title | section | abstract | layout | series | publisher | issn | id | month | tex_title | firstpage | lastpage | page | order | cycles | bibtex_author | author | date | address | container-title | volume | genre | issued | extras | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Computational-Statistical Gaps in Gaussian Single-Index Models (Extended Abstract) |
Original Papers |
Single-Index Models are high-dimensional regression problems with planted structure, whereby labels depend on an unknown one-dimensional projection of the input via a generic, non-linear, and potentially non-deterministic transformation. As such, they encompass a broad class of statistical inference tasks, and provide a rich template to study statistical and computational trade-offs in the high-dimensional regime. While the information-theoretic sample complexity to recover the hidden direction is linear in the dimension |
inproceedings |
Proceedings of Machine Learning Research |
PMLR |
2640-3498 |
damian24a |
0 |
Computational-Statistical Gaps in Gaussian Single-Index Models (Extended Abstract) |
1262 |
1262 |
1262-1262 |
1262 |
false |
Damian, Alex and Pillaud-Vivien, Loucas and Lee, Jason and Bruna, Joan |
|
2024-06-30 |
Proceedings of Thirty Seventh Conference on Learning Theory |
247 |
inproceedings |
|