title | section | abstract | layout | series | publisher | issn | id | month | tex_title | firstpage | lastpage | page | order | cycles | bibtex_author | author | date | address | container-title | volume | genre | issued | extras | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Near-Optimal Learning and Planning in Separated Latent MDPs |
Original Papers |
We study computational and statistical aspects of learning Latent Markov Decision Processes (LMDPs). In this model, the learner interacts with an MDP drawn at the beginning of each epoch from an unknown mixture of MDPs. To sidestep known impossibility results, we consider several notions of |
inproceedings |
Proceedings of Machine Learning Research |
PMLR |
2640-3498 |
chen24c |
0 |
Near-Optimal Learning and Planning in Separated Latent MDPs |
995 |
1067 |
995-1067 |
995 |
false |
Chen, Fan and Daskalakis, Constantinos and Golowich, Noah and Rakhlin, Alexander |
|
2024-06-30 |
Proceedings of Thirty Seventh Conference on Learning Theory |
247 |
inproceedings |
|