title | section | abstract | layout | series | publisher | issn | id | month | tex_title | firstpage | lastpage | page | order | cycles | bibtex_author | author | date | address | container-title | volume | genre | issued | extras | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A Unified Characterization of Private Learnability via Graph Theory |
Original Papers |
We provide a unified framework for characterizing pure and approximate differentially private (DP) learnability. The framework uses the language of graph theory: for a concept class |
inproceedings |
Proceedings of Machine Learning Research |
PMLR |
2640-3498 |
alon24a |
0 |
A Unified Characterization of Private Learnability via Graph Theory |
94 |
129 |
94-129 |
94 |
false |
Alon, Noga and Moran, Shay and Schefler, Hilla and Yehudayoff, Amir |
|
2024-06-30 |
Proceedings of Thirty Seventh Conference on Learning Theory |
247 |
inproceedings |
|