title | section | abstract | layout | series | publisher | issn | id | month | tex_title | firstpage | lastpage | page | order | cycles | bibtex_author | author | date | address | container-title | volume | genre | issued | extras | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
On the Growth of Mistakes in Differentially Private Online Learning: A Lower Bound Perspective |
Original Papers |
In this paper, we provide lower bounds for Differentially Private (DP) Online Learning algorithms. Our result shows that, for a broad class of $(\epsilon,\delta)$-DP online algorithms, for number of rounds |
inproceedings |
Proceedings of Machine Learning Research |
PMLR |
2640-3498 |
dmitriev24a |
0 |
On the Growth of Mistakes in Differentially Private Online Learning: A Lower Bound Perspective |
1379 |
1398 |
1379-1398 |
1379 |
false |
Dmitriev, Daniil and Szab{\'o}, Krist{\'o}f and Sanyal, Amartya |
|
2024-06-30 |
Proceedings of Thirty Seventh Conference on Learning Theory |
247 |
inproceedings |
|