title | section | abstract | layout | series | publisher | issn | id | month | tex_title | firstpage | lastpage | page | order | cycles | bibtex_author | author | date | address | container-title | volume | genre | issued | extras | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Online Newton Method for Bandit Convex Optimisation Extended Abstract |
Original Papers |
We introduce a computationally efficient algorithm for zeroth-order bandit convex optimisation and prove that in the adversarial setting its regret is at most |
inproceedings |
Proceedings of Machine Learning Research |
PMLR |
2640-3498 |
fokkema24a |
0 |
Online Newton Method for Bandit Convex Optimisation Extended Abstract |
1713 |
1714 |
1713-1714 |
1713 |
false |
Fokkema, Hidde and Van der Hoeven, Dirk and Lattimore, Tor and J. Mayo, Jack |
|
2024-06-30 |
Proceedings of Thirty Seventh Conference on Learning Theory |
247 |
inproceedings |
|