-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdiff_tenseal.py
360 lines (280 loc) · 14.4 KB
/
diff_tenseal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
from plain_models import MLP_Credit, MLP_Bank, CryptoNet_Digits, CryptoNet_MNIST
import numpy as np
import logging
import pickle
import datetime
import time
import torch
import torch.nn.functional as F
from tqdm import tqdm
import torch.utils
from tools import load_data, load_torch_data
from tqdm import tqdm
import tenseal as ts
from torchattacks.attack import Attack
from random import sample
from base_ts import *
from base_margin import *
log_filename = datetime.datetime.now().strftime("./log/ts_diff.log")
logging.basicConfig(format='%(asctime)s %(levelname)-8s %(message)s', datefmt='%m-%d %H:%M:%S',
filename=log_filename, filemode='a', level=logging.DEBUG)
logger = logging.getLogger(__name__)
def OriDifferentialTesting(seed_loader, plain_model, enc_model, context, kernel_shape=None, stride=None):
seedList = [(data, label) for data, label in seed_loader]
trueDiffList = []
falseDiffList = []
sameList = []
start_time = time.time()
pbar = tqdm(seedList)
for data, label in pbar:
pred_p, label_p = PredictPlainVector(plain_model, data)
if kernel_shape is not None:
pred_e, label_e = PredictConvEncVector(enc_model, data, context, kernel_shape, stride)
else:
pred_e, label_e = PredictEncVector(enc_model, data, context)
if label_p != label_e:
if label_p == label:
trueDiffList.append((data, label))
else:
falseDiffList.append((data, label))
else:
sameList.append((data, label))
pbar.set_postfix({'FNum': len(falseDiffList), 'FRatio': len(falseDiffList) * 100.0 / len(seedList),
'TNum': len(trueDiffList), 'TRatio': len(trueDiffList) * 100.0 / len(seedList)})
print(f'FNum: {len(falseDiffList)}/{len(seedList)}({len(falseDiffList) * 100.0 / len(seedList):.2f}%)')
print(f'TNum: {len(trueDiffList)}/{len(seedList)}({len(trueDiffList) * 100.0 / len(seedList):.2f}%)')
end_time = time.time()
logger.info("Origin DT running time: %.2fs" % (end_time - start_time))
logger.info(f"FNum: {len(falseDiffList)}/{len(seedList)}({len(falseDiffList) * 100.0 / len(seedList):.2f}%)")
logger.info(f"TNum: {len(trueDiffList)}/{len(seedList)}({len(trueDiffList) * 100.0 / len(seedList):.2f}%)")
return falseDiffList, trueDiffList, sameList
class MGPGD(Attack):
def __init__(self, model, device=None, eps=8/255, alpha=2/255, steps=10, random_start=True):
super().__init__('MGPGD', model)
self.eps = eps
self.alpha = alpha
self.steps = steps
self.random_start = random_start
self.supported_mode = ['default', 'targeted']
def forward(self, images, labels=None):
images = images.clone().detach().to(self.device)
adv_images = images.clone().detach()
alpha = self.alpha
if self.random_start:
adv_images = adv_images + \
torch.empty_like(adv_images).uniform_(-self.eps, self.eps)
adv_images = torch.clamp(adv_images, min=0, max=1).detach()
for _ in range(self.steps):
adv_images.requires_grad = True
outputs = self.get_logits(adv_images)
cost = -1 * margin_metric(outputs)
grad = torch.autograd.grad(cost, adv_images,
retain_graph=False, create_graph=False)[0]
adv_images = adv_images.detach() + alpha*grad.sign()
alpha = alpha / 2
delta = torch.clamp(adv_images - images,
min=-self.eps, max=self.eps)
adv_images = torch.clamp(images + delta, min=0, max=1).detach()
noise_images = adv_images - images
return noise_images
def MarginBasedDifferentialTesting(mutation_num, seed_loader, plain_model, enc_model, context,
kernel_shape=None, stride=None, noise_bar = 0.05, iter_bar = 0.02):
seedList = [(data, 0, label, 0) for data, label in seed_loader]
trueDiffList = []
mutationList = []
patternDict = []
attacks = MGPGD(plain_model, eps=iter_bar, alpha=iter_bar / 4, steps=10)
start_time = time.time()
total_mutation = 0
pbar = tqdm(total=mutation_num)
while total_mutation < mutation_num and len(seedList) > 0:
data, old_noise, label, mu_num = seedList.pop(0)
mu_num += 1
noise = attacks.forward(data + old_noise)
noise = old_noise + noise
noise = torch.clamp(noise, min=-noise_bar, max=noise_bar)
noise_data = torch.clamp(data + noise, min=0, max=1)
_, label_p = PredictPlainVector(plain_model, noise_data)
if kernel_shape is not None:
_, label_e = PredictConvEncVector(enc_model, noise_data, context, kernel_shape, stride)
else:
_, label_e = PredictEncVector(enc_model, noise_data, context)
noise = noise_data - data
if label_p != label_e and label_p == label:
trueDiffList.append((data.clone(), noise.clone(), label.clone(), mu_num))
mutationList.append(total_mutation)
patternDict.append((data, noise, label_p, label_e))
else:
seedList.append((data, noise, label, mu_num))
total_mutation += 1
pbar.update(1)
pbar.set_postfix({'TAEs': len(trueDiffList), 'Mutation': total_mutation})
print({'TAEs': len(trueDiffList), 'Mutation': total_mutation})
end_time = time.time()
logger.info(f"Mutation DT running time[{end_time - start_time:.2f}s], Noise Bar[{noise_bar}], Iter Bar[{iter_bar}]")
logger.info(f"Total Mutation[{total_mutation}], Normal[{len(seedList)}], Deviation[{len(trueDiffList)}]")
return trueDiffList, seedList, patternDict, mutationList
def AlphaNoiseData(plain_model, data, noise, alpha, noise_bar):
noise = torch.clamp(noise * alpha, min=-noise_bar, max=noise_bar)
noise_data = torch.clamp(data + noise, min=0, max=1)
pred_p, label_p = PredictPlainVector(plain_model, noise_data)
return margin_metric(pred_p), label_p
def DetermineAlpha(plain_model, data, label, noise, noise_bar = 0.05, min_gap = 0.001, max_gap = 0.002):
right_alpha = 10
left_alpha = -10
mid_alpha = 0
margin_right, label_right = AlphaNoiseData(plain_model, data, noise, right_alpha, noise_bar)
margin_left, label_left = AlphaNoiseData(plain_model, data, noise, left_alpha, noise_bar)
if label_right == label and label_left == label:
return None
if label_right != label and label_left != label:
return None
if label_right == label:
if min_gap < margin_right < max_gap:
return right_alpha
right_alpha = mid_alpha
else:
if min_gap < margin_left < max_gap:
return left_alpha
left_alpha = mid_alpha
# Binary Search
max_time = 1000
for _ in range(max_time):
mid_alpha = (left_alpha + right_alpha) / 2
margin_mid, label_mid = AlphaNoiseData(plain_model, data, noise, mid_alpha, noise_bar)
if margin_mid < max_gap and label_mid == label:
return mid_alpha
elif label_right == label_mid:
right_alpha = mid_alpha
else:
left_alpha = mid_alpha
return 0
def SimilarAlphaPatternDifferentialTesting(patternDict, seedList, plain_model, enc_model, context,
kernel_shape=None, stride=None, K=5, noise_bar = 0.05, same_label=True):
trueDiffList = []
seed_pattern_idx_list = [-1 for _ in range(len(seedList))]
pattern_data_list = [pattern_data for pattern_data, noise, label_p, label_e in patternDict]
pattern_data_list_flat = torch.stack(pattern_data_list).view(len(pattern_data_list), -1)
all_try = 0
no_simliar = 0
start_time = time.time()
pbar = tqdm(seedList)
seed_idx = 0
for data, old_noise, label, mu_num in pbar:
data_flat = data.view(1, -1)
similarities = F.pairwise_distance(data_flat, pattern_data_list_flat, p=2)
sorted_indices = torch.argsort(similarities, descending=False)
most_similar_indices = []
K_count = 0
for i in sorted_indices:
if K_count == K:
break
most_similar_indices.append(i.item())
K_count += 1
if K_count == 0:
no_simliar += 1
for pattern_index in most_similar_indices:
pattern_data, pattern_noise, pattern_label_p, pattern_label_e = patternDict[pattern_index]
alpha = DetermineAlpha(plain_model, data, label, pattern_noise, noise_bar, min_gap = 0.001, max_gap = 0.002)
if alpha is None or alpha == 0:
continue
mu_num += 1
all_try += 1
noise = torch.clamp(pattern_noise * alpha, min=-noise_bar, max=noise_bar)
noise_data = torch.clamp(data + noise, min=0, max=1)
_, label_p = PredictPlainVector(plain_model, noise_data)
if kernel_shape is not None:
_, label_e = PredictConvEncVector(enc_model, noise_data, context, kernel_shape, stride)
else:
_, label_e = PredictEncVector(enc_model, noise_data, context)
noise = noise_data - data
if label_p != label_e and label_p == label:
trueDiffList.append((data.clone(), noise, label.clone(), mu_num))
seed_pattern_idx_list[seed_idx] = (pattern_index, alpha)
break
seed_idx += 1
pbar.update(1)
pbar.set_postfix({'TAEs': len(trueDiffList), "TRY": all_try})
print({'TAEs': len(trueDiffList)})
end_time = time.time()
logger.info(f"Pattern DT running time[{end_time - start_time:.2f}s], Noise Bar[{noise_bar}], K Nearest[{K}]")
logger.info(f"Total Try[{all_try}], Normal[{len(seedList)-len(trueDiffList)}], Deviation[{len(trueDiffList)}], No Similar[{no_simliar}]")
return trueDiffList, seed_pattern_idx_list
def Start(data_name, seed_num=800, mutation_num=4000, K_near=5, noise_bar = 0.05, iter_bar = 0.02):
data_name = data_name.lower()
bits_scale = 26
if data_name == "digits" or data_name == "mnist":
context = ts.context(
ts.SCHEME_TYPE.CKKS,
poly_modulus_degree=2 ** 14,
coeff_mod_bit_sizes=[bits_scale + 5, bits_scale, bits_scale, bits_scale, bits_scale, bits_scale, bits_scale, bits_scale, bits_scale,
bits_scale + 5]
)
else:
context = ts.context(
ts.SCHEME_TYPE.CKKS,
poly_modulus_degree=2 ** 13,
coeff_mod_bit_sizes=[bits_scale + 5, bits_scale, bits_scale, bits_scale, bits_scale, bits_scale, bits_scale,
bits_scale + 5]
)
context.global_scale = pow(2, bits_scale)
context.generate_galois_keys()
kernel_shape = None
stride = None
if data_name == "credit":
train_loader, test_loader = load_data(data_name, batch_size=1)
plain_model = MLP_Credit()
plain_model.load_state_dict(torch.load(f'./pretrained/credit_plain.pt'))
enc_model = CreditMLP_TS(plain_model)
elif data_name == "bank":
train_loader, test_loader = load_data(data_name, batch_size=1)
plain_model = MLP_Bank()
plain_model.load_state_dict(torch.load(f'./pretrained/bank_plain.pt'))
enc_model = BankMLP_TS(plain_model)
elif data_name == "digits":
train_loader, test_loader = load_data(data_name, batch_size=1)
plain_model = CryptoNet_Digits()
plain_model.load_state_dict(torch.load(f'./pretrained/digits_plain.pt'))
kernel_shape = plain_model.conv1.kernel_size
stride = plain_model.conv1.stride[0]
enc_model = DigitsCryptoNet_TS(plain_model)
elif data_name == "mnist":
train_loader, test_loader = load_torch_data(data_name, batch_size=1)
plain_model = CryptoNet_MNIST()
plain_model.load_state_dict(torch.load(f'./pretrained/mnist_plain.pt'))
kernel_shape = plain_model.conv1.kernel_size
stride = plain_model.conv1.stride[0]
enc_model = MNISTCryptoNet_TS(plain_model)
else:
raise NotImplementedError(data_name)
logger.info("="*100)
logger.info(f"TenSEAL Differential Testing Start")
logger.info(f"Dataset: {data_name}, #Seed: {seed_num}, #Mutation: {mutation_num}, #K nearest: {K_near}")
# step 1: seed filter
logger.info(f"Step 1: Seed Filtering")
seed_loader = mertric_sort(seed_num, plain_model, train_loader)
# step 1.1: without mutation, just check
_, oriTrueDiffList, sameList = OriDifferentialTesting(seed_loader, plain_model, enc_model, context, kernel_shape, stride)
# step 2: Margin-based mutation
logger.info(f"Step 2: Mutation")
muTrueDiffList, muSameList, patternDict, mutationList = MarginBasedDifferentialTesting(mutation_num, sameList, plain_model, enc_model, context, kernel_shape, stride, noise_bar = noise_bar, iter_bar = iter_bar)
# step 3: noise pattern
if len(patternDict) == 0:
logger.warning(f"No deviation in Step 2, skip Step 3")
patTrueDiffList, seed_pattern_idx_list = [], []
else:
logger.info(f"Step 3: Pattern")
patTrueDiffList, seed_pattern_idx_list = SimilarAlphaPatternDifferentialTesting(patternDict, muSameList, plain_model, enc_model, context, kernel_shape, stride, K=K_near, noise_bar = noise_bar)
result_tuple = (sameList, muSameList, oriTrueDiffList, muTrueDiffList, patTrueDiffList, patternDict, seed_pattern_idx_list, mutationList)
# exp step: important file save
pkl_filename = f"./corpus/ts_{data_name}.pkl"
with open(pkl_filename, 'wb') as fp:
pickle.dump(result_tuple, fp)
logger.info(f"File save in {pkl_filename}")
return result_tuple
if __name__ == "__main__":
Start("credit", seed_num=1000, mutation_num=5000, K_near=1, noise_bar = 0.05, iter_bar=0.03)
Start("bank", seed_num=1000, mutation_num=5000, K_near=1, noise_bar = 0.03, iter_bar=0.01)
Start("digits", seed_num=500, mutation_num=2500, K_near=1, noise_bar = 0.05, iter_bar=0.03)
Start("mnist", seed_num=1000, mutation_num=5000, K_near=1, noise_bar = 0.05, iter_bar=0.03)
print("diff_tenseal")