Skip to content

Latest commit

 

History

History
48 lines (48 loc) · 1.51 KB

2024-06-30-fokkema24a.md

File metadata and controls

48 lines (48 loc) · 1.51 KB
title section abstract layout series publisher issn id month tex_title firstpage lastpage page order cycles bibtex_author author date address container-title volume genre issued pdf extras
Online Newton Method for Bandit Convex Optimisation Extended Abstract
Original Papers
We introduce a computationally efficient algorithm for zeroth-order bandit convex optimisation and prove that in the adversarial setting its regret is at most $d^{3.5} \sqrt{n} \mathrm{polylog}(n, d)$ with high probability where $d$ is the dimension and $n$ is the time horizon. In the stochastic setting the bound improves to $M d^{2} \sqrt{n} \mathrm{polylog}(n, d)$ where $M \in [d^{-1/2}, d^{-1/4}]$ is a constant that depends on the geometry of the constraint set and the desired computational properties.
inproceedings
Proceedings of Machine Learning Research
PMLR
2640-3498
fokkema24a
0
Online Newton Method for Bandit Convex Optimisation Extended Abstract
1713
1714
1713-1714
1713
false
Fokkema, Hidde and Van der Hoeven, Dirk and Lattimore, Tor and J. Mayo, Jack
given family
Hidde
Fokkema
given family prefix
Dirk
Hoeven
Van der
given family
Tor
Lattimore
given family
Jack
J. Mayo
2024-06-30
Proceedings of Thirty Seventh Conference on Learning Theory
247
inproceedings
date-parts
2024
6
30