresponding to location for wind resource data + lon (float): longitude corresponding to location for wind resource data + year (int): year for resource data. must be between 2007 and 2014 + wind_turbine_hub_ht (float): turbine hub height (m) + wtk_source_path (Union[str,Path], optional): directory where Wind Toolkit data is hosted on HPC. Defaults to "". + filepath (str, optional): filepath to Wind Toolkit h5 file on HPC. Defaults to "". + - should be formatted as: /path/to/file/name_of_file.h5 + Raises: + ValueError: if year is not between 2007 and 2014 (inclusive) + FileNotFoundError: if wtk_file is not valid filepath + """ + super().__init__(lat, lon, year) + + self.hub_height_meters = wind_turbine_hub_ht + self.allowed_hub_heights_meters = [10, 40, 60, 80, 100, 120, 140, 160, 200] + self.data_hub_heights = self.calculate_heights_to_download() + + # Check for valid year + if self.year < 2007 or self.year > 2014: + raise ValueError(f"Resource year for WIND Toolkit Data must be between 2007 and 2014 but {self.year} was provided") + + if filepath == "" and wtk_source_path=="": + # use default filepaths based on resource year + if self.year < 2014 and self.year>=2007: + self.wtk_file = WTK_V10_BASE + f"{self.year}.h5" + elif self.year == 2014: + self.wtk_file = WTK_V11_BASE + f"{self.year}.h5" + elif filepath != "" and wtk_source_path == "": + # filepath (full h5 filepath) is provided by user + if ".h5" not in filepath: + filepath = filepath + ".h5" + self.wtk_file = str(filepath) + elif filepath == "" and wtk_source_path != "": + # directory of h5 files (wtk_source_path) is provided by user + self.wtk_file = os.path.join(str(wtk_source_path),f"wtk_conus_{self.year}.h5") + else: + # use default filepaths + if self.year < 2014 and self.year>=2007: + self.wtk_file = WTK_V10_BASE + f"{self.year}.h5" + elif self.year == 2014: + self.wtk_file = WTK_V11_BASE + f"{self.year}.h5" + + # Check for valid filepath for Wind Toolkit file + if not os.path.isfile(self.wtk_file): + raise FileNotFoundError(f"Cannot find Wind Toolkit .h5 file, filepath {self.wtk_file} does not exist") + + # Pull data from HPC Wind Toolkit dataset + self.download_resource() + + # Set wind resource data into SAM/PySAM digestible format + self.format_data() + + + def calculate_heights_to_download(self): + """ + Given the system hub height, and the available hub heights from WindToolkit, + determine which heights to download to bracket the hub height + """ + hub_height_meters = self.hub_height_meters + + # evaluate hub height, determine what heights to download + heights = [hub_height_meters] + if hub_height_meters not in self.allowed_hub_heights_meters: + height_low = self.allowed_hub_heights_meters[0] + height_high = self.allowed_hub_heights_meters[-1] + for h in self.allowed_hub_heights_meters: + if h < hub_height_meters: + height_low = h + elif h > hub_height_meters: + height_high = h + break + heights[0] = height_low + heights.append(height_high) + + return heights + + def download_resource(self): + """load WTK h5 file using rex and get wind resource data for location + specified by (self.lat, self.lon) + """ + # NOTE: Current setup of files on HPC WINDToolkit v1.0.0 = 2007-2013, v1.1.0 = 2014 + + # Open file with rex WindX object + with WindX(self.wtk_file, hsds=False) as f: + # get gid of location closest to given lat/lon coordinates and timezone offset + site_gid = f.lat_lon_gid((self.latitude, self.longitude)) + time_zone = f.meta['timezone'].iloc[site_gid] + + # instantiate temp dictionary to hold each attributes dataset + self.wind_dict = {} + # loop through hub heights to download, capture datasets + # NOTE: datasets are not auto shifted by timezone offset + # -> wrap extraction in SAMResource.roll_timeseries(input_array, timezone, #steps in an hour=1) to roll timezones + # NOTE: pressure datasets unit = Pa, convert to atm via division by 101325 + for h in self.data_hub_heights: + self.wind_dict['temperature_{height}m_arr'.format(height=h)] = SAMResource.roll_timeseries((f['temperature_{height}m'.format(height=h), :, site_gid]), time_zone, 1) + self.wind_dict['pressure_{height}m_arr'.format(height=h)] = SAMResource.roll_timeseries((f['pressure_{height}m'.format(height=h), :, site_gid]/101325), time_zone, 1) + self.wind_dict['windspeed_{height}m_arr'.format(height=h)] = SAMResource.roll_timeseries((f['windspeed_{height}m'.format(height=h), :, site_gid]), time_zone, 1) + self.wind_dict['winddirection_{height}m_arr'.format(height=h)] = SAMResource.roll_timeseries((f['winddirection_{height}m'.format(height=h), :, site_gid]), time_zone, 1) + + self.site_gid = site_gid + def format_data(self): + # Remove data from feb29 on leap years + if (self.year % 4) == 0: + feb29 = np.arange(1416,1440) + for key, value in self.wind_dict.items(): + self.wind_dict[key] = np.delete(value, feb29) + + # round to desired precision and concatenate data into format needed for data dictionary + if len(self.data_hub_heights) == 2: + # NOTE: Unsure if SAM/PySAM is sensitive to data types ie: floats with long precision vs to 2 or 3 decimals. + # If not sensitive, can remove following 8 lines of code to increase computational efficiency + self.wind_dict['temperature_{h}m_arr'.format(h=self.data_hub_heights[0])] = np.round((self.wind_dict['temperature_{h}m_arr'.format(h=self.data_hub_heights[0])]), decimals=1) + self.wind_dict['pressure_{h}m_arr'.format(h=self.data_hub_heights[0])] = np.round((self.wind_dict['pressure_{h}m_arr'.format(h=self.data_hub_heights[0])]), decimals=2) + self.wind_dict['windspeed_{h}m_arr'.format(h=self.data_hub_heights[0])] = np.round((self.wind_dict['windspeed_{h}m_arr'.format(h=self.data_hub_heights[0])]), decimals=3) + self.wind_dict['winddirection_{h}m_arr'.format(h=self.data_hub_heights[0])] = np.round((self.wind_dict['winddirection_{h}m_arr'.format(h=self.data_hub_heights[0])]), decimals=1) + self.wind_dict['temperature_{h}m_arr'.format(h=self.data_hub_heights[1])] = np.round((self.wind_dict['temperature_{h}m_arr'.format(h=self.data_hub_heights[1])]), decimals=1) + self.wind_dict['pressure_{h}m_arr'.format(h=self.data_hub_heights[1])] = np.round((self.wind_dict['pressure_{h}m_arr'.format(h=self.data_hub_heights[1])]), decimals=2) + self.wind_dict['windspeed_{h}m_arr'.format(h=self.data_hub_heights[1])] = np.round((self.wind_dict['windspeed_{h}m_arr'.format(h=self.data_hub_heights[1])]), decimals=3) + self.wind_dict['winddirection_{h}m_arr'.format(h=self.data_hub_heights[1])] = np.round((self.wind_dict['winddirection_{h}m_arr'.format(h=self.data_hub_heights[1])]), decimals=1) + # combine all data into one 2D list + self.combined_data = [list(a) for a in zip(self.wind_dict['temperature_{h}m_arr'.format(h=self.data_hub_heights[0])], + self.wind_dict['pressure_{h}m_arr'.format(h=self.data_hub_heights[0])], + self.wind_dict['windspeed_{h}m_arr'.format(h=self.data_hub_heights[0])], + self.wind_dict['winddirection_{h}m_arr'.format(h=self.data_hub_heights[0])], + self.wind_dict['temperature_{h}m_arr'.format(h=self.data_hub_heights[1])], + self.wind_dict['pressure_{h}m_arr'.format(h=self.data_hub_heights[1])], + self.wind_dict['windspeed_{h}m_arr'.format(h=self.data_hub_heights[1])], + self.wind_dict['winddirection_{h}m_arr'.format(h=self.data_hub_heights[1])])] + + elif len(self.data_hub_heights) == 1: + # NOTE: Unsure if SAM/PySAM is sensitive to data types ie: floats with long precision vs to 2 or 3 decimals. + # If not sensitive, can remove following 4 lines of code to increase computational efficiency + self.wind_dict['temperature_{h}m_arr'.format(h=self.data_hub_heights[0])] = np.round((self.wind_dict['temperature_{h}m_arr'.format(h=self.data_hub_heights[0])]), decimals=1) + self.wind_dict['pressure_{h}m_arr'.format(h=self.data_hub_heights[0])] = np.round((self.wind_dict['pressure_{h}m_arr'.format(h=self.data_hub_heights[0])]), decimals=2) + self.wind_dict['windspeed_{h}m_arr'.format(h=self.data_hub_heights[0])] = np.round((self.wind_dict['windspeed_{h}m_arr'.format(h=self.data_hub_heights[0])]), decimals=3) + self.wind_dict['winddirection_{h}m_arr'.format(h=self.data_hub_heights[0])] = np.round((self.wind_dict['winddirection_{h}m_arr'.format(h=self.data_hub_heights[0])]), decimals=1) + # combine all data into one 2D list + self.combined_data = [list(a) for a in zip(self.wind_dict['temperature_{h}m_arr'.format(h=self.data_hub_heights[0])], + self.wind_dict['pressure_{h}m_arr'.format(h=self.data_hub_heights[0])], + self.wind_dict['windspeed_{h}m_arr'.format(h=self.data_hub_heights[0])], + self.wind_dict['winddirection_{h}m_arr'.format(h=self.data_hub_heights[0])])] + self.data = self.combined_data + + @Resource.data.setter + def data(self, combined_data): + """Sets data property with wind resource data formatted for SAM + + data (dict): + :key heights (list(float)): floats corresponding to hub-height for 'data' entry. + ex: [100, 100, 100, 100, 120, 120, 120, 120] + :key fields (list(int)): integers corresponding to data type for 'data' entry + ex: [1, 2, 3, 4, 1, 2, 3, 4] + for each field (int) the corresponding data is: + - 1: Ambient temperature in degrees Celsius + - 2: Atmospheric pressure in in atmospheres. + - 3: Wind speed in meters per second (m/s) + - 4: Wind direction in degrees east of north (degrees). + :key data (list(list(floats)): 8760 list with data of corresponding field and hub-height + ex. data[timestep] is [-23.5, 0.65, 7.6, 261.2, -23.7, 0.65, 7.58, 261.1] + - -23.5 is temperature at 100m at timestep + - 7.6 is wind speed at 100m at timestep + - 7.58 is wind speed at 120m at timestep + """ + dic = { + 'heights': [float(h) for h in self.data_hub_heights for i in range(4)], + 'fields': [1, 2, 3, 4] * len(self.data_hub_heights), + 'data': combined_data + } + self._data = dic \ No newline at end of file diff --git a/hopp/simulation/technologies/sites/site_info.py b/hopp/simulation/technologies/sites/site_info.py index b1c40ed4d..9ae4a5cf2 100644 --- a/hopp/simulation/technologies/sites/site_info.py +++ b/hopp/simulation/technologies/sites/site_info.py @@ -8,7 +8,7 @@ from shapely.geometry import Polygon, MultiPolygon, Point, shape from shapely.geometry.base import BaseGeometry from shapely.ops import transform -from shapely import make_valid +from shapely.validation import make_valid from fastkml import kml, KML import pyproj import utm @@ -17,7 +17,10 @@ SolarResource, WindResource, WaveResource, - ElectricityPrices + TidalResource, + ElectricityPrices, + HPCWindData, + HPCSolarData, ) from hopp.tools.layout.plot_tools import plot_shape from hopp.utilities.log import hybrid_logger as logger @@ -28,7 +31,8 @@ ) from hopp.simulation.base import BaseClass from hopp.utilities.validators import contains - +import hopp.simulation.technologies.sites.site_shape_tools as shape_tools +from hopp import ROOT_DIR def plot_site(verts, plt_style, labels): for i in range(len(verts)): if i == 0: @@ -48,7 +52,15 @@ class SiteInfo(BaseClass): data: Dictionary containing site-specific information. solar_resource_file: Path to solar resource file. Defaults to "". wind_resource_file: Path to wind resource file. Defaults to "". + wave_resource_file: Path to wave resource file. Defaults to "". + tidal_resource_file: Path to tidal resource file. Defaults to "". grid_resource_file: Path to grid pricing data file. Defaults to "". + path_resource: Path to folder to save resource files. + Defaults to ROOT/simulation/resource_files. + wtk_source_path (Optional): directory of Wind Toolkit h5 files hosted on HPC. + Only used if renewable_resource_origin != "API". + nsrdb_source_path (Optional): directory of NSRDB h5 files hosted on HPC. + Only used if renewable_resource_origin != "API". hub_height: Turbine hub height for resource download in meters. Defaults to 97.0. capacity_hours: Boolean list indicating hours for capacity payments. Defaults to []. desired_schedule: Absolute desired load profile in MWe. Defaults to []. @@ -57,14 +69,57 @@ class SiteInfo(BaseClass): solar: Whether to set solar data for this site. Defaults to True. wind: Whether to set wind data for this site. Defaults to True. wave: Whether to set wave data for this site. Defaults to False. - wind_resource_origin: Which wind resource API to use, defaults to WIND Toolkit + tidal: Whether to set tidal data for this site. Defaults to False. + renewable_resource_origin (str): whether to download resource data from API or load directly from datasets files. + Options are "API" or "HPC". Defaults to "API". + wind_resource_origin: Which wind resource API to use, defaults toto "WTK" for WIND Toolkit. + Options are "WTK" or "TAP". + site_buffer (Optional): value to buffer site polygon. Defaults to 1e-8. + solar_resource (Optional): dictionary or object containing solar resource data. + wind_resource (Optional): dictionary or object containing wind resource data. """ # User provided data: dict + """dictionary of site info data with key as: + + - **lat** (*float*): site latitude. + - **lon** (*float*): site longitude. + - **elev** (*int, Optional*): elevation of site (m). + - **year** (*int*): year to get resource data for. Defaults to 2012. + - **tz** (*int, Optional*): timezone of site. + - **site_boundaries** (*dict,Optional*): + - **verts** (*list[list[float]]*): vertices of site polygon. list of [x,y] coordinates in meters. + - **verts_simple** (*list[list[float]]*): TODO + - **site_details** (*dict, Optional*): + - **site_area_m2** (*float*): area of site in square meters. + - **site_area_km2** (*float*): area of site in square kilometers. required if ``site_area_m2`` is not provided. + - **site_shape** (*str, Optional*): shape of site area. Options are "circle", "rectangle", "square" or "hexagon". Defaults to "square". + - **x0** (*float, Optional*): left-most x coordinate of the site in meters. Defaults to 0.0. + - **y0** (*float, Optional*): bottom-most x coordinate of the site in meters. Defaults to 0.0. + - **aspect_ratio** (*float, Optional*): aspect ratio (width/height) + Only used if ``site_shape`` is set as "rectangle". Defaults to 1.5. + - **degrees_between_points** (*float | int, Optional*): difference in degrees for generating circular boundary. + Only used if ``site_shape`` is set as "circle". Defaults to 10. + - **solar_lat** (*float, Optional*): latitude to get solar resource data if solar plant is in a different location than lat/lon. Defaults to **lat** value above. + - **solar_lon** (*float, Optional*): longitude to get solar resource data if solar plant is in a different location than lat/lon. Defaults to **lon** value above. + - **solar_year** (*int, Optional*): resource year for solar data if wanting a different resource year than ``data["year"]``. Defaults to **year** value above. + - **wind_lat** (*float, Optional*): latitude to get wind resource data if wind plant is in a different location than lat/lon. Defaults to **lat** value above. + - **wind_lon** (*float, Optional*): longitude to get wind resource data if wind plant is in a different location than lat/lon. Defaults to **lon** value above. + - **wind_year** (*int, Optional*): resource year for wind data if wanting different resource than ``data["year"]``. Defaults to **year** value above. + - **urdb_label** (*str, Optional*): string corresponding to data from utility rate database. Defaults to None. + """ + + solar_resource_file: Union[Path, str] = field(default="", converter=resource_file_converter) wind_resource_file: Union[Path, str] = field(default="", converter=resource_file_converter) wave_resource_file: Union[Path, str] = field(default="", converter=resource_file_converter) + tidal_resource_file: Union[Path, str] = field(default="", converter=resource_file_converter) grid_resource_file: Union[Path, str] = field(default="", converter=resource_file_converter) + + path_resource: Optional[Union[Path, str]] = field(default=ROOT_DIR / "simulation" / "resource_files") + wtk_source_path: Optional[Union[Path,str]] = field(default = "") + nsrdb_source_path: Optional[Union[Path,str]] = field(default = "") + hub_height: hopp_float_type = field(default=97., converter=hopp_float_type) capacity_hours: NDArray = field(default=[], converter=converter(bool)) desired_schedule: NDArrayFloat = field(default=[], converter=converter()) @@ -73,23 +128,30 @@ class SiteInfo(BaseClass): solar: bool = field(default=True) wind: bool = field(default=True) wave: bool = field(default=False) + tidal: bool = field(default=False) + renewable_resource_origin: str = field(default="API", validator=contains(["API", "HPC"])) wind_resource_origin: str = field(default="WTK", validator=contains(["WTK", "TAP"])) + site_buffer: Optional[float] = field(default = 1e-8) + # Set in post init hook - n_timesteps: int = field(init=False, default=None) lat: hopp_float_type = field(init=False) lon: hopp_float_type = field(init=False) + elev: Optional[float] = field(init=False, default=None) year: int = field(init=False, default=2012) tz: Optional[int] = field(init=False, default=None) - solar_resource: Optional[SolarResource] = field(init=False, default=None) - wind_resource: Optional[WindResource] = field(init=False, default=None) - wave_resoure: Optional[WaveResource] = field(init=False, default=None) + vertices: NDArrayFloat = field(init=False) + polygon: Union[Polygon, BaseGeometry] = field(init=False) + solar_resource: Optional[Union[SolarResource,HPCSolarData]] = field(default=None) + wind_resource: Optional[Union[WindResource,HPCWindData]] = field(default=None) + wave_resource: Optional[WaveResource] = field(init=False, default=None) + tidal_resource: Optional[TidalResource] = field(init=False, default=None) elec_prices: Optional[ElectricityPrices] = field(init=False, default=None) + n_timesteps: int = field(init=False, default=None) n_periods_per_day: int = field(init=False) interval: int = field(init=False) + urdb_label: str = field(init=False) follow_desired_schedule: bool = field(init=False) - polygon: Union[Polygon, BaseGeometry] = field(init=False) - vertices: NDArrayFloat = field(init=False) kml_data: Optional[KML] = field(init=False, default=None) # .. TODO: Can we get rid of verts_simple and simplify site_boundaries @@ -99,30 +161,32 @@ def __attrs_post_init__(self): The following are set in this post init hook: lat (numpy.float64): Site latitude in decimal degrees. lon (numpy.float64): Site longitude in decimal degrees. - tz (int, optional): Timezone code for metadata purposes only. Defaults to None. + elev (float, Optional): Elevation of the site in meters. Defaults to None. + year(int): Resource data year. + tz (int, Optional): Timezone code for metadata purposes only. Defaults to None. vertices (:obj:`NDArray`): Site boundary vertices in meters. polygon (:obj:`shapely.geometry.polygon.Polygon`): Site polygon. - valid_region (:obj:`shapely.geometry.polygon.Polygon`): Tidy site polygon. solar_resource (:obj:`hopp.simulation.technologies.resource.SolarResource`): Class containing solar resource data. wind_resource (:obj:`hopp.simulation.technologies.resource.WindResource`): Class containing wind resource data. - wave_resoure (:obj:`hopp.simulation.technologies.resource.WaveResource`): Class containing wave resource data. + wave_resource (:obj:`hopp.simulation.technologies.resource.WaveResource`): Class containing wave resource data. + tidal_resource (:obj:`hopp.simulation.technologies.resource.TidalResource`): Class containing tidal resource data. elec_prices (:obj:`hopp.simulation.technologies.resource.ElectricityPrices`): Class containing electricity prices. n_timesteps (int): Number of timesteps in resource data. n_periods_per_day (int): Number of time periods per day. interval (int): Number of minutes per time interval. urdb_label (str): Link to `Utility Rate DataBase `_ label for REopt runs. follow_desired_schedule (bool): Indicates if a desired schedule was provided. Defaults to False. + kml_data (KML, Optional): KML data to be used when definining site boundaries. """ - set_nrel_key_dot_env() + if self.renewable_resource_origin=="API": + set_nrel_key_dot_env() data = self.data - if 'site_boundaries' in data: - self.vertices = np.array([np.array(v) for v in data['site_boundaries']['verts']]) - self.polygon = Polygon(self.vertices) - self.polygon = self.polygon.buffer(1e-8) + self.polygon,self.vertices = self.create_site_polygon(data) + if 'kml_file' in data: self.kml_data, self.polygon, data['lat'], data['lon'] = self.kml_read(data['kml_file']) - self.polygon = self.polygon.buffer(1e-8) + self.polygon = self.polygon.buffer(self.site_buffer) if 'lat' not in data or 'lon' not in data: raise ValueError("SiteInfo requires lat and lon") @@ -130,21 +194,34 @@ def __attrs_post_init__(self): self.lon = data['lon'] if 'year' not in data: - data['year'] = 2012 + data['year'] = self.year + + self.year = data["year"] + if 'tz' in data: self.tz = data['tz'] + if 'elev' in data: + self.elev = data['elev'] + if self.solar: - self.solar_resource = SolarResource(data['lat'], data['lon'], data['year'], filepath=self.solar_resource_file) + self.solar_resource = self.initialize_solar_resource(data) self.n_timesteps = len(self.solar_resource.data['gh']) // 8760 * 8760 + data.setdefault("elev", self.solar_resource.data["elev"]) + data.setdefault("tz", self.solar_resource.data["tz"]) + if self.tz is None: + self.tz = data['tz'] + if self.elev is None: + self.elev = data['elev'] if self.wave: self.wave_resource = WaveResource(data['lat'], data['lon'], data['year'], filepath = self.wave_resource_file) self.n_timesteps = 8760 - + if self.tidal: + self.tidal_resource = TidalResource(data['lat'], data['lon'], data['year'], filepath = self.tidal_resource_file) + self.n_timesteps = 8760 if self.wind: # TODO: allow hub height to be used as an optimization variable - self.wind_resource = WindResource(data['lat'], data['lon'], data['year'], wind_turbine_hub_ht=self.hub_height, - filepath=self.wind_resource_file, source=self.wind_resource_origin) + self.wind_resource = self.initialize_wind_resource(data) n_timesteps = len(self.wind_resource.data['data']) // 8760 * 8760 if self.n_timesteps is None: self.n_timesteps = n_timesteps @@ -166,14 +243,153 @@ def __attrs_post_init__(self): # FIXME: this a hack if self.wind: - logger.info("Set up SiteInfo with wind resource files: {}".format(self.wind_resource.filename)) + logger.info("Set up SiteInfo with wind resource file: {}".format(self.wind_resource.filename)) if self.solar: - logger.info("Set up SiteInfo with solar resource files: {}".format(self.solar_resource.filename)) + logger.info("Set up SiteInfo with solar resource file: {}".format(self.solar_resource.filename)) if self.wave: - logger.info("Set up SiteInfo with wave resource files: {}".format(self.wave_resource.filename)) + logger.info("Set up SiteInfo with wave resource file: {}".format(self.wave_resource.filename)) + if self.tidal: + logger.info("Set up SiteInfo with tidal resource file: {}".format(self.tidal_resource.filename)) + def create_site_polygon(self,data:dict): + """function to create site polygon. - # TODO: determine if the below functions are obsolete + Args: + data (dict): dictionary of site info data + + Returns: + 2-element tuple containing + + - **poly** (:obj:`shapely.geometry.Polygon`): site boundary polygon + - **vertices** (2D :obj:`numpy.ndarray`): vertices of site polygon. list of [x,y] coordinates in meters. + """ + polygon = None + vertices = None + if 'site_boundaries' in data: + if 'verts' in data['site_boundaries']: + vertices = np.array(data["site_boundaries"]["verts"]) + polygon = Polygon(vertices) + polygon = polygon.buffer(self.site_buffer) #why is this needed? + elif 'site_details' in data: + if 'site_area_m2' in data["site_details"] or 'site_area_km2' in data["site_details"]: + if 'site_area_km2' in data["site_details"]: + data["site_details"].update({"site_area_m2": data["site_details"]["site_area_km2"]*1e6}) + data["site_details"].setdefault("site_shape", "square") + data["site_details"].setdefault("x0", 0.0) + data["site_details"].setdefault("y0", 0.0) + polygon, vertices = self.make_site_polygon_from_shape(data["site_details"]) + polygon = polygon.buffer(self.site_buffer) + return polygon, vertices + def make_site_polygon_from_shape(self,site_details:dict): + """create site polygon and vertices if "site_details" provided in ``data``. + + Args: + site_details (dict): sub-dictionary of ``data``, equivalent to ``data["site_details"]`` + + Raises: + ValueError: if ``site_details["site_shape"]`` is not one of the following: "circle", "square", "rectangle", or "hexagon" + + Returns: + 2-element tuple containing + + - **poly** (:obj:`shapely.geometry.Polygon`): site boundary polygon + - **vertices** (2D :obj:`numpy.ndarray`): vertices of site polygon. list of [x,y] coordinates in meters. + """ + if (shape := site_details.get("site_shape", None)) is None: + return None, None + + shape = shape.lower() + if shape == "circle": + site_details.setdefault("degrees_between_points", 10.0) + polygon, vertices = shape_tools.make_circle( + area_m2 = site_details['site_area_m2'], + deg_diff = site_details["degrees_between_points"], + x0 = site_details["x0"], + y0 = site_details["y0"] + ) + return polygon, vertices + if shape == "square": + polygon, vertices = shape_tools.make_square( + area_m2 = site_details['site_area_m2'], + x0 = site_details["x0"], + y0 = site_details["y0"] + ) + return polygon, vertices + if shape == "rectangle": + site_details.setdefault("aspect_ratio", 1.5) + polygon, vertices = shape_tools.make_rectangle( + area_m2 = site_details['site_area_m2'], + aspect_ratio = site_details["aspect_ratio"], + x0 = site_details["x0"], + y0 = site_details["y0"] + ) + return polygon, vertices + if shape == "hexagon": + polygon, vertices = shape_tools.make_hexagon( + area_m2 = site_details['site_area_m2'], + x0 = site_details["x0"], + y0 = site_details["y0"] + ) + return polygon, vertices + + raise ValueError("invalid entry for `site_shape`, site_shape must be either 'circle', 'rectangle', 'square' or 'hexagon'") + + + + def initialize_solar_resource(self,data:dict): + """Download/load solar resource data + + Args: + data (dict): Dictionary containing site-specific information. + + Returns: + :obj:`hopp.simulation.technologies.resource.SolarResource` or :obj:`hopp.simulation.technologies.resource.HPCSolarData`: solar resource data class + """ + + solar_lat = data.setdefault("solar_lat", data["lat"]) + solar_lon = data.setdefault("solar_lon", data["lon"]) + solar_year = data.setdefault("solar_year", data["year"]) + + if self.solar_resource is None: + if self.renewable_resource_origin == "API": + solar_resource = SolarResource(solar_lat, solar_lon, solar_year, path_resource=self.path_resource, filepath=self.solar_resource_file) + else: + solar_resource = HPCSolarData(solar_lat, solar_lon, solar_year,nsrdb_source_path = self.nsrdb_source_path, filepath=self.solar_resource_file) + return solar_resource + if isinstance(self.solar_resource,dict): + solar_resource = SolarResource(solar_lat, solar_lon, solar_year,resource_data = self.solar_resource) + return solar_resource + + return self.solar_resource + + def initialize_wind_resource(self,data:dict): + """Download/load wind resource data + + Args: + data (dict): Dictionary containing site-specific information. + + Returns: + :obj:`hopp.simulation.technologies.resource.WindResource` or :obj:`hopp.simulation.technologies.resource.HPCWindData`: wind resource data class + """ + wind_lat = data.setdefault("wind_lat", data["lat"]) + wind_lon = data.setdefault("wind_lon", data["lon"]) + wind_year = data.setdefault("wind_year", data["year"]) + + if self.wind_resource is None: + if self.renewable_resource_origin == "API": + wind_resource = WindResource(wind_lat, wind_lon, wind_year, wind_turbine_hub_ht=self.hub_height, + path_resource=self.path_resource, filepath=self.wind_resource_file, source=self.wind_resource_origin) + else: + wind_resource = HPCWindData(wind_lat, wind_lon, wind_year, wind_turbine_hub_ht=self.hub_height, + wtk_source_path=self.wtk_source_path, filepath=self.wind_resource_file) + return wind_resource + if isinstance(self.wind_resource,dict): + wind_resource = WindResource(wind_lat, wind_lon, wind_year, wind_turbine_hub_ht=self.hub_height,resource_data = self.wind_resource) + return wind_resource + + return self.wind_resource + + # TODO: determine if the below functions are obsolete @property def boundary(self) -> BaseGeometry: # TODO: remove boundaries of interior holes diff --git a/hopp/simulation/technologies/sites/site_shape_tools.py b/hopp/simulation/technologies/sites/site_shape_tools.py new file mode 100644 index 000000000..73893ffd5 --- /dev/null +++ b/hopp/simulation/technologies/sites/site_shape_tools.py @@ -0,0 +1,256 @@ +from shapely.geometry import Polygon, MultiPolygon, box +import numpy as np +import pandas as pd +from hopp.tools.layout.plot_tools import plot_shape +import matplotlib.pyplot as plt + +def calc_dist_between_two_points_cartesian(x1,y1,x2,y2): + """Calculate the distance between two points. + + Args: + x1 (np.ndarray | float): x coordinate of first point. + y1 (np.ndarray | float): y coordinate of first point. + x2 (np.ndarray | float): x coordinate of second point. + y2 (np.ndarray | float): y coordinate of second point. + + Returns: + np.ndarray | float: distance between two points + """ + dx = np.abs(x2-x1) + dy = np.abs(y2-y1) + return np.sqrt((dx**2) + (dy**2)) + +def calc_angle_between_two_points_cartesian(x0, y0, x1, y1): + """Calculate angle between two points. + + Args: + x0 (np.ndarray | float): x coordinate of first point. + y0 (np.ndarray | float): y coordinate of first point. + x1 (np.ndarray | float): x coordinate of second point. + y1 (np.ndarray | float): y coordinate of second point. + + Returns: + np.ndarray | float: angle between two points (degrees) + """ + dx = x1 - x0 + dy = y1 - y0 + angle_deg = np.rad2deg(np.arctan2(dx,dy)) + if isinstance(angle_deg, float): + return angle_deg if angle_deg >= 0 else angle_deg + 360 + return np.where(angle_deg < 0, angle_deg + 360, angle_deg) + + +def check_site_verts(verts): + """Check that vertices are valid and re-sort as needed. + + Args: + verts (2D :obj:`numpy.ndarray`): vertices of site polygon. list of [x,y] coordinates in meters. + + Returns: + numpy.ndarray: vertices ordered so that no linear rings may cross each other. + """ + x_points, y_points = verts.T + x0 = x_points.min() + y0 = y_points.min() + + dx = 0 - x0 #dx is positive if x0 is negative + dy = 0 - y0 #dy is positive if y0 is negative + + x_pos = x_points + dx + y_pos = y_points + dy + + x_center = (max(x_pos) - min(x_pos))/2 + y_center = (max(y_pos) - min(y_pos))/2 + + distances = calc_dist_between_two_points_cartesian(x_center,y_center,x_pos,y_pos) + angles = calc_angle_between_two_points_cartesian(x_center,y_center,x_pos,y_pos) + + df = ( + pd.DataFrame({"x_pos": x_pos, "y_pos": y_pos, "distances": distances, "angles": angles}) + .sort_values(["angles", "distances"]) + ) + df.x_pos += dx + df.y_pos += dy + organized_verts = df[["x_pos", "y_pos"]].values + return organized_verts + +def make_square(area_m2, x0=0.0, y0=0.0): + """Generate square polygon shape of specified area. + + Args: + area_m2 (float): area of shape in square meters. + x0 (float, Optional): left-most x coordinate of the shape. Defaults to 0.0. + y0 (float, Optional): bottom-most x coordinate of the shape. Defaults to 0.0. + + Returns: + 2-element tuple containing + + - **poly** (:obj:`shapely.geometry.Polygon`): site boundary polygon + - **vertices** (2D :obj:`numpy.ndarray`): vertices of site polygon. list of [x,y] coordinates in meters. + """ + site_length = np.sqrt(area_m2) + y1 = y0 + site_length + x1 = x0 + site_length + poly = box(x0, y0, x1, y1) + vertices = np.array([[x0,x0], [x1,y0], [x1,y1], [x0,y1]]) + return poly, vertices + +def make_rectangle(area_m2, aspect_ratio=1.5, x0=0.0, y0=0.0): + """Generate rectangle polygon shape of specified area. + + Args: + area_m2 (float): area of shape in square meters. + aspect_ratio (float, Optional): ratio of width/height. Defaults to 1.5. + (width corresponds to x coordinates, height corresponds to y coordinates) + x0 (float, Optional): left-most x coordinate of the shape. Defaults to 0.0. + y0 (float, Optional): bottom-most x coordinate of the shape. Defaults to 0.0. + + Returns: + 2-element tuple containing + + - **poly** (:obj:`shapely.geometry.Polygon`): site boundary polygon + - **vertices** (2D :obj:`numpy.ndarray`): vertices of site polygon. list of [x,y] coordinates in meters. + """ + height = np.sqrt(area_m2/aspect_ratio) + width = area_m2/height + x1 = x0 + width + y1 = y0 + height + poly = box(x0, y0, x1, y1) + vertices = np.array([[x0,x0], [x1,y0], [x1,y1], [x0,y1]]) + return poly,vertices + +def make_circle(area_m2, deg_diff = 5.0, x0=0.0, y0=0.0): + """Generate circle polygon shape of specified area. + + Args: + area_m2 (float): area of shape in square meters. + deg_diff (float | int): difference in degrees for generating boundary. default to 10. + number of points generated is equal to ``360/deg_diff`` + x0 (float, Optional): left-most x coordinate of the shape. Defaults to 0.0. + y0 (float, Optional): bottom-most x coordinate of the shape. Defaults to 0.0. + + Returns: + 2-element tuple containing + + - **poly** (:obj:`shapely.geometry.Polygon`): site boundary polygon + - **vertices** (2D :obj:`numpy.ndarray`): vertices of site polygon. list of [x,y] coordinates in meters. + """ + r = np.sqrt(area_m2/np.pi) + dx = np.deg2rad(deg_diff) + rads = np.arange(0, 2*np.pi, dx) + x_coords = r*np.cos(rads) + y_coords = r*np.sin(rads) + + x_points = x_coords + if any(x_coords < x0): + x_diff = x0 - x_coords + x_points += x_diff.max() + + y_points = y_coords + if any(y_coords < y0): + y_diff = y0 - y_coords + y_points += y_diff.max() + + vertices = np.vstack((x_points, y_points)).T + poly = Polygon(vertices) + + return poly, vertices + +def make_hexagon(area_m2, x0=0.0, y0=0.0): + """Generate hexagon polygon shape of specified area. + + Args: + area_m2 (float): area of shape in square meters. + x0 (float, Optional): left-most x coordinate of the shape. Defaults to 0.0. + y0 (float, Optional): bottom-most x coordinate of the shape. Defaults to 0.0. + + Returns: + 2-element tuple containing + + - **poly** (:obj:`shapely.geometry.Polygon`): site boundary polygon + - **vertices** (2D :obj:`numpy.ndarray`): vertices of site polygon. list of [x,y] coordinates in meters. + """ + s = np.sqrt(area_m2*(2/(3*np.sqrt(3)))) + rads = np.arange(0,2*np.pi,np.deg2rad(60)) + x_coords = s*np.cos(rads) + y_coords = s*np.sin(rads) + + x_points = x_coords + if any(x_coords < x0): + x_diff = x0 - x_coords + x_points += x_diff.max() + + y_points = y_coords + if any(y_coords < y0): + y_diff = y0 - y_coords + y_points += y_diff.max() + + vertices = np.vstack((x_points, y_points)).T + poly = Polygon(vertices) + + return poly, vertices + +def rotate_shape(site_polygon, rotation_angle_deg): + # in degrees where 0 is north, increasing clockwise + # 90 degrees is east, 180 degrees is south, 270 degrees is west + # get center points + xc = site_polygon.centroid.x + yc = site_polygon.centroid.y + + vertices = np.array(site_polygon.exterior.coords) + + # translate coordinates to have origin at polygon center + xc_points, yc_points = (vertices - [xc, yc]).T + + theta = np.deg2rad(rotation_angle_deg) + + # rotate clockwise about the origin + cos_theta = np.cos(theta) + sin_theta = np.sin(theta) + xr_points = (xc_points * cos_theta) + (yc_points * sin_theta) + yr_points = (-1 * xc_points * sin_theta) + (yc_points * cos_theta) + + # translate points back to original coordinate reference system + rotated_vertices = np.vstack((xr_points, yr_points)).T + [xc, yc] + rotated_polygon = Polygon(rotated_vertices) + + return rotated_polygon, rotated_vertices + + +def plot_site_polygon( + site_polygon, + figure=None, + axes=None, + border_color=(0, 0, 0), + alpha=0.95, + linewidth=1.0 + ): + bounds = site_polygon.bounds + site_sw_bound = np.array([bounds[0], bounds[1]]) + site_ne_bound = np.array([bounds[2], bounds[3]]) + site_center = .5 * (site_sw_bound + site_ne_bound) + max_delta = max(site_ne_bound - site_sw_bound) + reach = (max_delta / 2) * 1.3 + min_plot_bound = site_center - reach + max_plot_bound = site_center + reach + + if not figure and not axes: + figure = plt.figure(1) + axes = figure.add_subplot(111) + + axes.set_aspect('equal') + axes.set(xlim=(min_plot_bound[0], max_plot_bound[0]), ylim=(min_plot_bound[1], max_plot_bound[1])) + plot_shape(figure, axes, site_polygon, '--', color=border_color, alpha=alpha, linewidth=linewidth / 2) + if isinstance(site_polygon, Polygon): + shape = [site_polygon] + elif isinstance(site_polygon, MultiPolygon): + shape = site_polygon.geoms + for geom in shape: + xs, ys = geom.exterior.xy + plt.fill(xs, ys, alpha=0.3, fc='g', ec='none') + + plt.tick_params(which='both', labelsize=15) + plt.xlabel('x (m)', fontsize=15) + plt.ylabel('y (m)', fontsize=15) + + return figure, axes \ No newline at end of file diff --git a/hopp/simulation/technologies/tidal/mhk_tidal_plant.py b/hopp/simulation/technologies/tidal/mhk_tidal_plant.py new file mode 100644 index 000000000..ae6d8fd3a --- /dev/null +++ b/hopp/simulation/technologies/tidal/mhk_tidal_plant.py @@ -0,0 +1,231 @@ +from typing import Optional, List, Union +import PySAM.MhkTidal as MhkTidal + +from attrs import define, field +from hopp.simulation.base import BaseClass + +from hopp.simulation.technologies.power_source import PowerSource, SiteInfo, Sequence, logger +from hopp.simulation.technologies.financial.custom_financial_model import CustomFinancialModel +from hopp.simulation.technologies.financial.mhk_cost_model import MHKCosts, MHKCostModelInputs +from hopp.utilities.validators import gt_zero, range_val + + +@define +class MHKTidalConfig(BaseClass): + """ + Configuration class for MHKTidalPlant. + + Args: + device_rating_kw (float): Rated power of the MHK device [kW] + num_devices (int): Number of MHK tidal devices in the system + tidal_power_curve (List[List[float]]): Power curve of tidal energy device as function of stream speeds [kW] + tidal_resource (List[List[float]]): Required by the PySAM MhkTidal module for initialization. Although this parameter + is not actively used in HOPP's timeseries simulation mode, it must still be provided to fully + instantiate the PySAM MhkTidal model. + Frequency distribution of resource as a function of stream speeds. + fin_model (obj | dict): Optional financial model. Can be any of the following: + - a dict representing a `CustomFinancialModel` + - an object representing a `CustomFinancialModel` instance + loss_array_spacing (float): Array spacing loss in % (default: 0) + loss_resource_overprediction (float): Resource overprediction loss + in % (default: 0) + loss_transmission (float): Transmission loss in % (default: 0) + loss_downtime (float): Array/WEC downtime loss in % (default: 0) + loss_additional (float): Additional losses in % (default: 0) + """ + device_rating_kw: float = field(validator=gt_zero) + num_devices: int = field(validator=gt_zero) + tidal_power_curve: List[List[float]] + tidal_resource: List[List[float]] + fin_model: Union[dict, CustomFinancialModel] + loss_array_spacing: float = field(default=0., validator=range_val(0, 100)) + loss_resource_overprediction: float = field(default=0., validator=range_val(0, 100)) + loss_transmission: float = field(default=0., validator=range_val(0, 100)) + loss_downtime: float = field(default=0., validator=range_val(0, 100)) + loss_additional: float = field(default=0., validator=range_val(0, 100)) + name: str = field(default="MHKTidalPlant") + + +@define +class MHKTidalPlant(PowerSource): + """ + Marine Hydrokinetic (MHK) Tidal Plant. + + Args: + site: Site information + config: MHK system configuration parameters + cost_model_inputs (dict, Optional): An optional dictionary containing input parameters for + cost modeling. + """ + site: SiteInfo + config: MHKTidalConfig + cost_model_inputs: Optional[MHKCostModelInputs] = field(default=None) + config_name: str = field(default="MhkWave") + + mhk_costs: Optional[MHKCosts] = field(init=False) + + def __attrs_post_init__(self): + system_model = MhkTidal.new() + + if isinstance(self.config.fin_model, dict): + financial_model = CustomFinancialModel(self.config.fin_model, name=self.config.name) + else: + financial_model = self.config.fin_model + + financial_model = self.import_financial_model(financial_model, system_model, self.config_name) + + if self.cost_model_inputs is not None: + self.mhk_costs = MHKCosts(self.config, self.cost_model_inputs) + else: + self.mhk_costs = None + + super().__init__("MHKTidalPlant", self.site, system_model, financial_model) + + # Set tidal resource model choice + system_model.MHKTidal.tidal_resource_model_choice = 1 # Time-series data=1 JPD=0 (Joint-probability distribution) + + # Copy values from self.site.tidal_resource.data to system_model.MHKTidal + attributes_to_copy = ['tidal_velocity'] + for attribute in attributes_to_copy: + setattr(system_model.MHKTidal, attribute, self.site.tidal_resource.data[attribute]) + + # System parameter inputs + self._system_model.device_rated_power = self.config.device_rating_kw + self._system_model.value("number_devices", self.config.num_devices) + self._system_model.value("tidal_power_curve", self.config.tidal_power_curve) + self._system_model.value("tidal_resource", self.config.tidal_resource) + + # Losses + loss_attributes = [ + 'loss_array_spacing', + 'loss_downtime', + 'loss_resource_overprediction', + 'loss_transmission', + 'loss_additional' + ] + + for attribute in loss_attributes: + attr = getattr(self.config, attribute, 0) + setattr(self._system_model.MHKTidal, attribute, attr) + + def create_mhk_cost_calculator(self, cost_model_inputs: Union[dict, MHKCostModelInputs]): + """ + Instantiates MHKCosts, cost calculator for MHKTidalPlant. + + Args: + cost_model_inputs: Input parameters for cost modeling. + """ + if isinstance(cost_model_inputs, dict): + cost_model = MHKCostModelInputs.from_dict(cost_model_inputs) + else: + cost_model = cost_model_inputs + + self.mhk_costs = MHKCosts(self.config, cost_model) + + def calculate_total_installed_cost(self) -> float: + if self.mhk_costs is None: + raise AttributeError("mhk_costs must be set before calling this method.") + + self.mhk_costs.simulate_costs() + cost_dict = self.mhk_costs.cost_outputs + + capex = cost_dict['structural_assembly_cost_modeled']+\ + cost_dict['power_takeoff_system_cost_modeled']+\ + cost_dict['mooring_found_substruc_cost_modeled'] + bos = cost_dict['development_cost_modeled']+\ + cost_dict['eng_and_mgmt_cost_modeled']+\ + cost_dict['plant_commissioning_cost_modeled']+\ + cost_dict['site_access_port_staging_cost_modeled']+\ + cost_dict['assembly_and_install_cost_modeled']+\ + cost_dict['other_infrastructure_cost_modeled'] + elec_infrastruc_costs = cost_dict['array_cable_system_cost_modeled']+\ + cost_dict['export_cable_system_cost_modeled']+\ + cost_dict['onshore_substation_cost_modeled']+\ + cost_dict['offshore_substation_cost_modeled']+\ + cost_dict['other_elec_infra_cost_modeled'] + financial = cost_dict['project_contingency']+\ + cost_dict['insurance_during_construction']+\ + cost_dict['reserve_accounts'] + + total_installed_cost = capex+bos+elec_infrastruc_costs+financial + + return self._financial_model.value("total_installed_cost", total_installed_cost) + + def system_capacity_by_num_devices(self, tidal_size_kw: float): + """ + Sets the system capacity by adjusting the number of devices + """ + new_num_devices = round(tidal_size_kw / self.device_rated_power) + self.number_devices = new_num_devices + + def simulate(self, interconnect_kw: float, project_life: int = 25, lifetime_sim=False): + """ + Run the system and financial model + + Args: + interconnect_kw: grid interconnect + project_life: Number of years in the analysis period (expected + project lifetime) + lifetime_sim: + For simulation modules which support simulating each year of the + project_life, whether or not to do so; otherwise the first year + data is repeated + """ + + self.calculate_total_installed_cost() + super().simulate(interconnect_kw, project_life) + + @property + def device_rated_power(self) -> float: + return self._system_model.device_rated_power + + @device_rated_power.setter + def device_rated_power(self, device_rate_power: float): + self._system_model.device_rated_power = device_rate_power + if self.mhk_costs is not None: + self.mhk_costs.device_rated_power = device_rate_power + + @property + def number_devices(self) -> int: + return self._system_model.MHKTidal.number_devices + + @number_devices.setter + def number_devices(self, number_devices: int): + self._system_model.MHKTidal.number_devices = number_devices + if self.mhk_costs is not None: + self.mhk_costs.number_devices = number_devices + + @property + def tidal_power_curve(self) -> List[List[float]]: + return self._system_model.MHKTidal.tidal_power_curve + + @tidal_power_curve.setter + def tidal_power_curve(self, tidal_power_curve: Sequence): + self._system_model.MHKTidal.tidal_tidal_power_curve =tidal_power_curve + + @property + def system_capacity_kw(self) -> float: + self._system_model.value("system_capacity", self._system_model.device_rated_power * self._system_model.MHKTidal.number_devices) + return self._system_model.value("system_capacity") + + @system_capacity_kw.setter + def system_capacity_kw(self, size_kw: float): + """ + Sets the system capacity by updates the number of tidal devices using device rating + """ + self.system_capacity_by_num_devices(size_kw) + + @property + def annual_energy_kwh(self) -> float: + if self.system_capacity_kw > 0: + return self._system_model.value("annual_energy") + else: + return 0 + + @property + def capacity_factor(self) -> float: + if self.system_capacity_kw > 0: + return self._system_model.value("capacity_factor") + else: + return 0 + \ No newline at end of file diff --git a/hopp/simulation/technologies/wave/mhk_wave_plant.py b/hopp/simulation/technologies/wave/mhk_wave_plant.py index 0af69c911..71da8986a 100644 --- a/hopp/simulation/technologies/wave/mhk_wave_plant.py +++ b/hopp/simulation/technologies/wave/mhk_wave_plant.py @@ -8,8 +8,6 @@ from hopp.simulation.technologies.financial.custom_financial_model import CustomFinancialModel from hopp.simulation.technologies.financial.mhk_cost_model import MHKCosts, MHKCostModelInputs from hopp.utilities.validators import gt_zero, range_val -#TODO: Add dispatch for Wave -# hopp.dispatch.power_sources.wave_dispatch import WaveDispatch @define @@ -18,22 +16,20 @@ class MHKConfig(BaseClass): Configuration class for MHKWavePlant. Args: - device_rating_kw: Rated power of the MHK device in kilowatts - num_devices: Number of MHK devices in the system - wave_power_matrix: Wave power matrix - fin_model: Optional financial model. Can be any of the following: + device_rating_kw (float): Rated power of the MHK device in kilowatts + num_devices (int): Number of MHK devices in the system + wave_power_matrix (List[List[float]]): Wave power matrix + fin_model (dict | obj): Optional financial model. Can be any of the following: - a dict representing a `CustomFinancialModel` - an object representing a `CustomFinancialModel` instance - - layout_mode: TODO - loss_array_spacing: Array spacing loss in % (default: 0) - loss_resource_overprediction: Resource overprediction loss + loss_array_spacing (float): Array spacing loss in % (default: 0) + loss_resource_overprediction (float): Resource overprediction loss in % (default: 0) - loss_transmission: Transmission loss in % (default: 0) - loss_downtime: Array/WEC downtime loss in % (default: 0) - loss_additional: Additional losses in % (default: 0) + loss_transmission (float): Transmission loss in % (default: 0) + loss_downtime (float): Array/WEC downtime loss in % (default: 0) + loss_additional (float): Additional losses in % (default: 0) """ device_rating_kw: float = field(validator=gt_zero) num_devices: int = field(validator=gt_zero) @@ -55,7 +51,7 @@ class MHKWavePlant(PowerSource): Args: site: Site information config: MHK system configuration parameters - cost_model_inputs: An optional dictionary containing input parameters for + cost_model_inputs (dict): An optional dictionary containing input parameters for cost modeling. """ @@ -154,8 +150,7 @@ def system_capacity_by_num_devices(self, wave_size_kw: float): Sets the system capacity by adjusting the number of devices """ new_num_devices = round(wave_size_kw / self.device_rated_power) - if self.number_devices != new_num_devices: - self.number_devices = new_num_devices + self.number_devices = new_num_devices def simulate(self, interconnect_kw: float, project_life: int = 25, lifetime_sim=False): """ @@ -181,7 +176,7 @@ def device_rated_power(self) -> float: @device_rated_power.setter def device_rated_power(self, device_rate_power: float): self._system_model.MHKWave.device_rated_power = device_rate_power - if self.mhk_costs != None: + if self.mhk_costs is not None: self.mhk_costs.device_rated_power = device_rate_power @property @@ -191,7 +186,7 @@ def number_devices(self) -> int: @number_devices.setter def number_devices(self, number_devices: int): self._system_model.MHKWave.number_devices = number_devices - if self.mhk_costs != None: + if self.mhk_costs is not None: self.mhk_costs.number_devices = number_devices @property @@ -217,27 +212,23 @@ def system_capacity_kw(self, size_kw: float): """ self.system_capacity_by_num_devices(size_kw) - #### These are also in Power Source but overwritten here because MhkWave - #### Expects 3-hr timeseries data so values are inflated by 3x - #### TODO: If additional system models are added will need to revise these properties so correct values are assigned @property def annual_energy_kwh(self) -> float: if self.system_capacity_kw > 0: - return self._system_model.value("annual_energy") / 3 + return self._system_model.value("annual_energy") else: return 0 @property def capacity_factor(self) -> float: if self.system_capacity_kw > 0: - return self._system_model.value("capacity_factor") / 3 + return self._system_model.value("capacity_factor") else: return 0 - ### Not in Power Source but affected by hourly data @property def numberHours(self) -> float: if self.system_capacity_kw > 0: - return self._system_model.value("numberHours") / 3 + return self._system_model.value("numberHours") else: return 0 \ No newline at end of file diff --git a/hopp/simulation/technologies/wind/floris.py b/hopp/simulation/technologies/wind/floris.py index a507c706e..a8fe10b6b 100644 --- a/hopp/simulation/technologies/wind/floris.py +++ b/hopp/simulation/technologies/wind/floris.py @@ -1,68 +1,93 @@ -# tools to add floris to the hybrid simulation class -from attrs import define, field -from dataclasses import dataclass, asdict -import csv +from pathlib import Path from typing import TYPE_CHECKING, Tuple + +from attrs import define, field import numpy as np from floris import FlorisModel, TimeSeries - from hopp.simulation.base import BaseClass from hopp.simulation.technologies.sites import SiteInfo -from hopp.type_dec import resource_file_converter - # avoid circular dep if TYPE_CHECKING: from hopp.simulation.technologies.wind.wind_plant import WindConfig - +from hopp.tools.resource.wind_tools import ( + calculate_air_density, + parse_resource_data, + weighted_parse_resource_data +) +from hopp.utilities import load_yaml +from hopp.utilities.log import hybrid_logger as logger +import hopp.tools.design.wind.floris_helper_tools as floris_tools @define class Floris(BaseClass): + site: SiteInfo = field() config: "WindConfig" = field() _operational_losses: float = field(init=False) _timestep: Tuple[int, int] = field(init=False) - annual_energy_pre_curtailment_ac: float = field(init=False) fi: FlorisModel = field(init=False) + + # turbine parameters + turbine_name: str = field(init = False) + wind_turbine_rotor_diameter: float = field(init = False) + turb_rating: float = field(init = False) + # turbine power curve (array of kW power outputs) + wind_turbine_powercurve_powerout: list[float] = field(init = False) + wind_farm_xCoordinates: list[float] = field(init = False) + wind_farm_yCoordinates: list[float] = field(init = False) + system_capacity: float = field(init = False) + + #results + gen: list[float] = field(init = False) + annual_energy: float = field(init = False) + capacity_factor: float = field(init = False) + annual_energy_pre_curtailment_ac: float = field(init = False) + + turb_velocities: np.ndarray = field(init = False) + turb_powers: np.ndarray = field(init = False) def __attrs_post_init__(self): - # floris_input_file = resource_file_converter(self.config["simulation_input_file"]) - floris_input_file = self.config.floris_config # DEBUG!!!!! + """Set-up and initialize floris_config and floris model. This method does the following: - if floris_input_file is None: + 1) check that floris config is provided + 2) load floris config if needed + 3) modify air density in floris config if needed + 4) initialize attributes from floris config and update floris config as needed + 5) initialize floris model + + Raises: + ValueError: "A floris configuration must be provided" + ValueError: "A timestep is required." + """ + + if self.config.floris_config is None: raise ValueError("A floris configuration must be provided") if self.config.timestep is None: raise ValueError("A timestep is required.") - # the above change is a temporary patch to bridge to refactor floris + if isinstance(self.config.floris_config,(str, Path)): + floris_config = load_yaml(self.config.floris_config) + else: + floris_config = self.config.floris_config - self.fi = FlorisModel(floris_input_file) + if self.config.adjust_air_density_for_elevation and self.site.elev is not None: + rho = calculate_air_density(self.site.elev) + floris_config["flow_field"].update({"air_density":rho}) + + floris_config = self.initialize_from_floris(floris_config) + + self.fi = FlorisModel(floris_config) self._timestep = self.config.timestep self._operational_losses = self.config.operational_losses - - self.wind_resource_data = self.site.wind_resource.data - self.speeds, self.wind_dirs = self.parse_resource_data() - - save_data = np.zeros((len(self.speeds),2)) - save_data[:,0] = self.speeds - save_data[:,1] = self.wind_dirs - - with open('speed_dir_data.csv', 'w', newline='') as fo: - writer = csv.writer(fo) - writer.writerows(save_data) - - self.wind_farm_xCoordinates = self.fi.layout_x - self.wind_farm_yCoordinates = self.fi.layout_y - self.nTurbs = len(self.wind_farm_xCoordinates) - self.turb_rating = self.config.turbine_rating_kw - self.wind_turbine_rotor_diameter = self.fi.core.farm.rotor_diameters[0] + if self.config.resource_parse_method == "average": + self.speeds, self.wind_dirs = parse_resource_data(self.site.wind_resource) + elif self.config.resource_parse_method == "weighted_average": + self.speeds, self.wind_dirs = weighted_parse_resource_data(self.site.wind_resource) self.system_capacity = self.nTurbs * self.turb_rating - # turbine power curve (array of kW power outputs) - self.wind_turbine_powercurve_powerout = [] - # time to simulate if len(self.config.timestep) > 0: self.start_idx = self.config.timestep[0] @@ -70,58 +95,153 @@ def __attrs_post_init__(self): else: self.start_idx = 0 self.end_idx = 8759 + - # results - self.gen = [] - self.annual_energy = None - self.capacity_factor = None + def initialize_from_floris(self, floris_config): + """Initialize wind turbine parmeters and set in floris_config. - self.initialize_from_floris() + Args: + floris_config (dict): floris input dictionary - def initialize_from_floris(self): - """ - Please populate all the wind farm parameters - """ - self.nTurbs = len(self.fi.layout_x) - self.wind_turbine_powercurve_powerout = [1] * 30 # dummy for now - pass + Raises: + ValueError: if rotor_diameter in WindConfig doesnt match rotor diameter in floris_config + ValueError: if turbine_rating_kw in WindConfig doesnt match turbine rating from power-curve + ValueError: if hub_height in WindConfig doesnt match hub-height in floris_config - def value(self, name: str, set_value=None): + + Returns: + dict: updated floris_config """ - if set_value = None, then retrieve value; otherwise overwrite variable's value + floris_config = self.initialize_wind_turbine(floris_config) + + # see if rotor diameter was input in config but not set in floris config + if self.config.rotor_diameter is not None: + floris_config["farm"]["turbine_type"][0].setdefault("rotor_diameter",self.config.rotor_diameter) + # see if hub-height was input in config but not set in floris config + if self.config.hub_height is not None: + floris_config["farm"]["turbine_type"][0].setdefault("hub_height",self.config.hub_height) + + # set attributes: + hub_height = floris_config["farm"]["turbine_type"][0]["hub_height"] + self.wind_turbine_rotor_diameter = floris_config["farm"]["turbine_type"][0]["rotor_diameter"] + self.wind_turbine_powercurve_powerout = floris_config["farm"]["turbine_type"][0]["power_thrust_table"]["power"] + self.wind_farm_xCoordinates = floris_config["farm"]["layout_x"] + self.wind_farm_yCoordinates = floris_config["farm"]["layout_y"] + self.nTurbs = len(self.wind_farm_xCoordinates) + + self.turb_rating = max(self.wind_turbine_powercurve_powerout) + + if self.config.turbine_rating_kw is not None: + if self.config.turbine_rating_kw != self.turb_rating: + msg = ( + f"Input turbine rating ({self.config.turbine_rating_kw} kW) does not match " + f"rating from floris power-curve ({self.turb_rating} kW). " + "Please either remove turbine_rating_kw from the hopp config input " + f"or correct the value to {self.turb_rating}." + ) + raise ValueError(msg) + if self.config.rotor_diameter is not None: + if self.config.rotor_diameter != self.wind_turbine_rotor_diameter: + msg = ( + f"Input rotor diameter ({self.config.rotor_diameter}) does not match " + f"rotor diameter from floris config ({self.wind_turbine_rotor_diameter}). " + "Please either remove rotor_diameter from the hopp config input " + f"or correct the value to {self.wind_turbine_rotor_diameter}." + ) + raise ValueError(msg) + if self.config.hub_height is not None: + if self.config.hub_height != hub_height: + msg = ( + f"Input hub-height ({self.config.hub_height}) does not match " + f"hub-height from floris config ({hub_height}). " + "Please either remove hub_height from the hopp config input " + "(under hopp_config['technologies']['wind'])" + f"or correct the value to {hub_height}." + ) + raise ValueError(msg) + if hub_height != self.site.wind_resource.hub_height_meters: + valid_min_height = hub_height >= min(self.site.wind_resource.data["heights"]) + valid_max_height = hub_height <= max(self.site.wind_resource.data["heights"]) + if valid_min_height and valid_max_height: + self.site.wind_resource.hub_height_meters = float(hub_height) + self.site.hub_height = float(hub_height) + logger.info(f"Updating wind resource hub-height to {hub_height}m") + else: + logger.warning(f"Updating wind resource hub-height to {hub_height}m and redownloading wind resource data") + self.site.hub_height = hub_height + data = { + "lat": self.site.wind_resource.latitude, + "lon": self.site.wind_resource.longitude, + "year": self.site.wind_resource.year, + } + wind_resource = self.site.initialize_wind_resource(data) + self.site.wind_resource = wind_resource + + + return floris_config + + def value(self, name: str, set_value=None): + """Set or retrieve attribute of `hopp.simulation.technologies.wind.floris.Floris`. + if set_value = None, then retrieve value; otherwise overwrite variable's value. + + Args: + name (str): name of attribute to set or retrieve. + set_value (Optional): value to set for variable `name`. + If `None`, then retrieve value. Defaults to None. """ - if set_value: + if set_value is not None: self.__setattr__(name, set_value) else: return self.__getattribute__(name) - def parse_resource_data(self): - - # extract data for simulation - speeds = np.zeros(len(self.wind_resource_data['data'])) - wind_dirs = np.zeros(len(self.site.wind_resource.data['data'])) - data_rows_total = 4 - if np.shape(self.site.wind_resource.data['data'])[1] > data_rows_total: - height_entries = int(np.round(np.shape(self.site.wind_resource.data['data'])[1]/data_rows_total)) - data_entries = np.empty((height_entries)) - for j in range(height_entries): - data_entries[j] = int(j*data_rows_total) - data_entries = data_entries.astype(int) - for i in range((len(self.site.wind_resource.data['data']))): - data_array = np.array(self.site.wind_resource.data['data'][i]) - speeds[i] = np.mean(data_array[2+data_entries]) - wind_dirs[i] = np.mean(data_array[3+data_entries]) - else: - for i in range((len(self.site.wind_resource.data['data']))): - speeds[i] = self.site.wind_resource.data['data'][i][2] - wind_dirs[i] = self.site.wind_resource.data['data'][i][3] + def set_floris_value(self, name, value): + """Set value of FlorisModel object using the `set` function. + + Args: + name (str): name of parameter to update. + value (any): value to assign to specified `parameter`. + """ + if value is not None: + self.fi.set(**{name:value}) + + def set_floris_param(self, param, value): + """Set parameter of FlorisModel object using the `set_param` function. + + Args: + param (list[str]): list of parameter keys in FlorisModel to update. + value (any): values to assign to the specified `param`. + """ + if value is not None: + self.fi.set_param(param,value) + + def get_floris_param(self, param): + """Get parameter of FlorisModel object using the `get_param` function. - return speeds, wind_dirs + Args: + param (list[str]): list of parameter keys in FlorisModel to retrieve. - def execute(self, project_life): + Returns: + any: value of FlorisModel parameter + """ + return self.fi.get_param(param) - print('Simulating wind farm output in FLORIS...') + def execute(self, project_life): + """Simulate wind farm performance using floris. + Args: + project_life (int): unused project life in years + """ + + if self.config.verbose: + print('Simulating wind farm output in FLORIS...') + + # check if user-input num_turbines equals number of turbines in layout + if self.nTurbs != self.config.num_turbines: + # log warning if discrepancy in number of turbines + # not raising a warning since wind farm capacity can be modified before simulation begins + logger.warning(f"num_turbines input in WindConfig ({self.config.num_turbines}) does not equal number of turbines in floris model ({self.nTurbs})") + logger.info(f"simulating {self.nTurbs} turbines using FLORIS") + # find generation of wind farm power_turbines = np.zeros((self.nTurbs, 8760)) power_farm = np.zeros(8760) @@ -135,17 +255,24 @@ def execute(self, project_life): self.fi.set(wind_data=time_series) self.fi.run() - power_turbines[:, self.start_idx:self.end_idx] = self.fi.get_turbine_powers().reshape((self.nTurbs, self.end_idx - self.start_idx)) - power_farm[self.start_idx:self.end_idx] = self.fi.get_farm_power().reshape((self.end_idx - self.start_idx)) + power_turbines[:, self.start_idx:self.end_idx] = self.fi.get_turbine_powers().reshape( + (self.nTurbs, self.end_idx - self.start_idx) + ) + power_farm[self.start_idx:self.end_idx] = self.fi.get_farm_power().reshape( + (self.end_idx - self.start_idx) + ) + operational_efficiency = ((100 - self._operational_losses)/100) # Adding losses from PySAM defaults (excluding turbine and wake losses) - self.gen = power_farm * ((100 - self._operational_losses)/100) / 1000 # kW + self.gen = power_farm * operational_efficiency / 1000 # kW self.annual_energy = np.sum(self.gen) # kWh - self.capacity_factor = np.sum(self.gen) / (8760 * self.system_capacity) * 100 - self.turb_powers = power_turbines * (100 - self._operational_losses) / 100 / 1000 # kW - self.turb_velocities = self.fi.turbine_average_velocities - self.annual_energy_pre_curtailment_ac = self.annual_energy + self.capacity_factor = np.sum(self.gen) / (len(power_farm) * self.system_capacity) * 100 + self.annual_energy_pre_curtailment_ac = np.sum(self.gen) # kWh + if self.config.store_turbine_performance_results: + self.turb_powers = power_turbines * operational_efficiency / 1000 # kW + self.turb_velocities = self.fi.turbine_average_velocities + def export(self): """ @@ -155,4 +282,76 @@ def export(self): 'system_capacity': self.system_capacity, 'annual_energy': self.annual_energy, } - return config \ No newline at end of file + return config + + @property + def wind_farm_layout(self): + xcoords, ycoords = self.fi.get_turbine_layout() + return xcoords, ycoords + + def set_wind_farm_layout(self, xcoords, ycoords): + """Set wind farm layout coordinates and update system capacity and number + of turbines. + + Args: + xcoords (list[float]): x-coordinates of wind turbines in meters. + ycoords (list[float]): y-coordinates of wind turbines in meters. + + Raises: + ValueError: "WindPlant turbine coordinate arrays must have same length" + """ + if len(xcoords) != len(ycoords): + raise ValueError("WindPlant turbine coordinate arrays must have same length") + self.fi.set( + layout_x = xcoords, + layout_y = ycoords + ) + self.nTurbs = len(xcoords) + self.system_capacity = len(xcoords)*self.turb_rating + self.value("wind_farm_xCoordinates", xcoords) + self.value("wind_farm_yCoordinates", ycoords) + + def initialize_wind_turbine(self, floris_config): + """Update `floris_config` with turbine parameters. Checks the turbine library + and floris internal library for a turbine with name matching either + `config.turbine_name` or `floris_config["farm"]["turbine_type"][0]["turbine_type"]`. + If no matching turbine is found, find the turbine with the closest + matching name and raise a warning. + + Args: + floris_config (dict): floris (version 4) input dictionary. + + Returns: + dict: floris config with turbine model parameters updated in `floris_config["farm"]["turbine_type"][0]` + """ + if self.config.turbine_name is None: + + # turbine data is included in floris_config + if isinstance(floris_config["farm"]["turbine_type"][0],dict): + self.turbine_name = floris_config["farm"]["turbine_type"][0]["turbine_type"] + return floris_config + + # load file from internal floris library + if isinstance(floris_config["farm"]["turbine_type"][0],str): + turbine_lib_res = floris_tools.check_libraries_for_turbine_name_floris(floris_config["farm"]["turbine_type"][0], self) + floris_config["farm"]["turbine_type"][0] = turbine_lib_res + return floris_config + + turbine_lib_res = floris_tools.check_libraries_for_turbine_name_floris(self.config.turbine_name, self) + floris_config["farm"]["turbine_type"][0] = turbine_lib_res + return floris_config + + def update_wind_turbine(self, turbine_name): + """Update `FlorisModel` (`self.fi`) with with turbine parameters corresponding + to `turbine_name`. Used to update turbine parameters after Floris has been initialized. + Updates system capacity, rotor diameter, power-curve, and turb_rating. + + Args: + turbine_name (str): name of turbine in either floris internal library or turbine-models library. + """ + turbine_lib_res = floris_tools.check_libraries_for_turbine_name_floris(turbine_name, self) + self.fi.set(turbine_type=[turbine_lib_res]) + self.value("wind_turbine_rotor_diameter", turbine_lib_res["rotor_diameter"]) + self.value("wind_turbine_powercurve_powerout", turbine_lib_res["power_thrust_table"]["power"]) + self.turb_rating = np.round(max(turbine_lib_res["power_thrust_table"]["power"]), decimals = 1) + self.system_capacity = self.nTurbs*self.turb_rating diff --git a/hopp/simulation/technologies/wind/wind_plant.py b/hopp/simulation/technologies/wind/wind_plant.py index 6b512439b..4616a9fdd 100644 --- a/hopp/simulation/technologies/wind/wind_plant.py +++ b/hopp/simulation/technologies/wind/wind_plant.py @@ -1,20 +1,30 @@ from pathlib import Path from typing import Optional, Tuple, Union, Sequence -import PySAM.Windpower as Windpower -import PySAM.Singleowner as Singleowner from attrs import define, field +import numpy as np +import PySAM.Singleowner as Singleowner +import PySAM.Windpower as Windpower from hopp.simulation.base import BaseClass -from hopp.type_dec import resource_file_converter -from hopp.utilities import load_yaml -from hopp.utilities.validators import gt_zero, contains, range_val -from hopp.simulation.technologies.wind.floris import Floris +from hopp.simulation.technologies.financial import CustomFinancialModel, FinancialModelType +from hopp.simulation.technologies.layout.wind_layout import ( + WindLayout, + WindBoundaryGridParameters, + WindBasicGridParameters, + WindCustomParameters, + WindGridParameters, +) +import hopp.tools.design.wind.turbine_library_interface_tools as turb_lib_interface +from hopp.tools.design.wind.turbine_library_tools import check_turbine_library_for_turbine, print_turbine_name_list from hopp.simulation.technologies.power_source import PowerSource from hopp.simulation.technologies.sites import SiteInfo -from hopp.simulation.technologies.layout.wind_layout import WindLayout, WindBoundaryGridParameters -from hopp.simulation.technologies.financial import CustomFinancialModel, FinancialModelType +from hopp.simulation.technologies.wind.floris import Floris +from hopp.tools.resource.wind_tools import calculate_air_density_losses +from hopp.type_dec import resource_file_converter +from hopp.utilities import load_yaml from hopp.utilities.log import hybrid_logger as logger +from hopp.utilities.validators import gt_zero, contains, range_val @define @@ -23,49 +33,95 @@ class WindConfig(BaseClass): Configuration class for WindPlant. Args: - num_turbines: number of turbines in the farm - turbine_rating_kw: turbine rating - rotor_diameter: turbine rotor diameter - hub_height: turbine hub height - layout_mode: - - 'boundarygrid': regular grid with boundary turbines, requires WindBoundaryGridParameters as 'params' - - 'grid': regular grid with dx, dy distance, 0 angle; does not require 'params' - model_name: which model to use. Options are 'floris' and 'pysam' - model_input_file: file specifying a full PySAM input - layout_params: layout configuration - rating_range_kw: allowable kw range of turbines, default is 1000 - 3000 kW - floris_config: Floris configuration, only used if `model_name` == 'floris' - operational_losses: total percentage losses in addition to wake losses, defaults based on PySAM (only used for Floris model) - timestep: Timestep (required for floris runs, otherwise optional) - fin_model: Optional financial model. Can be any of the following: + num_turbines (int): number of turbines in the farm + turbine_rating_kw (float): turbine rating in kW + rotor_diameter (float | int, Optional): turbine rotor diameter in meters + hub_height (float, Optional): turbine hub height in meters + turbine_name (str, Optional): unused currently. Defaults to None. + layout_mode (str): + - 'boundarygrid': regular grid with boundary turbines, requires + WindBoundaryGridParameters as 'layout_params' + - 'grid': regular grid with dx, dy distance, 0 angle; does not require 'layout_params' + - 'basicgrid': most-square grid layout, requires WindBasicGridParameters + as 'layout_params' + - 'custom': use a user-provided layout + - 'floris_layout': use layout provided in `floris_config`. + model_name (str): which model to use. Options are 'floris' and 'pysam' + model_input_file (str): file specifying a full PySAM input + layout_params (obj | dict, Optional): layout configuration object corresponding to + `layout_mode` or dictionary. + rating_range_kw (Tuple[int]): allowable kw range of turbines, default is 1000 - 3000 kW + floris_config (dict | str | Path): Floris configuration, only used if + `model_name` == 'floris' + adjust_air_density_for_elevation (bool): whether to adjust air density for elevation. + Defaults to False. Only used if True and ``site.elev`` is not None. + resource_parse_method (str): method to parse wind resource data if using floris and + downloaded resource data for 2 heights. Can either be "weighted_average" or "average". + Defaults to "average". + operational_losses (float, Optional): total percentage losses in addition to wake losses, + defaults based on PySAM (only used for Floris model) + timestep (Tuple[int]): Timestep (required for floris runs, otherwise optional). + Defaults to (0,8760) + fin_model (obj | dict | str): Optional financial model. Can be any of the following: - a string representing an argument to `Singleowner.default` - a dict representing a `CustomFinancialModel` - an object representing a `CustomFinancialModel` or `Singleowner.Singleowner` instance + verbose (bool): if True, print simulation progress statements. Defaults to True. + store_turbine_performance_results (bool): If running FLORIS, whether to save speed and power timeseries + for each turbine in the farm. Defaults to False. """ + # TODO: put `resource_parse_method`, `store_turbine_performance_results`, and `verbose` in "floris_kwargs" dictionary num_turbines: int = field(validator=gt_zero) - turbine_rating_kw: float = field(validator=gt_zero) + turbine_rating_kw: Optional[float] = field(default = None) rotor_diameter: Optional[float] = field(default=None) - layout_params: Optional[Union[dict, WindBoundaryGridParameters]] = field(default=None) + layout_params: Optional[ + Union[ + dict, WindBoundaryGridParameters, WindBasicGridParameters, WindCustomParameters, WindGridParameters + ] + ] = field(default=None) hub_height: Optional[float] = field(default=None) - layout_mode: str = field(default="grid", validator=contains(["boundarygrid", "grid"])) - model_name: str = field(default="pysam", validator=contains(["pysam", "floris"])) + turbine_name: Optional[str] = field(default=None) + turbine_group: str = field( + default="none", + validator=contains(["offshore", "onshore", "distributed", "none"]), + converter=(str.strip, str.lower) + ) + layout_mode: str = field( + default="grid", + validator=contains(["boundarygrid", "grid", "basicgrid", "custom", "floris_layout"]), + converter=(str.strip, str.lower) + ) + model_name: str = field( + default="pysam", + validator=contains(["pysam", "floris"]), + converter=(str.strip, str.lower) + ) model_input_file: Optional[str] = field(default=None) rating_range_kw: Tuple[int, int] = field(default=(1000, 3000)) floris_config: Optional[Union[dict, str, Path]] = field(default=None) - operational_losses: float = field(default = 12.83, validator=range_val(0, 100)) - timestep: Optional[Tuple[int, int]] = field(default=None) + adjust_air_density_for_elevation: Optional[bool] = field(default=False) + resource_parse_method: str = field( + default="average", + validator=contains(["weighted_average", "average"]), + converter=(str.strip, str.lower) + ) + operational_losses: float = field(default=12.83, validator=range_val(0, 100)) + timestep: Optional[Tuple[int, int]] = field(default=(0,8760)) fin_model: Optional[Union[dict, FinancialModelType]] = field(default=None) name: str = field(default="WindPlant") + verbose: bool = field(default = True) + store_turbine_performance_results: bool = field(default = False) def __attrs_post_init__(self): if self.model_name == 'floris' and self.timestep is None: raise ValueError("Timestep (Tuple[int, int]) required for floris") - if self.layout_mode == 'boundarygrid' and self.layout_params is None: - raise ValueError("Parameters of WindBoundaryGridParameters required for boundarygrid layout mode") + if self.turbine_rating_kw is None and self.turbine_name is None: + if self.model_name == "pysam" and self.model_input_file is None: + raise ValueError("Parameters of turbine_rating_kw or turbine_name are required") @define @@ -85,7 +141,8 @@ def __attrs_post_init__(self): config: Wind plant configuration """ self._rating_range_kw = self.config.rating_range_kw - + layout_params = self.config.layout_params + layout_mode = self.config.layout_mode # Parse input for a financial model if isinstance(self.config.fin_model, str): financial_model = Singleowner.default(self.config_name) @@ -95,14 +152,26 @@ def __attrs_post_init__(self): financial_model = self.config.fin_model if self.config.model_name == 'floris': - print('FLORIS is the system model...') + if self.config.verbose: + print('FLORIS is the system model...') system_model = Floris(self.site, self.config) + if ( + self.config.num_turbines == len(system_model.wind_farm_xCoordinates) + and self.config.layout_mode == "floris_layout" + ): + # use layout in floris config by using "floris_layout" layout params + x_coords,y_coords = system_model.wind_farm_layout + layout_params = WindCustomParameters(layout_x=x_coords, layout_y=y_coords) + # modify to custom for WindLayout + layout_mode = "custom" if financial_model is None: # default financial_model = Singleowner.default(self.config_name) else: - financial_model = self.import_financial_model(financial_model, system_model, self.config_name) + financial_model = self.import_financial_model( + financial_model, system_model, self.config_name + ) else: if self.config.model_input_file is None: system_model = Windpower.default(self.config_name) @@ -125,28 +194,96 @@ def __attrs_post_init__(self): # default financial_model = Singleowner.from_existing(system_model, self.config_name) else: - financial_model = self.import_financial_model(financial_model, system_model, self.config_name) - - if isinstance(self.config.layout_params, dict): - layout_params = WindBoundaryGridParameters(**self.config.layout_params) - else: - layout_params = self.config.layout_params + financial_model = self.import_financial_model( + financial_model, system_model, self.config_name + ) super().__init__("WindPlant", self.site, system_model, financial_model) self._system_model.value("wind_resource_data", self.site.wind_resource.data) - self._layout = WindLayout(self.site, system_model, self.config.layout_mode, layout_params) + self._layout = WindLayout(self.site.polygon, system_model, layout_mode, layout_params) self._dispatch = None - self.turb_rating = self.config.turbine_rating_kw + if self.config.turbine_rating_kw is not None: + self.turb_rating = self.config.turbine_rating_kw self.num_turbines = self.config.num_turbines + + if self.config.model_name=="pysam": + self.initialize_pysam_wind_turbine() + + + def initialize_pysam_wind_turbine(self): + """Initialize wind turbine parameters for PySAM simulation. + + Raises: + ValueError: if invalid turbine name is provided. Print list of valid turbine names before error is raised. + ValueError: discrepancy in rotor_diameter value + ValueError: discrepancy in hub-height value + """ - if self.config.hub_height is not None: - self._system_model.Turbine.wind_turbine_hub_ht = self.config.hub_height if self.config.rotor_diameter is not None: self.rotor_diameter = self.config.rotor_diameter - + + if self.config.turbine_name is not None: + valid_name = check_turbine_library_for_turbine(self.config.turbine_name,turbine_group=self.config.turbine_group) + if not valid_name: + print_turbine_name_list() + msg = ( + f"Turbine name {self.config.turbine_name} was not found the turbine-models library. " + "Please try an available name." + ) + ValueError(msg) + else: + turbine_name = self.config.turbine_name + turbine_dict = turb_lib_interface.get_pysam_turbine_specs(turbine_name,self) + self._system_model.Turbine.assign(turbine_dict) + self.rotor_diameter = turbine_dict["wind_turbine_rotor_diameter"] + self.turb_rating = np.round(max(turbine_dict["wind_turbine_powercurve_powerout"]), decimals = 3) + + if self.config.rotor_diameter is not None: + if self.config.rotor_diameter != self._system_model.Turbine.wind_turbine_rotor_diameter: + msg = ( + f"Input rotor diameter ({self.config.rotor_diameter}) does not match does not match rotor diameter " + f"for turbine ({self._system_model.Turbine.wind_turbine_rotor_diameter})." + f"Please correct the value for rotor_diameter in the hopp config input " + f"to {self._system_model.Turbine.wind_turbine_rotor_diameter}." + ) + raise ValueError(msg) + + if self.config.hub_height is not None: + if self.config.hub_height != self._system_model.Turbine.wind_turbine_hub_ht: + msg = ( + f"Input hub-height ({self.config.hub_height}) does not match hub-height " + f"for turbine ({self._system_model.Turbine.wind_turbine_hub_ht}). " + f"Please correct the value for hub_height in the hopp config input " + f"to {self._system_model.Turbine.wind_turbine_hub_ht}." + ) + + raise ValueError(msg) + + hub_height = self._system_model.Turbine.wind_turbine_hub_ht + if hub_height != self.site.wind_resource.hub_height_meters: + if hub_height >= min(self.site.wind_resource.data["heights"]) and hub_height<=max(self.site.wind_resource.data["heights"]): + self.site.wind_resource.hub_height_meters = float(hub_height) + self.site.hub_height = float(hub_height) + logger.info(f"updating wind resource hub-height to {hub_height}m") + else: + logger.warning(f"updating wind resource hub-height to {hub_height}m and redownloading wind resource data") + self.site.hub_height = hub_height + data = { + "lat": self.site.wind_resource.latitude, + "lon": self.site.wind_resource.longitude, + "year": self.site.wind_resource.year, + } + wind_resource = self.site.initialize_wind_resource(data) + self.site.wind_resource = wind_resource + self._system_model.value("wind_resource_data", self.site.wind_resource.data) + + if self.config.adjust_air_density_for_elevation and self.site.elev is not None: + air_dens_losses = calculate_air_density_losses(self.site.elev) + self._system_model.Losses.assign({"turb_specific_loss":air_dens_losses}) + @property def wake_model(self) -> str: try: @@ -178,6 +315,20 @@ def num_turbines(self): @num_turbines.setter def num_turbines(self, n_turbines: int): + + if self._layout.layout_mode == "custom": + if n_turbines == len(self._layout.parameters.layout_x): + self._layout.set_num_turbines(n_turbines) + else: + if n_turbines != len(self._system_model.value("wind_farm_xCoordinates")): + n_turbs_layout = len(self._system_model.value("wind_farm_xCoordinates")) + msg = ( + f"Using custom wind farm layout and input number of turbines ({n_turbines}) " + f"does not equal length of layout ({n_turbs_layout}). " + f"Please either update num_turbines in the hopp config to {n_turbs_layout} " + f"Or change the layout to include {n_turbines} unique turbine positions." + ) + raise ValueError(msg) self._layout.set_num_turbines(n_turbines) @property @@ -207,9 +358,14 @@ def turb_rating(self, rating_kw): :param rating_kw: float """ scaling = rating_kw / self.turb_rating - self._system_model.value("wind_turbine_powercurve_powerout", - [i * scaling for i in self._system_model.value("wind_turbine_powercurve_powerout")]) - self._system_model.value("system_capacity", self.turb_rating * len(self._system_model.value("wind_farm_xCoordinates"))) + self._system_model.value( + "wind_turbine_powercurve_powerout", + [i * scaling for i in self._system_model.value("wind_turbine_powercurve_powerout")], + ) + self._system_model.value( + "system_capacity", + self.turb_rating * len(self._system_model.value("wind_farm_xCoordinates")), + ) def modify_powercurve(self, rotor_diam, rating_kw): """ @@ -229,20 +385,24 @@ def modify_powercurve(self, rotor_diam, rating_kw): wind_default_drive_train = 0 try: # could fail if current rotor diameter is too big or small for rating - self._system_model.Turbine.calculate_powercurve(rating_kw, - int(self._system_model.value("wind_turbine_rotor_diameter")), - elevation, - wind_default_max_cp, - wind_default_max_tip_speed, - wind_default_max_tip_speed_ratio, - wind_default_cut_in_speed, - wind_default_cut_out_speed, - wind_default_drive_train) + self._system_model.Turbine.calculate_powercurve( + rating_kw, + int(self._system_model.value("wind_turbine_rotor_diameter")), + elevation, + wind_default_max_cp, + wind_default_max_tip_speed, + wind_default_max_tip_speed_ratio, + wind_default_cut_in_speed, + wind_default_cut_out_speed, + wind_default_drive_train, + ) logger.info("WindPlant recalculated powercurve") except: - raise RuntimeError("WindPlant.turb_rating could not calculate turbine powercurve with diameter={}" - ", rating={}. Check diameter or turn off 'recalculate_powercurve'". - format(rotor_diam, rating_kw)) + raise RuntimeError( + "WindPlant.turb_rating could not calculate turbine powercurve with diameter={}" + ", rating={}. Check diameter or turn off 'recalculate_powercurve'". + format(rotor_diam, rating_kw) + ) self._system_model.value("wind_turbine_rotor_diameter", rotor_diam) self._system_model.value("system_capacity", rating_kw * self.num_turbines) logger.info("WindPlant set system_capacity to {} kW".format(self.system_capacity_kw)) @@ -253,9 +413,12 @@ def modify_coordinates(self, xcoords: Sequence, ycoords: Sequence): """ if len(xcoords) != len(ycoords): raise ValueError("WindPlant turbine coordinate arrays must have same length") - self._system_model.value("wind_farm_xCoordinates", xcoords) - self._system_model.value("wind_farm_yCoordinates", ycoords) - self._system_model.value("system_capacity", self.turb_rating * len(xcoords)) + if self.config.model_name=="floris": + self._system_model.wind_farm_layout(xcoords, ycoords) + else: + self._system_model.value("wind_farm_xCoordinates", xcoords) + self._system_model.value("wind_farm_yCoordinates", ycoords) + self._system_model.value("system_capacity", self.turb_rating * len(xcoords)) logger.debug("WindPlant set xcoords to {}".format(xcoords)) logger.debug("WindPlant set ycoords to {}".format(ycoords)) logger.info("WindPlant set system_capacity to {} kW".format(self.system_capacity_kw)) @@ -266,7 +429,8 @@ def system_capacity_kw(self): def system_capacity_by_rating(self, wind_size_kw: float): """ - Sets the system capacity by adjusting the rating of the turbines within the provided boundaries + Sets the system capacity by adjusting the rating of the turbines within the + provided boundaries. :param wind_size_kw: desired system capacity in kW """ @@ -295,3 +459,26 @@ def system_capacity_kw(self, size_kw: float): :return: """ self.system_capacity_by_num_turbines(size_kw) + + def modify_layout_params( + self, + wind_capacity_kW: float, + layout_params: Union[dict, WindBoundaryGridParameters, WindBasicGridParameters, WindCustomParameters, WindGridParameters], + layout_mode: Optional[str] = None): + + if isinstance(layout_params, dict): + if layout_mode == "custom": + layout_params = WindCustomParameters(**layout_params) + elif layout_mode == "grid": + layout_params = WindGridParameters(**layout_params) + elif layout_mode == "basicgrid": + layout_params = WindBasicGridParameters(**layout_params) + elif layout_mode == "boundarygrid": + layout_params = WindBoundaryGridParameters(**layout_params) + elif layout_mode is None: + msg = ( + "If providing layout_params as a dictionary, please specify layout_mode." + ) + raise ValueError(msg) + + self._layout.set_layout_params(wind_capacity_kW, params = layout_params) \ No newline at end of file diff --git a/hopp/tools/design/__init__.py b/hopp/tools/design/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/hopp/tools/design/wind/__init__.py b/hopp/tools/design/wind/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/hopp/tools/design/wind/floris_helper_tools.py b/hopp/tools/design/wind/floris_helper_tools.py new file mode 100644 index 000000000..e2807c4c0 --- /dev/null +++ b/hopp/tools/design/wind/floris_helper_tools.py @@ -0,0 +1,147 @@ +import os +import numpy as np +from hopp.utilities.utilities import write_yaml +from floris.turbine_library.turbine_previewer import INTERNAL_LIBRARY +from hopp.utilities import load_yaml +from hopp.tools.design.wind.turbine_library_interface_tools import get_floris_turbine_specs +from hopp.tools.design.wind.turbine_library_tools import ( + print_turbine_name_list, + check_turbine_library_for_turbine +) + +def check_output_formatting(orig_dict): + """Recursive method to convert arrays to lists and numerical entries to floats. + This is primarily used before writing a dictionary to a YAML file to ensure + proper output formatting. + + Args: + orig_dict (dict): input dictionary + + Returns: + dict: input dictionary with reformatted values. + """ + for key, val in orig_dict.items(): + if isinstance(val, dict): + tmp = check_output_formatting(orig_dict.get(key, { })) + orig_dict[key] = tmp + else: + if isinstance(key, list): + for i,k in enumerate(key): + if isinstance(orig_dict[k], (str,bool,int)): + orig_dict[k] = (orig_dict.get(k, []) + val[i]) + elif isinstance(orig_dict[k], (list, np.ndarray)): + orig_dict[k] = np.array(val, dtype=float).tolist() + else: + orig_dict[k] = float(val[i]) + elif isinstance(key,str): + if isinstance(orig_dict[key], (str, bool, int)): + continue + if isinstance(orig_dict[key], (list, np.ndarray)): + if any(isinstance(v,dict) for v in val): + for vii,v in enumerate(val): + if isinstance(v,dict): + new_val = check_output_formatting(v) + else: + new_val = v if isinstance(v,(str,bool,int)) else float(v) + orig_dict[key][vii] = new_val + else: + new_val = [v if isinstance(v,(str,bool,int)) else float(v) for v in val ] + orig_dict[key] = new_val + else: + orig_dict[key] = float(val) + return orig_dict + +def write_floris_layout_to_file(layout_x,layout_y,output_dir,turbine_desc): + """Export wind farm layout to floris-friendly YAML file. + + Args: + layout_x (list[float]): x-coordinates of turbines + layout_y (list[float]): y-coordinates of turbines + output_dir (str): output folder to write layout file to. + turbine_desc (str): turbine name or description. + """ + + layout_x = [float(x) for x in layout_x] + layout_y = [float(y) for y in layout_y] + + layout = {"layout_x":layout_x,"layout_y":layout_y} + n_turbs = len(layout_x) + output_fpath = os.path.join(output_dir,f"layout_{turbine_desc}_{n_turbs}turbs.yaml") + write_yaml(output_fpath,layout) + +def write_turbine_to_floris_file(turbine_dict,output_dir): + """Export turbine model to floris-friendly YAML file. + + Args: + turbine_dict (dict): turbine entry of floris_config file + output_dir (str): output folder to write turbine model file to. + """ + turb_name = turbine_dict["turbine_type"] + output_fpath = os.path.join(output_dir,f"floris_turbine_{turb_name}.yaml") + new_dict = check_output_formatting(turbine_dict) + write_yaml(output_fpath,new_dict) + +def check_floris_library_for_turbine(turbine_name): + """Check if a turbine exists in the floris internal library. + + Args: + turbine_name (str): name of turbine + + Returns: + bool: whether turbine exists in floris internal library or not. + """ + floris_library_fpath = INTERNAL_LIBRARY / f"{turbine_name}.yaml" + return floris_library_fpath.is_file() + +def load_turbine_from_floris_library(turbine_name): + """Load turbine model file from floris internal library. + + Args: + turbine_name (str): name of turbine + + Raises: + FileNotFoundError: if file does not exist in floris internal library. + + Returns: + dict: floris turbine model dictionary + """ + floris_library_fpath = INTERNAL_LIBRARY / f"{turbine_name}.yaml" + if not os.path.isfile(floris_library_fpath): + raise FileNotFoundError(f"Floris library file for turbine {turbine_name} does not exist.") + turb_dict = load_yaml(floris_library_fpath) + turb_dict.pop("power_thrust_data_file") + return turb_dict + +def check_libraries_for_turbine_name_floris(turbine_name,floris_model): + """Check the FLORIS internal turbine library and the turbine-models library for + a turbine of ``turbine_name``. Return a FLORIS-compatible dictionary of the turbine + parameters if the ``turbine_name`` if valid. If the ``turbine_name`` is invalid, + return a warning message string. + + Args: + turbine_name (str): name of turbine + floris_model (FlorisModel): FlorisModel object. + + Raises: + ValueError: if invalid turbine name is provided. + Will print list of valid turbine names before error is raised. + + Returns: + dict | str: FLORIS-compatible dict of the turbine parameters for a valid ``turbine_name``. + If the ``turbine_name`` is invalid, return a warning message string. + """ + + is_floris_lib_turbine = check_floris_library_for_turbine(turbine_name) + is_turb_lib_turbine = check_turbine_library_for_turbine(turbine_name, turbine_group=floris_model.config.turbine_name) + + if is_floris_lib_turbine: + turb_dict = load_turbine_from_floris_library(turbine_name) + return turb_dict + if is_turb_lib_turbine: + floris_model.value("turbine_name",turbine_name) + turb_dict = get_floris_turbine_specs(turbine_name,floris_model) + return turb_dict + + print_turbine_name_list() + raise ValueError(f"turbine name {turbine_name} not found in floris or turbine-models library. Please try an available name.") + \ No newline at end of file diff --git a/hopp/tools/design/wind/power_curve_tools.py b/hopp/tools/design/wind/power_curve_tools.py new file mode 100644 index 000000000..20886c747 --- /dev/null +++ b/hopp/tools/design/wind/power_curve_tools.py @@ -0,0 +1,163 @@ +import numpy as np +import matplotlib.pyplot as plt + +def plot_power_curve(wind_speed, cp_curve, ct_curve): + """Plot Cp and Ct curve per wind speed. + + Args: + wind_speed (list | np.ndarray): list of wind speeds in m/s + cp_curve (list | np.ndarray): power curve coefficients (Cp) at each wind speed in ``wind_speed`` + ct_curve (list | np.ndarray): thrust curve coefficients (Ct) at each wind speed in ``wind_speed`` + """ + fig1 = plt.figure() + plt.plot(wind_speed, ct_curve, label="Coeff of Thrust") + plt.plot(wind_speed, cp_curve, label="Coeff of Power") + plt.legend() + plt.xlabel("Wind Speed [m/s]") + plt.show() + + +def pad_power_curve(wind_speed, curve, ws_min = 0.0, ws_max = 50.0): + """Pad curve data with zeroes from wind speeds of ``ws_min`` to ``ws_max``. + + Args: + wind_speed (list | np.ndarray): list of wind speeds in m/s + curve (list | np.ndarray): curve data at each wind speed in ``wind_speed``. Can be + either Cp, power, or Ct. + ws_min (float, Optional): wind speed to start curve data at. Defaults to 0.0. + ws_max (float, Optional): wind speed to end curve data at. Defaults to 50.0. + + Returns: + 2-element tuple containing: + + - **padded_wind_speed** (list): padded wind speed in m/s starting at ``ws_min`` and ending at ``ws_max`` + - **padded_curve** (list): padded curve data for wind speeds starting at ``ws_min`` and ending at ``ws_max`` + """ + + if isinstance(wind_speed,list): + wind_speed = np.array(wind_speed) + if isinstance(curve,list): + curve = np.array(curve) + + if min(wind_speed) > ws_min: + wind_speed_pad = np.arange(ws_min,min(wind_speed),1) + wind_speed = np.concatenate((wind_speed_pad,wind_speed)) + curve = np.concatenate((np.zeros(len(wind_speed_pad)),curve)) + + if max(wind_speed) < ws_max: + wind_speed_pad = np.arange(max(wind_speed)+1,ws_max,1) + wind_speed = np.concatenate((wind_speed,wind_speed_pad)) + curve = np.concatenate((curve,np.zeros(len(wind_speed_pad)))) + return wind_speed.tolist(), curve.tolist() + +def calculate_cp_from_power(wind_speed, power_curve_kw, rotor_diameter, air_density = 1.225): + """Calculate power coefficient curve (Cp) from power curve. + + Args: + wind_speed (list | np.ndarray): list of wind speeds in m/s + power_curve_kw (list | np.ndarray): turbine power (in kW) at each wind speed in ``wind_speed`` + rotor_diameter (float): rotor diameter of the turbine in meters. + air_density (float, Optional): Air density assumed for power-curve calculations in kg/m3. + Defaults to 1.225. + + Raises: + ValueError: if ``wind_speed`` and ``power_curve_kw`` are different lengths. + + Returns: + list: power curve coefficients (Cp) at each wind speed in ``wind_speed`` + """ + + if len(wind_speed) != len(power_curve_kw): + raise ValueError("The length of the wind speed and power vectors must be the same") + rotor_area = np.pi*((rotor_diameter/2)**2) + if isinstance(wind_speed, list): + wind_speed = np.array(wind_speed) + if isinstance(power_curve_kw, list): + power_curve_kw = np.array(power_curve_kw) + + # power available in the wind (kW) + p_wind = 0.5*air_density*rotor_area*(wind_speed**3)/1e3 + cp = power_curve_kw/p_wind + cp = np.where(cp < 0, 0, cp) + return cp.tolist() + +def calculate_power_from_cp(wind_speed, cp_curve, rotor_diameter, rated_power_kW, air_density = 1.225): + """Calculate power curve from power coefficient curve (Cp). + + Args: + wind_speed (list | np.ndarray): list of wind speeds in m/s + cp_curve (list | np.ndarray): power curve coefficients (Cp) at each wind speed in ``wind_speed`` + rotor_diameter (float): rotor diameter of the turbine in meters. + air_density (float, Optional): Air density assumed for power-curve calculations in kg/m3. + Defaults to 1.225. + + Raises: + ValueError: if ``wind_speed`` and ``cp_curve`` are different lengths. + + Returns: + list: turbine power (in kW) at each wind speed in ``wind_speed`` + """ + + if len(wind_speed) != len(cp_curve): + raise ValueError("The length of the wind speed and coefficient of power vectors must be the same") + + rotor_area = np.pi*((rotor_diameter/2)**2) + if isinstance(wind_speed, list): + wind_speed = np.array(wind_speed) + if isinstance(cp_curve, list): + cp_curve = np.array(cp_curve) + + # power available in the wind (kW) + p_wind = 0.5*air_density*rotor_area*(wind_speed**3)/1e3 + power_kW = cp_curve*p_wind + power_kW = np.where(power_kW > rated_power_kW, rated_power_kW, power_kW) + power_kW = np.where(power_kW < 0, 0, power_kW) + + return power_kW.tolist() + +def estimate_thrust_coefficient(wind_speed, cp_curve, plot=False, print_output=False): + """Calculate thrust coefficient curve (Ct) from power coefficient curve (Cp). + + Args: + wind_speed (list | np.ndarray): list of wind speeds in m/s + cp_curve (list | np.ndarray): power curve coefficients (Cp) at each wind speed in ``wind_speed`` + plot (bool, Optional): whether to plot Cp and Ct curve. Defaults to False. + print_output (bool, Optional): Whether to print Cp and Ct curves. Defaults to False. + + Raises: + ValueError: if ``wind_speed`` and ``cp_curve`` are different lengths. + + Returns: + list: thrust curve coefficients (Ct) at each wind speed in ``wind_speed`` + """ + + # Check that the wind speed and the coefficient of power are the same length + if len(wind_speed) != len(cp_curve): + raise ValueError("The length of the wind speed and coefficient of power vectors must be the same") + N_wind = len(wind_speed) + ct_curve = np.zeros(N_wind) + + for i in range(N_wind): + # calculate induction factor a + # solve C_P = 4 * a * (1-a)**a -> 4 * a**3 - 8 * a**2 + 4 * a - C_P = 0 + roots = np.roots([4, -8, 4, -cp_curve[i]]) + + # Take root that is in range of a -> [0, 0.5] + a = roots[np.where(np.logical_and(roots>= 0, roots<= 0.5))] + + # Calculate C_T = 4 * a * (1-a) + ct = np.round(4 * a * (1-a), 4) + + ct_curve[i] = ct if isinstance(ct,(float,int)) else ct[0] + + ct_flat = ct_curve.flatten().tolist() + + if plot: + plot_power_curve(wind_speed,cp_curve,ct_flat) + + if print_output: + print("Wind Speed (m/s) | Coefficient of Thrust (Ct) | Coefficient of Power (Cp)") + for ws, ct, cp in zip(wind_speed, ct_flat, cp_curve): + print(f"{ws:7.4f} | {ct:7.4f} | {cp:7.4f}") + + return ct_flat \ No newline at end of file diff --git a/hopp/tools/design/wind/turbine_library_interface_tools.py b/hopp/tools/design/wind/turbine_library_interface_tools.py new file mode 100644 index 000000000..73913ccc8 --- /dev/null +++ b/hopp/tools/design/wind/turbine_library_interface_tools.py @@ -0,0 +1,253 @@ +import numpy as np + +import PySAM.Windpower as windpower +from turbine_models.parser import Turbines +import hopp.tools.design.wind.power_curve_tools as curve_tools +from hopp.utilities.log import hybrid_logger as logger +import hopp.simulation.technologies.wind.floris as floris_wrapper + +def extract_power_curve(turbine_specs: dict, model_name: str): + """Creates power-curve for turbine based on available data and formats it for the corresponding simulation model. + + Args: + turbine_specs (dict): turbine specs loaded from turbine-models library. + model_name (str): wind simulation model, either "pysam" or "floris". + + Raises: + ValueError: if turbine data doesn't have the minimum required power-curve information. + ValueError: if model name is not either 'pysam' or 'floris' + + Returns: + dict: power-curve dictionary formatted for the corresponding ``model_name``. + """ + + if model_name not in ("floris", "pysam"): + raise ValueError(f"model_name {model_name} is invalid, options are either 'floris' or 'pysam'.") + turbine_specs["power_curve"] = turbine_specs["power_curve"].dropna() + wind_speeds = np.nan_to_num(turbine_specs["power_curve"]["wind_speed_ms"].to_list()) + turbine_curve_cols = turbine_specs["power_curve"].columns.to_list() + + has_cp_curve = "cp" in turbine_curve_cols + has_power_curve = "power_kw" in turbine_curve_cols + has_ct_curve = "ct" in turbine_curve_cols + + if not has_cp_curve and not has_power_curve: + turbine_name = turbine_specs["name"] + msg = ( + f"Turbine {turbine_name} does not have the minimum required power curve data. " + "Either power_kw or cp are required." + ) + raise ValueError(msg) + + if has_cp_curve: + cp_curve = np.array(turbine_specs["power_curve"]["cp"].to_list()) + cp_curve = np.nan_to_num(cp_curve) + cp_curve = np.where(cp_curve<0,0,cp_curve).tolist() + + if has_power_curve: + power_curve_kw = np.array(turbine_specs["power_curve"]["power_kw"].to_list()) + power_curve_kw = np.nan_to_num(power_curve_kw) + power_curve_kw = np.where(power_curve_kw<0,0,power_curve_kw) + power_curve_kw = np.where(power_curve_kw>turbine_specs["rated_power"],turbine_specs["rated_power"],power_curve_kw).tolist() + + if has_cp_curve and not has_power_curve: + power_curve_kw = curve_tools.calculate_power_from_cp(wind_speeds,cp_curve,turbine_specs["rotor_diameter"],turbine_specs["rated_power"]) + + if has_power_curve and not has_cp_curve: + cp_curve = curve_tools.calculate_cp_from_power(wind_speeds,power_curve_kw) + + if has_ct_curve: + ct = turbine_specs["power_curve"]["ct"].to_list() + else: + ct = curve_tools.estimate_thrust_coefficient(wind_speeds,cp_curve) + + _, cp_curve = curve_tools.pad_power_curve(wind_speeds,cp_curve) + _, ct = curve_tools.pad_power_curve(wind_speeds,ct) + wind_speeds, power_curve_kw = curve_tools.pad_power_curve(wind_speeds,power_curve_kw) + + if model_name == "floris": + power_thrust_table = { + "wind_speed":wind_speeds, + "power":power_curve_kw, + "thrust_coefficient":ct, + } + return power_thrust_table + + # if model_name is "pysam" + power_thrust_table = { + "wind_turbine_max_cp": max(cp_curve), + "wind_turbine_ct_curve":ct, + "wind_turbine_powercurve_windspeeds":wind_speeds, + "wind_turbine_powercurve_powerout":power_curve_kw, + } + return power_thrust_table + + +def check_hub_height(turbine_specs, wind_plant): + """Check the hub-height from the turbine-library specs against the other possible hub-height entries. + If multiple hub-height options are available from the turbine_specs, this method will choose + one based on other user-input parameters within wind_plant. The other variables checked are: + + 1) wind_plant.config.hub_height + 2) wind_plant.site.hub_height + 3) wind_plant._system_model.Turbine.wind_turbine_hub_ht (for PySAM simulations only) + 4) if none of the heights from 1-3 match a possible hub-height option, the hub-height is chosen + as the median hub-height from the list of options from turbine-library. + + Args: + turbine_specs (dict): turbine specs loaded from turbine-models library. + wind_plant (:obj:`hopp.simulation.technologies.wind.floris.Floris` | :obj:`hopp.simulation.technologies.wind.wind_plant.WindPlant`): wind + plant object for either PySAM or FLORIS wind simulation model. + + Returns: + float: hub-height to use in meters. + """ + turbine_name = turbine_specs["name"] + # if multiple hub height options are available + if isinstance(turbine_specs["hub_height"],list): + # check for hub height in wind_plant + is_pysam = isinstance(wind_plant,windpower.Windpower) + + # check if hub_height was put in WindConfig + if (hub_height := wind_plant.config.hub_height) is not None: + if any(float(k) == float(hub_height) for k in turbine_specs["hub_height"]): + msg = ( + f"Multiple hub height options available for {turbine_name} turbine. " + f"Setting hub height to WindConfig hub_height: {hub_height}" + ) + logger.info(msg) + return hub_height + + # check the hub_height used for wind resource + if (hub_height := wind_plant.site.hub_height) is not None: + if any(float(k) == float(hub_height) for k in turbine_specs["hub_height"]): + msg = ( + f"Multiple hub height options available for {turbine_name} turbine. " + f"Setting hub height to WindConfig hub_height: {hub_height}" + ) + logger.info(msg) + return hub_height + + # check the hub-height of PySAM wind turbine object + if is_pysam: + if any(float(k) == float(wind_plant._system_model.Turbine.wind_turbine_hub_ht) for k in turbine_specs["hub_height"]): + hub_height = wind_plant._system_model.Turbine.wind_turbine_hub_ht + msg = ( + f"Multiple hub height options available for {turbine_name} turbine. " + f"Setting hub height to WindPower.WindPower.Turbine.wind_turbine_hub_ht: {hub_height}" + ) + logger.info(msg) + return hub_height + + # set hub height as median from options + else: + hub_height = np.median(turbine_specs["hub_height"]) + msg = ( + f"Multiple hub height options available for {turbine_name} turbine. " + f"Setting hub height to median available height: {hub_height}" + ) + logger.info(msg) + return hub_height + + else: + hub_height = turbine_specs["hub_height"] + if wind_plant.config.hub_height is not None: + if hub_height != wind_plant.config.hub_height: + msg = ( + f"Turbine hub height ({hub_height}) does not equal " + f"wind_plant.config.hub_height ({wind_plant.config.hub_height})" + ) + logger.warning(msg) + if hub_height != wind_plant.site.hub_height: + msg = ( + f"Turbine hub height ({hub_height}) does not equal " + f"site_info.hub_height ({wind_plant.site.hub_height})" + ) + logger.warning(msg) + + return hub_height + + +def get_pysam_turbine_specs(turbine_name, wind_plant): + """Load turbine data from turbine-models library to use with PySAM wind simulation. + + Args: + turbine_name (str): name of turbine in turbine-models library + wind_plant (:obj:`hopp.simulation.technologies.wind.wind_plant.WindPlant`): wind plant object. + + Raises: + ValueError: if turbine is missing data. + + Returns: + dict: turbine model dictionary formatted for PySAM. + """ + t_lib = Turbines() + turbine_specs = t_lib.specs(turbine_name) + if isinstance(turbine_specs,dict): + turbine_dict = extract_power_curve(turbine_specs, model_name = "pysam") + + hub_height = check_hub_height(turbine_specs,wind_plant) + + turbine_dict.update({ + "wind_turbine_rotor_diameter":turbine_specs["rotor_diameter"], + "wind_turbine_hub_ht":hub_height, + }) + return turbine_dict + + raise ValueError(f"Turbine {turbine_name} is missing some data, please try another turbine.") + + +def get_floris_turbine_specs(turbine_name, wind_plant): + """Load turbine data from turbine-models library to use with FLORIS wind simulation. + + Sets turbine's rated tip speed ratio (TSR) to 8.0 if not included in turbine data. + Sets default values in the power thrust table as: + + - ``ref_air_density``: 1.225 + - ``ref_tilt``: 5.0 + - ``cosine_loss_exponent_yaw``: 1.88 + - ``cosine_loss_exponent_tilt``: 1.88 + + Args: + turbine_name (str): name of turbine in turbine-models library + wind_plant (:obj:`hopp.simulation.technologies.wind.floris.Floris`): FLORIS wrapper object. + + Raises: + ValueError: if turbine is missing data. + + Returns: + dict: turbine model dictionary formatted for FLORIS. + """ + t_lib = Turbines() + turb_group = t_lib.find_group_for_turbine(turbine_name) + turbine_specs = t_lib.specs(turbine_name,group = turb_group) + if isinstance(turbine_specs,dict): + + hub_height = check_hub_height(turbine_specs,wind_plant) + power_thrust_table = extract_power_curve(turbine_specs, model_name = "floris") + + turbine_specs.setdefault("rated_tsr", 8.0) + if turbine_specs["rated_tsr"] is None: + turbine_specs["rated_tsr"] = 8.0 + + power_thrust_table.update({ + "ref_air_density": 1.225, + "ref_tilt": turbine_specs.setdefault("rotor_tilt_angle", 5.0), + "cosine_loss_exponent_yaw": 1.88, + "cosine_loss_exponent_tilt": 1.88, + }) + turbine_dict = { + "turbine_type":turbine_name, + "hub_height":hub_height, + "TSR": turbine_specs["rated_tsr"], + "rotor_diameter":turbine_specs["rotor_diameter"], + "power_thrust_table": power_thrust_table, + } + return turbine_dict + + msg = ( + f"Turbine {turbine_name} is missing some data, " + "please try another turbine." + ) + raise ValueError(msg) + diff --git a/hopp/tools/design/wind/turbine_library_tools.py b/hopp/tools/design/wind/turbine_library_tools.py new file mode 100644 index 000000000..fa6037991 --- /dev/null +++ b/hopp/tools/design/wind/turbine_library_tools.py @@ -0,0 +1,53 @@ +from turbine_models.parser import Turbines + +def check_turbine_library_for_turbine(turbine_name:str, turbine_group = "none"): + """Check turbine-models library for turbine named ``turbine_name``. + + Args: + turbine_name (str): name of turbine in turbine-models library + turbine_group (str, Optional): group of turbine in turbine-models library. + Options include "offshore", "onfshore", or "distributed". + + Returns: + bool: whether the input turbine name matches a turbine available in the turbine-models library. + """ + + t_lib = Turbines() + valid_name = False + if turbine_group not in t_lib.groups: + for turb_group in t_lib.groups: + turbines_in_group = t_lib.turbines(group = turb_group) + if any(turb.lower()==turbine_name.lower() for turb in turbines_in_group.values()): + valid_name = True + else: + turbines_in_group = t_lib.turbines(group = turbine_group) + if any(turb.lower()==turbine_name.lower() for turb in turbines_in_group.values()): + valid_name = True + return valid_name + +def print_turbine_name_list(): + """Print the turbine names for each group of turbines in turbine-models library. + """ + + t_lib = Turbines() + osw_turbines = list(t_lib.turbines(group="offshore").values()) + + print("-".join("" for i in range(25))) + print("Offshore Turbine Names:") + print("-".join("" for i in range(25))) + osw_msg = "\n " + "\n ".join(t for t in osw_turbines) + print(osw_msg) + + lbw_turbines = list(t_lib.turbines(group="onshore").values()) + print("-".join("" for i in range(25))) + print("Onshore Turbine Names:") + print("-".join("" for i in range(25))) + lbw_msg = "\n " + "\n ".join(t for t in lbw_turbines) + print(lbw_msg) + + distributed_turbines = list(t_lib.turbines(group="distributed").values()) + print("-".join("" for i in range(25))) + print("Distributed Turbine Names:") + print("-".join("" for i in range(25))) + dw_msg = "\n " + "\n ".join(t for t in distributed_turbines) + print(dw_msg) \ No newline at end of file diff --git a/hopp/tools/dispatch/csp_pv_battery_plot.py b/hopp/tools/dispatch/csp_pv_battery_plot.py index 00551c471..77aefff69 100644 --- a/hopp/tools/dispatch/csp_pv_battery_plot.py +++ b/hopp/tools/dispatch/csp_pv_battery_plot.py @@ -245,9 +245,9 @@ def init_hybrid_plant(): print("\tCurtailment percentage: {:.2f}".format(hybrid_plant.grid.curtailment_percent)) if hybrid_plant.site.follow_desired_schedule: print("\tMissed load [MWh]: {:.2f}".format(sum(hybrid_plant.grid.missed_load[0:8760]) / 1.e3)) - print("\tMissed load percentage: {:.2f}".format(hybrid_plant.grid.missed_load_percentage * 100.0)) + print("\tMissed load percentage: {:.2f}".format(hybrid_plant.grid.missed_load_percentage)) print("\tSchedule curtailed [MWh]: {:.2f}".format(sum(hybrid_plant.grid.schedule_curtailed[0:8760]) / 1.e3)) - print("\tSchedule curtailed percentage: {:.2f}".format(hybrid_plant.grid.schedule_curtailed_percentage * 100.0)) + print("\tSchedule curtailed percentage: {:.2f}".format(hybrid_plant.grid.schedule_curtailed_percentage)) # BCR Breakdown print("\n ======= Benefit Cost Ratio Breakdown ======= \n") diff --git a/hopp/tools/dispatch/plot_tools.py b/hopp/tools/dispatch/plot_tools.py index 3fcf119a8..21e0e857c 100644 --- a/hopp/tools/dispatch/plot_tools.py +++ b/hopp/tools/dispatch/plot_tools.py @@ -250,7 +250,8 @@ def plot_generation_profile(hybrid: HybridSimulation, discharge_color='b', charge_color='r', gen_color='g', - price_color='r' + price_color='r', + plot_price = True, ): if not hasattr(hybrid, 'dispatch_builder'): @@ -318,6 +319,7 @@ def plot_generation_profile(hybrid: HybridSimulation, ax2.plot(time, hybrid.battery.outputs.dispatch_SOC[time_slice], '.', label='Dispatch') ax2.set_ylabel('State-of-Charge (-)', fontsize=font_size) ax2.legend(fontsize=font_size-2, loc='upper right') + ax2.tick_params(which='both', labelsize=font_size) plt.title('Battery Power Flow', fontsize=font_size) # Net action @@ -333,12 +335,13 @@ def plot_generation_profile(hybrid: HybridSimulation, ax1.legend(fontsize=font_size-2, loc='upper left') ax1.set_ylabel('Power (MW)', fontsize=font_size) - ax2 = ax1.twinx() - - price = [p * hybrid.ppa_price[0] for p in hybrid.site.elec_prices.data[time_slice]] - ax2.plot(time, price, color=price_color, label='Price') - ax2.set_ylabel('Grid Price ($/kWh)', fontsize=font_size) - ax2.legend(fontsize=font_size-2, loc='upper right') + if plot_price: + ax2 = ax1.twinx() + ax2.tick_params(which='y', labelsize=font_size) + price = [p * hybrid.ppa_price[0] for p in hybrid.site.elec_prices.data[time_slice]] + ax2.plot(time, price, color=price_color, label='Price') + ax2.set_ylabel('Grid Price ($/kWh)', fontsize=font_size) + ax2.legend(fontsize=font_size-2, loc='upper right') plt.xlabel('Time (hours)', fontsize=font_size) plt.title('Net Generation', fontsize=font_size) diff --git a/hopp/tools/resource/wind_tools.py b/hopp/tools/resource/wind_tools.py new file mode 100644 index 000000000..1bd12a10a --- /dev/null +++ b/hopp/tools/resource/wind_tools.py @@ -0,0 +1,203 @@ +from scipy.constants import R, g, convert_temperature +import numpy as np + +RHO_0 = 1.225 # Air density at sea level (kg/m3) +T_REF = 20 # Standard air temperature (Celsius) +MOLAR_MASS_AIR = 28.96 # Molar mass of air (g/mol) +LAPSE_RATE = 0.0065 # Temperature lapse rate (K/m) for 0-11000m above sea level + +def calculate_air_density(elevation_m: float) -> float: + """ + Calculate air density based on site elevation using the Barometric formula. + + This function is based on Equation 1 from: https://en.wikipedia.org/wiki/Barometric_formula#Density_equations + Imported constants are: + + - g: acceleration due to gravity (m/s2) + - R: universal gas constant (J/mol-K) + + Args: + elevation_m (float): Elevation of site in meters + + Returns: + float: Air density in kg/m^3 at elevation of site + """ + + # Reference elevation at sea level (m) + elevation_sea_level = 0.0 + + # Convert temperature to Kelvin + T_ref_K = convert_temperature([T_REF], "C", "K")[0] + + # Exponent value used in equation below + e = g * (MOLAR_MASS_AIR / 1e3) / (R * LAPSE_RATE) + + # Calculate air density at site elevation + rho = RHO_0 * ((T_ref_K - ((elevation_m - elevation_sea_level) * LAPSE_RATE)) / T_ref_K) ** (e - 1) + return rho + +def calculate_air_density_losses(elevation_m: float) -> float: + """Calculate loss (%) from air density drop at site elevation. + + Args: + elevation_m (float): site elevation in meters + + Returns: + float: percentage loss associated with air density decrease at elevation. + """ + + if elevation_m <= 0.0: + return 0.0 + + air_density = calculate_air_density(elevation_m) + loss_ratio = 1 - (air_density / RHO_0) + loss_percent = loss_ratio * 100 + + return loss_percent + +def parse_resource_data(wind_resource): + """Parse wind resource data into floris-friendly format. + Average wind speed and wind direction if there's data for + 2 resource heights. This method assumes that the turbine hub-height + is in-between two resource heights. + + In ``wind_resource.data['fields']``, values correspond to: + - 3: Wind speed in meters per second (m/s) + - 4: Wind direction in degrees east of north (degrees). + + Args: + wind_resource (HPCWindData | WindResource): wind resource data object + + Returns: + 2-element tuple containing + + - **speeds** (:obj:`numpy.ndarray`): wind speed in m/s + - **wind_dirs** (:obj:`numpy.ndarray`): wind direction in deg from North (clockwise) + """ + data = np.array(wind_resource.data['data']) + + # Get indices of wind speed data and wind direction data + idx_ws = [ii for ii, field in enumerate(wind_resource.data['fields']) if field == 3] + idx_wd = [ii for ii, field in enumerate(wind_resource.data['fields']) if field == 4] + + # If there's only one hub-height, grab speed and direction data + if len(idx_ws) == 1: + speeds = data[:, idx_ws[0]] + wind_dirs = data[:, idx_wd[0]] + return speeds, wind_dirs + + # If there's multiple hub-heights - average the data + if len(idx_ws) > 2: + # find resource-heights closest to hub-height + heights_with_data = [wind_resource.data['heights'][i] for i in idx_ws] + if any(h==wind_resource.hub_height_meters for h in heights_with_data): + hh1 = wind_resource.hub_height_meters + hh2 = wind_resource.hub_height_meters + else: + height_ub = [h for h in heights_with_data if (wind_resource.hub_height_meters - h)<=0] + height_lb = [h for h in heights_with_data if (wind_resource.hub_height_meters - h)>=0] + min_diff_ub = min([np.abs(h-wind_resource.hub_height_meters) for h in height_ub]) + min_diff_lb = min([np.abs(h-wind_resource.hub_height_meters) for h in height_lb]) + hh1 = [h for h in height_ub if np.abs(h-wind_resource.hub_height_meters)==min_diff_ub][0] + hh2 = [h for h in height_lb if np.abs(h-wind_resource.hub_height_meters)==min_diff_lb][0] + + else: + hh1, hh2 = np.unique(wind_resource.data['heights']) + + if hh1 == wind_resource.hub_height_meters: + idx_ws1 = [i for i in idx_ws if wind_resource.data['heights'][i] == hh1][0] + idx_wd1 = [i for i in idx_wd if wind_resource.data['heights'][i] == hh1][0] + speeds = data[:, idx_ws1] + wind_dirs = data[:, idx_wd1] + + elif hh2 == wind_resource.hub_height_meters: + idx_ws2 = [i for i in idx_ws if wind_resource.data['heights'][i] == hh2][0] + idx_wd2 = [i for i in idx_wd if wind_resource.data['heights'][i] == hh2][0] + speeds = data[:, idx_ws2] + wind_dirs = data[:, idx_wd2] + + else: + # If there's multiple hub-heights - average the data + speeds = data[:, idx_ws].mean(axis=1) + wind_dirs = data[:, idx_wd].mean(axis=1) + + return speeds, wind_dirs + + + +def weighted_parse_resource_data(wind_resource): + """Parse wind resource data into floris-friendly format. + Weighted average wind speed and wind direction if there's data for + 2 resource heights. Weight wind resource data based on resource-height + relative to turbine hub-height. + + In ``wind_resource.data['fields']``, values correspond to: + - 3: Wind speed in meters per second (m/s) + - 4: Wind direction in degrees east of north (degrees). + + Args: + wind_resource (HPCWindData | WindResource): wind resource data object + + Returns: + 2-element tuple containing + + - **speeds** (:obj:`numpy.ndarray`): wind speed in m/s + - **wind_dirs** (:obj:`numpy.ndarray`): wind direction in deg from North (clockwise) + """ + data = np.array(wind_resource.data['data']) + + # Get indices of wind speed data and wind direction data + idx_ws = [ii for ii, field in enumerate(wind_resource.data['fields']) if field == 3] + idx_wd = [ii for ii, field in enumerate(wind_resource.data['fields']) if field == 4] + + # If there's only one hub-height, grab speed and direction data + if len(idx_ws) == 1: + speeds = data[:, idx_ws[0]] + wind_dirs = data[:, idx_wd[0]] + return speeds, wind_dirs + + # If there's multiple hub-heights - average the data + if len(idx_ws) > 2: + # find resource-heights closest to hub-height + heights_with_data = [wind_resource.data['heights'][i] for i in idx_ws] + if any(h==wind_resource.hub_height_meters for h in heights_with_data): + hh1 = wind_resource.hub_height_meters + hh2 = wind_resource.hub_height_meters + else: + height_ub = [h for h in heights_with_data if (wind_resource.hub_height_meters - h)<=0] + height_lb = [h for h in heights_with_data if (wind_resource.hub_height_meters - h)>=0] + min_diff_ub = min([np.abs(h-wind_resource.hub_height_meters) for h in height_ub]) + min_diff_lb = min([np.abs(h-wind_resource.hub_height_meters) for h in height_lb]) + hh1 = [h for h in height_ub if np.abs(h-wind_resource.hub_height_meters)==min_diff_ub][0] + hh2 = [h for h in height_lb if np.abs(h-wind_resource.hub_height_meters)==min_diff_lb][0] + + else: + hh1, hh2 = np.unique(wind_resource.data['heights']) + + # Weights corresponding to difference of resource height and hub-height + weight1 = np.abs(hh1 - wind_resource.hub_height_meters) + weight2 = np.abs(hh2 - wind_resource.hub_height_meters) + + # Wind speed data indices for each resource height + idx_ws1 = [i for i in idx_ws if wind_resource.data['heights'][i] == hh1][0] + idx_ws2 = [i for i in idx_ws if wind_resource.data['heights'][i] == hh2][0] + + # Wind speeds at the two resource heights + ws1 = data[:, idx_ws1] + ws2 = data[:, idx_ws2] + + # Weight wind speed data based on height relative to turbine hub-height + speeds = np.round(((weight1 * ws1) + (weight2 * ws2)) / (weight1 + weight2), 3) + + # Wind direction data indices for each resource height + idx_wd1 = [i for i in idx_wd if wind_resource.data['heights'][i] == hh1][0] + idx_wd2 = [i for i in idx_wd if wind_resource.data['heights'][i] == hh2][0] + + # Wind directions at the two resource heights + wd1 = data[:, idx_wd1] + wd2 = data[:, idx_wd2] + + # Weight wind direction data based on height relative to turbine hub-height + wind_dirs = np.round(((weight1 * wd1) + (weight2 * wd2)) / (weight1 + weight2), 3) + + return speeds, wind_dirs diff --git a/hopp/utilities/utilities.py b/hopp/utilities/utilities.py index 07c934243..116e77ecc 100644 --- a/hopp/utilities/utilities.py +++ b/hopp/utilities/utilities.py @@ -1,7 +1,6 @@ import os import yaml - class Loader(yaml.SafeLoader): def __init__(self, stream): @@ -25,3 +24,17 @@ def load_yaml(filename, loader=Loader) -> dict: return filename # filename already yaml dict with open(filename) as fid: return yaml.load(fid, loader) + +def check_create_folder(filepath): + already_exists = True + if not os.path.isdir(filepath): + os.makedirs(filepath,exist_ok=True) + already_exists = False + return already_exists + +def write_yaml(filename,data): + if not '.yaml' in filename: + filename = filename +'.yaml' + + with open(filename, 'w+') as file: + yaml.dump(data, file,sort_keys=False,encoding = None,default_flow_style=False) diff --git a/pyproject.toml b/pyproject.toml index 76156a499..0c95f2caf 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -12,7 +12,7 @@ requires-python = ">=3.10, <3.12" license = {file = "LICENSE"} dependencies = [ "Cython", - "NREL-PySAM==4.2.0", + "NREL-PySAM>=6.0.0", "Pillow", "Pyomo>=6.1.2", "fastkml<1", @@ -48,7 +48,9 @@ dependencies = [ "attrs", "utm", "pyyaml-include", - "profast" + "profast", + "NREL-rex", + "turbine-models>=0.1.0", ] keywords = [ "python3", diff --git a/tests/hopp/inputs/floris_v4_empty_layout.yaml b/tests/hopp/inputs/floris_v4_empty_layout.yaml new file mode 100644 index 000000000..aa89fd7a8 --- /dev/null +++ b/tests/hopp/inputs/floris_v4_empty_layout.yaml @@ -0,0 +1,95 @@ + +name: Gauss +description: Onshore template +floris_version: v4.0.0 +logging: + console: + enable: false + level: WARNING + file: + enable: false + level: WARNING +solver: + type: turbine_grid + turbine_grid_points: 1 +flow_field: + air_density: 1.225 + reference_wind_height: -1 + wind_directions: + - 270.0 + wind_shear: 0.33 + wind_speeds: + - 8.0 + wind_veer: 0.0 + turbulence_intensities: + - 0.06 +wake: + model_strings: + combination_model: sosfs + deflection_model: gauss + turbulence_model: crespo_hernandez + velocity_model: gauss + enable_secondary_steering: false + enable_yaw_added_recovery: false + enable_transverse_velocities: false + wake_deflection_parameters: + gauss: + ad: 0.0 + alpha: 0.58 + bd: 0.0 + beta: 0.077 + dm: 1.0 + ka: 0.38 + kb: 0.004 + jimenez: + ad: 0.0 + bd: 0.0 + kd: 0.05 + wake_velocity_parameters: + cc: + a_s: 0.179367259 + b_s: 0.0118889215 + c_s1: 0.0563691592 + c_s2: 0.13290157 + a_f: 3.11 + b_f: -0.68 + c_f: 2.41 + alpha_mod: 1.0 + gauss: + alpha: 0.58 + beta: 0.077 + ka: 0.38 + kb: 0.004 + jensen: + we: 0.05 + wake_turbulence_parameters: + crespo_hernandez: + initial: 0.1 + constant: 0.5 + ai: 0.8 + downstream: -0.32 + enable_active_wake_mixing: false + + wake_velocity_parameters: + cc: + a_f: 3.11 + a_s: 0.179367259 + alpha_mod: 1.0 + b_f: -0.68 + b_s: 0.0118889215 + c_f: 2.41 + c_s1: 0.0563691592 + c_s2: 0.13290157 + gauss: + alpha: 0.58 + beta: 0.077 + ka: 0.38 + kb: 0.004 + jensen: + we: 0.05 +farm: + layout_x: [0.0] + layout_y: [0.0] + turbine_type: + - operation_model: cosine-loss + diff --git a/tests/hopp/inputs/pysam_simulation_input.yaml b/tests/hopp/inputs/pysam_simulation_input.yaml index afdfc805a..f5710b895 100644 --- a/tests/hopp/inputs/pysam_simulation_input.yaml +++ b/tests/hopp/inputs/pysam_simulation_input.yaml @@ -490,6 +490,4 @@ Losses: wake_int_loss: 0.0 Uncertainty: total_uncert: 12.085 -AdjustmentFactors: - constant: 0.0 Outputs: {} diff --git a/tests/hopp/inputs/tidal/tidal_device.yaml b/tests/hopp/inputs/tidal/tidal_device.yaml new file mode 100644 index 000000000..4c2d24a6a --- /dev/null +++ b/tests/hopp/inputs/tidal/tidal_device.yaml @@ -0,0 +1,87 @@ +# RM1 Horizontal Axis Turbine + +# General device info +# wec_reference_model: "RM1" +# technology_type: "Horizontal Axis Turbine" +# pto_type: "Permanent Magnet Synchronous" +# tec_architype: "Axial-flow Turbine" +# unballasted_structural_mass: 265.9 +# foundation_type: "bottom fixed: pile foundation" + +device_rating_kw: 1115 #[kW] +tidal_power_curve: +- [0.000000, 0.000000] +- [0.100000, 0.000000] +- [0.200000, 0.000000] +- [0.300000, 0.000000] +- [0.400000, 0.000000] +- [0.500000, 0.000000] +- [0.600000, 10.421100] +- [0.700000, 20.842300] +- [0.800000, 39.968900] +- [0.900000, 59.095600] +- [1.000000, 89.201600] +- [1.100000, 119.308000] +- [1.200000, 160.886000] +- [1.300000, 202.464000] +- [1.400000, 259.292000] +- [1.500000, 316.120000] +- [1.600000, 392.673000] +- [1.700000, 469.226000] +- [1.800000, 570.306000] +- [1.900000, 671.386000] +- [2.000000, 802.908000] +- [2.100000, 934.430000] +- [2.200000, 1024.710000] +- [2.300000, 1115.000000] +- [2.400000, 1115.000000] +- [2.500000, 1115.000000] +- [2.600000, 1115.000000] +- [2.700000, 1115.000000] +- [2.800000, 1115.000000] +- [2.900000, 1115.000000] +- [3.000000, 1115.000000] +- [3.100000, 1115.000000] +- [3.200000, 1085.370000] +- [3.300000, 1055.730000] + +num_devices: 20 +# Tidal resource is required in PySAM prechecks +# this is a dummy resource profile and does not +# impact simulation when using timeseries data +# TODO: Remove once PySAM Pypi updates +tidal_resource: +- [0.000000, 0.009000] +- [0.100000, 0.031000] +- [0.200000, 0.042000] +- [0.300000, 0.044000] +- [0.400000, 0.048000] +- [0.500000, 0.049000] +- [0.600000, 0.053000] +- [0.700000, 0.051000] +- [0.800000, 0.052000] +- [0.900000, 0.056000] +- [1.000000, 0.050000] +- [1.100000, 0.052000] +- [1.200000, 0.050000] +- [1.300000, 0.048000] +- [1.400000, 0.047000] +- [1.500000, 0.043000] +- [1.600000, 0.042000] +- [1.700000, 0.040000] +- [1.800000, 0.034000] +- [1.900000, 0.031000] +- [2.000000, 0.026000] +- [2.100000, 0.023000] +- [2.200000, 0.020000] +- [2.300000, 0.016000] +- [2.400000, 0.013000] +- [2.500000, 0.011000] +- [2.600000, 0.007000] +- [2.700000, 0.005000] +- [2.800000, 0.004000] +- [2.900000, 0.002000] +- [3.000000, 0.001000] +- [3.100000, 0.000000] +- [3.200000, 0.000000] +- [3.300000, 0.000000] \ No newline at end of file diff --git a/tests/hopp/pvsamv1_basic_params.json b/tests/hopp/pvsamv1_basic_params.json index 3e7710b44..f545deaf9 100644 --- a/tests/hopp/pvsamv1_basic_params.json +++ b/tests/hopp/pvsamv1_basic_params.json @@ -1,76 +1,69 @@ { - "system_capacity" : 50002.22178, - "albedo" : [ 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2 ], - "inverter_count" : 99, - "subarray1_nstrings" : 13435, - "subarray1_modules_per_string" : 12, - "subarray1_tilt" : 0, - "subarray1_azimuth" : 180, - "subarray1_track_mode" : 1, - "subarray1_rotlim" : 45, - "subarray1_shade_mode" : 2, - "subarray1_gcr" : 0.3, - "subarray1_slope_tilt" : 0, - "subarray1_slope_azm" : 0, - "subarray1_soiling" : [ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ], - "subarray1_mismatch_loss" : 2, + "system_capacity" : 4993.277184, + "albedo" : [0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2], + "inverter_count" : 1.0, + "subarray1_nstrings" : 336.0, + "subarray1_modules_per_string" : 28.0, + "subarray1_tilt" : 0.0, + "subarray1_azimuth" : 180.0, + "subarray1_track_mode" : 1.0, + "subarray1_rotlim" : 45.0, + "subarray1_shade_mode" : 0.0, + "subarray1_gcr" : 0.5, + "subarray1_slope_tilt" : 0.0, + "subarray1_slope_azm" : 0.0, + "subarray1_soiling" : [5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0], + "subarray1_mismatch_loss" : 2.0, "subarray1_diodeconn_loss" : 0.5, - "subarray1_dcwiring_loss" : 2, - "subarray1_tracking_loss" : 0, - "subarray1_nameplate_loss" : 0, - "dcoptimizer_loss" : 0, - "acwiring_loss" : 1, - "transmission_loss" : 0, - "subarray1_mod_orient" : 0, - "subarray1_nmodx" : 30, - "subarray1_nmody" : 2, - "subarray1_backtrack" : 0, - "subarray2_enable" : 0, - "subarray2_track_mode" : 1, - "subarray3_enable" : 0, - "subarray4_enable" : 0, - "module_model" : 1, - "module_aspect_ratio" : 1.7, - "cec_area" : 1.631, - "cec_a_ref" : 2.57764, - "cec_adjust" : 22.9092, - "cec_alpha_sc" : 0.00373527, - "cec_beta_oc" : -0.175619, - "cec_gamma_r" : -0.386, - "cec_i_l_ref" : 6.05373, - "cec_i_mp_ref" : 5.67, - "cec_i_o_ref" : 8.36043e-11, - "cec_i_sc_ref" : 6.05, - "cec_n_s" : 96, - "cec_r_s" : 0.30812, - "cec_r_sh_ref" : 500.069, - "cec_t_noct" : 46, - "cec_v_mp_ref" : 54.7, - "cec_v_oc_ref" : 64.4, - "cec_temp_corr_mode" : 0, - "cec_is_bifacial" : 0, + "subarray1_dcwiring_loss" : 2.0, + "subarray1_tracking_loss" : 0.0, + "subarray1_nameplate_loss" : 0.0, + "dcoptimizer_loss" : 0.0, + "acwiring_loss" : 1.0, + "transmission_loss" : 0.0, + "subarray1_mod_orient" : 0.0, + "subarray1_nmodx" : 42.0, + "subarray1_nmody" : 2.0, + "subarray1_backtrack" : 0.0, + "module_model" : 1.0, + "module_aspect_ratio" : 2.01, + "cec_area" : 2.58, + "cec_a_ref" : 1.82452, + "cec_adjust" : 0.0529963, + "cec_alpha_sc" : 0.005484, + "cec_beta_oc" : -0.140712, + "cec_i_l_ref" : 13.7267, + "cec_i_mp_ref" : 12.82, + "cec_i_o_ref" : 2.59771e-11, + "cec_i_sc_ref" : 13.71, + "cec_n_s" : 72.0, + "cec_r_s" : 0.16229, + "cec_r_sh_ref" : 133.611, + "cec_t_noct" : 43.1, + "cec_v_mp_ref" : 41.4, + "cec_v_oc_ref" : 49.2, + "cec_temp_corr_mode" : 0.0, + "cec_is_bifacial" : 1.0, "cec_bifacial_transmission_factor" : 0.013, "cec_bifaciality" : 0.7, - "cec_bifacial_ground_clearance_height" : 1, - "cec_standoff" : 6, - "cec_height" : 0, + "cec_bifacial_ground_clearance_height" : 1.7, + "cec_standoff" : 6.0, + "cec_height" : 0.0, "cec_transient_thermal_model_unit_mass" : 11.0919, - "inverter_model" : 0, - "mppt_low_inverter" : 545, - "mppt_hi_inverter" : 820, - "inv_num_mppt" : 1, - "inv_snl_c0" : -1.40704e-08, - "inv_snl_c1" : 6.34566e-06, - "inv_snl_c2" : 0.00155414, - "inv_snl_c3" : -0.000271668, - "inv_snl_paco" : 753200, - "inv_snl_pdco" : 777216, - "inv_snl_pnt" : 122.55, - "inv_snl_pso" : 3714.14, - "inv_snl_vdco" : 615, - "inv_snl_vdcmax" : 820, - "inv_tdc_cec_db" : [ [ 1300, 50, -0.02, 53, -0.47 ] ], - "en_batt" : 0, - "adjust:constant" : 0, - "dc_adjust:constant" : 0 + "inverter_model" : 0.0, + "mppt_low_inverter" : 800.0, + "mppt_hi_inverter" : 1500.0, + "inv_num_mppt" : 1.0, + "inv_snl_c0" : -7.05627e-09, + "inv_snl_c1" : 5.56504e-06, + "inv_snl_c2" : 0.000106673, + "inv_snl_c3" : -0.000143943, + "inv_snl_paco" : 2507190.0, + "inv_snl_pdco" : 2579160.0, + "inv_snl_pnt" : 62.8, + "inv_snl_pso" : 8485.63, + "inv_snl_vdco" : 975.0, + "inv_snl_vdcmax" : 1500.0, + "inv_tdc_cec_db" : [[1500.0, 50.0, -0.02, 53.0, -0.47]], + "en_batt" : 0.0 } diff --git a/tests/hopp/test_csp.py b/tests/hopp/test_csp.py index ce180e4ea..b11bf7db5 100644 --- a/tests/hopp/test_csp.py +++ b/tests/hopp/test_csp.py @@ -348,8 +348,8 @@ def test_trough_annual_financial(site): # Expected values from SAM UI (develop) built 9/24/2021 (default parameters except those in trough_config, weather file, and ppa_soln_mode = 1) # Note results should be close, but won't match exactly because daotk-develop ssc branch is used for performance simulations expected_energy = 180106837 - expected_lcoe_nom = 17.0971 - expected_ppa_nom = 12.347 + expected_lcoe_nom = 17.71 + expected_ppa_nom = 14.513 config = TroughConfig.from_dict(trough_config) csp = TroughPlant(site, config=config) @@ -373,8 +373,8 @@ def test_tower_annual_financial(site): # Note results should be close, but won't match exactly because daotk-develop ssc branch is used for performance simulations expected_Nhel = 6172 expected_energy = 371737920 - expected_lcoe_nom = 12.952 - expected_ppa_nom = 9.0977 + expected_lcoe_nom = 13.28 + expected_ppa_nom = 10.289 config = TowerConfig.from_dict(tower_config) csp = TowerPlant(site, config=config) diff --git a/tests/hopp/test_custom_financial.py b/tests/hopp/test_custom_financial.py index 391e0785a..de2ebd8ad 100644 --- a/tests/hopp/test_custom_financial.py +++ b/tests/hopp/test_custom_financial.py @@ -7,6 +7,7 @@ from tests.hopp.utils import create_default_site_info, DEFAULT_FIN_CONFIG import copy +import numpy as np DEFAULT_FIN_CONFIG_LOCAL = copy.deepcopy(DEFAULT_FIN_CONFIG) DEFAULT_FIN_CONFIG_LOCAL.pop("revenue") # these tests were written before the revenue section was added to the default financial config @@ -46,8 +47,8 @@ def test_custom_financial(): def test_detailed_pv(site, subtests): # Run detailed PV model (pvsamv1) using a custom financial model - annual_energy_expected = 108833068 - npv_expected = -39094449 + annual_energy_expected = 8884369 + npv_expected = -4066396 with open(pvsamv1_defaults_file, 'r') as f: tech_config = json.load(f) @@ -152,7 +153,7 @@ def test_hybrid_simple_pv_with_wind(site, subtests): 'layout_params': { "border_spacing": 2, "border_offset": 0.5, - "grid_angle": 0.5, + "grid_angle": np.rad2deg(0.5), "grid_aspect_power": 0.5, "row_phase_offset": 0.5 }, @@ -193,23 +194,18 @@ def test_hybrid_simple_pv_with_wind(site, subtests): def test_hybrid_detailed_pv_with_wind(site, subtests): # Test wind + detailed PV (pvsamv1) hybrid plant with custom financial model - annual_energy_expected_pv = 21541876 - annual_energy_expected_wind = 32296230 - annual_energy_expected_hybrid = 53838106 - npv_expected_pv = -7844643 - npv_expected_wind = -11896652 - npv_expected_hybrid = -19733945 + annual_energy_expected_pv = 8863135 + annual_energy_expected_wind = 31453286 + annual_energy_expected_hybrid = 40316422 + npv_expected_pv = -4068134 + npv_expected_wind = -11965644 + npv_expected_hybrid = -16033778 interconnect_kw = 150e6 wind_kw = 10000 with open(pvsamv1_defaults_file, 'r') as f: tech_config = json.load(f) - - # NOTE: PV array shrunk to avoid problem associated with flicker calculation - tech_config['system_capacity'] = 10000 - tech_config['inverter_count'] = 10 - tech_config['subarray1_nstrings'] = 2687 layout_params = { "x_position": 0.5, @@ -235,7 +231,7 @@ def test_hybrid_detailed_pv_with_wind(site, subtests): 'layout_params': { "border_spacing": 2, "border_offset": 0.5, - "grid_angle": 0.5, + "grid_angle": np.rad2deg(0.5), "grid_aspect_power": 0.5, "row_phase_offset": 0.5 }, @@ -263,10 +259,10 @@ def test_hybrid_detailed_pv_with_wind(site, subtests): npvs = hybrid_plant.net_present_values with subtests.test("with minimal params"): - assert sizes.pv == approx(10000, 1e-3) + assert sizes.pv == approx(4993, 1e-3) assert sizes.wind == approx(wind_kw, 1e-3) - assert aeps.pv == approx(annual_energy_expected_pv, 1e-3) assert aeps.wind == approx(annual_energy_expected_wind, 1e-3) + assert aeps.pv == approx(annual_energy_expected_pv, 1e-3) assert aeps.hybrid == approx(annual_energy_expected_hybrid, 1e-3) assert npvs.pv == approx(npv_expected_pv, 1e-3) assert npvs.wind == approx(npv_expected_wind, 1e-3) @@ -279,22 +275,22 @@ def test_hybrid_simple_pv_with_wind_wave_storage_dispatch(subtests): annual_energy_expected_pv = 10761987 annual_energy_expected_wind = 31951719 annual_energy_expected_wave = 12132526 - annual_energy_expected_battery = -98292 + annual_energy_expected_battery = -103752 annual_energy_expected_hybrid = 54747904 npv_expected_pv = -1640023 npv_expected_wind = -5159400 - npv_expected_wave = -50006845 + npv_expected_wave = -62903172 npv_expected_battery = -8183543 - npv_expected_hybrid = -64990137 + npv_expected_hybrid = -77887529 lcoe_expected_pv = 3.104064331441355 lcoe_expected_wind = 3.162940789633178 - lcoe_expected_wave = 28.83013114281512 - lcoe_expected_battery = 13.29435118093791 - lcoe_expected_hybrid = 9.810109326608142 + lcoe_expected_wave = 35.719370712383856 + lcoe_expected_battery = 13.333128855903514 + lcoe_expected_hybrid = 11.337551789830751 - total_installed_cost_expected = 81063378.16191691 + total_installed_cost_expected = 93959704.39847898 interconnect_kw = 20000 pv_kw = 5000 @@ -323,7 +319,7 @@ def test_hybrid_simple_pv_with_wind_wave_storage_dispatch(subtests): 'layout_params': { "border_spacing": 2, "border_offset": 0.5, - "grid_angle": 0.5, + "grid_angle": np.rad2deg(0.5), "grid_aspect_power": 0.5, "row_phase_offset": 0.5 }, @@ -433,14 +429,14 @@ def test_hybrid_simple_pv_with_wind_wave_storage_dispatch(subtests): def test_hybrid_detailed_pv_with_wind_storage_dispatch(site, subtests): # Test wind + detailed PV (pvsamv1) + storage with dispatch hybrid plant with custom financial model - annual_energy_expected_pv = 20416252 - annual_energy_expected_wind = 32321927 - annual_energy_expected_battery = -91312 - annual_energy_expected_hybrid = 52645082 - npv_expected_pv = -3606490 - npv_expected_wind = -5050712 + annual_energy_expected_pv = 8851251 + annual_energy_expected_wind = 31559803 + annual_energy_expected_battery = -102220 + annual_energy_expected_hybrid = 40308834 + npv_expected_pv = -2194945 + npv_expected_wind = -5274461 npv_expected_battery = -8181700 - npv_expected_hybrid = -16839535 + npv_expected_hybrid = -15654417 interconnect_kw = 15000 wind_kw = 10000 @@ -448,11 +444,6 @@ def test_hybrid_detailed_pv_with_wind_storage_dispatch(site, subtests): with open(pvsamv1_defaults_file, 'r') as f: tech_config = json.load(f) - - # NOTE: PV array shrunk to avoid problem associated with flicker calculation - tech_config['system_capacity'] = 10000 - tech_config['inverter_count'] = 10 - tech_config['subarray1_nstrings'] = 2687 power_sources = { 'pv': { @@ -476,7 +467,7 @@ def test_hybrid_detailed_pv_with_wind_storage_dispatch(site, subtests): 'layout_params': { "border_spacing": 2, "border_offset": 0.5, - "grid_angle": 0.5, + "grid_angle": np.rad2deg(0.5), "grid_aspect_power": 0.5, "row_phase_offset": 0.5 }, @@ -509,7 +500,7 @@ def test_hybrid_detailed_pv_with_wind_storage_dispatch(site, subtests): aeps = hybrid_plant.annual_energies npvs = hybrid_plant.net_present_values with subtests.test("with minimal params"): - assert sizes.pv == approx(10000, 1e-3) + assert sizes.pv == approx(4993, 1e-3) assert sizes.wind == approx(wind_kw, 1e-3) assert sizes.battery == approx(batt_kw, 1e-3) assert aeps.pv == approx(annual_energy_expected_pv, 1e-3) diff --git a/tests/hopp/test_detailed_pv_plant.py b/tests/hopp/test_detailed_pv_plant.py index 7841b7940..961ce83ec 100644 --- a/tests/hopp/test_detailed_pv_plant.py +++ b/tests/hopp/test_detailed_pv_plant.py @@ -51,19 +51,6 @@ def test_detailed_pv_plant_initialization(site, subtests): assert pv_plant.config is not None -def test_single_subarray_limitation(site): - """Ensure only one subarray is allowed.""" - config_with_multiple_subarrays = { - "system_capacity_kw": 100, - "tech_config": {"subarray2_enable": 1}, - } - config = DetailedPVConfig.from_dict(config_with_multiple_subarrays) - with pytest.raises( - Exception, match=r"Detailed PV plant currently only supports one subarray." - ): - DetailedPVPlant(site=site, config=config) - - def test_processed_assign(site, subtests): """Test more detailed instantiation with `tech_config`.""" pvsamv1_defaults_file = ( diff --git a/tests/hopp/test_dispatch.py b/tests/hopp/test_dispatch.py index 8ffbaa85c..ed819d8b3 100644 --- a/tests/hopp/test_dispatch.py +++ b/tests/hopp/test_dispatch.py @@ -67,7 +67,7 @@ def site(): } def test_solar_dispatch(site): - expected_objective = 34300.55 + expected_objective = 34021.43 dispatch_n_look_ahead = 48 @@ -110,7 +110,7 @@ def create_test_objective_rule(m): # results = HybridDispatchBuilderSolver.xpress_solve_call(model) assert results.solver.termination_condition == TerminationCondition.optimal - assert model.pv[0].cost_per_generation.value == pytest.approx(round(15/8760*1000,6), 1e-3) + assert model.pv[0].cost_per_generation.value == pytest.approx(round(19/8760*1000,6), 1e-3) gen = sum([model.pv[t].generation.value for t in model.forecast_horizon]) assert gen == pytest.approx(588.46, 1e-3) assert pyomo.value(model.test_objective) == pytest.approx(expected_objective, 1e-3) @@ -345,11 +345,11 @@ def test_wave_dispatch(): dispatch_n_look_ahead = 48 data = { - "lat": 44.6899, - "lon": 124.1346, - "year": 2010, - "tz": -7, - } + "lat": 44.6899, + "lon": 124.1346, + "year": 2010, + "tz": -7, + } wave_resource_file = ROOT_DIR / "simulation" / "resource_files" / "wave" / "Wave_resource_timeseries.csv" site = SiteInfo(data, solar=False, wind=False, wave=True, wave_resource_file=wave_resource_file) @@ -362,14 +362,14 @@ def test_wave_dispatch(): config = MHKConfig.from_dict(mhk_config) cost_model_input = MHKCostModelInputs.from_dict({ - 'reference_model_num':3, - 'water_depth': 100, - 'distance_to_shore': 80, - 'number_rows': 10, - 'device_spacing':600, - 'row_spacing': 600, - 'cable_system_overbuild': 20 - }) + 'reference_model_num':3, + 'water_depth': 100, + 'distance_to_shore': 80, + 'number_rows': 10, + 'device_spacing':600, + 'row_spacing': 600, + 'cable_system_overbuild': 20 + }) wave = MHKWavePlant(site, config, cost_model_input) @@ -413,7 +413,7 @@ def create_test_objective_rule(m): assert dispatch_generation[t] * 1e3 == pytest.approx(available_resource[t], 1e-3) def test_wind_dispatch(site): - expected_objective = 19947.1769 + expected_objective = 20071.18 dispatch_n_look_ahead = 48 @@ -660,7 +660,7 @@ def create_test_objective_rule(m): def test_pv_wind_battery_hybrid_dispatch(site): - expected_objective = 49012 + expected_objective = 48837.60 wind_solar_battery = {key: technologies[key] for key in ('pv', 'wind', 'battery', 'grid')} hopp_config = { @@ -761,7 +761,7 @@ def test_hybrid_dispatch_one_cycle_heuristic(site): def test_hybrid_solar_battery_dispatch(site): - expected_objective = 28445 + expected_objective = 28134.87 solar_battery_technologies = {k: technologies[k] for k in ('pv', 'battery', 'grid')} hopp_config = { @@ -973,7 +973,9 @@ def create_test_objective_rule(m): def test_hybrid_dispatch_baseload_heuristic_and_analysis(site): - desired_schedule = 8760*[20] + desired_schedule = 8760 * [20] + # Using a non-uniform schedule to test the baseload heuristic bugfix + desired_schedule[:2000] = [10.] * 2000 desired_schedule_site = SiteInfo(flatirons_site, desired_schedule=desired_schedule) @@ -998,9 +1000,9 @@ def test_hybrid_dispatch_baseload_heuristic_and_analysis(site): hybrid_plant = hi.system - assert hybrid_plant.grid.time_load_met == pytest.approx(92.87, 1e-2) - assert hybrid_plant.grid.capacity_factor_load == pytest.approx(94.45, 1e-2) - assert hybrid_plant.grid.total_number_hours == pytest.approx(3844, 1e-2) + assert hybrid_plant.grid.time_load_met == pytest.approx(94.429, 1e-2) + assert hybrid_plant.grid.capacity_factor_load == pytest.approx(95.659, 1e-2) + assert hybrid_plant.grid.total_number_hours == pytest.approx(4270, 1e-2) def test_dispatch_load_following_heuristic_with_wave(site, subtests): dispatch_options = {'battery_dispatch': 'load_following_heuristic', 'grid_charging': False} diff --git a/tests/hopp/test_hybrid.py b/tests/hopp/test_hybrid.py index 50d28d597..24816801f 100644 --- a/tests/hopp/test_hybrid.py +++ b/tests/hopp/test_hybrid.py @@ -23,6 +23,27 @@ from hopp.utilities import load_yaml +def robust_approx(o1, o2): + assert type(o1) == type(o2) + + o1_keys = [v for v in dir(o1) if not v.startswith('__')] + o2_keys = [v for v in dir(o2) if not v.startswith('__')] + + assert sorted(o1_keys) == sorted(o2_keys) + + for k in o1_keys: + v1 = getattr(o1, k) + v2 = getattr(o2, k) + if isinstance(v1, int) or isinstance(v1, float): + assert v1 == approx(v2) + continue + + if isinstance(v1, bool) or isinstance(v1, str): + assert v1 == v2 + continue + + approx(v1, v2) + @fixture def hybrid_config(): """Loads the config YAML and updates site info to use resource files.""" @@ -33,29 +54,48 @@ def hybrid_config(): return hybrid_config - @fixture def site(): return create_default_site_info() - -wave_resource_file = ( +@fixture +def wavesite(): + data = {"lat": 44.6899, "lon": 124.1346, "year": 2010, "tz": -7} + wave_resource_file = ( ROOT_DIR / "simulation" / "resource_files" / "wave" / "Wave_resource_timeseries.csv" -) + ) + wavesite = SiteInfo( + data, wave_resource_file=wave_resource_file, solar=False, wind=False, wave=True + ) + return wavesite +@fixture +def tidalsite(): + data = { + "lat": 44.6899, + "lon": 124.1346, + "year": 2010, + "tz": -7, + } + tidal_resource_file = Path.joinpath(ROOT_DIR / "simulation" / "resource_files" / "tidal" / "Tidal_resource_timeseries.csv") + tidalsite = SiteInfo(data, solar=False, wind=False, tidal=True, tidal_resource_file=tidal_resource_file) + + return tidalsite @fixture -def wavesite(): # TODO this should be used, but there were problems getting it working so tests duplicate the work each time right now - data = {"lat": 44.6899, "lon": 124.1346, "year": 2010, "tz": -7} - return SiteInfo( - data, wave_resource_file=wave_resource_file, solar=False, wind=False, wave=True +def mhk_config(): + mhk_yaml_path = ( + ROOT_DIR.parent / "tests" / "hopp" / "inputs" / "wave" / "wave_device.yaml" ) + mhk_config = load_yaml(mhk_yaml_path) + return mhk_config +@fixture +def mhk_tidal_config(): + mhk_yaml_path = Path(__file__).absolute().parent.parent.parent / "tests" / "hopp" / "inputs" / "tidal" / "tidal_device.yaml" + mhk_config = load_yaml(mhk_yaml_path) -mhk_yaml_path = ( - ROOT_DIR.parent / "tests" / "hopp" / "inputs" / "wave" / "wave_device.yaml" -) -mhk_config = load_yaml(mhk_yaml_path) + return mhk_config interconnection_size_kw = 15000 pv_kw = 5000 @@ -182,9 +222,8 @@ def wavesite(): # TODO this should be used, but there were problems getting it w ] -def test_hybrid_wave_only(hybrid_config, subtests): - hybrid_config["site"]["wave"] = True - hybrid_config["site"]["wave_resource_file"] = wave_resource_file +def test_hybrid_wave_only(hybrid_config, mhk_config, wavesite, subtests): + hybrid_config["site"]=wavesite wave_only_technologies = { "wave": { "device_rating_kw": mhk_config["device_rating_kw"], @@ -200,10 +239,8 @@ def test_hybrid_wave_only(hybrid_config, subtests): hybrid_config["technologies"] = wave_only_technologies - # TODO once the financial model is implemented, romove the line immediately following this comment and un-indent the rest of the test hi = HoppInterface(hybrid_config) hybrid_plant = hi.system - # hybrid_plant = HybridSimulation(wave_only_technologies, wavesite) cost_model_inputs = MHKCostModelInputs.from_dict( { "reference_model_num": 3, @@ -253,9 +290,6 @@ def test_hybrid_wave_only(hybrid_config, subtests): hybrid_plant.grid._financial_model.SystemCosts ) - # with subtests.test("SystemOutput.__dict__"): - # skip(reason="this test will not be consistent until the code is more type stable. Outputs may be tuple or list") - # assert hybrid_plant.wave._financial_model.SystemOutput.__dict__ == hybrid_plant.grid._financial_model.SystemOutput.__dict__ with subtests.test("SystemOutput.gen"): assert hybrid_plant.wave._financial_model.SystemOutput.gen == approx( hybrid_plant.grid._financial_model.SystemOutput.gen @@ -285,9 +319,8 @@ def test_hybrid_wave_only(hybrid_config, subtests): ) with subtests.test("Outputs"): - assert hybrid_plant.wave._financial_model.Outputs == approx( - hybrid_plant.grid._financial_model.Outputs - ) + robust_approx(hybrid_plant.wave._financial_model.Outputs, hybrid_plant.grid._financial_model.Outputs) + with subtests.test("net cash flow"): wave_period = hybrid_plant.wave._financial_model.value("analysis_period") grid_period = hybrid_plant.grid._financial_model.value("analysis_period") @@ -329,16 +362,17 @@ def test_hybrid_wave_only(hybrid_config, subtests): assert cf.wave == approx(48.42, 1e-2) with subtests.test("hybrid wave only cf"): assert cf.hybrid == approx(cf.wave) + with subtests.test("wave cost"): + assert hybrid_plant.wave.total_installed_cost == approx(66465112.398478985, 1e-2) with subtests.test("wave npv"): # TODO check/verify this test value somehow, not sure how to do it right now - assert npvs.wave == approx(-53714525.2968821, 5.e-2) + assert npvs.wave == approx(-66610851.533444166, 5.e-2) with subtests.test("hybrid wave only npv"): assert npvs.hybrid == approx(npvs.wave) -def test_hybrid_wave_battery(hybrid_config, subtests): - hybrid_config["site"]["wave"] = True - hybrid_config["site"]["wave_resource_file"] = wave_resource_file +def test_hybrid_wave_battery(hybrid_config, mhk_config, wavesite, subtests): + hybrid_config["site"] = wavesite wave_only_technologies = { "wave": { "device_rating_kw": mhk_config["device_rating_kw"], @@ -359,10 +393,9 @@ def test_hybrid_wave_battery(hybrid_config, subtests): hybrid_config["technologies"] = wave_only_technologies - # TODO once the financial model is implemented, romove the line immediately following this comment and un-indent the rest of the test hi = HoppInterface(hybrid_config) hybrid_plant = hi.system - # hybrid_plant = HybridSimulation(wave_only_technologies, wavesite) + cost_model_inputs = MHKCostModelInputs.from_dict( { "reference_model_num": 3, @@ -384,7 +417,7 @@ def test_hybrid_wave_battery(hybrid_config, subtests): cf = hybrid_plant.capacity_factors with subtests.test("battery aep"): - assert aeps.battery == approx(87.84, 1e3) + assert aeps.battery == approx(87.84, 1e-3) def test_hybrid_wind_only(hybrid_config, subtests): @@ -405,21 +438,223 @@ def test_hybrid_wind_only(hybrid_config, subtests): with subtests.test("hybrid aep"): assert aeps.hybrid == approx(31977778, 1e-3) with subtests.test("wind npv"): - assert npvs.wind == approx(-7256658, 1e-3) + assert npvs.wind == approx(-6068047, 1e-3) with subtests.test("hybrid npv"): - assert npvs.hybrid == approx(-7256658, 1e-3) + assert npvs.hybrid == approx(-6068047, 1e-3) + +def test_hybrid_tidal_only(hybrid_config, mhk_tidal_config, tidalsite, subtests): + hybrid_config["site"]= tidalsite + tidal_only_technologies = { + "tidal": { + "device_rating_kw": mhk_tidal_config["device_rating_kw"], + "num_devices": 2, + "tidal_power_curve": mhk_tidal_config["tidal_power_curve"], + "tidal_resource": mhk_tidal_config["tidal_resource"], + "fin_model": DEFAULT_FIN_CONFIG, + }, + "grid": { + "interconnect_kw": interconnection_size_kw, + "fin_model": DEFAULT_FIN_CONFIG, + }, + } -def test_hybrid_wind_only_floris(hybrid_config, subtests): + hybrid_config["technologies"] = tidal_only_technologies + + hi = HoppInterface(hybrid_config) + hybrid_plant = hi.system + cost_model_inputs = MHKCostModelInputs.from_dict( + { + "reference_model_num": 1, + "water_depth": 100, + "distance_to_shore": 80, + "number_rows": 2, + "device_spacing": 600, + "row_spacing": 600, + "cable_system_overbuild": 20, + } + ) + assert hybrid_plant.tidal is not None + hybrid_plant.tidal.create_mhk_cost_calculator(cost_model_inputs) + + hi.simulate() + aeps = hybrid_plant.annual_energies + npvs = hybrid_plant.net_present_values + cf = hybrid_plant.capacity_factors + + # check that tidal and grid match when only tidal is in the hybrid system + with subtests.test("financial parameters"): + assert hybrid_plant.tidal._financial_model.FinancialParameters == approx( + hybrid_plant.grid._financial_model.FinancialParameters + ) + with subtests.test("Revenue: ppa price input"): + assert hybrid_plant.tidal._financial_model.Revenue.ppa_price_input == approx( + hybrid_plant.grid._financial_model.Revenue.ppa_price_input + ) + with subtests.test("Revenue: ppa escalation"): + assert hybrid_plant.tidal._financial_model.Revenue.ppa_escalation == approx( + hybrid_plant.grid._financial_model.Revenue.ppa_escalation + ) + with subtests.test("Revenue: ppa multiplier model"): + assert ( + hybrid_plant.tidal._financial_model.Revenue.ppa_multiplier_model + == approx(hybrid_plant.grid._financial_model.Revenue.ppa_multiplier_model) + ) + with subtests.test("Revenue: ppa price input"): + assert ( + hybrid_plant.tidal._financial_model.Revenue.dispatch_factors_ts.all() + == approx( + hybrid_plant.grid._financial_model.Revenue.dispatch_factors_ts.all() + ) + ) + with subtests.test("SystemCosts"): + assert hybrid_plant.tidal._financial_model.SystemCosts == approx( + hybrid_plant.grid._financial_model.SystemCosts + ) + + with subtests.test("SystemOutput.gen"): + assert hybrid_plant.tidal._financial_model.SystemOutput.gen == approx( + hybrid_plant.grid._financial_model.SystemOutput.gen + ) + with subtests.test("SystemOutput.system_capacity"): + assert ( + hybrid_plant.tidal._financial_model.SystemOutput.system_capacity + == approx(hybrid_plant.grid._financial_model.SystemOutput.system_capacity) + ) + with subtests.test("SystemOutput.degradation"): + assert hybrid_plant.tidal._financial_model.SystemOutput.degradation == approx( + hybrid_plant.grid._financial_model.SystemOutput.degradation + ) + with subtests.test("SystemOutput.system_pre_curtailment_kwac"): + assert ( + hybrid_plant.tidal._financial_model.SystemOutput.system_pre_curtailment_kwac + == approx( + hybrid_plant.grid._financial_model.SystemOutput.system_pre_curtailment_kwac + ) + ) + with subtests.test("SystemOutput.annual_energy_pre_curtailment_ac"): + assert ( + hybrid_plant.tidal._financial_model.SystemOutput.annual_energy_pre_curtailment_ac + == approx( + hybrid_plant.grid._financial_model.SystemOutput.annual_energy_pre_curtailment_ac + ) + ) + with subtests.test("Outputs"): + robust_approx(hybrid_plant.tidal._financial_model.Outputs, hybrid_plant.grid._financial_model.Outputs) + + with subtests.test("net cash flow"): + tidal_period = hybrid_plant.tidal._financial_model.value("analysis_period") + grid_period = hybrid_plant.grid._financial_model.value("analysis_period") + assert hybrid_plant.tidal._financial_model.net_cash_flow(tidal_period) == approx( + hybrid_plant.grid._financial_model.net_cash_flow(grid_period) + ) + + with subtests.test("degradation"): + assert hybrid_plant.tidal._financial_model.value("degradation") == approx( + hybrid_plant.grid._financial_model.value("degradation") + ) + with subtests.test("total_installed_cost"): + assert hybrid_plant.tidal._financial_model.value( + "total_installed_cost" + ) == approx(hybrid_plant.grid._financial_model.value("total_installed_cost")) + with subtests.test("inflation_rate"): + assert hybrid_plant.tidal._financial_model.value("inflation_rate") == approx( + hybrid_plant.grid._financial_model.value("inflation_rate") + ) + with subtests.test("annual_energy_kwh"): + assert hybrid_plant.tidal.value("annual_energy_kwh") == approx( + hybrid_plant.grid.value("annual_energy_kwh") + ) + with subtests.test("ppa_price_input"): + assert hybrid_plant.tidal._financial_model.value("ppa_price_input") == approx( + hybrid_plant.grid._financial_model.value("ppa_price_input") + ) + with subtests.test("ppa_escalation"): + assert hybrid_plant.tidal._financial_model.value("ppa_escalation") == approx( + hybrid_plant.grid._financial_model.value("ppa_escalation") + ) + + # test hybrid outputs + with subtests.test("tidal aep"): + assert aeps.tidal == approx(6062551.5, 1e-2) + with subtests.test("hybrid tidal only aep"): + assert aeps.hybrid == approx(aeps.tidal) + with subtests.test("tidal cf"): + assert cf.tidal == approx(31.03, 1e-2) + with subtests.test("hybrid tidal only cf"): + assert cf.hybrid == approx(cf.tidal) + with subtests.test("tidal cost"): + # It seems that there is a difference between PySAM cost curves and SAM gui + assert hybrid_plant.tidal.total_installed_cost == approx(29015651.4, 1e-2) + with subtests.test("tidal npv"): + # TODO check/verify this test value somehow, not sure how to do it right now + assert npvs.tidal == approx(-29088482.4, 5.e-2) + with subtests.test("hybrid tidal only npv"): + assert npvs.hybrid == approx(npvs.tidal) + +def test_hybrid_tidal_battery(hybrid_config, mhk_tidal_config,tidalsite, subtests): + hybrid_config["site"]=tidalsite + tidal_only_technologies = { + "tidal": { + "device_rating_kw": mhk_tidal_config["device_rating_kw"], + "num_devices": 2, + "tidal_power_curve": mhk_tidal_config["tidal_power_curve"], + "tidal_resource": mhk_tidal_config["tidal_resource"], + "fin_model": DEFAULT_FIN_CONFIG, + }, + "battery": { + "system_capacity_kwh": 20000, + "system_capacity_kw": 80000, + "fin_model": DEFAULT_FIN_CONFIG, + }, + "grid": { + "interconnect_kw": interconnection_size_kw, + "fin_model": DEFAULT_FIN_CONFIG, + }, + } + + hybrid_config["technologies"] = tidal_only_technologies + + hi = HoppInterface(hybrid_config) + hybrid_plant = hi.system + cost_model_inputs = MHKCostModelInputs.from_dict( + { + "reference_model_num": 1, + "water_depth": 100, + "distance_to_shore": 80, + "number_rows": 2, + "device_spacing": 600, + "row_spacing": 600, + "cable_system_overbuild": 20, + } + ) + assert hybrid_plant.tidal is not None + hybrid_plant.tidal.create_mhk_cost_calculator(cost_model_inputs) + hybrid_plant.tidal._financial_model.om_capacity = [50] # $/kWcap + hybrid_plant.battery._financial_model.om_batt_variable_cost = [0.75] + + hi.simulate() + aeps = hybrid_plant.annual_energies + npvs = hybrid_plant.net_present_values + cf = hybrid_plant.capacity_factors + + with subtests.test("battery aep"): + assert aeps.battery == approx(106.537, 1e-3) +def test_hybrid_wind_only_floris(hybrid_config, subtests): floris_config_path = ( ROOT_DIR.parent / "tests" / "hopp" / "inputs" / "floris_config.yaml" ) technologies = hybrid_config["technologies"] wind_only = {key: technologies[key] for key in ("wind", "grid")} - + hybrid_config["site"].update({"hub_height":90.0}) wind_only["wind"]["model_name"] = "floris" wind_only["wind"]["floris_config"] = floris_config_path wind_only["wind"]["timestep"] = [0, 8760] + wind_only["wind"]["num_turbines"] = 4 + wind_only["wind"]["turbine_rating_kw"] = 5000 + wind_only["wind"]["layout_mode"] = "floris_layout" + hybrid_config["site"]["hub_height"] = 90.0 + hybrid_config["technologies"] = wind_only hi = HoppInterface(hybrid_config) @@ -430,15 +665,18 @@ def test_hybrid_wind_only_floris(hybrid_config, subtests): aeps = hybrid_plant.annual_energies npvs = hybrid_plant.net_present_values cf = hybrid_plant.capacity_factors - + with subtests.test("floris farm capacity"): + assert hybrid_plant.wind._system_model.system_capacity == 20000.0 + with subtests.test("windplant farm capacity"): + assert hybrid_plant.wind.system_capacity_kw == 20000.0 with subtests.test("wind aep"): assert aeps.wind == approx(74149945, 1e-3) with subtests.test("hybrid aep"): assert aeps.hybrid == approx(68271657, 1e-3) with subtests.test("wind npv"): - assert npvs.wind == approx(3592293, 1e-3) + assert npvs.wind == approx(-9193785, 1e-3) with subtests.test("hybrid npv"): - assert npvs.hybrid == approx(2108687, 1e-3) + assert npvs.hybrid == approx(-10847221, 1e-3) def test_hybrid_pv_only(hybrid_config, subtests): technologies = hybrid_config["technologies"] @@ -631,8 +869,8 @@ def test_detailed_pv_system_capacity(hybrid_config, subtests): with subtests.test( "Detailed PV model (pvsamv1) using defaults except the top level system_capacity_kw parameter" ): - annual_energy_expected = 11128604 - npv_expected = -2436229 + annual_energy_expected = 8873966 + npv_expected = -1818194 technologies = hybrid_config["technologies"] solar_only = deepcopy( {key: technologies[key] for key in ("pv", "grid")} @@ -644,7 +882,7 @@ def test_detailed_pv_system_capacity(hybrid_config, subtests): hybrid_config["technologies"] = solar_only hi = HoppInterface(hybrid_config) hybrid_plant = hi.system - assert hybrid_plant.pv.value("subarray1_nstrings") == 1343 + assert hybrid_plant.pv.value("subarray1_nstrings") == 336 hybrid_plant.layout.plot() hi.simulate() @@ -671,16 +909,10 @@ def test_detailed_pv_system_capacity(hybrid_config, subtests): solar_only["pv"]["tech_config"] = tech_config # specify parameters solar_only["grid"]["interconnect_kw"] = 150e3 hybrid_config["technologies"] = solar_only - with raises(Exception) as context: - hi = HoppInterface(hybrid_config) - assert ( - "The specified system capacity of 5000 kW is more than 5% from the value calculated" - in str(context.value) - ) # Run detailed PV model (pvsamv1) using file parameters, minus the number of strings, and the top level system_capacity_kw parameter - annual_energy_expected = 8955045 - npv_expected = -2622684 + annual_energy_expected = 8873966 + npv_expected = -1818194 pvsamv1_defaults_file = ( Path(__file__).absolute().parent / "pvsamv1_basic_params.json" ) @@ -696,7 +928,7 @@ def test_detailed_pv_system_capacity(hybrid_config, subtests): hybrid_config["technologies"] = solar_only hi = HoppInterface(hybrid_config) hybrid_plant = hi.system - assert hybrid_plant.pv.value("subarray1_nstrings") == 1343 + assert hybrid_plant.pv.value("subarray1_nstrings") == 336 hybrid_plant.layout.plot() hi.simulate() @@ -710,7 +942,7 @@ def test_detailed_pv_system_capacity(hybrid_config, subtests): def test_hybrid_detailed_pv_only(site, hybrid_config, subtests): with subtests.test("standalone detailed PV model (pvsamv1) using defaults"): - annual_energy_expected = 11128604 + annual_energy_expected = 8873966 config = DetailedPVConfig.from_dict(detailed_pv) pv_plant = DetailedPVPlant(site=site, config=config) assert pv_plant.system_capacity_kw == approx(pv_kw, 1e-2) @@ -719,11 +951,11 @@ def test_hybrid_detailed_pv_only(site, hybrid_config, subtests): assert pv_plant._system_model.Outputs.annual_energy == approx( annual_energy_expected, 1e-2 ) - assert pv_plant._system_model.Outputs.capacity_factor == approx(25.66, 1e-2) + assert pv_plant._system_model.Outputs.capacity_factor == approx(20.29, 1e-2) with subtests.test("detailed PV model (pvsamv1) using defaults"): technologies = hybrid_config["technologies"] - npv_expected = -2436229 + npv_expected = -1818194 solar_only = {"pv": detailed_pv, "grid": technologies["grid"]} solar_only["pv"][ "use_pvwatts" @@ -744,8 +976,8 @@ def test_hybrid_detailed_pv_only(site, hybrid_config, subtests): assert npvs.hybrid == approx(npv_expected, 1e-3) with subtests.test("Detailed PV model (pvsamv1) using parameters from file"): - annual_energy_expected = 102997528 - npv_expected = -25049424 + annual_energy_expected = 8873966 + npv_expected = -1818194 pvsamv1_defaults_file = ( Path(__file__).absolute().parent / "pvsamv1_basic_params.json" ) @@ -755,7 +987,7 @@ def test_hybrid_detailed_pv_only(site, hybrid_config, subtests): solar_only["pv"]["use_pvwatts"] = False # specify detailed PV model solar_only["pv"]["tech_config"] = tech_config # specify parameters solar_only["grid"]["interconnect_kw"] = 150e3 - solar_only["pv"]["system_capacity_kw"] = 50000 # use another system capacity + solar_only["pv"]["system_capacity_kw"] = 4993 # use another system capacity hybrid_config["technologies"] = solar_only hi = HoppInterface(hybrid_config) hybrid_plant = hi.system @@ -793,8 +1025,8 @@ def test_hybrid_detailed_pv_only(site, hybrid_config, subtests): with subtests.test( "Detailed PV model using parameters from file and autosizing electrical parameters" ): - annual_energy_expected = 102319358 - npv_expected = -25110524 + annual_energy_expected = 8873966 + npv_expected = -1818194 pvsamv1_defaults_file = ( Path(__file__).absolute().parent / "pvsamv1_basic_params.json" ) @@ -826,10 +1058,10 @@ def test_hybrid_detailed_pv_only(site, hybrid_config, subtests): n_inputs_combiner=32, ) ) - assert n_strings == 13435 - assert n_combiners == 420 - assert n_inverters == 50 - assert calculated_system_capacity == approx(50002.2, 1e-3) + assert n_strings == 336 + assert n_combiners == 11 + assert n_inverters == 1 + assert calculated_system_capacity == approx(4993.2, 1e-3) solar_only["pv"]["tech_config"]["subarray1_nstrings"] = n_strings solar_only["pv"]["tech_config"]["inverter_count"] = n_inverters solar_only["pv"]["tech_config"]["system_capacity"] = calculated_system_capacity @@ -843,7 +1075,7 @@ def test_hybrid_detailed_pv_only(site, hybrid_config, subtests): aeps = hybrid_plant.annual_energies npvs = hybrid_plant.net_present_values - assert hybrid_plant.pv.system_capacity_kw == approx(50002.2, 1e-2) + assert hybrid_plant.pv.system_capacity_kw == approx(4993.2, 1e-2) assert aeps.pv == approx(annual_energy_expected, 1e-3) assert aeps.hybrid == approx(annual_energy_expected, 1e-3) assert npvs.pv == approx(npv_expected, 1e-3) @@ -852,8 +1084,8 @@ def test_hybrid_detailed_pv_only(site, hybrid_config, subtests): def test_hybrid_user_instantiated(site, subtests): # Run detailed PV model (pvsamv1) using defaults and user-instantiated financial models - annual_energy_expected = 11128604 - npv_expected = -2436229 + annual_energy_expected = 8873966 + npv_expected = -1818194 system_capacity_kw = 5000 system_capacity_kw_expected = 4998 interconnect_kw = 150e3 @@ -903,7 +1135,7 @@ def test_hybrid_user_instantiated(site, subtests): }, "grid": { "interconnect_kw": interconnect_kw, - "fin_model": "GenericSystemSingleOwner", + "fin_model": "CustomGenerationProfileSingleOwner", "ppa_price": 0.01, }, } @@ -990,22 +1222,22 @@ def test_wind_pv_with_storage_dispatch(hybrid_config,subtests): assert aeps.hybrid == approx(43489117, rel=0.05) with subtests.test("pv npv"): - assert npvs.pv == approx(-507296, rel=5e-2) + assert npvs.pv == approx(546682.31, rel=5e-2) with subtests.test("wind npv"): - assert npvs.wind == approx(-2573090, rel=5e-2) + assert npvs.wind == approx(-1385231.71, rel=5e-2) with subtests.test("battery npv"): assert npvs.battery == approx(-4871034, rel=5e-2) with subtests.test("hybrid npv"): - assert npvs.hybrid == approx(-8254104, rel=5e-2) + assert npvs.hybrid == approx(-5664495.73, rel=5e-2) with subtests.test("pv taxes"): - assert taxes.pv[1] == approx(86124, rel=5e-2) + assert taxes.pv[1] == approx(115320.51, rel=5e-2) with subtests.test("wind taxes"): - assert taxes.wind[1] == approx(413068, rel=5e-2) + assert taxes.wind[1] == approx(419276.09, rel=5e-2) with subtests.test("battery taxes"): assert taxes.battery[1] == approx(248373, rel=5e-2) with subtests.test("hybrid taxes"): - assert taxes.hybrid[1] == approx(760211, rel=5e-2) + assert taxes.hybrid[1] == approx(783576.67, rel=5e-2) with subtests.test("pv apv"): assert apv.pv[1] == approx(0, rel=5e-2) @@ -1035,13 +1267,13 @@ def test_wind_pv_with_storage_dispatch(hybrid_config,subtests): assert esv.hybrid[1] == approx(42058135, rel=5e-2) with subtests.test("pv depr"): - assert depr.pv[1] == approx(745532, rel=5e-2) + assert depr.pv[1] == approx(875121.61, rel=5e-2) with subtests.test("wind depr"): - assert depr.wind[1] == approx(2651114, rel=5e-2) + assert depr.wind[1] == approx(2651114.55, rel=5e-2) with subtests.test("battery depr"): assert depr.battery[1] == approx(1266736, rel=5e-2) with subtests.test("hybrid depr"): - assert depr.hybrid[1] == approx(4663383, rel=5e-2) + assert depr.hybrid[1] == approx(4792972.69, rel=5e-2) with subtests.test("pv insr"): assert insr.pv[0] == approx(0, rel=5e-2) @@ -1053,9 +1285,9 @@ def test_wind_pv_with_storage_dispatch(hybrid_config,subtests): assert insr.hybrid[0] == approx(0, rel=5e-2) with subtests.test("pv om"): - assert om.pv[1] == approx(74993, rel=5e-2) + assert om.pv[1] == approx(94991.92, rel=5e-2) with subtests.test("wind om"): - assert om.wind[1] == approx(430000, rel=5e-2) + assert om.wind[1] == approx(400000.0, rel=5e-2) with subtests.test("battery om"): assert om.battery[1] == approx(75000, rel=5e-2) with subtests.test("hybrid om"): @@ -1071,13 +1303,13 @@ def test_wind_pv_with_storage_dispatch(hybrid_config,subtests): assert rev.hybrid[1] == approx(1334802, rel=5e-2) with subtests.test("pv tc"): - assert tc.pv[1] == approx(1295889, rel=5e-2) + assert tc.pv[1] == approx(322913.40, rel=5e-2) with subtests.test("wind tc"): - assert tc.wind[1] == approx(830744, rel=5e-2) + assert tc.wind[1] == approx(958551.59, rel=5e-2) with subtests.test("battery tc"): assert tc.battery[1] == approx(2201850, rel=5e-2) with subtests.test("hybrid tc"): - assert tc.hybrid[1] == approx(4338902, rel=5e-2) + assert tc.hybrid[1] == approx(3491000.32, rel=5e-2) def test_tower_pv_hybrid(hybrid_config): @@ -1344,7 +1576,7 @@ def test_hybrid_tax_incentives(hybrid_config): ) -def test_capacity_credit(hybrid_config): +def test_capacity_credit(hybrid_config,subtests): technologies = hybrid_config["technologies"] site = create_default_site_info(capacity_hours=capacity_credit_hours) wind_pv_battery = {key: technologies[key] for key in ("pv", "wind", "battery")} @@ -1440,8 +1672,8 @@ def reinstate_orig_values(): capcred = hybrid_plant.capacity_credit_percent assert capcred["pv"][0] == approx(6.85, rel=0.05) assert capcred["wind"][0] == approx(33.25, rel=0.10) - assert capcred["battery"][0] == approx(58.95, rel=0.05) - assert capcred["hybrid"][0] == approx(43.88, rel=0.05) + assert capcred["battery"][0] == approx(55.77, rel=0.05) + assert capcred["hybrid"][0] == approx(40.80, rel=0.05) cp_pay = hybrid_plant.capacity_payments np_cap = ( @@ -1482,60 +1714,104 @@ def reinstate_orig_values(): print("REV", [rev.pv[1], rev.wind[1], rev.battery[1], rev.hybrid[1]]) print("TC", [tc.pv[1], tc.wind[1], tc.battery[1], tc.hybrid[1]]) - assert aeps.pv == approx(10761987, rel=0.05) - assert aeps.wind == approx(31951719, rel=0.05) - assert aeps.battery == approx(-97166, rel=0.05) - assert aeps.hybrid == approx(43489117, rel=0.05) - - assert npvs.pv == approx(-253177, rel=5e-2) - assert npvs.wind == approx(-369348, rel=5e-2) - assert npvs.battery == approx(-2700460, rel=5e-2) - assert npvs.hybrid == approx(-1982008.05, rel=5e-2) - - assert taxes.pv[1] == approx(79229.26, rel=5e-2) - assert taxes.wind[1] == approx(365206, rel=5e-2) - assert taxes.battery[1] == approx(189346, rel=5e-2) - assert taxes.hybrid[1] == approx(598426, rel=5e-2) - - assert apv.pv[1] == approx(0, rel=5e-2) - assert apv.wind[1] == approx(0, rel=5e-2) - assert apv.battery[1] == approx(-4070354, rel=5e-2) - assert apv.hybrid[1] == approx(-348443, rel=5e-2) - - assert debt.pv[1] == approx(0, rel=5e-2) - assert debt.wind[1] == approx(0, rel=5e-2) - assert debt.battery[1] == approx(0, rel=5e-2) - assert debt.hybrid[1] == approx(0, rel=5e-2) - - assert esv.pv[1] == approx(10761986, rel=5e-2) - assert esv.wind[1] == approx(31951719, rel=5e-2) - assert esv.battery[1] == approx(3973442, rel=5e-2) - assert esv.hybrid[1] == approx(42058135, rel=5e-2) - - assert depr.pv[1] == approx(745532, rel=5e-2) - assert depr.wind[1] == approx(2651114, rel=5e-2) - assert depr.battery[1] == approx(1266736, rel=5e-2) - assert depr.hybrid[1] == approx(4663383, rel=5e-2) - - assert insr.pv[0] == approx(0, rel=5e-2) - assert insr.wind[0] == approx(0, rel=5e-2) - assert insr.battery[0] == approx(0, rel=5e-2) - assert insr.hybrid[0] == approx(0, rel=5e-2) - - assert om.pv[1] == approx(74993, rel=5e-2) - assert om.wind[1] == approx(430000, rel=5e-2) - assert om.battery[1] == approx(75000, rel=5e-2) - assert om.hybrid[1] == approx(579993, rel=5e-2) - - assert rev.pv[1] == approx(413803, rel=5e-2) - assert rev.wind[1] == approx(1211138, rel=5e-2) - assert rev.battery[1] == approx(470175, rel=5e-2) - assert rev.hybrid[1] == approx(2187556, rel=5e-2) - - assert tc.pv[1] == approx(1295889, rel=5e-2) - assert tc.wind[1] == approx(830744, rel=5e-2) - assert tc.battery[1] == approx(2201850, rel=5e-2) - assert tc.hybrid[1] == approx(4338902, rel=5e-2) + with subtests.test("pv aeps"): + assert aeps.pv == approx(10761987, rel=0.05) + with subtests.test("wind aeps"): + assert aeps.wind == approx(31951719, rel=0.05) + with subtests.test("battery aeps"): + assert aeps.battery == approx(-97166, rel=0.05) + with subtests.test("hybrid aeps"): + assert aeps.hybrid == approx(43489117, rel=0.05) + + with subtests.test("pv npvs"): + assert npvs.pv == approx(792671, rel=5e-2) + with subtests.test("wind npvs"): + assert npvs.wind == approx(818510, rel=5e-2) + with subtests.test("battery npvs"): + assert npvs.battery == approx(-2895459, rel=5e-2) + with subtests.test("hybrid npvs"): + assert npvs.hybrid == approx(210321, rel=5e-2) + + with subtests.test("pv taxes"): + assert taxes.pv[1] == approx(108631, rel=5e-2) + with subtests.test("wind taxes"): + assert taxes.wind[1] == approx(365206, rel=5e-2) + with subtests.test("battery taxes"): + assert taxes.battery[1] == approx(189346, rel=5e-2) + with subtests.test("hybrid taxes"): + assert taxes.hybrid[1] == approx(598426, rel=5e-2) + + with subtests.test("pv apv"): + assert apv.pv[1] == approx(0, rel=5e-2) + with subtests.test("wind apv"): + assert apv.wind[1] == approx(0, rel=5e-2) + with subtests.test("battery apv"): + assert apv.battery[1] == approx(-4070354, rel=5e-2) + with subtests.test("hybrid apv"): + assert apv.hybrid[1] == approx(-348443, rel=5e-2) + + with subtests.test("pv debt"): + assert debt.pv[1] == approx(0, rel=5e-2) + with subtests.test("wind debt"): + assert debt.wind[1] == approx(0, rel=5e-2) + with subtests.test("battery debt"): + assert debt.battery[1] == approx(0, rel=5e-2) + with subtests.test("hybrid debt"): + assert debt.hybrid[1] == approx(0, rel=5e-2) + + with subtests.test("pv esv"): + assert esv.pv[1] == approx(10761986, rel=5e-2) + with subtests.test("wind esv"): + assert esv.wind[1] == approx(31951719, rel=5e-2) + with subtests.test("battery esv"): + assert esv.battery[1] == approx(3973442, rel=5e-2) + with subtests.test("hybrid esv"): + assert esv.hybrid[1] == approx(42058135, rel=5e-2) + + with subtests.test("pv depr"): + assert depr.pv[1] == approx(875122, rel=5e-2) + with subtests.test("wind depr"): + assert depr.wind[1] == approx(2651114, rel=5e-2) + with subtests.test("battery depr"): + assert depr.battery[1] == approx(1266736, rel=5e-2) + with subtests.test("hybrid depr"): + assert depr.hybrid[1] == approx(4663383, rel=5e-2) + + with subtests.test("pv insr"): + assert insr.pv[0] == approx(0, rel=5e-2) + with subtests.test("wind insr"): + assert insr.wind[0] == approx(0, rel=5e-2) + with subtests.test("battery insr"): + assert insr.battery[0] == approx(0, rel=5e-2) + with subtests.test("hybrid insr"): + assert insr.hybrid[0] == approx(0, rel=5e-2) + + with subtests.test("pv om"): + assert om.pv[1] == approx(94992, rel=5e-2) + with subtests.test("wind om"): + assert om.wind[1] == approx(400000, rel=5e-2) + with subtests.test("battery om"): + assert om.battery[1] == approx(75000, rel=5e-2) + with subtests.test("hybrid om"): + assert om.hybrid[1] == approx(579993, rel=5e-2) + + with subtests.test("pv rev"): + assert rev.pv[1] == approx(413803, rel=5e-2) + with subtests.test("wind rev"): + assert rev.wind[1] == approx(1211138, rel=5e-2) + with subtests.test("battery rev"): + assert rev.battery[1] == approx(446518, rel=5e-2) + with subtests.test("hybrid rev"): + assert rev.hybrid[1] == approx(2187556, rel=5e-2) + + with subtests.test("pv tc"): + assert tc.pv[1] == approx(322913, rel=5e-2) + with subtests.test("wind tc"): + assert tc.wind[1] == approx(958551, rel=5e-2) + with subtests.test("battery tc"): + assert tc.battery[1] == approx(2201850, rel=5e-2) + with subtests.test("hybrid tc"): + assert tc.hybrid[1] == approx(3491000, rel=5e-2) def test_hybrid_financials(hybrid_config, subtests): """ @@ -1554,7 +1830,39 @@ def test_hybrid_financials(hybrid_config, subtests): with subtests.test("pv om_production"): assert hi.system.pv._financial_model.SystemCosts.om_production == hi.system.pv.om_production with subtests.test("pv om total"): - assert hi.system.om_total_expenses['pv'][1] == approx(248536, rel=5e-2) + assert hi.system.om_total_expenses['pv'][1] == approx(257625.05, rel=5e-2) with subtests.test("wind om total"): - assert hi.system.om_total_expenses['wind'][1] == approx(493903.4397049556, rel=5e-2) + assert hi.system.om_total_expenses['wind'][1] == approx(463903.43, rel=5e-2) + +def test_hybrid_wind_only_floris_elevation_adjusted(hybrid_config, subtests): + + floris_config_path = ( + ROOT_DIR.parent / "tests" / "hopp" / "inputs" / "floris_config.yaml" + ) + technologies = hybrid_config["technologies"] + wind_only = {key: technologies[key] for key in ("wind", "grid")} + wind_only["wind"]["model_name"] = "floris" + wind_only["wind"]["floris_config"] = floris_config_path + wind_only["wind"]["timestep"] = [0, 8760] + wind_only["wind"]["num_turbines"] = 4 + wind_only["wind"]["turbine_rating_kw"] = 5000 + wind_only["wind"]["layout_mode"] = "floris_layout" + hybrid_config["site"]["hub_height"] = 90.0 + + hybrid_config["technologies"] = wind_only + hi = HoppInterface(hybrid_config) + hi.simulate(25) + hybrid_plant = hi.system + aeps_default = hybrid_plant.annual_energies + + wind_only["wind"].update({"adjust_air_density_for_elevation": True}) + hybrid_config["technologies"] = wind_only + hi = HoppInterface(hybrid_config) + hi.simulate(25) + hybrid_plant = hi.system + aeps_adjusted = hybrid_plant.annual_energies + + + with subtests.test("wind aep"): + assert aeps_adjusted.wind < aeps_default.wind \ No newline at end of file diff --git a/tests/hopp/test_layout.py b/tests/hopp/test_layout.py index b0d531928..52bb1e9e2 100644 --- a/tests/hopp/test_layout.py +++ b/tests/hopp/test_layout.py @@ -11,13 +11,17 @@ from hopp.simulation.technologies.wind.wind_plant import WindPlant, WindConfig from hopp.simulation.technologies.pv.pv_plant import PVPlant, PVConfig -from hopp.simulation.technologies.layout.hybrid_layout import HybridLayout, WindBoundaryGridParameters, PVGridParameters, get_flicker_loss_multiplier +from hopp.simulation.technologies.layout.wind_layout import ( + WindLayout, + WindBoundaryGridParameters, + WindBasicGridParameters) +from hopp.simulation.technologies.layout.hybrid_layout import HybridLayout, PVGridParameters, get_flicker_loss_multiplier from hopp.simulation.technologies.layout.wind_layout_tools import create_grid from hopp.simulation.technologies.layout.pv_design_utils import size_electrical_parameters, find_modules_per_string from hopp.simulation.technologies.pv.detailed_pv_plant import DetailedPVPlant, DetailedPVConfig from hopp.utilities.utils_for_tests import create_default_site_info - +from hopp import ROOT_DIR @pytest.fixture def site(): @@ -52,7 +56,7 @@ def test_create_grid(site): site.plot() turbine_positions = create_grid(bounding_shape, site.polygon.centroid, - np.pi / 4, + 45.0, 200, 200, .5) @@ -72,7 +76,7 @@ def test_create_grid(site): assert(t.y == pytest.approx(expected_positions[n][1], 1e-1)) -def test_wind_layout(site): +def test_wind_boundary_grid_layout_pysam(site): config = WindConfig.from_dict(technology['wind']) wind_model = WindPlant(site, config=config) xcoords, ycoords = wind_model._layout.turb_pos_x, wind_model._layout.turb_pos_y @@ -84,8 +88,87 @@ def test_wind_layout(site): assert xcoords[i] == pytest.approx(expected_xcoords[i], abs=1) assert ycoords[i] == pytest.approx(expected_ycoords[i], abs=1) - # wind_model.plot() - # plt.show() +def test_wind_basic_grid_layout_pysam_default(site, subtests): + wind_technology = { + 'num_turbines': 16, + 'rotor_diameter': 40.0, + 'turbine_rating_kw': 600, + 'layout_mode': 'basicgrid', + 'layout_params': WindBasicGridParameters() + } + config = WindConfig.from_dict(wind_technology) + wind_model = WindPlant(site, config=config) + xcoords, ycoords = wind_model._layout.turb_pos_x, wind_model._layout.turb_pos_y + unique_x_coords = np.unique(xcoords) + unique_y_coords = np.unique(ycoords) + + x_spacing_meters = unique_x_coords[-1] - unique_x_coords[-2] + y_spacing_meters = unique_y_coords[-1] - unique_y_coords[-2] + + expected_spacing_D = 5.0 + + expected_unique_x_coords = [554, 754, 954, 1154] + expected_unique_y_coords = [397, 597, 797, 997] + + with subtests.test("number of turbines in layout"): + assert len(xcoords) == wind_technology["num_turbines"] + with subtests.test("x spacing"): + assert x_spacing_meters/wind_technology["rotor_diameter"] == pytest.approx(expected_spacing_D,abs=1e-3) + with subtests.test("y spacing"): + assert y_spacing_meters/wind_technology["rotor_diameter"] == pytest.approx(expected_spacing_D,abs=1e-3) + with subtests.test("number of coordinates"): + assert len(unique_x_coords) == len(unique_y_coords) + for i in range(len(unique_x_coords)): + with subtests.test(f"unique x coordinate #{i}"): + assert unique_x_coords[i] == pytest.approx(expected_unique_x_coords[i], abs=1) + for i in range(len(unique_y_coords)): + with subtests.test(f"unique y coordinate #{i}"): + assert unique_y_coords[i] == pytest.approx(expected_unique_y_coords[i], abs=1) + +def test_wind_basic_grid_layout_floris_default(site, subtests): + floris_config_path = ( + ROOT_DIR.parent / "tests" / "hopp" / "inputs" / "floris_config.yaml" + ) + wind_technology = { + 'model_name': "floris", + 'floris_config': floris_config_path, + 'num_turbines': 16, + 'rotor_diameter': 125.88, + 'turbine_rating_kw': 5000, + 'layout_mode': 'basicgrid', + 'layout_params': WindBasicGridParameters() + } + site.wind_resource.hub_height_meters = 90.0 + config = WindConfig.from_dict(wind_technology) + wind_model = WindPlant(site, config=config) + xcoords, ycoords = wind_model._system_model.wind_farm_layout + unique_x_coords = np.unique(xcoords) + unique_y_coords = np.unique(ycoords) + + x_spacing_meters = unique_x_coords[-1] - unique_x_coords[-2] + y_spacing_meters = unique_y_coords[-1] - unique_y_coords[-2] + + expected_spacing_D = 5.0 + + expected_unique_x_coords = [330, 959, 1589, 2218] + expected_unique_y_coords = [-139, 489, 1119, 1748] + + with subtests.test("number of turbines"): + assert wind_model._system_model.nTurbs == wind_model.num_turbines + with subtests.test("x spacing"): + assert x_spacing_meters/wind_technology["rotor_diameter"] == pytest.approx(expected_spacing_D,abs=1e-3) + with subtests.test("y spacing"): + assert y_spacing_meters/wind_technology["rotor_diameter"] == pytest.approx(expected_spacing_D,abs=1e-3) + with subtests.test("number of turbines in layout"): + assert len(xcoords) == wind_technology["num_turbines"] + with subtests.test("number of coordinates"): + assert len(unique_x_coords) == len(unique_y_coords) + for i in range(len(unique_x_coords)): + with subtests.test(f"unique x coordinate #{i}"): + assert unique_x_coords[i] == pytest.approx(expected_unique_x_coords[i], abs=1) + for i in range(len(unique_y_coords)): + with subtests.test(f"unique y coordinate #{i}"): + assert unique_y_coords[i] == pytest.approx(expected_unique_y_coords[i], abs=1) def test_solar_layout(site): @@ -260,14 +343,14 @@ def test_system_electrical_sizing(site): def test_detailed_pv_properties(site): - SYSTEM_CAPACITY_DEFAULT = 50002.22178 - SUBARRAY1_NSTRINGS_DEFAULT = 13435 - SUBARRAY1_MODULES_PER_STRING_DEFAULT = 12 - INVERTER_COUNT_DEFAULT = 99 - CEC_V_MP_REF_DEFAULT = 54.7 - CEC_I_MP_REF_DEFAULT = 5.67 - INV_SNL_PACO_DEFAULT = 753200 - DC_AC_RATIO_DEFAULT = 0.67057 + SYSTEM_CAPACITY_DEFAULT = 4993.277184 + SUBARRAY1_NSTRINGS_DEFAULT = 336.0 + SUBARRAY1_MODULES_PER_STRING_DEFAULT = 28.0 + INVERTER_COUNT_DEFAULT = 1.0 + CEC_V_MP_REF_DEFAULT = 41.4 + CEC_I_MP_REF_DEFAULT = 12.82 + INV_SNL_PACO_DEFAULT = 2507190.0 + DC_AC_RATIO_DEFAULT = 1.9915 pvsamv1_defaults_file = Path(__file__).absolute().parent.parent / "hopp/pvsamv1_basic_params.json" with open(pvsamv1_defaults_file, 'r') as f: @@ -303,30 +386,30 @@ def verify_defaults(): # Modify system capacity and check that values update correctly detailed_pvplant.value('system_capacity', 20000) - assert detailed_pvplant.value('system_capacity') == approx(20000.889, 1e-6) - assert detailed_pvplant.value('subarray1_nstrings') == 5374 + assert detailed_pvplant.value('system_capacity') == approx(20002.8306, 1e-6) + assert detailed_pvplant.value('subarray1_nstrings') == 1346.0 assert detailed_pvplant.value('subarray1_modules_per_string') == SUBARRAY1_MODULES_PER_STRING_DEFAULT - assert detailed_pvplant.value('inverter_count') == 40 + assert detailed_pvplant.value('inverter_count') == 4.0 assert detailed_pvplant.value('cec_v_mp_ref') == approx(CEC_V_MP_REF_DEFAULT, 1e-3) assert detailed_pvplant.value('cec_i_mp_ref') == approx(CEC_I_MP_REF_DEFAULT, 1e-3) assert detailed_pvplant.value('inv_snl_paco') == approx(INV_SNL_PACO_DEFAULT, 1e-3) # The dc_ac_ratio changes because the inverter_count is a function of the system capacity, and it is rounded to an integer. # Changes to the inverter count do not influence the system capacity, therefore the dc_ac_ratio does not adjust back to the original value - assert detailed_pvplant.dc_ac_ratio == approx(0.6639, 1e-3) + assert detailed_pvplant.dc_ac_ratio == approx(1.994, 1e-3) # Reset system capacity back to the default value to verify values update correctly detailed_pvplant.value('system_capacity', SYSTEM_CAPACITY_DEFAULT) # The dc_ac_ratio is not noticeably affected because the inverter_count, calculated from the prior dc_ac_ratio, barely changed when rounded - assert detailed_pvplant.dc_ac_ratio == approx(0.6639, 1e-3) + assert detailed_pvplant.dc_ac_ratio == approx(1.991, 1e-3) assert detailed_pvplant.value('system_capacity') == approx(SYSTEM_CAPACITY_DEFAULT, 1e-3) assert detailed_pvplant.value('subarray1_nstrings') == SUBARRAY1_NSTRINGS_DEFAULT assert detailed_pvplant.value('subarray1_modules_per_string') == SUBARRAY1_MODULES_PER_STRING_DEFAULT # The inverter count did not change back to the default value because the dc_ac_ratio did not change back to the default value, # and unlike the UI, there is no 'desired' dc_ac_ratio that is used to calculate the inverter count, only the prior dc_ac_ratio - assert detailed_pvplant.value('inverter_count') == INVERTER_COUNT_DEFAULT + 1 + assert detailed_pvplant.value('inverter_count') == INVERTER_COUNT_DEFAULT assert detailed_pvplant.value('cec_v_mp_ref') == approx(CEC_V_MP_REF_DEFAULT, 1e-3) assert detailed_pvplant.value('cec_i_mp_ref') == approx(CEC_I_MP_REF_DEFAULT, 1e-3) assert detailed_pvplant.value('inv_snl_paco') == approx(INV_SNL_PACO_DEFAULT, 1e-3) - assert detailed_pvplant.dc_ac_ratio == approx(0.664, 1e-3) + assert detailed_pvplant.dc_ac_ratio == approx(1.991, 1e-3) # Reinstantiate (reset) the detailed PV plant detailed_pvplant = DetailedPVPlant( @@ -336,14 +419,14 @@ def verify_defaults(): # Modify the number of strings and verify that values update correctly detailed_pvplant.value('subarray1_nstrings', 10000) - assert detailed_pvplant.value('system_capacity') == approx(37217.88, 1e-3) + assert detailed_pvplant.value('system_capacity') == approx(148609, 1e-3) assert detailed_pvplant.value('subarray1_nstrings') == 10000 assert detailed_pvplant.value('subarray1_modules_per_string') == SUBARRAY1_MODULES_PER_STRING_DEFAULT assert detailed_pvplant.value('inverter_count') == INVERTER_COUNT_DEFAULT assert detailed_pvplant.value('cec_v_mp_ref') == approx(CEC_V_MP_REF_DEFAULT, 1e-3) assert detailed_pvplant.value('cec_i_mp_ref') == approx(CEC_I_MP_REF_DEFAULT, 1e-3) assert detailed_pvplant.value('inv_snl_paco') == approx(INV_SNL_PACO_DEFAULT, 1e-3) - assert detailed_pvplant.dc_ac_ratio == approx(0.499, 1e-3) + assert detailed_pvplant.dc_ac_ratio == approx(59.27, 1e-3) # Reset the number of strings back to the default value to verify other values reset back to their defaults detailed_pvplant.value('subarray1_nstrings', SUBARRAY1_NSTRINGS_DEFAULT) verify_defaults() @@ -356,14 +439,14 @@ def verify_defaults(): # Modify the modules per string and verify that values update correctly detailed_pvplant.value('subarray1_modules_per_string', 10) - assert detailed_pvplant.value('system_capacity') == approx(41668.52, 1e-3) + assert detailed_pvplant.value('system_capacity') == approx(1783.31, 1e-3) assert detailed_pvplant.value('subarray1_nstrings') == SUBARRAY1_NSTRINGS_DEFAULT assert detailed_pvplant.value('subarray1_modules_per_string') == 10 assert detailed_pvplant.value('inverter_count') == INVERTER_COUNT_DEFAULT assert detailed_pvplant.value('cec_v_mp_ref') == approx(CEC_V_MP_REF_DEFAULT, 1e-3) assert detailed_pvplant.value('cec_i_mp_ref') == approx(CEC_I_MP_REF_DEFAULT, 1e-3) assert detailed_pvplant.value('inv_snl_paco') == approx(INV_SNL_PACO_DEFAULT, 1e-3) - assert detailed_pvplant.dc_ac_ratio == approx(0.559, 1e-3) + assert detailed_pvplant.dc_ac_ratio == approx(0.7112, 1e-3) # Reset the modules per string back to the default value to verify other values reset back to their defaults detailed_pvplant.value('subarray1_modules_per_string', SUBARRAY1_MODULES_PER_STRING_DEFAULT) verify_defaults() @@ -385,7 +468,6 @@ def verify_defaults(): 'cec_adjust': 13.0949, 'cec_alpha_sc': 0.0020822, 'cec_beta_oc': -0.134854, - 'cec_gamma_r': -0.3904, 'cec_i_l_ref': 5.81, 'cec_i_mp_ref': 5.4, 'cec_i_o_ref': 3.698e-11, @@ -406,14 +488,14 @@ def verify_defaults(): 'cec_transient_thermal_model_unit_mass': 0, } detailed_pvplant.set_pv_module(module_params) - assert detailed_pvplant.value('system_capacity') == approx(34649.402, 1e-3) + assert detailed_pvplant.value('system_capacity') == approx(2021.96, 1e-3) assert detailed_pvplant.value('subarray1_nstrings') == SUBARRAY1_NSTRINGS_DEFAULT assert detailed_pvplant.value('subarray1_modules_per_string') == SUBARRAY1_MODULES_PER_STRING_DEFAULT assert detailed_pvplant.value('inverter_count') == INVERTER_COUNT_DEFAULT assert detailed_pvplant.value('cec_v_mp_ref') == approx(module_params['cec_v_mp_ref'], 1e-3) assert detailed_pvplant.value('cec_i_mp_ref') == approx(module_params['cec_i_mp_ref'], 1e-3) assert detailed_pvplant.value('inv_snl_paco') == approx(INV_SNL_PACO_DEFAULT, 1e-3) - assert detailed_pvplant.dc_ac_ratio == approx(0.465, 1e-3) + assert detailed_pvplant.dc_ac_ratio == approx(0.806, 1e-3) # Reset the PV module back to the default module to verify other values reset back to their defaults detailed_pvplant.set_pv_module(default_pv_module) verify_defaults() @@ -452,7 +534,7 @@ def verify_defaults(): assert detailed_pvplant.value('cec_v_mp_ref') == approx(CEC_V_MP_REF_DEFAULT, 1e-3) assert detailed_pvplant.value('cec_i_mp_ref') == approx(CEC_I_MP_REF_DEFAULT, 1e-3) assert detailed_pvplant.value('inv_snl_paco') == approx(507000, 1e-3) - assert detailed_pvplant.dc_ac_ratio == approx(0.996, 1e-3) + assert detailed_pvplant.dc_ac_ratio == approx(9.84, 1e-3) # Reset the inverter back to the default inverter to verify other values reset back to their defaults detailed_pvplant.set_inverter(default_inverter) verify_defaults() @@ -465,7 +547,7 @@ def test_detailed_pv_plant_custom_design(site): # Modify the inputs for a custom design target_solar_kw = 3e5 - target_dc_ac_ratio = 1.34 + target_dc_ac_ratio = 1.3444 modules_per_string = 12 module_power = tech_config['cec_v_mp_ref'] * tech_config['cec_i_mp_ref'] * 1e-3 # [kW] inverter_power = tech_config['inv_snl_paco'] * 1e-3 # [kW] @@ -495,13 +577,12 @@ def test_detailed_pv_plant_custom_design(site): ) assert detailed_pvplant.system_capacity == pytest.approx(calculated_system_capacity, 1e-3) - assert detailed_pvplant.dc_ac_ratio == pytest.approx(1.341, 1e-3) + assert detailed_pvplant.dc_ac_ratio == pytest.approx(1.3444, 1e-3) detailed_pvplant.simulate(target_solar_kw) - assert detailed_pvplant._system_model.Outputs.annual_ac_inv_clip_loss_percent < 1.3 + assert detailed_pvplant._system_model.Outputs.annual_ac_inv_clip_loss_percent < 1.31 assert detailed_pvplant._system_model.Outputs.annual_ac_inv_eff_loss_percent < 3 - assert detailed_pvplant._system_model.Outputs.annual_ac_gross / detailed_pvplant._system_model.Outputs.annual_dc_gross > 0.91 def test_detailed_pv_plant_modify_after_init(site): @@ -517,27 +598,27 @@ def test_detailed_pv_plant_modify_after_init(site): ) assert detailed_pvplant.system_capacity == pytest.approx(tech_config['system_capacity'], 1e-3) - assert detailed_pvplant.dc_ac_ratio == pytest.approx(0.671, 1e-3) + assert detailed_pvplant.dc_ac_ratio == pytest.approx(1.99, 1e-3) detailed_pvplant.simulate(5e5) - assert detailed_pvplant._system_model.Outputs.annual_ac_inv_clip_loss_percent < 1.2 - assert detailed_pvplant._system_model.Outputs.annual_ac_inv_eff_loss_percent < 3 - assert detailed_pvplant._system_model.Outputs.annual_ac_gross / detailed_pvplant._system_model.Outputs.annual_dc_gross > 0.91 - assert detailed_pvplant.annual_energy_kwh * 1e-6 == pytest.approx(108.239, abs=10) + assert detailed_pvplant._system_model.Outputs.annual_ac_inv_clip_loss_percent < 23.4 + assert detailed_pvplant._system_model.Outputs.annual_ac_inv_eff_loss_percent < 4.49 + assert detailed_pvplant._system_model.Outputs.annual_ac_gross / detailed_pvplant._system_model.Outputs.annual_dc_gross > 0.7 + assert detailed_pvplant.annual_energy_kwh * 1e-6 == pytest.approx(8.87, abs=10) # modify dc ac ratio - detailed_pvplant.dc_ac_ratio = 1.341 + detailed_pvplant.dc_ac_ratio = 1.3444 detailed_pvplant.simulate(5e5) - assert detailed_pvplant._system_model.Outputs.annual_ac_inv_clip_loss_percent < 1.2 - assert detailed_pvplant._system_model.Outputs.annual_ac_inv_eff_loss_percent < 3 - assert detailed_pvplant._system_model.Outputs.annual_ac_gross / detailed_pvplant._system_model.Outputs.annual_dc_gross > 0.91 - assert detailed_pvplant.annual_energy_kwh * 1e-6 == pytest.approx(107.502, abs=10) + assert detailed_pvplant._system_model.Outputs.annual_ac_inv_clip_loss_percent < 23.4 + assert detailed_pvplant._system_model.Outputs.annual_ac_inv_eff_loss_percent < 4.49 + assert detailed_pvplant._system_model.Outputs.annual_ac_gross / detailed_pvplant._system_model.Outputs.annual_dc_gross > 0.7 + assert detailed_pvplant.annual_energy_kwh * 1e-6 == pytest.approx(8.87, abs=10) # modify system capacity detailed_pvplant.system_capacity_kw *= 2 detailed_pvplant.simulate(5e5) - assert detailed_pvplant._system_model.Outputs.annual_ac_inv_clip_loss_percent < 1.2 - assert detailed_pvplant._system_model.Outputs.annual_ac_inv_eff_loss_percent < 3 - assert detailed_pvplant._system_model.Outputs.annual_ac_gross / detailed_pvplant._system_model.Outputs.annual_dc_gross > 0.91 - assert detailed_pvplant.annual_energy_kwh * 1e-6 == pytest.approx(215.0, abs=10) + assert detailed_pvplant._system_model.Outputs.annual_ac_inv_clip_loss_percent < 23.4 + assert detailed_pvplant._system_model.Outputs.annual_ac_inv_eff_loss_percent < 4.9 + assert detailed_pvplant._system_model.Outputs.annual_ac_gross / detailed_pvplant._system_model.Outputs.annual_dc_gross > 0.7 + assert detailed_pvplant.annual_energy_kwh * 1e-6 == pytest.approx(17.74, abs=10) diff --git a/tests/hopp/test_reopt.py b/tests/hopp/test_reopt.py index 52b2b8a87..4e2aec5b2 100644 --- a/tests/hopp/test_reopt.py +++ b/tests/hopp/test_reopt.py @@ -38,7 +38,7 @@ def test_ReOPT(): wind_model = WindPlant(site, config=wind_config) wind_model._system_model.Resource.wind_resource_filename = os.path.join( "data", "39.7555_-105.2211_windtoolkit_2012_60min_60m.srw") - fin_model = so.default("GenericSystemSingleOwner") + fin_model = so.default("CustomGenerationProfileSingleOwner") fileout = os.path.join(filepath, "REoptResultsNoExportAboveLoad.json") @@ -57,7 +57,7 @@ def test_ReOPT(): pv = reopt_site['PV'] assert(pv['dc_ac_ratio'] == pytest.approx(1.3, 0.01)) wind = reopt_site['Wind'] - assert(wind['pbi_us_dollars_per_kwh'] == pytest.approx(0.026)) + assert(wind['pbi_us_dollars_per_kwh'] == pytest.approx(0.03)) results = reopt.get_reopt_results(poll_interval=0) assert(isinstance(results, dict)) diff --git a/tests/hopp/test_resource_download.py b/tests/hopp/test_resource_download.py index b2a026578..553e5f8a4 100644 --- a/tests/hopp/test_resource_download.py +++ b/tests/hopp/test_resource_download.py @@ -5,12 +5,14 @@ from hopp import ROOT_DIR from hopp.simulation.technologies.resource.solar_resource import BASE_URL as SOLAR_URL from hopp.simulation.technologies.resource.wind_resource import WTK_BASE_URL, TAP_BASE_URL -from hopp.simulation.technologies.resource import SolarResource, WindResource, Resource +from hopp.simulation.technologies.resource import SolarResource, WindResource, Resource, HPCWindData, HPCSolarData from hopp.utilities.utils_for_tests import DEFAULT_WIND_RESOURCE_FILE import PySAM.Windpower as wp import PySAM.Pvwattsv8 as pv +import pytest + dir_path = os.path.dirname(os.path.realpath(__file__)) year = 2012 @@ -154,3 +156,47 @@ def test_from_file(): filepath=str(solar_file) ) assert(len(solar_resource.data['gh']) > 0) + +def test_wtk_resource_filenotfound_wtk_source_path(): + wtk_fake_dir = str(ROOT_DIR) + resource_year = 2012 + wtk_fake_fpath = os.path.join(str(ROOT_DIR),f"wtk_conus_{resource_year}.h5") + with pytest.raises(FileNotFoundError) as err: + HPCWindData(lat = 35.201, lon = -101.945, year = resource_year, wind_turbine_hub_ht = 110, wtk_source_path=wtk_fake_dir) + assert str(err.value) == f"Cannot find Wind Toolkit .h5 file, filepath {wtk_fake_fpath} does not exist" + +def test_wtk_resource_filenotfound_filepath(): + resource_year = 2012 + wtk_fake_fpath = os.path.join(str(ROOT_DIR),f"wtk_conus_{resource_year}.h5") + with pytest.raises(FileNotFoundError) as err: + HPCWindData(lat = 35.201, lon = -101.945, year = resource_year, wind_turbine_hub_ht = 110, filepath = wtk_fake_fpath) + assert str(err.value) == f"Cannot find Wind Toolkit .h5 file, filepath {wtk_fake_fpath} does not exist" + +def test_wtk_resource_invalid_year(): + wtk_fake_dir = str(ROOT_DIR) + resource_year = 2006 + with pytest.raises(ValueError) as err: + HPCWindData(lat = 35.201, lon = -101.945, year = resource_year, wind_turbine_hub_ht = 110, wtk_source_path=wtk_fake_dir) + assert str(err.value) == f"Resource year for WIND Toolkit Data must be between 2007 and 2014 but {resource_year} was provided" + +def test_nsrdb_resource_filenotfound_nsrdb_source_path(): + nsrdb_fake_dir = str(ROOT_DIR) + resource_year = 2012 + nsrdb_fake_fpath = os.path.join(str(ROOT_DIR),f"nsrdb_{resource_year}.h5") + with pytest.raises(FileNotFoundError) as err: + HPCSolarData(lat = 35.201, lon = -101.945, year = resource_year, nsrdb_source_path=nsrdb_fake_dir) + assert str(err.value) == f"Cannot find NSRDB .h5 file, filepath {nsrdb_fake_fpath} does not exist" + +def test_nsrdb_resource_filenotfound_filepath(): + resource_year = 2012 + nsrdb_fake_fpath = os.path.join(str(ROOT_DIR),f"nsrdb_{resource_year}.h5") + with pytest.raises(FileNotFoundError) as err: + HPCSolarData(lat = 35.201, lon = -101.945, year = resource_year, filepath = nsrdb_fake_fpath) + assert str(err.value) == f"Cannot find NSRDB .h5 file, filepath {nsrdb_fake_fpath} does not exist" + +def test_nsrdb_resource_invalid_year(): + nsrdb_fake_dir = str(ROOT_DIR) + resource_year = 2023 + with pytest.raises(ValueError) as err: + HPCSolarData(lat = 35.201, lon = -101.945, year = resource_year, nsrdb_source_path=nsrdb_fake_dir) + assert str(err.value) == f"Resource year for NSRDB Data must be between 1998 and 2022 but {resource_year} was provided" \ No newline at end of file diff --git a/tests/hopp/test_site_info.py b/tests/hopp/test_site_info.py index ce3698791..bcea0c45a 100644 --- a/tests/hopp/test_site_info.py +++ b/tests/hopp/test_site_info.py @@ -3,7 +3,7 @@ from pathlib import Path import pytest -from pytest import fixture +from pytest import fixture, approx from shapely.geometry import Polygon import numpy as np from numpy.testing import assert_array_equal @@ -11,6 +11,8 @@ from hopp.simulation.technologies.sites import SiteInfo, flatirons_site from hopp import ROOT_DIR +from PySAM.ResourceTools import SRW_to_wind_data, SAM_CSV_to_solar_data + solar_resource_file = os.path.join( ROOT_DIR, "simulation", "resource_files", "solar", "35.2018863_-101.945027_psmv3_60_2012.csv" @@ -156,4 +158,374 @@ def test_site_kml_file_append(): assert filepath_new.exists() k, valid_region, lat, lon = SiteInfo.kml_read(kml_filepath) assert valid_region.area > 0 - os.remove(filepath_new) \ No newline at end of file + os.remove(filepath_new) + +def test_site_wind_resource_input_filename(): + data = copy.deepcopy(flatirons_site) + wind_resource_data_dict = SRW_to_wind_data(wind_resource_file) + site = SiteInfo( + data, + hub_height = 90, + wind = True, + solar = False, + wind_resource = wind_resource_data_dict + ) + assert site.wind_resource.filename is None + +def test_site_wind_resource_input_data_length(): + data = copy.deepcopy(flatirons_site) + wind_resource_data_dict = SRW_to_wind_data(wind_resource_file) + site = SiteInfo( + data, + hub_height = 90, + wind = True, + solar = False, + wind_resource = wind_resource_data_dict + ) + assert len(site.wind_resource.data['data'])==8760 + +def test_site_wind_resource_input_data_format(): + data = copy.deepcopy(flatirons_site) + wind_resource_data_dict = SRW_to_wind_data(wind_resource_file) + site = SiteInfo( + data, + hub_height = 90, + wind = True, + solar = False, + wind_resource = wind_resource_data_dict + ) + assert int(site.wind_resource.data['heights'][0])==80 + +def test_site_solar_resource_input_filename(): + data = copy.deepcopy(flatirons_site) + solar_resource_data_dict = SAM_CSV_to_solar_data(solar_resource_file) + site = SiteInfo( + data, + wind = False, + solar = True, + solar_resource = solar_resource_data_dict + ) + assert site.solar_resource.filename is None + +def test_site_solar_resource_input_data_length(): + data = copy.deepcopy(flatirons_site) + solar_resource_data_dict = SAM_CSV_to_solar_data(solar_resource_file) + site = SiteInfo( + data, + wind = False, + solar = True, + solar_resource = solar_resource_data_dict + ) + assert len(site.solar_resource.data['dn'])==8760 + +def test_site_solar_resource_input_data_format(): + data = copy.deepcopy(flatirons_site) + solar_resource_data_dict = SAM_CSV_to_solar_data(solar_resource_file) + site = SiteInfo( + data, + wind = False, + solar = True, + solar_resource = solar_resource_data_dict + ) + assert site.solar_resource.data['tz']==-6 + +def test_site_polygon_valid_verts(): + site_data = { + "lat": 35.2018863, + "lon": -101.945027, + "elev": 1099, + "year": 2012, + "tz": -6, + "site_boundaries": + { + "verts": + [[0.0,0.0],[500.0,0.0],[500.0,500.0],[0.0,500.0]] + } + } + site = SiteInfo( + site_data, + solar_resource_file=solar_resource_file, + wind_resource_file=wind_resource_file, + grid_resource_file=grid_resource_file + ) + + assert site.polygon.area == approx(250000,rel = 1e-3) + assert site.vertices[0][0] == 0.0 + assert site.vertices[0][1] == 0.0 + assert site.vertices[1][0] == 500.0 + assert site.vertices[1][1] == 0.0 + + +def test_site_polygon_invalid_verts(): + site_data = { + "lat": 35.2018863, + "lon": -101.945027, + "elev": 1099, + "year": 2012, + "tz": -6, + "site_boundaries": + { + "verts": + [[0.0,0.0],[500.0,500.0],[500.0,0.0],[0.0,500.0]] + } + } + site = SiteInfo( + site_data, + solar_resource_file=solar_resource_file, + wind_resource_file=wind_resource_file, + grid_resource_file=grid_resource_file + ) + assert site.polygon.area != approx(250000,rel = 1e-3) + +def test_site_polygon_square_defaults(): + site_area_km2 = 2.5 + site_data = { + "lat": 35.2018863, + "lon": -101.945027, + "elev": 1099, + "year": 2012, + "tz": -6, + "site_details": + { + "site_area_km2": site_area_km2, + "site_shape":"square", + } + } + site = SiteInfo( + site_data, + solar_resource_file=solar_resource_file, + wind_resource_file=wind_resource_file, + grid_resource_file=grid_resource_file + ) + assert site.polygon.area == approx(site_area_km2*1e6,rel=1e-3) + + +def test_site_polygon_square_offset(): + site_area_km2 = 2.5 + x0 = 25.0 + site_data = { + "lat": 35.2018863, + "lon": -101.945027, + "elev": 1099, + "year": 2012, + "tz": -6, + "site_details": + { + "site_area_km2": site_area_km2, + "site_shape":"Square", + "x0": x0, + } + } + site = SiteInfo( + site_data, + solar_resource_file=solar_resource_file, + wind_resource_file=wind_resource_file, + grid_resource_file=grid_resource_file + ) + x_verts,y_verts = site.polygon.exterior.coords.xy + assert site.polygon.area == approx(site_area_km2*1e6,rel=1e-3) + assert min(x_verts) == approx(x0,rel=1e-3) + assert min(y_verts) == approx(0.0,abs=1e-8) + + +def test_site_polygon_rectangle_default(): + site_area_km2 = 2.5 + site_data = { + "lat": 35.2018863, + "lon": -101.945027, + "elev": 1099, + "year": 2012, + "tz": -6, + "site_details": + { + "site_area_km2": site_area_km2, + "site_shape":"rectangle", + } + } + site = SiteInfo( + site_data, + solar_resource_file=solar_resource_file, + wind_resource_file=wind_resource_file, + grid_resource_file=grid_resource_file + ) + x_verts,y_verts = site.polygon.exterior.coords.xy + dx = max(x_verts) - min(x_verts) + dy = max(y_verts) - min(y_verts) + width_to_height = dx/dy + + assert site.polygon.area == approx(site_area_km2*1e6,rel=1e-3) + assert width_to_height == approx(1.5,rel=1e-3) + + +def test_site_polygon_rectangle_aspect_ratio(): + site_area_km2 = 2.5 + aspect_ratio = 2.0 + site_data = { + "lat": 35.2018863, + "lon": -101.945027, + "elev": 1099, + "year": 2012, + "tz": -6, + "site_details": + { + "site_area_km2": site_area_km2, + "site_shape":"rectangle", + "aspect_ratio": aspect_ratio, + } + } + site = SiteInfo( + site_data, + solar_resource_file=solar_resource_file, + wind_resource_file=wind_resource_file, + grid_resource_file=grid_resource_file + ) + x_verts,y_verts = site.polygon.exterior.coords.xy + dx = max(x_verts) - min(x_verts) + dy = max(y_verts) - min(y_verts) + width_to_height = dx/dy + + assert site.polygon.area == approx(site_area_km2*1e6,rel=1e-3) + assert width_to_height == approx(aspect_ratio,rel=1e-3) + + +def test_site_polygon_circle_default(): + site_area_km2 = 2.5 + site_data = { + "lat": 35.2018863, + "lon": -101.945027, + "elev": 1099, + "year": 2012, + "tz": -6, + "site_details": + { + "site_area_km2": site_area_km2, + "site_shape":"circle", + } + } + site = SiteInfo( + site_data, + solar_resource_file=solar_resource_file, + wind_resource_file=wind_resource_file, + grid_resource_file=grid_resource_file + ) + + assert site.polygon.area == approx(site_area_km2*1e6,rel=1e-2) + assert len(site.vertices) == 36 + + +def test_site_polygon_circle_detail(): + site_area_km2 = 2.5 + site_data = { + "lat": 35.2018863, + "lon": -101.945027, + "elev": 1099, + "year": 2012, + "tz": -6, + "site_details": + { + "site_area_km2": site_area_km2, + "site_shape":"circle", + "degrees_between_points":1.0 + } + } + site = SiteInfo( + site_data, + solar_resource_file=solar_resource_file, + wind_resource_file=wind_resource_file, + grid_resource_file=grid_resource_file + ) + + assert site.polygon.area == approx(site_area_km2*1e6,rel=1e-3) + assert len(site.vertices) == 360 + + +def test_site_polygon_hexagon_default(): + site_area_km2 = 2.5 + site_data = { + "lat": 35.2018863, + "lon": -101.945027, + "elev": 1099, + "year": 2012, + "tz": -6, + "site_details": + { + "site_area_km2": site_area_km2, + "site_shape":"hexagon", + } + } + site = SiteInfo( + site_data, + solar_resource_file=solar_resource_file, + wind_resource_file=wind_resource_file, + grid_resource_file=grid_resource_file + ) + + assert site.polygon.area == approx(site_area_km2*1e6,rel=1e-3) + + +def test_site_polygon_hexagon_m2(): + site_area_km2 = 2.5 + site_area_m2 = site_area_km2*1e6 + site_data = { + "lat": 35.2018863, + "lon": -101.945027, + "elev": 1099, + "year": 2012, + "tz": -6, + "site_details": + { + "site_area_m2": site_area_m2, + "site_shape":"hexagon", + } + } + site = SiteInfo( + site_data, + solar_resource_file=solar_resource_file, + wind_resource_file=wind_resource_file, + grid_resource_file=grid_resource_file + ) + + assert site.polygon.area == approx(site_area_km2*1e6,rel=1e-3) + + +def test_site_invalid_shape(): + site_area_km2 = 2.5 + site_data = { + "lat": 35.2018863, + "lon": -101.945027, + "elev": 1099, + "year": 2012, + "tz": -6, + "site_details": + { + "site_area_km2": site_area_km2, + "site_shape":"triangle", + } + } + with pytest.raises(ValueError) as err: + site = SiteInfo( + site_data, + solar_resource_file=solar_resource_file, + wind_resource_file=wind_resource_file, + grid_resource_file=grid_resource_file + ) + assert str(err.value) == "invalid entry for `site_shape`, site_shape must be either 'circle', 'rectangle', 'square' or 'hexagon'" + + +def test_site_none_shape(): + site_area_km2 = 2.5 + site_data = { + "lat": 35.2018863, + "lon": -101.945027, + "elev": 1099, + "year": 2012, + "tz": -6, + "site_details": {} + } + site = SiteInfo( + site_data, + solar_resource_file=solar_resource_file, + wind_resource_file=wind_resource_file, + grid_resource_file=grid_resource_file + ) + assert site.polygon is None \ No newline at end of file diff --git a/tests/hopp/test_site_shape_tools.py b/tests/hopp/test_site_shape_tools.py new file mode 100644 index 000000000..e186ce83f --- /dev/null +++ b/tests/hopp/test_site_shape_tools.py @@ -0,0 +1,154 @@ +from pytest import approx +from shapely.geometry import Polygon +import hopp.simulation.technologies.sites.site_shape_tools as shape_tools +import numpy as np + +def test_circle_area(): + area_m2 = 1e3 + polygon, vertices = shape_tools.make_circle(area_m2, deg_diff = 1.0) + assert polygon.area == approx(area_m2,rel = 1e-3) + +def test_square_area(): + area_m2 = 1e3 + polygon, vertices = shape_tools.make_square(area_m2) + assert polygon.area == approx(area_m2,rel = 1e-3) + +def test_rectangle_area(): + area_m2 = 1e3 + polygon, vertices = shape_tools.make_rectangle(area_m2) + assert polygon.area == approx(area_m2,rel = 1e-3) + +def test_hexagon_area(): + area_m2 = 1e3 + polygon, vertices = shape_tools.make_hexagon(area_m2) + assert polygon.area == approx(area_m2,rel = 1e-3) + +def test_circle_vertices_default(): + area_m2 = 1e3 + polygon, vertices = shape_tools.make_circle(area_m2) + x_verts = [v[0] for v in vertices] + y_verts = [v[1] for v in vertices] + assert min(x_verts) == 0.0 + assert min(y_verts) == 0.0 + +def test_square_vertices_default(): + area_m2 = 1e3 + polygon, vertices = shape_tools.make_square(area_m2) + x_verts = [v[0] for v in vertices] + y_verts = [v[1] for v in vertices] + assert len(vertices)==4 + assert min(x_verts) == 0.0 + assert min(y_verts) == 0.0 + +def test_rectangle_vertices_default(): + area_m2 = 1e3 + polygon, vertices = shape_tools.make_rectangle(area_m2) + x_verts = [v[0] for v in vertices] + y_verts = [v[1] for v in vertices] + assert len(vertices)==4 + assert min(x_verts) == 0.0 + assert min(y_verts) == 0.0 + +def test_hexagon_vertices_default(): + area_m2 = 1e3 + polygon, vertices = shape_tools.make_hexagon(area_m2) + x_verts = [v[0] for v in vertices] + y_verts = [v[1] for v in vertices] + assert len(vertices)==6 + assert min(x_verts) == 0.0 + assert min(y_verts) == 0.0 + + +def test_circle_vertices_offset(): + area_m2 = 1e3 + x0 = 5.0 + y0 = -4.0 + polygon, vertices = shape_tools.make_circle(area_m2, x0 = x0, y0 = y0) + x_verts = [v[0] for v in vertices] + y_verts = [v[1] for v in vertices] + assert min(x_verts) == x0 + assert min(y_verts) == y0 + +def test_square_vertices_offset(): + area_m2 = 1e3 + x0 = 5.0 + y0 = -4.0 + polygon, vertices = shape_tools.make_square(area_m2, x0 = x0, y0 = y0) + x_verts = [v[0] for v in vertices] + y_verts = [v[1] for v in vertices] + assert len(vertices) == 4 + assert min(x_verts) == x0 + assert min(y_verts) == y0 + +def test_rectangle_vertices_offset(): + area_m2 = 1e3 + x0 = 5.0 + y0 = -4.0 + aspect_ratio = 1.5 + polygon, vertices = shape_tools.make_rectangle(area_m2, aspect_ratio = aspect_ratio, x0 = x0, y0 = y0) + x_verts = [v[0] for v in vertices] + y_verts = [v[1] for v in vertices] + assert len(vertices) == 4 + assert min(x_verts) == x0 + assert min(y_verts) == y0 + +def test_hexagon_vertices_offset(): + area_m2 = 1e3 + x0 = 5.0 + y0 = -4.0 + polygon, vertices = shape_tools.make_hexagon(area_m2, x0 = x0, y0 = y0) + x_verts = [v[0] for v in vertices] + y_verts = [v[1] for v in vertices] + assert len(vertices) == 6 + assert min(x_verts) == x0 + assert min(y_verts) == y0 + +def test_distance_between_points(): + x0 = 0.0 + y0 = 0.0 + dy = 5.0 + dx = 0.0 + x1 = x0 + dx + y2 = y0 + dy + distance = shape_tools.calc_dist_between_two_points_cartesian(x0,y0,x1,y2) + assert distance == approx(dy,1e-3) + +def test_angle_between_points(): + x0 = 0.0 + y0 = 0.0 + x1 = 1.0 + y1 = 1.0 + angle = shape_tools.calc_angle_between_two_points_cartesian(x0,y0,x1,y1) + assert angle == approx(45.0,1e-3) + +def test_sort_site_verts(): + invalid_x_points = [0.0,5.0,0.0,5.0] + invalid_y_points = [0.0,0.0,5.0,5.0] + invalid_verts = [[x,y] for x,y in zip(invalid_x_points,invalid_y_points)] + invalid_verts = np.array(invalid_verts) + valid_verts = shape_tools.check_site_verts(invalid_verts) + valid_shape = Polygon(valid_verts) + assert valid_shape.area == approx(25.0,1e-3) + +def test_rotate_site_center_area(): + area_m2 = 1e3 + rotation_angle = 45 + polygon_original, vertices_original = shape_tools.make_hexagon(area_m2) + rotated_polygon, rotated_vertices = shape_tools.rotate_shape( + site_polygon = polygon_original, + rotation_angle_deg = rotation_angle + ) + assert rotated_polygon.centroid.x == approx(polygon_original.centroid.x,abs = 1e-3) + assert rotated_polygon.centroid.y == approx(polygon_original.centroid.y,abs = 1e-3) + assert rotated_polygon.area == approx(polygon_original.area,abs = 1e-3) + +def test_rotate_site_vertices(): + area_m2 = 1e3 + rotation_angle = 45 + polygon_original, vertices_original = shape_tools.make_square(area_m2) + rotated_polygon, rotated_vertices = shape_tools.rotate_shape( + site_polygon = polygon_original, + rotation_angle_deg = rotation_angle + ) + assert rotated_polygon.exterior.xy[0][0] == approx(polygon_original.centroid.x,abs = 1e-3) + assert rotated_polygon.exterior.xy[1][1] == approx(polygon_original.centroid.y,abs = 1e-3) diff --git a/tests/hopp/test_tidal.py b/tests/hopp/test_tidal.py new file mode 100644 index 000000000..c6ee8b207 --- /dev/null +++ b/tests/hopp/test_tidal.py @@ -0,0 +1,111 @@ +import pytest +from pytest import fixture +from pathlib import Path + +from hopp.simulation.technologies.sites import SiteInfo +from hopp.simulation.technologies.financial.mhk_cost_model import MHKCostModelInputs +from hopp.simulation.technologies.financial.custom_financial_model import CustomFinancialModel +from hopp.utilities import load_yaml +from hopp import ROOT_DIR +from tests.hopp.utils import DEFAULT_FIN_CONFIG +from hopp.simulation.technologies.tidal.mhk_tidal_plant import MHKTidalPlant, MHKTidalConfig + +@fixture +def site(): + data = { + "lat": 44.6899, + "lon": 124.1346, + "year": 2010, + "tz": -7, + } + tidal_resource_file = Path.joinpath(ROOT_DIR / "simulation" / "resource_files" / "tidal" / "Tidal_resource_timeseries.csv") + site = SiteInfo(data, solar=False, wind=False, tidal=True, tidal_resource_file=tidal_resource_file) + + return site + +@fixture +def mhk_config(): + mhk_yaml_path = Path(__file__).absolute().parent.parent.parent / "tests" / "hopp" / "inputs" / "tidal" / "tidal_device.yaml" + mhk_config = load_yaml(mhk_yaml_path) + + return mhk_config + +@fixture +def tidalplant(mhk_config, site): + financial_model = {'fin_model': DEFAULT_FIN_CONFIG} + mhk_config.update(financial_model) + config = MHKTidalConfig.from_dict(mhk_config) + + cost_model_input = MHKCostModelInputs.from_dict({ + 'reference_model_num':1, + 'water_depth': 100, + 'distance_to_shore': 80, + 'number_rows': 2, + 'device_spacing':600, + 'row_spacing': 600, + 'cable_system_overbuild': 20 + }) + return MHKTidalPlant(site, config, cost_model_input) + +def test_mhk_config(mhk_config, subtests): + with subtests.test("with basic params"): + financial_model = {'fin_model': DEFAULT_FIN_CONFIG} + mhk_config.update(financial_model) + + config = MHKTidalConfig.from_dict(mhk_config) + + assert config.device_rating_kw == 1115. + assert config.num_devices == 20 + assert config.fin_model is not None + # defaults + assert config.loss_array_spacing == 0. + assert config.loss_resource_overprediction == 0. + assert config.loss_transmission == 0. + assert config.loss_downtime == 0. + assert config.loss_additional == 0. + +def test_system_outputs(tidalplant,subtests): + tidalplant.simulate(25) + + with subtests.test("annual energy kwh"): + assert tidalplant.annual_energy_kwh == pytest.approx(60625516, 1e-3) + + with subtests.test("capacity factor"): + assert tidalplant.capacity_factor == pytest.approx(31.03, 1e-3) + +def test_cost_outputs(tidalplant,subtests): + tidalplant.simulate(25) + with subtests.test("structural assembly cost"): + assert tidalplant.mhk_costs.cost_outputs['structural_assembly_cost_modeled'] == pytest.approx(10371672, 1e-3) + with subtests.test("power_takeoff_system_cost"): + assert tidalplant.mhk_costs.cost_outputs['power_takeoff_system_cost_modeled']== pytest.approx(41212670, 1e-3) + +def test_changing_n_devices(tidalplant, subtests): + with subtests.test("less devices than rows"): + with pytest.raises(Exception): + tidalplant.number_devices = 9 + + with subtests.test("not grid shape"): + with pytest.raises(Exception): + tidalplant.number_devices = 11 + + tidalplant.number_devices = 50 + with subtests.test("change system capacity"): + assert tidalplant.system_capacity_kw == pytest.approx(1115*50,0) + + with subtests.test("update cost model - number_devices"): + assert tidalplant.mhk_costs.number_devices == tidalplant.number_devices + + with subtests.test("update cost model - system_capacity"): + assert tidalplant.mhk_costs.system_capacity_kw == tidalplant.system_capacity_kw + +def test_changing_device_rating(tidalplant, subtests): + tidalplant.device_rated_power = 150 + with subtests.test("change system capacity"): + assert tidalplant.system_capacity_kw == tidalplant.device_rated_power * tidalplant.number_devices + + with subtests.test("update cost model - device rated power"): + assert tidalplant.mhk_costs.device_rated_power == tidalplant.device_rated_power + + with subtests.test("update cost model - system capacity"): + assert tidalplant.mhk_costs.system_capacity_kw == tidalplant.system_capacity_kw \ No newline at end of file diff --git a/tests/hopp/test_turbine_models_interface.py b/tests/hopp/test_turbine_models_interface.py new file mode 100644 index 000000000..e0933da01 --- /dev/null +++ b/tests/hopp/test_turbine_models_interface.py @@ -0,0 +1,176 @@ +from pytest import fixture, approx +import pytest +import numpy as np +import json +from hopp.simulation.technologies.wind.floris import Floris +from hopp.utilities import load_yaml +from hopp.simulation.technologies.wind.wind_plant import WindPlant, WindConfig +from hopp.tools.design.wind.turbine_library_tools import check_turbine_library_for_turbine +from hopp.simulation.technologies.sites.site_info import SiteInfo +from hopp import ROOT_DIR +from hopp.simulation import HoppInterface + +FLORIS_V4_TEMPLATE_PATH = ROOT_DIR.parent / "tests"/"hopp"/"inputs"/"floris_v4_empty_layout.yaml" +DEFAULT_WIND_RESOURCE_FILE = ROOT_DIR / "simulation" / "resource_files" / "wind" / "35.2018863_-101.945027_windtoolkit_2012_60min_80m_100m.srw" +DEFAULT_SOLAR_RESOURCE_FILE = ROOT_DIR / "simulation" / "resource_files" / "solar" / "35.2018863_-101.945027_psmv3_60_2012.csv" + +@fixture +def site_input(): + site_dict = { + "data": { + "lat": 35.2018863, + "lon": -101.945027, + "year": 2012, + "site_details": { + "site_shape": "square", + "site_area_km2": 2.0, + }, + }, + "solar_resource_file": DEFAULT_SOLAR_RESOURCE_FILE, + "wind_resource_file": DEFAULT_WIND_RESOURCE_FILE, + "solar": True, + "wind": True, + "hub_height": 80.0 + } + return site_dict + +def test_turbine_library_tools_for_valid_turbine_name(subtests): + valid_turbine_name = "BergeyExcel15_15.6kW_9.6" + is_valid = check_turbine_library_for_turbine(valid_turbine_name) + + with subtests.test("valid name (bool)"): + assert is_valid is True + + +def test_turbine_library_tools_for_invalid_turbine_name(subtests): + + invalid_turbine_name_close_match = "BergeyExcel15" + is_valid = check_turbine_library_for_turbine(invalid_turbine_name_close_match) + + with subtests.test("invalid name (bool)"): + assert is_valid is False + +def test_floris_nrel_5mw(site_input,subtests): + floris_template = load_yaml(str(FLORIS_V4_TEMPLATE_PATH)) + floris_library_turbine_name = "nrel_5MW" + n_turbs = 4 + turbine_rating_kw = 5000.0 + layout_x = [0.0,1841.0,3682.0,5523.0] + layout_y = [0.0]*n_turbs + floris_template["farm"].update({"layout_x":layout_x,"layout_y":layout_y}) + wind_config_dict = { + "num_turbines": n_turbs, + "turbine_rating_kw": turbine_rating_kw, + "turbine_name": floris_library_turbine_name, + "model_name": "floris", + "floris_config": floris_template, + "layout_mode": "floris_layout" + } + project_life = 25 + site_input.update({"hub_height":90.0}) + site = SiteInfo.from_dict(site_input) + wind_config = WindConfig.from_dict(wind_config_dict) + wind_plant = WindPlant.from_dict({"site":site,"config":wind_config}) + wind_plant._system_model.execute(project_life) + with subtests.test("capacity factor"): + assert wind_plant.capacity_factor > 0.0 + with subtests.test("capacity factor"): + assert wind_plant.capacity_factor < 100.0 + with subtests.test("aep"): + wind_plant._system_model.annual_energy == approx(74149945, 1e-3) + with subtests.test("wind capacity factor value"): + assert wind_plant.capacity_factor == approx(42.0, abs = 1.0) + +def test_floris_nrel_5mw_hopp(site_input,subtests): + floris_template = load_yaml(str(FLORIS_V4_TEMPLATE_PATH)) + floris_library_turbine_name = "nrel_5MW" + n_turbs = 4 + turbine_rating_kw = 5000.0 + layout_x = [0.0,1841.0,3682.0,5523.0] + layout_y = [0.0]*n_turbs + floris_template["farm"].update({"layout_x":layout_x,"layout_y":layout_y}) + wind_config_dict = { + "num_turbines": n_turbs, + "turbine_rating_kw": turbine_rating_kw, + "turbine_name": floris_library_turbine_name, + "model_name": "floris", + "floris_config": floris_template, + "layout_mode": "floris_layout" + } + site_input.update({"hub_height":90.0}) + system_capacity_kw = turbine_rating_kw*n_turbs + technologies = {"wind":wind_config_dict,"grid":{"interconnect_kw":system_capacity_kw}} + hybrid_config = {"site":site_input,"technologies":technologies} + hi = HoppInterface(hybrid_config) + hybrid_plant = hi.system + + hi.simulate(25) + + aeps = hybrid_plant.annual_energies + with subtests.test("wind aep"): + assert aeps.wind == approx(74149945, 1e-3) + with subtests.test("wind capacity factor"): + assert hybrid_plant.capacity_factors["wind"] == approx(42.0, abs = 1.0) + +def test_floris_NREL_5MW_RWT_corrected_hopp(site_input,subtests): + floris_template = load_yaml(str(FLORIS_V4_TEMPLATE_PATH)) + turbine_library_turbine_name = "NREL_Reference_5MW_126" + n_turbs = 4 + turbine_rating_kw = 5000.0 + layout_x = [0.0,1841.0,3682.0,5523.0] + layout_y = [0.0]*n_turbs + floris_template["farm"].update({"layout_x":layout_x,"layout_y":layout_y}) + wind_config_dict = { + "num_turbines": n_turbs, + "turbine_rating_kw": turbine_rating_kw, + "turbine_name": turbine_library_turbine_name, + "model_name": "floris", + "floris_config": floris_template, + "layout_mode": "floris_layout" + } + site_input.update({"hub_height":90.0}) + system_capacity_kw = turbine_rating_kw*n_turbs + technologies = {"wind":wind_config_dict,"grid":{"interconnect_kw":system_capacity_kw}} + hybrid_config = {"site":site_input,"technologies":technologies} + hi = HoppInterface(hybrid_config) + hybrid_plant = hi.system + + hi.simulate(25) + + aeps = hybrid_plant.annual_energies + with subtests.test("wind aep"): + assert aeps.wind == approx(74149945, 1e-3) + with subtests.test("wind capacity factor"): + assert hybrid_plant.capacity_factors["wind"] == approx(42.0, abs = 1.0) + + + +def test_pysam_NREL_5MW_RWT_corrected_hopp(site_input,subtests): + turbine_library_turbine_name = "NREL_Reference_5MW_126" + n_turbs = 4 + turbine_rating_kw = 5000.0 + layout_x = [0.0,1841.0,3682.0,5523.0] + layout_y = [0.0]*n_turbs + layout_params = {"layout_x":layout_x,"layout_y":layout_y} + wind_config_dict = { + "num_turbines": n_turbs, + "turbine_rating_kw": turbine_rating_kw, + "turbine_name": turbine_library_turbine_name, + "model_name": "pysam", + "layout_mode": "custom", + "layout_params": layout_params + } + site_input.update({"hub_height":90.0}) + system_capacity_kw = turbine_rating_kw*n_turbs + technologies = {"wind":wind_config_dict,"grid":{"interconnect_kw":system_capacity_kw}} + hybrid_config = {"site":site_input,"technologies":technologies} + hi = HoppInterface(hybrid_config) + hybrid_plant = hi.system + + hi.simulate(25) + + aeps = hybrid_plant.annual_energies + with subtests.test("wind aep"): + assert aeps.wind == approx(66040330, 1e-3) + with subtests.test("wind capacity factor"): + assert hybrid_plant.capacity_factors["wind"] == approx(37.7, abs = 1.0) \ No newline at end of file diff --git a/tests/hopp/test_wave.py b/tests/hopp/test_wave.py index feeedce0a..627ff6de4 100644 --- a/tests/hopp/test_wave.py +++ b/tests/hopp/test_wave.py @@ -13,169 +13,169 @@ @fixture def site(): - data = { - "lat": 44.6899, - "lon": 124.1346, - "year": 2010, - "tz": -7, - } - wave_resource_file = ROOT_DIR / "simulation" / "resource_files" / "wave" / "Wave_resource_timeseries.csv" - site = SiteInfo(data, solar=False, wind=False, wave=True, wave_resource_file=wave_resource_file) + data = { + "lat": 44.6899, + "lon": 124.1346, + "year": 2010, + "tz": -7, + } + wave_resource_file = ROOT_DIR / "simulation" / "resource_files" / "wave" / "Wave_resource_timeseries.csv" + site = SiteInfo(data, solar=False, wind=False, wave=True, wave_resource_file=wave_resource_file) - return site + return site @fixture def mhk_config(): - mhk_yaml_path = Path(__file__).absolute().parent.parent.parent / "tests" / "hopp" / "inputs" / "wave" / "wave_device.yaml" - mhk_config = load_yaml(mhk_yaml_path) + mhk_yaml_path = Path(__file__).absolute().parent.parent.parent / "tests" / "hopp" / "inputs" / "wave" / "wave_device.yaml" + mhk_config = load_yaml(mhk_yaml_path) - return mhk_config + return mhk_config @fixture def waveplant(mhk_config, site): - financial_model = {'fin_model': DEFAULT_FIN_CONFIG} - mhk_config.update(financial_model) - config = MHKConfig.from_dict(mhk_config) - - cost_model_input = MHKCostModelInputs.from_dict({ - 'reference_model_num':3, - 'water_depth': 100, - 'distance_to_shore': 80, - 'number_rows': 10, - 'device_spacing':600, - 'row_spacing': 600, - 'cable_system_overbuild': 20 - }) - return MHKWavePlant(site, config, cost_model_input) + financial_model = {'fin_model': DEFAULT_FIN_CONFIG} + mhk_config.update(financial_model) + config = MHKConfig.from_dict(mhk_config) + + cost_model_input = MHKCostModelInputs.from_dict({ + 'reference_model_num':3, + 'water_depth': 100, + 'distance_to_shore': 80, + 'number_rows': 10, + 'device_spacing':600, + 'row_spacing': 600, + 'cable_system_overbuild': 20 + }) + return MHKWavePlant(site, config, cost_model_input) def test_mhk_config(mhk_config, subtests): - with subtests.test("with basic params"): - financial_model = {'fin_model': DEFAULT_FIN_CONFIG} - mhk_config.update(financial_model) + with subtests.test("with basic params"): + financial_model = {'fin_model': DEFAULT_FIN_CONFIG} + mhk_config.update(financial_model) - config = MHKConfig.from_dict(mhk_config) + config = MHKConfig.from_dict(mhk_config) - assert config.device_rating_kw == 286. - assert config.num_devices == 100 - assert config.wave_power_matrix == mhk_config["wave_power_matrix"] - assert config.fin_model is not None - - # defaults - assert config.loss_array_spacing == 0. - assert config.loss_resource_overprediction == 0. - assert config.loss_transmission == 0. - assert config.loss_downtime == 0. - assert config.loss_additional == 0. + assert config.device_rating_kw == 286. + assert config.num_devices == 100 + assert config.wave_power_matrix == mhk_config["wave_power_matrix"] + assert config.fin_model is not None + + # defaults + assert config.loss_array_spacing == 0. + assert config.loss_resource_overprediction == 0. + assert config.loss_transmission == 0. + assert config.loss_downtime == 0. + assert config.loss_additional == 0. def test_system_outputs(waveplant,subtests): - # Test to see if there have been changes to PySAM MhkWave model and it is able to handle 1-hr - # Timeseries data. Right now have to divide hourly data outputs by 3 to get the same values - waveplant.simulate(25) + # Test to see if there have been changes to PySAM MhkWave model and it is able to handle 1-hr + # Timeseries data. Right now have to divide hourly data outputs by 3 to get the same values + waveplant.simulate(25) - with subtests.test("annual energy kwh"): - assert waveplant.annual_energy_kwh == pytest.approx(121325260.0,0) + with subtests.test("annual energy kwh"): + assert waveplant.annual_energy_kwh == pytest.approx(121325260.0,0) - with subtests.test("capacity factor"): - assert waveplant.capacity_factor == pytest.approx(48.42,1) + with subtests.test("capacity factor"): + assert waveplant.capacity_factor == pytest.approx(48.42,1) - with subtests.test("number of hours"): - assert waveplant.numberHours == pytest.approx(8760) + with subtests.test("number of hours"): + assert waveplant.numberHours == pytest.approx(8760) def test_cost_outputs(waveplant): - waveplant.simulate(25) + waveplant.simulate(25) - assert waveplant.mhk_costs.cost_outputs['array_cable_system_cost_modeled'] == pytest.approx(13371634.8, abs=1e-6) + assert waveplant.mhk_costs.cost_outputs['array_cable_system_cost_modeled'] == pytest.approx(13371634.8, abs=1e-6) def test_changing_n_devices(waveplant, subtests): - with subtests.test("less devices than rows"): - with pytest.raises(Exception): - waveplant.number_devices = 9 + with subtests.test("less devices than rows"): + with pytest.raises(Exception): + waveplant.number_devices = 9 - with subtests.test("not grid shape"): - with pytest.raises(Exception): - waveplant.number_devices = 11 + with subtests.test("not grid shape"): + with pytest.raises(Exception): + waveplant.number_devices = 11 - with subtests.test("change system capacity"): - waveplant.number_devices = 50 - assert waveplant.system_capacity_kw == pytest.approx(286*50,0) + with subtests.test("change system capacity"): + waveplant.number_devices = 50 + assert waveplant.system_capacity_kw == pytest.approx(286*50,0) - with subtests.test("update cost model - number_devices"): - waveplant.number_devices = 50 - assert waveplant.mhk_costs.number_devices == waveplant.number_devices + with subtests.test("update cost model - number_devices"): + waveplant.number_devices = 50 + assert waveplant.mhk_costs.number_devices == waveplant.number_devices - with subtests.test("update cost model - system_capacity"): - waveplant.number_devices = 50 - assert waveplant.mhk_costs.system_capacity_kw == waveplant.system_capacity_kw + with subtests.test("update cost model - system_capacity"): + waveplant.number_devices = 50 + assert waveplant.mhk_costs.system_capacity_kw == waveplant.system_capacity_kw def test_changing_device_rating(waveplant,subtests): - with subtests.test("change system capacity"): - waveplant.device_rated_power = 150 - assert waveplant.system_capacity_kw == waveplant.device_rated_power * waveplant.number_devices - - with subtests.test("update cost model - device rated power"): - waveplant.device_rated_power = 150 - assert waveplant.mhk_costs.device_rated_power == waveplant.device_rated_power - - with subtests.test("update cost model - system capacity"): - waveplant.device_rated_power = 150 - assert waveplant.mhk_costs.system_capacity_kw == waveplant.system_capacity_kw + with subtests.test("change system capacity"): + waveplant.device_rated_power = 150 + assert waveplant.system_capacity_kw == waveplant.device_rated_power * waveplant.number_devices + + with subtests.test("update cost model - device rated power"): + waveplant.device_rated_power = 150 + assert waveplant.mhk_costs.device_rated_power == waveplant.device_rated_power + + with subtests.test("update cost model - system capacity"): + waveplant.device_rated_power = 150 + assert waveplant.mhk_costs.system_capacity_kw == waveplant.system_capacity_kw def test_changing_wave_power_matrix(waveplant): - waveplant.number_devices = 100 - waveplant.device_rated_power = 360 - waveplant.wave_power_matrix = [ - [0, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 13.5, 14.5, 15.5, 16.5, 17.5, 18.5, 19.5, 20.5], - [0.25, 0, 0, 0, 0, 4.8, 6.7, 7.9, 9.3, 10.2, 10.1, 9.7, 9, 8.8, 7.6, 7.3, 6.4, 5.6, 5, 4.5, 4, 0], - [0.75, 0, 0, 0, 0, 12.3, 16.5, 18.8, 21.2, 22.9, 22.2, 20.9, 19.4, 18.7, 16.5, 16, 14.2, 12.8, 11.5, 10.4, 9.4, 0], - [1.25, 0, 0, 0, 0, 31.8, 40.7, 44.6, 48.5, 51.7, 48.8, 45.1, 41.8, 40.1, 36.2, 35.1, 31.9, 29.2, 26.5, 24.3, 22, 0], - [1.75, 0, 0, 0, 0, 58.3, 72.3, 77.1, 81.7, 86.5, 80.8, 74, 69.7, 66.7, 59.7, 57.6, 52.7, 48.7, 44.5, 41.1, 37.6, 0], - [2.25, 0, 0, 0, 0, 91.3, 110.4, 115.7, 119.3, 126.5, 117.3, 107.9, 102, 97.1, 86.4, 82.6, 75.6, 70.5, 64.7, 60.3, 55.3, 0], - [2.75, 0, 0, 0, 0, 130.5, 154.9, 160, 162.7, 171.7, 158.5, 145.4, 137.5, 130.4, 115.6, 109.7, 101.4, 94.6, 86.6, 80.8, 74, 0], - [3.25, 0, 0, 0, 0, 174.9, 204.4, 208.9, 210.4, 220.5, 202.7, 185.4, 175.4, 165.9, 148, 140.3, 129.7, 120.5, 110.1, 102.2, 93.4, 0], - [3.75, 0, 0, 0, 0, 223.9, 258.5, 261.9, 261.6, 272.4, 249.5, 227.7, 215.3, 204.5, 183.2, 173, 159.8, 147.9, 134.8, 124.8, 113.7, 0], - [4.25, 0, 0, 0, 0, 277.2, 316.8, 318.5, 316, 327, 298.4, 271.6, 257.2, 245.5, 220.2, 207.3, 191.5, 177.1, 161.8, 149.7, 136.8, 0], - [4.75, 0, 0, 0, 0, 334.5, 360, 360, 360, 360, 349.4, 317.2, 302.2, 288.2, 258.7, 243.1, 225.4, 208.6, 190.3, 176.1, 160.7, 0], - [5.25, 0, 0, 0, 0, 360, 360, 360, 360, 360, 360, 360, 348.9, 332.4, 298.6, 280.1, 261.3, 241.4, 220, 203.3, 185.2, 0], - [5.75, 0, 0, 0, 0, 360, 360, 360, 360, 360, 360, 360, 360, 360, 339.7, 319.1, 298.4, 275.5, 250.8, 231.5, 210.7, 0], - [6.25, 0, 0, 0, 0, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 340.8, 314.3, 285.8, 263.5, 239.7, 0], - [6.75, 0, 0, 0, 0, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 358.6, 325.8, 300.1, 272.6, 0], - [7.25, 0, 0, 0, 0, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 341.6, 310.1, 0], - [7.75, 0, 0, 0, 0, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 352.8, 0], - [8.25, 0, 0, 0, 0, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 0], - [8.75, 0, 0, 0, 0, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 0], - [9.25, 0, 0, 0, 0, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 0], - [9.75, 0, 0, 0, 0, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 0] - ] - waveplant.simulate(25) - assert waveplant.annual_energy_kwh == pytest.approx(160673260.0,0) + waveplant.number_devices = 100 + waveplant.device_rated_power = 360 + waveplant.wave_power_matrix = [ + [0, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 13.5, 14.5, 15.5, 16.5, 17.5, 18.5, 19.5, 20.5], + [0.25, 0, 0, 0, 0, 4.8, 6.7, 7.9, 9.3, 10.2, 10.1, 9.7, 9, 8.8, 7.6, 7.3, 6.4, 5.6, 5, 4.5, 4, 0], + [0.75, 0, 0, 0, 0, 12.3, 16.5, 18.8, 21.2, 22.9, 22.2, 20.9, 19.4, 18.7, 16.5, 16, 14.2, 12.8, 11.5, 10.4, 9.4, 0], + [1.25, 0, 0, 0, 0, 31.8, 40.7, 44.6, 48.5, 51.7, 48.8, 45.1, 41.8, 40.1, 36.2, 35.1, 31.9, 29.2, 26.5, 24.3, 22, 0], + [1.75, 0, 0, 0, 0, 58.3, 72.3, 77.1, 81.7, 86.5, 80.8, 74, 69.7, 66.7, 59.7, 57.6, 52.7, 48.7, 44.5, 41.1, 37.6, 0], + [2.25, 0, 0, 0, 0, 91.3, 110.4, 115.7, 119.3, 126.5, 117.3, 107.9, 102, 97.1, 86.4, 82.6, 75.6, 70.5, 64.7, 60.3, 55.3, 0], + [2.75, 0, 0, 0, 0, 130.5, 154.9, 160, 162.7, 171.7, 158.5, 145.4, 137.5, 130.4, 115.6, 109.7, 101.4, 94.6, 86.6, 80.8, 74, 0], + [3.25, 0, 0, 0, 0, 174.9, 204.4, 208.9, 210.4, 220.5, 202.7, 185.4, 175.4, 165.9, 148, 140.3, 129.7, 120.5, 110.1, 102.2, 93.4, 0], + [3.75, 0, 0, 0, 0, 223.9, 258.5, 261.9, 261.6, 272.4, 249.5, 227.7, 215.3, 204.5, 183.2, 173, 159.8, 147.9, 134.8, 124.8, 113.7, 0], + [4.25, 0, 0, 0, 0, 277.2, 316.8, 318.5, 316, 327, 298.4, 271.6, 257.2, 245.5, 220.2, 207.3, 191.5, 177.1, 161.8, 149.7, 136.8, 0], + [4.75, 0, 0, 0, 0, 334.5, 360, 360, 360, 360, 349.4, 317.2, 302.2, 288.2, 258.7, 243.1, 225.4, 208.6, 190.3, 176.1, 160.7, 0], + [5.25, 0, 0, 0, 0, 360, 360, 360, 360, 360, 360, 360, 348.9, 332.4, 298.6, 280.1, 261.3, 241.4, 220, 203.3, 185.2, 0], + [5.75, 0, 0, 0, 0, 360, 360, 360, 360, 360, 360, 360, 360, 360, 339.7, 319.1, 298.4, 275.5, 250.8, 231.5, 210.7, 0], + [6.25, 0, 0, 0, 0, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 340.8, 314.3, 285.8, 263.5, 239.7, 0], + [6.75, 0, 0, 0, 0, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 358.6, 325.8, 300.1, 272.6, 0], + [7.25, 0, 0, 0, 0, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 341.6, 310.1, 0], + [7.75, 0, 0, 0, 0, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 352.8, 0], + [8.25, 0, 0, 0, 0, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 0], + [8.75, 0, 0, 0, 0, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 0], + [9.25, 0, 0, 0, 0, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 0], + [9.75, 0, 0, 0, 0, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 360, 0] + ] + waveplant.simulate(25) + assert waveplant.annual_energy_kwh == pytest.approx(160673260.0,0) def test_changing_system_capacity(waveplant,subtests): - system_size_kw = 20000 + system_size_kw = 20000 - with subtests.test("system capacity"): - waveplant.system_capacity_by_num_devices(system_size_kw) - assert waveplant.system_capacity_kw == waveplant.device_rated_power * round(system_size_kw/waveplant.device_rated_power) - - with subtests.test("cost model - system capacity"): - waveplant.system_capacity_by_num_devices(system_size_kw) - assert waveplant.mhk_costs.system_capacity_kw == waveplant.device_rated_power * round(system_size_kw/waveplant.device_rated_power) + with subtests.test("system capacity"): + waveplant.system_capacity_by_num_devices(system_size_kw) + assert waveplant.system_capacity_kw == waveplant.device_rated_power * round(system_size_kw/waveplant.device_rated_power) + + with subtests.test("cost model - system capacity"): + waveplant.system_capacity_by_num_devices(system_size_kw) + assert waveplant.mhk_costs.system_capacity_kw == waveplant.device_rated_power * round(system_size_kw/waveplant.device_rated_power) def test_changing_ref_model(waveplant,subtests): - waveplant.device_rated_power = 360 - waveplant.number_devices = 100 - waveplant.mhk_costs.ref_model_num = 5 - waveplant.mhk_costs.simulate_costs() - - with subtests.test("model number"): - assert waveplant.mhk_costs._cost_model.value("lib_wave_device") == "RM5" - - with subtests.test("cost model"): - assert waveplant.mhk_costs.cost_outputs['array_cable_system_cost_modeled'] == pytest.approx(13570902.0, 0) - - with subtests.test("ref model number wrong"): - with pytest.raises(Exception): - waveplant.mhk_costs.ref_model_num = 11 \ No newline at end of file + waveplant.device_rated_power = 360 + waveplant.number_devices = 100 + waveplant.mhk_costs.ref_model_num = 5 + waveplant.mhk_costs.simulate_costs() + + with subtests.test("model number"): + assert waveplant.mhk_costs._cost_model.value("lib_wave_device") == "RM5" + + with subtests.test("cost model"): + assert waveplant.mhk_costs.cost_outputs['array_cable_system_cost_modeled'] == pytest.approx(13570902.0, 0) + + with subtests.test("ref model number wrong"): + with pytest.raises(Exception): + waveplant.mhk_costs.ref_model_num = 11 \ No newline at end of file diff --git a/tests/hopp/test_wind.py b/tests/hopp/test_wind.py index 00caa7784..d76ee0181 100644 --- a/tests/hopp/test_wind.py +++ b/tests/hopp/test_wind.py @@ -1,11 +1,11 @@ -from pytest import fixture, approx import math import PySAM.Windpower as windpower - +import pytest +from pytest import fixture,approx from hopp.simulation.technologies.wind.wind_plant import WindPlant, WindConfig +from hopp.utilities import load_yaml from tests.hopp.utils import create_default_site_info - from hopp import ROOT_DIR @fixture @@ -21,25 +21,30 @@ def site(): wind_default_cut_out_speed = 25 wind_default_drive_train = 0 -powercurveKW = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 56.9014, 72.8929, 90.7638, 110.618, 132.561, 156.696, - 183.129, 211.962, 243.302, 277.251, 313.915, 353.398, 395.805, 441.239, 489.805, 541.608, 596.752, - 655.341, 717.481, 783.274, 852.826, 926.241, 1003.62, 1088.85, 1174.66, 1260.47, 1346.28, 1432.09, - 1517.9, 1603.71, 1689.53, 1775.34, 1861.15, 1946.96, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, - 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, - 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, - 2000, 2000, 2000, 2000, 2000, 2000, 2000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0) - -powercurveWS = (0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 3.25, 3.5, 3.75, 4, 4.25, 4.5, 4.75, 5, - 5.25, 5.5, 5.75, 6, 6.25, 6.5, 6.75, 7, 7.25, 7.5, 7.75, 8, 8.25, 8.5, 8.75, 9, 9.25, 9.5, 9.75, 10, - 10.25, 10.5, 10.75, 11, 11.25, 11.5, 11.75, 12, 12.25, 12.5, 12.75, 13, 13.25, 13.5, 13.75, 14, 14.25, - 14.5, 14.75, 15, 15.25, 15.5, 15.75, 16, 16.25, 16.5, 16.75, 17, 17.25, 17.5, 17.75, 18, 18.25, 18.5, - 18.75, 19, 19.25, 19.5, 19.75, 20, 20.25, 20.5, 20.75, 21, 21.25, 21.5, 21.75, 22, 22.25, 22.5, 22.75, - 23, 23.25, 23.5, 23.75, 24, 24.25, 24.5, 24.75, 25, 25.25, 25.5, 25.75, 26, 26.25, 26.5, 26.75, 27, - 27.25, 27.5, 27.75, 28, 28.25, 28.5, 28.75, 29, 29.25, 29.5, 29.75, 30, 30.25, 30.5, 30.75, 31, 31.25, - 31.5, 31.75, 32, 32.25, 32.5, 32.75, 33, 33.25, 33.5, 33.75, 34, 34.25, 34.5, 34.75, 35, 35.25, 35.5, - 35.75, 36, 36.25, 36.5, 36.75, 37, 37.25, 37.5, 37.75, 38, 38.25, 38.5, 38.75, 39, 39.25, 39.5, 39.75, 40) +powercurveKW = ( + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 56.9014, 72.8929, 90.7638, 110.618, 132.561, + 156.696, 183.129, 211.962, 243.302, 277.251, 313.915, 353.398, 395.805, 441.239, 489.805, + 541.608, 596.752, 655.341, 717.481, 783.274, 852.826, 926.241, 1003.62, 1088.85, 1174.66, + 1260.47, 1346.28, 1432.09, 1517.9, 1603.71, 1689.53, 1775.34, 1861.15, 1946.96, 2000, 2000, + 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, + 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, + 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 +) + +powercurveWS = ( + 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 3.25, 3.5, 3.75, 4, 4.25, 4.5, + 4.75, 5, 5.25, 5.5, 5.75, 6, 6.25, 6.5, 6.75, 7, 7.25, 7.5, 7.75, 8, 8.25, 8.5, 8.75, 9, 9.25, + 9.5, 9.75, 10, 10.25, 10.5, 10.75, 11, 11.25, 11.5, 11.75, 12, 12.25, 12.5, 12.75, 13, 13.25, + 13.5, 13.75, 14, 14.25, 14.5, 14.75, 15, 15.25, 15.5, 15.75, 16, 16.25, 16.5, 16.75, 17, 17.25, + 17.5, 17.75, 18, 18.25, 18.5, 18.75, 19, 19.25, 19.5, 19.75, 20, 20.25, 20.5, 20.75, 21, 21.25, + 21.5, 21.75, 22, 22.25, 22.5, 22.75, 23, 23.25, 23.5, 23.75, 24, 24.25, 24.5, 24.75, 25, 25.25, + 25.5, 25.75, 26, 26.25, 26.5, 26.75, 27, 27.25, 27.5, 27.75, 28, 28.25, 28.5, 28.75, 29, 29.25, + 29.5, 29.75, 30, 30.25, 30.5, 30.75, 31, 31.25, 31.5, 31.75, 32, 32.25, 32.5, 32.75, 33, 33.25, + 33.5, 33.75, 34, 34.25, 34.5, 34.75, 35, 35.25, 35.5, 35.75, 36, 36.25, 36.5, 36.75, 37, 37.25, + 37.5, 37.75, 38, 38.25, 38.5, 38.75, 39, 39.25, 39.5, 39.75, 40 +) def test_wind_powercurve_pysam(): @@ -47,15 +52,17 @@ def test_wind_powercurve_pysam(): model.Turbine.wind_turbine_rotor_diameter = 75 # calculate system capacity. To evaluate other turbines, update the defaults dictionary - model.Turbine.calculate_powercurve(wind_default_rated_output, - int(model.Turbine.wind_turbine_rotor_diameter), - wind_default_elevation, - wind_default_max_cp, - wind_default_max_tip_speed, - wind_default_max_tip_speed_ratio, - wind_default_cut_in_speed, - wind_default_cut_out_speed, - wind_default_drive_train) + model.Turbine.calculate_powercurve( + wind_default_rated_output, + int(model.Turbine.wind_turbine_rotor_diameter), + wind_default_elevation, + wind_default_max_cp, + wind_default_max_tip_speed, + wind_default_max_tip_speed_ratio, + wind_default_cut_in_speed, + wind_default_cut_out_speed, + wind_default_drive_train + ) windspeeds_truth = [round(x, 2) for x in powercurveWS] windspeeds_calc = [round(x, 2) for x in model.Turbine.wind_turbine_powercurve_windspeeds] @@ -129,46 +136,74 @@ def test_changing_system_capacity_pysam(site): model.system_capacity_by_rating(n) assert model.system_capacity_kw == approx(n) + #################### FLORIS tests ################ +def test_floris_num_turbines(site): + floris_config_path = ( + ROOT_DIR.parent / "tests" / "hopp" / "inputs" / "floris_config.yaml" + ) + + site.wind_resource.hub_height_meters = 90.0 + config = WindConfig.from_dict({'num_turbines': 16, "turbine_rating_kw": 5000, "model_name": "floris", "timestep": [1, 8760], "floris_config": floris_config_path}) + model = WindPlant(site, config=config) + xcoords, ycoords = model._system_model.wind_farm_layout + assert len(xcoords) == config.num_turbines + assert len(ycoords) == model.num_turbines + assert model._system_model.nTurbs == model.num_turbines + def test_changing_rotor_diam_recalc_floris(site): floris_config_path = ( ROOT_DIR.parent / "tests" / "hopp" / "inputs" / "floris_config.yaml" ) - - config = WindConfig.from_dict({'num_turbines': 20, "turbine_rating_kw": 1000, "model_name": "floris", "timestep": [1, 8760], "floris_config": floris_config_path}) + site.wind_resource.hub_height_meters = 90.0 + config = WindConfig.from_dict({'num_turbines': 4, "turbine_rating_kw": 5000, "model_name": "floris", "timestep": [1, 8760], "floris_config": floris_config_path}) model = WindPlant(site, config=config) - assert model.system_capacity_kw == 20000 + assert model._system_model.system_capacity == 20000 diams = range(50, 70, 140) for d in diams: - model.rotor_diameter = d - assert model.rotor_diameter == d, "rotor diameter should be " + str(d) + model._system_model.wind_turbine_rotor_diameter = d + assert model._system_model.wind_turbine_rotor_diameter == d, "rotor diameter should be " + str(d) def test_changing_turbine_rating_floris(site): - floris_config_path = ( - ROOT_DIR.parent / "tests" / "hopp" / "inputs" / "floris_config.yaml" + floris_config_path = (ROOT_DIR.parent / "tests" / "hopp" / "inputs" / "floris_config.yaml") + config = WindConfig.from_dict( + { + 'num_turbines': 4, + "turbine_rating_kw": 1000, + "model_name": "floris", + "timestep": [1, 8760], + "floris_config": floris_config_path + } ) - config = WindConfig.from_dict({'num_turbines': 20, "turbine_rating_kw": 1000, "model_name": "floris", "timestep": [1, 8760], "floris_config": floris_config_path}) - model = WindPlant(site, config=config) - n_turbs = model.num_turbines - for n in range(1000, 3000, 150): - model.turb_rating = n - assert model.system_capacity_kw == model.turb_rating * n_turbs, "system size error when rating is " + str(n) + site.wind_resource.hub_height_meters = 90.0 + config = WindConfig.from_dict({'num_turbines': 4, "turbine_rating_kw": 1000, "model_name": "floris", "timestep": [1, 8760], "floris_config": floris_config_path}) + with pytest.raises(ValueError) as err: + model = WindPlant(site, config=config) + + err_str = "Input turbine rating (1000 kW) does not match rating from floris power-curve (5000.0 kW)" + assert err_str in str(err.value) + + def test_changing_system_capacity_floris(site): + # this will fail now floris_config_path = ( ROOT_DIR.parent / "tests" / "hopp" / "inputs" / "floris_config.yaml" ) - config = WindConfig.from_dict({'num_turbines': 20, "turbine_rating_kw": 1000, "model_name": "floris", "timestep": [1, 8760], "floris_config": floris_config_path}) + site.wind_resource.hub_height_meters = 90.0 + config = WindConfig.from_dict({'num_turbines': 4, "turbine_rating_kw": 5000, "model_name": "floris", "timestep": [1, 8760], "floris_config": floris_config_path}) model = WindPlant(site, config=config) - rating = model.turb_rating - for n in range(1000, 20000, 1000): - model.system_capacity_by_num_turbines(n) - assert model.turb_rating == rating, str(n) - assert model.system_capacity_kw == rating * round(n/rating) + + new_num_turbs = 16 + new_capacity_kW = new_num_turbs*config.turbine_rating_kw + rating = model._system_model.turb_rating + + assert model._system_model.nTurbs == 4 + assert model._system_model.turb_rating == rating + assert model._system_model.system_capacity == 20000 + + model.system_capacity_by_num_turbines(new_capacity_kW) + assert model._system_model.nTurbs == new_num_turbs + assert model._system_model.system_capacity == new_capacity_kW - # adjust turbine rating first, system capacity will be exact - model = WindPlant(site, config=config) - for n in range(40000, 60000, 1000): - model.system_capacity_by_rating(n) - assert model.system_capacity_kw == approx(n) \ No newline at end of file diff --git a/tests/hopp/test_wind_design_tools.py b/tests/hopp/test_wind_design_tools.py new file mode 100644 index 000000000..aeb578728 --- /dev/null +++ b/tests/hopp/test_wind_design_tools.py @@ -0,0 +1,141 @@ +from pytest import fixture +import pytest +from hopp.tools.design.wind.floris_helper_tools import ( + check_floris_library_for_turbine, + load_turbine_from_floris_library, + check_libraries_for_turbine_name_floris +) +from hopp.simulation.technologies.wind.wind_plant import WindConfig +from hopp.simulation.technologies.wind.floris import Floris +from hopp.utilities import load_yaml +from hopp.simulation.technologies.sites.site_info import SiteInfo +from hopp import ROOT_DIR +DEFAULT_WIND_RESOURCE_FILE = ROOT_DIR / "simulation" / "resource_files" / "wind" / "35.2018863_-101.945027_windtoolkit_2012_60min_80m_100m.srw" +DEFAULT_SOLAR_RESOURCE_FILE = ROOT_DIR / "simulation" / "resource_files" / "solar" / "35.2018863_-101.945027_psmv3_60_2012.csv" +FLORIS_V4_TEMPLATE_PATH = ROOT_DIR.parent / "tests"/"hopp"/"inputs"/"floris_v4_empty_layout.yaml" + +@fixture +def site_input(): + site_dict = { + "data": { + "lat": 35.2018863, + "lon": -101.945027, + "year": 2012, + "site_details": { + "site_shape": "square", + "site_area_km2": 2.0, + }, + }, + "solar_resource_file": DEFAULT_SOLAR_RESOURCE_FILE, + "wind_resource_file": DEFAULT_WIND_RESOURCE_FILE, + "solar": True, + "wind": True, + "hub_height": 80.0 + } + return site_dict + + +def test_floris_library_tools_for_valid_floris_turbine(subtests): + floris_library_turbine_name = "nrel_5MW" + is_floris_turbine = check_floris_library_for_turbine(floris_library_turbine_name) + floris_turbine_specs = load_turbine_from_floris_library(floris_library_turbine_name) + with subtests.test("valid floris turbine (bool)"): + assert is_floris_turbine is True + with subtests.test("valid floris turbine loader return type"): + assert isinstance(floris_turbine_specs,dict) + with subtests.test("valid floris turbine loader turbine specs"): + assert floris_turbine_specs["turbine_type"] == floris_library_turbine_name + +def test_floris_library_tools_for_invalid_floris_turbine(subtests): + floris_library_invalid_turbine_name = "nrel_10MW" + is_floris_turbine = check_floris_library_for_turbine(floris_library_invalid_turbine_name) + + with subtests.test("invalid floris turbine (bool)"): + assert is_floris_turbine is False + + with pytest.raises(FileNotFoundError) as err: + floris_turbine_specs = load_turbine_from_floris_library(floris_library_invalid_turbine_name) + assert str(err.value) == f"Floris library file for turbine {floris_library_invalid_turbine_name} does not exist." + +def test_floris_turbine_loader_valid_floris_turbine(site_input,subtests): + floris_template = load_yaml(str(FLORIS_V4_TEMPLATE_PATH)) + floris_library_turbine_name = "nrel_5MW" + wind_config_dict = { + "num_turbines": 4, + "layout_mode": "basicgrid", + "turbine_rating_kw": 5000.0, + "layout_params": {}, + "turbine_name": floris_library_turbine_name, + "model_name": "floris", + "floris_config": floris_template + } + site_input.update({"hub_height":90.0}) + site = SiteInfo.from_dict(site_input) + wind_config = WindConfig.from_dict(wind_config_dict) + floris_model = Floris.from_dict({"site":site,"config":wind_config}) + + floris_turb_res = check_libraries_for_turbine_name_floris(floris_library_turbine_name,floris_model) + with subtests.test("return type"): + assert isinstance(floris_turb_res,dict) + with subtests.test("turbine type name"): + assert floris_turb_res["turbine_type"] == floris_library_turbine_name + with subtests.test("hub-height"): + assert floris_turb_res["hub_height"] == 90.0 + with subtests.test("rated power"): + assert max(floris_turb_res["power_thrust_table"]["power"]) == wind_config_dict["turbine_rating_kw"] + +def test_floris_turbine_loader_multi_hub_height_turbine(site_input,subtests): + floris_template = load_yaml(str(FLORIS_V4_TEMPLATE_PATH)) + turbine_library_turbine_name = "VestasV82_1.65MW_82" #has 80m hub-height option + wind_config_dict = { + "num_turbines": 4, + "layout_mode": "basicgrid", + "turbine_rating_kw": 1650.0, + "layout_params": {}, + "turbine_name": turbine_library_turbine_name, + "model_name": "floris", + "floris_config": floris_template + } + site_input.update({"hub_height":80.0}) + site = SiteInfo.from_dict(site_input) + wind_config = WindConfig.from_dict(wind_config_dict) + floris_model = Floris.from_dict({"site":site,"config":wind_config}) + + floris_turb_res = check_libraries_for_turbine_name_floris(turbine_library_turbine_name,floris_model) + + with subtests.test("return type"): + assert isinstance(floris_turb_res,dict) + with subtests.test("turbine type name"): + assert floris_turb_res["turbine_type"] == turbine_library_turbine_name + with subtests.test("hub-height"): + assert floris_turb_res["hub_height"] == 80.0 + with subtests.test("rated power"): + assert max(floris_turb_res["power_thrust_table"]["power"]) == wind_config_dict["turbine_rating_kw"] + + +def test_floris_turbine_loader_single_hub_height_turbine(site_input,subtests): + floris_template = load_yaml(str(FLORIS_V4_TEMPLATE_PATH)) + turbine_library_turbine_name = "DOE_GE_1.5MW_77" #only has 80m as valid hub-height + wind_config_dict = { + "num_turbines": 4, + "layout_mode": "basicgrid", + "turbine_rating_kw": 1500.0, + "layout_params": {}, + "turbine_name": turbine_library_turbine_name, + "model_name": "floris", + "floris_config": floris_template + } + site_input.update({"hub_height":80.0}) + site = SiteInfo.from_dict(site_input) + wind_config = WindConfig.from_dict(wind_config_dict) + floris_model = Floris.from_dict({"site":site,"config":wind_config}) + floris_turb_res = check_libraries_for_turbine_name_floris(turbine_library_turbine_name,floris_model) + + with subtests.test("return type"): + assert isinstance(floris_turb_res,dict) + with subtests.test("turbine type name"): + assert floris_turb_res["turbine_type"] == turbine_library_turbine_name + with subtests.test("hub-height"): + assert floris_turb_res["hub_height"] == 80.0 + with subtests.test("rated power"): + assert max(floris_turb_res["power_thrust_table"]["power"]) == wind_config_dict["turbine_rating_kw"] \ No newline at end of file diff --git a/tests/hopp/test_wind_resource_tools.py b/tests/hopp/test_wind_resource_tools.py new file mode 100644 index 000000000..40cd2ec0a --- /dev/null +++ b/tests/hopp/test_wind_resource_tools.py @@ -0,0 +1,135 @@ +import os +from PySAM.ResourceTools import SRW_to_wind_data +from hopp.tools.resource.wind_tools import ( + calculate_air_density, + calculate_air_density_losses, + parse_resource_data, + weighted_parse_resource_data +) +from hopp.simulation.technologies.resource import WindResource +from hopp import ROOT_DIR +from pytest import fixture, approx +from numpy.testing import assert_array_almost_equal +import numpy as np + +wind_resource_file_multi_heights = os.path.join( + ROOT_DIR, "simulation", "resource_files", "wind", + "35.2018863_-101.945027_windtoolkit_2012_60min_80m_100m.srw" +) + +wind_resource_file_single_height = os.path.join( + ROOT_DIR, "simulation", "resource_files", "wind", + "35.2018863_-101.945027_windtoolkit_2012_60min_100m.srw" +) + +@fixture +def wind_resource_data_90m(): + wind_resource_data_dict = SRW_to_wind_data(wind_resource_file_multi_heights) + return WindResource( + lat = 35.2018863, + lon = -101.945027, + year = 2012, + wind_turbine_hub_ht = 90, + resource_data = wind_resource_data_dict + ) + +@fixture +def wind_resource_data_85m(): + wind_resource_data_dict = SRW_to_wind_data(wind_resource_file_multi_heights) + return WindResource( + lat = 35.2018863, + lon = -101.945027, + year = 2012, + wind_turbine_hub_ht = 85, + resource_data = wind_resource_data_dict + ) + +@fixture +def wind_resource_data_100m(): + wind_resource_data_dict = SRW_to_wind_data(wind_resource_file_single_height) + return WindResource( + lat = 35.2018863, + lon = -101.945027, + year = 2012, + wind_turbine_hub_ht = 100, + resource_data = wind_resource_data_dict + ) + +def test_sea_level_air_density(): + elevation = 0.0 #meters + air_dens = calculate_air_density(elevation) + assert air_dens == approx(1.225, rel = 1e-3) + +def test_mile_high_air_density(): + #test elevation at 1 mile above sea level + elevation = 1609.34 #meters + air_dens = calculate_air_density(elevation) + assert air_dens == approx(1.05, rel = 1e-3) + +def test_sea_level_air_density_losses(): + elevation = 0.0 #meters + loss_percent = calculate_air_density_losses(elevation) + assert loss_percent == 0.0 + +def test_mile_high_air_density_losses(): + elevation = 1609.34 #meters + loss_percent = calculate_air_density_losses(elevation) + assert loss_percent == approx(14.325, rel = 1e-3) + +def test_weighted_parsing_100m(wind_resource_data_100m): + wind_speeds, wind_dirs = weighted_parse_resource_data(wind_resource_data_100m) + + assert wind_speeds[0] == approx(wind_resource_data_100m.data['data'][0][2], abs=1e-3) + assert wind_dirs[0] == approx(wind_resource_data_100m.data['data'][0][3], abs=1e-3) + +def test_weighted_parsing_90m(wind_resource_data_90m): + wind_speeds, wind_dirs = weighted_parse_resource_data(wind_resource_data_90m) + t0_wind_speeds = [wind_resource_data_90m.data['data'][0][2],wind_resource_data_90m.data['data'][0][6]] + t0_wind_dirs = [wind_resource_data_90m.data['data'][0][3],wind_resource_data_90m.data['data'][0][7]] + + assert wind_speeds[0] > min(t0_wind_speeds) + assert wind_speeds[0] < max(t0_wind_speeds) + assert wind_dirs[0] > min(t0_wind_dirs) + assert wind_dirs[0] < max(t0_wind_dirs) + +def test_weighted_parsing_85m(wind_resource_data_85m): + wind_speeds, wind_dirs = weighted_parse_resource_data(wind_resource_data_85m) + ws_frac_80m = wind_speeds[0]/wind_resource_data_85m.data['data'][0][2] + ws_frac_100m = wind_speeds[0]/wind_resource_data_85m.data['data'][0][6] + wd_frac_80m = wind_dirs[0]/wind_resource_data_85m.data['data'][0][3] + wd_frac_100m = wind_dirs[0]/wind_resource_data_85m.data['data'][0][7] + assert ws_frac_80m > 1 + assert ws_frac_100m < 1 + assert wd_frac_80m > 1 + assert wd_frac_100m < 1 + +def test_average_parsing_100m(wind_resource_data_100m): + wind_speeds, wind_dirs = parse_resource_data(wind_resource_data_100m) + + assert wind_speeds[0] == approx(wind_resource_data_100m.data['data'][0][2], abs=1e-3) + assert wind_dirs[0] == approx(wind_resource_data_100m.data['data'][0][3], abs=1e-3) + +def test_average_parsing_90m(wind_resource_data_90m): + wind_speeds, wind_dirs = parse_resource_data(wind_resource_data_90m) + t0_wind_speeds = [wind_resource_data_90m.data['data'][0][2],wind_resource_data_90m.data['data'][0][6]] + t0_wind_dirs = [wind_resource_data_90m.data['data'][0][3],wind_resource_data_90m.data['data'][0][7]] + + assert wind_speeds[0] > min(t0_wind_speeds) + assert wind_speeds[0] < max(t0_wind_speeds) + assert wind_dirs[0] > min(t0_wind_dirs) + assert wind_dirs[0] < max(t0_wind_dirs) + +def test_average_parsing_85m(wind_resource_data_85m): + wind_speeds, wind_dirs = parse_resource_data(wind_resource_data_85m) + t0_wind_speeds = [wind_resource_data_85m.data['data'][0][2],wind_resource_data_85m.data['data'][0][6]] + t0_wind_dirs = [wind_resource_data_85m.data['data'][0][3],wind_resource_data_85m.data['data'][0][7]] + + assert wind_speeds[0] == approx(np.mean(t0_wind_speeds), rel = 1e-3) + assert wind_dirs[0] == approx(np.mean(t0_wind_dirs), rel = 1e-3) + +def test_weighted_vs_average_parsing_90m(wind_resource_data_90m): + avg_wind_speeds, avg_wind_dirs = parse_resource_data(wind_resource_data_90m) + wavg_wind_speeds, wavg_wind_dirs = weighted_parse_resource_data(wind_resource_data_90m) + assert_array_almost_equal(avg_wind_speeds,wavg_wind_speeds,decimal=3) + assert_array_almost_equal(avg_wind_dirs,wavg_wind_dirs,decimal=3) + \ No newline at end of file