title | section | abstract | layout | series | publisher | issn | id | month | tex_title | firstpage | lastpage | page | order | cycles | bibtex_author | author | date | address | container-title | volume | genre | issued | extras | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Risk-Sensitive Online Algorithms (Extended Abstract) |
Original Papers |
We study the design of risk-sensitive online algorithms, in which risk measures are used in the competitive analysis of randomized online algorithms. We introduce the CVaR$_\delta$-competitive ratio ( |
inproceedings |
Proceedings of Machine Learning Research |
PMLR |
2640-3498 |
christianson24a |
0 |
Risk-Sensitive Online Algorithms (Extended Abstract) |
1140 |
1141 |
1140-1141 |
1140 |
false |
Christianson, Nicolas and Sun, Bo and Low, Steven and Wierman, Adam |
|
2024-06-30 |
Proceedings of Thirty Seventh Conference on Learning Theory |
247 |
inproceedings |
|