-
Notifications
You must be signed in to change notification settings - Fork 9
/
train.py
187 lines (170 loc) · 8.35 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import logging
from functools import partial
import cv2
import torch
import torch.optim as optim
import tqdm
import yaml
from joblib import cpu_count
from torch.utils.data import DataLoader
from adversarial_trainer import GANFactory
from dataset import PairedDataset
from metric_counter import MetricCounter
from models.losses import get_loss
from models.models import get_model
from models.networks import get_nets
from schedulers import LinearDecay, WarmRestart
cv2.setNumThreads(0)
torch.cuda.set_device(0)
class Trainer:
def __init__(self, config, train: DataLoader, val: DataLoader, continue_= False):
self.config = config
self.train_dataset = train
self.val_dataset = val
self.continue_= False
self.adv_lambda = config['model']['adv_lambda']
self.metric_counter = MetricCounter(config['experiment_desc'])
self.warmup_epochs = config['warmup_num']
def train(self):
self._init_params()
for epoch in range(0, config['num_epochs']):
if (epoch == self.warmup_epochs) and not (self.warmup_epochs == 0):
self.netG.module.unfreeze()
self.optimizer_G = self._get_optim(self.netG.parameters())
self.scheduler_G = self._get_scheduler(self.optimizer_G)
self._run_epoch(epoch)
self._validate(epoch)
self.scheduler_G.step()
self.scheduler_D.step()
if self.metric_counter.update_best_model():
torch.save({
'model': self.netG.state_dict()
}, 'best_{}.h5'.format(self.config['experiment_desc']))
torch.save({
'model': self.netG.state_dict()
}, 'last_{}.h5'.format(self.config['experiment_desc']))
print(self.metric_counter.loss_message())
logging.debug("Experiment Name: %s, Epoch: %d, Loss: %s" % (
self.config['experiment_desc'], epoch, self.metric_counter.loss_message()))
def _run_epoch(self, epoch):
self.metric_counter.clear()
for param_group in self.optimizer_G.param_groups:
lr = param_group['lr']
epoch_size = config.get('train_batches_per_epoch') or len(self.train_dataset)
tq = tqdm.tqdm(self.train_dataset, total=epoch_size)
tq.set_description('Epoch {}, lr {}'.format(epoch, lr))
i = 0
for data in tq:
inputs, targets = self.model.get_input(data)
outputs = self.netG(inputs)
loss_D = self._update_d(outputs, targets)
self.optimizer_G.zero_grad()
loss_content = self.criterionG(outputs, targets)
loss_adv = self.adv_trainer.loss_g(outputs, targets)
loss_G = loss_content + self.adv_lambda * loss_adv
loss_G.backward()
self.optimizer_G.step()
self.metric_counter.add_losses(loss_G.item(), loss_content.item(), loss_D)
curr_psnr, curr_ssim, img_for_vis = self.model.get_images_and_metrics(inputs, outputs, targets)
self.metric_counter.add_metrics(curr_psnr, curr_ssim)
tq.set_postfix(loss=self.metric_counter.loss_message())
if not i:
self.metric_counter.add_image(img_for_vis, tag='train')
i += 1
if i > epoch_size:
break
tq.close()
self.metric_counter.write_to_tensorboard(epoch)
def _validate(self, epoch):
self.metric_counter.clear()
epoch_size = config.get('val_batches_per_epoch') or len(self.val_dataset)
tq = tqdm.tqdm(self.val_dataset, total=epoch_size)
tq.set_description('Validation')
i = 0
for data in tq:
inputs, targets = self.model.get_input(data)
outputs = self.netG(inputs)
loss_content = self.criterionG(outputs, targets)
loss_adv = self.adv_trainer.loss_g(outputs, targets)
loss_G = loss_content + self.adv_lambda * loss_adv
self.metric_counter.add_losses(loss_G.item(), loss_content.item())
curr_psnr, curr_ssim, img_for_vis = self.model.get_images_and_metrics(inputs, outputs, targets)
self.metric_counter.add_metrics(curr_psnr, curr_ssim)
if not i:
self.metric_counter.add_image(img_for_vis, tag='val')
i += 1
if i > epoch_size:
break
tq.close()
self.metric_counter.write_to_tensorboard(epoch, validation=True)
def _update_d(self, outputs, targets):
if self.config['model']['d_name'] == 'no_gan':
return 0
self.optimizer_D.zero_grad()
loss_D = self.adv_lambda * self.adv_trainer.loss_d(outputs, targets)
loss_D.backward(retain_graph=True)
self.optimizer_D.step()
return loss_D.item()
def _get_optim(self, params):
if self.config['optimizer']['name'] == 'adam':
optimizer = optim.Adam(params, lr=self.config['optimizer']['lr'])
elif self.config['optimizer']['name'] == 'sgd':
optimizer = optim.SGD(params, lr=self.config['optimizer']['lr'])
elif self.config['optimizer']['name'] == 'adadelta':
optimizer = optim.Adadelta(params, lr=self.config['optimizer']['lr'])
else:
raise ValueError("Optimizer [%s] not recognized." % self.config['optimizer']['name'])
return optimizer
def _get_scheduler(self, optimizer):
if self.config['scheduler']['name'] == 'plateau':
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,
mode='min',
patience=self.config['scheduler']['patience'],
factor=self.config['scheduler']['factor'],
min_lr=self.config['scheduler']['min_lr'])
elif self.config['optimizer']['name'] == 'sgdr':
scheduler = WarmRestart(optimizer)
elif self.config['scheduler']['name'] == 'linear':
scheduler = LinearDecay(optimizer,
min_lr=self.config['scheduler']['min_lr'],
num_epochs=self.config['num_epochs'],
start_epoch=self.config['scheduler']['start_epoch'])
else:
raise ValueError("Scheduler [%s] not recognized." % self.config['scheduler']['name'])
return scheduler
@staticmethod
def _get_adversarial_trainer(d_name, net_d, criterion_d):
if d_name == 'no_gan':
return GANFactory.create_model('NoGAN')
elif d_name == 'patch_gan' or d_name == 'multi_scale':
return GANFactory.create_model('SingleGAN', net_d, criterion_d)
elif d_name == 'double_gan':
return GANFactory.create_model('DoubleGAN', net_d, criterion_d)
else:
raise ValueError("Discriminator Network [%s] not recognized." % d_name)
def _init_params(self):
self.criterionG, criterionD = get_loss(self.config['model'])
self.netG, netD = get_nets(self.config['model'])
if self.continue_:
self.netG.load_state_dict(torch.load("./best_fpn.h5")['model'])
print("mod weights loaded succefully from previous checkpoint")
self.netG.cuda(0)
self.adv_trainer = self._get_adversarial_trainer(self.config['model']['d_name'], netD, criterionD)
self.model = get_model(self.config['model'])
self.optimizer_G = self._get_optim(filter(lambda p: p.requires_grad, self.netG.parameters()))
self.optimizer_D = self._get_optim(self.adv_trainer.get_params())
self.scheduler_G = self._get_scheduler(self.optimizer_G)
self.scheduler_D = self._get_scheduler(self.optimizer_D)
if __name__ == '__main__':
with open('config/config.yaml', 'r') as f:
config = yaml.load(f)
#print(config)
batch_size = config.pop('batch_size')
get_dataloader = partial(DataLoader, batch_size=batch_size, num_workers=cpu_count(), shuffle=True, drop_last=True)
datasets = map(config.pop, ('train', 'val'))
g_name= config['model']['g_name']
from_config_= partial(PairedDataset.from_config, g_name= g_name)
datasets = map(from_config_, datasets)
train, val = map(get_dataloader, datasets)
trainer = Trainer(config, train=train, val=val, continue_= True)
trainer.train()