-
Notifications
You must be signed in to change notification settings - Fork 9
/
test_dataset.py
76 lines (62 loc) · 2.63 KB
/
test_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import os
import unittest
from shutil import rmtree
from tempfile import mkdtemp
import cv2
import numpy as np
from torch.utils.data import DataLoader
from dataset import PairedDataset
def make_img():
return (np.random.rand(100, 100, 3) * 255).astype('uint8')
class AugTest(unittest.TestCase):
tmp_dir = mkdtemp()
raw = os.path.join(tmp_dir, 'raw')
gt = os.path.join(tmp_dir, 'gt')
def setUp(self):
for d in (self.raw, self.gt):
os.makedirs(d)
for i in range(5):
for d in (self.raw, self.gt):
img = make_img()
cv2.imwrite(os.path.join(d, f'{i}.png'), img)
def tearDown(self):
rmtree(self.tmp_dir)
def dataset_gen(self, equal=True):
base_config = {'files_a': os.path.join(self.raw, '*.png'),
'files_b': os.path.join(self.raw if equal else self.gt, '*.png'),
'size': 32,
}
for b in ([0, 1], [0, 0.9]):
for scope in ('strong', 'weak'):
for crop in ('random', 'center'):
for preload in (0, 1):
for preload_size in (0, 64):
config = base_config.copy()
config['bounds'] = b
config['scope'] = scope
config['crop'] = crop
config['preload'] = preload
config['preload_size'] = preload_size
config['verbose'] = False
dataset = PairedDataset.from_config(config)
yield dataset
def test_equal_datasets(self):
for dataset in self.dataset_gen(equal=True):
dataloader = DataLoader(dataset=dataset,
batch_size=2,
shuffle=True,
drop_last=True)
dataloader = iter(dataloader)
batch = next(dataloader)
a, b = map(lambda x: x.numpy(), map(batch.get, ('a', 'b')))
np.testing.assert_allclose(a, b)
def test_datasets(self):
for dataset in self.dataset_gen(equal=False):
dataloader = DataLoader(dataset=dataset,
batch_size=2,
shuffle=True,
drop_last=True)
dataloader = iter(dataloader)
batch = next(dataloader)
a, b = map(lambda x: x.numpy(), map(batch.get, ('a', 'b')))
assert not np.all(a == b), 'images should not be the same'