title | section | abstract | layout | series | publisher | issn | id | month | tex_title | firstpage | lastpage | page | order | cycles | bibtex_author | author | date | address | container-title | volume | genre | issued | extras | ||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Insufficient Statistics Perturbation: Stable Estimators for Private Least Squares Extended Abstract |
Original Papers |
We present a sample- and time-efficient differentially private algorithm for ordinary least squares, with error that depends linearly on the dimension and is independent of the condition number of |
inproceedings |
Proceedings of Machine Learning Research |
PMLR |
2640-3498 |
brown24b |
0 |
Insufficient Statistics Perturbation: Stable Estimators for Private Least Squares Extended Abstract |
750 |
751 |
750-751 |
750 |
false |
Brown, Gavin and Hayase, Jonathan and Hopkins, Samuel and Kong, Weihao and Liu, Xiyang and Oh, Sewoong and Perdomo, Juan C and Smith, Adam |
|
2024-06-30 |
Proceedings of Thirty Seventh Conference on Learning Theory |
247 |
inproceedings |
|