-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
336 lines (292 loc) · 11.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import numpy as np
from config import *
import utils2
from utils import *
from models import *
from evaluate import evaluate
from tqdm import *
import torch
import torch.nn.functional as F
import keras.backend as KTF
from seu_tkg import sinkhorn, cal_sims
from utils2 import test
from wl_test import getLast
import pandas as pd
import dto
import time
gpu_options = tf.compat.v1.GPUOptions(allow_growth=True)
config = tf.compat.v1.ConfigProto(gpu_options=gpu_options)
# config.gpu_options.per_process_gpu_memory_fraction = 0.3
sess = tf.compat.v1.Session(config=config)
tf.compat.v1.keras.backend.set_session(sess)
import seu_tkg as seu
train_pair, dev_pair, adj_matrix, r_index, r_val, t_index, adj_features, rel_features, time_features = load_data(
filename, train_ratio=train_ratio, unsup=unsup)
adj_matrix = np.stack(adj_matrix.nonzero(), axis=1)
rel_matrix, rel_val = np.stack(rel_features.nonzero(), axis=1), rel_features.data
ent_matrix, ent_val = np.stack(adj_features.nonzero(), axis=1), adj_features.data
time_matrix, time_val = np.stack(time_features.nonzero(), axis=1), time_features.data
if global_args.sep_eval:
if global_args.unsup:
addition = '2'
elif global_args.train_ratio == 20:
addition = '1'
else:
addition = ''
dev_pair = load_alignment_pair(filename + 'time_sensitive_link' + addition)
dev_pair = np.array(dev_pair)
dev_pair2 = load_alignment_pair(filename + 'not_sensitive_link' + addition)
dev_pair2 = np.array(dev_pair2)
node_size = adj_features.shape[0]
rel_size = rel_features.shape[1]
time_size = time_features.shape[1]
triple_size = len(adj_matrix) # not triple size, but number of diff(h, t)
eval_epoch = 3
node_hidden = 128
rel_hidden = 128
batch_size = 512
dropout_rate = 0.3
lr = 0.005
gamma = 1
depth = 2
device = 'cuda'
training_time = 0.
grid_search_time = 0.
time_encode_time = 0.
import dto
from wl_test import WLKernel
wl_kernel = WLKernel(train_pair)
wl_kernel.calGraphKernels(8)
def get_embedding(index_a, index_b, vec):
vec = vec.detach().numpy()
Lvec = np.array([vec[e] for e in index_a])
Rvec = np.array([vec[e] for e in index_b])
Lvec = Lvec / (np.linalg.norm(Lvec, axis=-1, keepdims=True) + 1e-5)
Rvec = Rvec / (np.linalg.norm(Rvec, axis=-1, keepdims=True) + 1e-5)
return Lvec, Rvec
def multiple_sparse_ind(depth, feature, test_pair, sparse_rel_matrix, right=None, time_no_agg=False):
sims = cal_sims(test_pair, tf.cast(feature, tf.float32), right)
if time_no_agg:
return sims
for i in range(depth):
feature = tf.sparse.sparse_dense_matmul(sparse_rel_matrix, tf.cast(feature, tf.double))
feature = tf.nn.l2_normalize(feature, axis=-1)
sims += cal_sims(test_pair, tf.cast(feature, tf.float32), right)
sims /= depth + 1
return sims
def align_loss(align_input, embedding):
def squared_dist(x):
A, B = x
row_norms_A = torch.sum(torch.square(A), dim=1)
row_norms_A = torch.reshape(row_norms_A, [-1, 1]) # Column vector.
row_norms_B = torch.sum(torch.square(B), dim=1)
row_norms_B = torch.reshape(row_norms_B, [1, -1]) # Row vector.
# may not work
return row_norms_A + row_norms_B - 2 * torch.matmul(A, torch.transpose(B, 0, 1))
# modified
left = torch.tensor(align_input[:, 0])
right = torch.tensor(align_input[:, 1])
l_emb = embedding[left]
r_emb = embedding[right]
pos_dis = torch.sum(torch.square(l_emb - r_emb), dim=-1, keepdim=True)
r_neg_dis = squared_dist([r_emb, embedding])
l_neg_dis = squared_dist([l_emb, embedding])
l_loss = pos_dis - l_neg_dis + gamma
l_loss = l_loss * (1 - F.one_hot(left, num_classes=node_size) - F.one_hot(right, num_classes=node_size)).to(device)
r_loss = pos_dis - r_neg_dis + gamma
r_loss = r_loss * (1 - F.one_hot(left, num_classes=node_size) - F.one_hot(right, num_classes=node_size)).to(device)
# modified
with torch.no_grad():
r_mean = torch.mean(r_loss, dim=-1, keepdim=True)
r_std = torch.std(r_loss, dim=-1, keepdim=True)
r_loss.data = (r_loss.data - r_mean) / r_std
l_mean = torch.mean(l_loss, dim=-1, keepdim=True)
l_std = torch.std(l_loss, dim=-1, keepdim=True)
l_loss.data = (l_loss.data - l_mean) / l_std
lamb, tau = 30, 10
l_loss = torch.logsumexp(lamb * l_loss + tau, dim=-1)
r_loss = torch.logsumexp(lamb * r_loss + tau, dim=-1)
return torch.mean(l_loss + r_loss)
def save_suffix(save_final=False, cnt_call=1):
suf = str(which_file) + '_' + str(len(train_pair))
# dual_no_time = global_args.dual_no_time
if global_args.dual_no_time:
suf += '_dual_no_time'
if save_final:
if global_args.sep_eval:
suf += '_sensitive' + str(cnt_call)
if global_args.time_no_agg:
suf += '_time_no_agg'
return suf
# no_sinkhorn = global_args.no_sinkhorn
# no_time_feature = global_args.no_time_feature
# no_rel_feature = global_args.no_rel_feature
def train():
print('begin')
# inputs = [adj_input, index_input, val_input, rel_adj, ent_adj]
inputs = [adj_matrix, r_index, r_val, rel_matrix, ent_matrix]
model = OverAll(node_size=node_size, node_hidden=node_hidden,
rel_size=rel_size, rel_hidden=rel_hidden,
time_size=time_size,
rel_matrix=rel_matrix, ent_matrix=ent_matrix,
time_matrix=time_matrix,
triple_size=triple_size, dropout_rate=dropout_rate,
depth=depth, device=device)
model = model.to(device)
# opt = torch.optim.RMSprop(model.parameters(), lr=lr)
opt = torch.optim.RMSprop(model.parameters(), lr=lr, weight_decay=0)
print('model constructed')
evaluater = evaluate(dev_pair)
rest_set_1 = [e1 for e1, e2 in dev_pair]
rest_set_2 = [e2 for e1, e2 in dev_pair]
np.random.shuffle(rest_set_1)
np.random.shuffle(rest_set_2)
epoch = 10 if train_ratio > 0.2 else 20
if unsup:
epoch = 3
for turn in range(1):
tic = time.time()
for i in trange(epoch):
np.random.shuffle(train_pair)
for pairs in [train_pair[i * batch_size:(i + 1) * batch_size] for i in
range(len(train_pair) // batch_size + 1)]:
inputs = [adj_matrix, r_index, r_val, t_index, rel_matrix, ent_matrix]
output = model(inputs)
loss = align_loss(pairs, output)
print(loss)
opt.zero_grad()
loss.backward()
opt.step()
if i == epoch - 1:
toc = time.time()
model.eval()
with torch.no_grad():
output = model(inputs)
Lvec, Rvec = get_embedding(dev_pair[:, 0], dev_pair[:, 1], output.cpu())
evaluater.test(Lvec, Rvec, 1)
output2 = output.cpu().numpy()
output2 = output2 / (np.linalg.norm(output2, axis=-1, keepdims=True) + 1e-5)
dto.saveobj(output2, 'embedding_of_' + save_suffix())
model.train()
training_time = toc - tic
return training_time
@torch.no_grad()
def grid_search(sim1, sim2, real_sim1, real_sim2, weight, cnt_call=1, evaluate=True):
if evaluate:
links = torch.LongTensor(dev_pair)
links = torch.transpose(links, 0, 1)
links[1] -= getLast(filename + 'ent_ids_1')
best_weight = 0
best_hit = 0
best_error = 1e9
best_error_weight = 0
excel = []
tic = time.time()
for w in weight:
if evaluate:
sim_new = (sim1 + w * sim2) / (1 + w)
sim_new = sinkhorn(sim_new)
h1, h10, mrrt = test(sim_new, 'sinkhorn')
if h1 > best_hit:
best_hit = h1
best_weight = w
else:
h1, h10, mrrt = 0, 0, 0
real_sim_new = sinkhorn((real_sim1 + w * real_sim2) / (1 + w))
print('Grid Search Weight=', w)
P = real_sim_new.cpu().numpy()
print('shape of P is', P.shape)
if np.any(np.isnan(P)):
print('P has nan')
error, rel_err, time_err = wl_kernel.sparse_adj_sim(P)
if error < best_error:
best_error_weight = w
best_error = error
row = dict(weight=w, hit_1=h1, hit_10=h10, mrr=mrrt, tot_dist=error, rel_dist=rel_err, time_err=time_err)
excel.append(row)
toc = time.time()
grid_search_time = toc - tic
df = pd.DataFrame(excel)
df.to_excel(save_suffix(True, cnt_call=cnt_call) + '.xlsx')
print(best_hit, best_weight)
print(best_error, best_error_weight)
return grid_search_time
try:
if global_args.train_anyway:
train()
output = dto.readobj('embedding_of_' + save_suffix())
except:
print('Load embedding fail, begin to train')
training_time = train()
output = dto.readobj('embedding_of_' + save_suffix())
output = tf.convert_to_tensor(output)
sim = cal_sims(dev_pair, output)
if global_args.sep_eval:
sim2 = cal_sims(dev_pair2, output)
real_sim = cal_sims(dev_pair, output, right=getLast(filename + 'ent_ids_1'))
all_triples, node_size, _ = utils2.load_triples(filename, True)
sparse_rel_matrix = seu.construct_sparse_rel_matrix(all_triples, node_size)
time_suffix = str(which_file)
if global_args.time_no_agg:
time_suffix += '_time_no_agg'
if global_args.sep_eval:
time_suffix += '_sensitive_pair'
time_feature = seu.get_feature(filename)
fn = 'time_sim' + time_suffix
if not unsup and train_ratio == 0.2:
fn += '_lessSeed'
elif unsup:
fn += '_unsup'
try:
time_sim = dto.readobj(fn)
if global_args.sep_eval:
time_sim2 = dto.readobj(fn + '2')
print('load time sim completed')
except:
tic = time.time()
time_sim = multiple_sparse_ind(2, time_feature, dev_pair, sparse_rel_matrix)
toc = time.time()
time_encode_time = toc-tic
dto.saveobj(time_sim, fn)
if global_args.sep_eval:
time_sim2 = multiple_sparse_ind(2, time_feature, dev_pair2, sparse_rel_matrix)
dto.saveobj(time_sim2, fn + '2')
print('finish get time sim')
try:
real_time_sim = dto.readobj('real_time_sim' + time_suffix)
print('load real time sim completed')
except:
real_time_sim = multiple_sparse_ind(2, time_feature, dev_pair, sparse_rel_matrix,
right=getLast(filename + 'ent_ids_1'))
dto.saveobj(real_time_sim, 'real_time_sim' + time_suffix)
print('finish creating Real time sim')
def sub_exps():
print('############### TIME only Sim is ###################')
test(sinkhorn(time_sim))
print('############### REL only Sim is ###################')
test(sinkhorn(sim))
print('############### TIME Sim + REL Sim is ###################')
test(sinkhorn((time_sim + sim) / 2))
print('############### NO Sinkhorn is ###################')
test((time_sim + sim) / 2)
grid_search_range = np.linspace(0.0, 2, 9)
def main_exp():
grid_search_time = grid_search(sim, time_sim, real_sim, real_time_sim, grid_search_range)
if global_args.sep_eval:
grid_search(sim2, time_sim2, real_sim, real_time_sim, grid_search_range, cnt_call=2)
return grid_search_time
if global_args.sub_exps:
sub_exps()
elif global_args.time_no_agg:
time_sim = multiple_sparse_ind(2, time_feature, dev_pair, sparse_rel_matrix,
time_no_agg=True)
real_time_sim = multiple_sparse_ind(2, time_feature, dev_pair, sparse_rel_matrix,
right=getLast(filename + 'ent_ids_1'),
time_no_agg=True)
grid_search(sim, time_sim, real_sim, real_time_sim, grid_search_range)
else:
grid_search_time = main_exp()
with open('time_of_' + save_suffix(), 'w') as f:
f.write(f'training time : {training_time}\n')
f.write(f'get time sim time : {time_encode_time}\n')
f.write(f'grid search time : {grid_search_time}\n')