-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodelTrain-ov.py
111 lines (98 loc) · 3.95 KB
/
modelTrain-ov.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder
# import matplotlib.pyplot as plt
import xgboost as xgb
import time
from datetime import datetime as dt
import operator
TRAIN_FINAL_CSV = 'training_features.csv'
TEST_FINAL_CSV = 'testing_features.csv'
LABEL_FINAL_CSV = 'labels.csv'
OUT_FOLDER = '../outputs/'
MODEL_FOLDER = '../models/'
MAX_DEPTH = 8
ETA = 0.3
NUM_ROUND = 2
SUB_SAMPLE = 0.8
COL_SAMPLE = 0.8
EARLY_STOP = 10
COL_SAMPLE_SEED = 0
XGBOOST_SEED = 0
param = {'max_depth': MAX_DEPTH, 'eta': ETA, 'silent': 1, 'objective': 'multi:softprob', 'subsample': SUB_SAMPLE,
'colsample_bytree': 1.0, 'num_class': 12, 'seed': XGBOOST_SEED}
# ndcg5
def ndcg5(preds, dtrain):
k = 5
y_true = dtrain.get_label()
n = len(y_true)
num_class = preds.shape[1]
index = np.argsort(preds, axis=1)
top = index[:, -k:][:, ::-1]
rel = (np.reshape(y_true, (n, 1)) == top).astype(int)
cal_dcg = lambda y: sum((2 ** y - 1) / np.log2(range(2, k + 2)))
ndcg = np.mean((np.apply_along_axis(cal_dcg, 1, rel)))
return 'ndcg5', ndcg
startTime = dt.now()
le = LabelEncoder()
print "start read CSV"
destination = pd.read_csv(LABEL_FINAL_CSV, header=0, index_col=0)
x = pd.read_csv(TRAIN_FINAL_CSV, header=0, index_col=0)
x_test = pd.read_csv(TEST_FINAL_CSV, header=0, index_col=0)
print "Over read Csv"
y = le.fit_transform(destination['country_destination'].values)
idSave = x_test.index
HOLD_OUT_SEED = 0
x_flg = pd.concat([x, destination], axis=1)
x_in = x_flg.sample(frac=0.8, random_state=HOLD_OUT_SEED, axis=0)
x_out = x_flg.drop(x_in.index, axis=0)
y_in = le.transform(x_in['country_destination'].values)
y_out = le.transform(x_out['country_destination'].values)
x_in.drop('country_destination', axis=1, inplace=True)
x_out.drop('country_destination', axis=1, inplace=True)
print x_in.shape, x_out.shape, len(y_in), len(y_out)
num_round = NUM_ROUND
col_sample_seed_now = COL_SAMPLE_SEED
x_in_droped = x_in.sample(frac=1.0 - COL_SAMPLE, random_state=col_sample_seed_now, axis=1)
x_in_sampled = x_in.copy()
x_in_sampled[x_in_droped.columns] = np.nan
x_out_sampled = x_out.copy()
x_out_sampled[x_in_droped.columns] = np.nan
dtrain_in = xgb.DMatrix(x_in_sampled, label=y_in, missing=float('NaN'))
dtrain_out = xgb.DMatrix(x_out_sampled, label=y_out, missing=float('NaN'))
dtest = xgb.DMatrix(x_test, missing=float('NaN'))
evallist = [(dtrain_in, 'train_in'), (dtrain_out, 'train_out')]
print "start hold-out-validation!"
evals_result = {}
bst = xgb.train(param, dtrain_in, num_round, evallist, feval=ndcg5, early_stopping_rounds=EARLY_STOP,
evals_result=evals_result)
if hasattr(bst,'best_score'):
print col_sample_seed_now, bst.best_score, bst.best_iteration, bst.best_ntree_limit
train_rounds = bst.best_ntree_limit
best_score = bst.best_score
else:
train_rounds = num_round
best_score = evals_result['train_out']['ndcg5'][-1]
paramCheck = '(' + str(MAX_DEPTH) + ',' + str(ETA) + ',' + str(train_rounds) + ',' + str(SUB_SAMPLE) + ',' + str(
COL_SAMPLE) + ')'
timeStr = str(time.strftime('%Y-%m-%d %H%M%S', time.localtime()))
model_name = timeStr + " " + str(best_score) + paramCheck + str(col_sample_seed_now)
bst.save_model(MODEL_FOLDER + model_name + '.model')
# bst.dump_model(MODEL_FOLDER + model_name + "dump.raw.txt")
fscore = bst.get_fscore()
sorted_fscore = sorted(fscore.items(), key=operator.itemgetter(1), reverse=True)
print sorted_fscore
ypred = bst.predict(dtest, ntree_limit=train_rounds)
# Taking the 5 classes with highest probabilities
ids = [] # list of ids
cts = [] # list of countries
for i in range(len(ypred)):
idx = idSave[i]
ids += [idx] * 5
cts += le.inverse_transform(np.argsort(ypred[i])[::-1])[:5].tolist()
# Generate submission
sub = pd.DataFrame(np.column_stack((ids, cts)), columns=['id', 'country'])
sub.to_csv(OUT_FOLDER + 'sub' + model_name + '.csv', index=False)
stTimeStr = '(' + str(startTime)[11:19] + 'start)'
timeSpend = (dt.now() - startTime)
print timeSpend, stTimeStr