title | section | abstract | layout | series | publisher | issn | id | month | tex_title | firstpage | lastpage | page | order | cycles | bibtex_author | author | date | address | container-title | volume | genre | issued | extras | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Algorithms for mean-field variational inference via polyhedral optimization in the Wasserstein space |
Original Papers |
We develop a theory of finite-dimensional polyhedral subsets over the Wasserstein space and optimization of functionals over them via first-order methods. Our main application is to the problem of mean-field variational inference, which seeks to approximate a distribution |
inproceedings |
Proceedings of Machine Learning Research |
PMLR |
2640-3498 |
jiang24a |
0 |
Algorithms for mean-field variational inference via polyhedral optimization in the {W}asserstein space |
2720 |
2721 |
2720-2721 |
2720 |
false |
Jiang, Yiheng and Chewi, Sinho and Pooladian, Aram-Alexandre |
|
2024-06-30 |
Proceedings of Thirty Seventh Conference on Learning Theory |
247 |
inproceedings |
|