-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathssrl_train.py
230 lines (199 loc) · 10.3 KB
/
ssrl_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
'''
This script is used to train and evaluate models.
Tuned hyperparameters are loaded from the hyper_parameters directory.
The trained models are saved in the results directory.
The evaluation results are saved in the evaluation directory.
'''
import os
import sys
import time as systime
import glob
import numpy as np
import pandas as pd
import argparse
import torch
from model import spclt
from model_utils.utils_general import *
import model_utils.utils_data as datautils
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--loader', type=str, required=True, help='The data loader used to load the experimental data. This can be set to UCR, UEA, INT')
parser.add_argument('--gpu', type=str, default='0', help='The gpu number to use for training and inference (defaults to 0 for CPU only, can be "1,2" for multi-gpu)')
parser.add_argument('--seed', type=int, default=None, help='The random seed')
parser.add_argument('--reproduction', type=int, default=1, help='Whether this run is for reproduction, if set to True, the random seed would be fixed (defaults to True)')
args = parser.parse_args()
args.reproduction = bool(args.reproduction)
# Set default parameters
args.sliding_padding = 0
args.repr_dims = 320
args.tau_inst = 0
args.tau_temp = 0
args.temporal_hierarchy = None
args.regularizer = None
args.bandwidth = 1.
args.iters = None
args.epochs = 100
args.batch_size = 8
args.lr = 0.001
args.weight_lr = 0.01
return args
def main(args):
initial_time = systime.time()
print('Available cpus:', torch.get_num_threads(), 'available gpus:', torch.cuda.device_count())
# Set the random seed
if args.reproduction:
args.seed = 131 # Fix the random seed for reproduction
if args.seed is None:
args.seed = random.randint(0, 1000)
print(f"Random seed is set to {args.seed}")
fix_seed(args.seed, deterministic=args.reproduction)
# Initialize the deep learning program
print(f'--- Cuda available: {torch.cuda.is_available()} ---')
if torch.cuda.is_available():
print(f'--- Cuda device count: {torch.cuda.device_count()}, Cuda device name: {torch.cuda.get_device_name()}, Cuda version: {torch.version.cuda}, Cudnn version: {torch.backends.cudnn.version()} ---')
device = init_dl_program(args.gpu)
print(f'--- Device: {device}, Pytorch version: {torch.__version__} ---')
# Create the directory to save the evaluation results
run_dir = f'results/pretrain/{args.loader}/'
results_dir = f'results/evaluation/{args.loader}_training_efficiency.csv'
os.makedirs(run_dir, exist_ok=True)
os.makedirs('results/evaluation', exist_ok=True)
# Read the dataset list
if args.loader == 'UEA':
dataset_dir = os.path.join('datasets/', args.loader)
dataset_list = [entry.name for entry in os.scandir(dataset_dir) if entry.is_dir()]
dataset_list.sort()
elif 'Macro' in args.loader:
dataset_list = [['2019']]
elif args.loader == 'MicroTraffic':
dataset_list = [['train1']]
else:
raise ValueError(f"Unknown dataset loader: {args.loader}")
# Initialize evaluation dataframe for training efficiency
model_list = ['ts2vec', 'topo-ts2vec', 'ggeo-ts2vec', 'softclt', 'topo-softclt', 'ggeo-softclt']
def read_saved_results():
eval_results = pd.read_csv(results_dir)
eval_results['dataset'] = eval_results['dataset'].astype(str)
eval_results = eval_results.set_index(['model', 'dataset'])
return eval_results
if os.path.exists(results_dir):
eval_results = read_saved_results()
else:
metrics = ['training_time', 'training_epochs', 'training_time_per_epoch']
eval_results = pd.DataFrame(np.zeros((len(dataset_list)*len(model_list), 3), dtype=np.float32), columns=metrics,
index=pd.MultiIndex.from_product([model_list, dataset_list if args.loader=='UEA' else dataset_list[0]], names=['model','dataset']))
eval_results.to_csv(results_dir)
# Train for each dataset
bad_datasets = ['DuckDuckGeese',
'EigenWorms',
'MotorImagery',
'PEMS-SF'] # Datasets that are too resource-consuming to compute DTW or TAM
for dataset in dataset_list:
# Load dataset
if args.loader == 'UEA':
loaded_data = datautils.load_UEA(dataset)
train_data, _, _, _ = loaded_data
elif 'Macro' in args.loader:
loaded_data = datautils.load_MacroTraffic(dataset, time_interval=5, horizon=15, observation=20)
train_data, _, _ = loaded_data
dataset = '2019'
elif args.loader == 'MicroTraffic':
loaded_data = datautils.load_MicroTraffic(dataset)
train_data, _, _ = loaded_data
dataset = 'train'+''.join(dataset).replace('train', '')
# Load tuned hyperparameters
tuned_params_dir = f'results/hyper_parameters/{args.loader}/{dataset}_tuned_hyperparameters.csv'
if os.path.exists(tuned_params_dir):
tuned_params = pd.read_csv(tuned_params_dir, index_col=0)
else:
print(f'****** {tuned_params_dir} not found ******')
continue
# Compute similarity matrix
if args.loader == 'UEA':
if dataset in bad_datasets:
print(f"Dataset {dataset} is too resource-consuming to compute DTW or TAM, switch to EUC by default.")
args.dist_metric = 'EUC'
else:
args.dist_metric = 'DTW'
else:
args.dist_metric = 'EUC'
sim_mat = datautils.get_sim_mat(args.loader, train_data, dataset, args.dist_metric)
# Set training epochs and verbose
train_size = train_data.shape[0]
feature_size = train_data.shape[-1]
if args.loader != 'UEA':
args.epochs = 300
verbose = 2
else:
if train_size < 1000 and train_data.shape[-2] < 1000:
args.epochs = 1000
elif train_size < 3000:
args.epochs = 600
else:
args.epochs = 400
verbose = 1
# Iterate over different losses
for model_type in model_list:
if args.loader == 'UEA':
if eval_results.loc[(model_type, dataset), 'training_time'] > 0:
final_epoch = eval_results.loc[(model_type, dataset), 'model_used'].split('epo')[0].split('_')[-1]
if final_epoch[-2:] != '00':
print(f'--- {model_type} {dataset} has been evaluated (not 00), skipping evaluation ---')
continue
elif int(final_epoch) == args.epochs:
print(f'--- {model_type} {dataset} has been trained (==epochs), skipping evaluation ---')
continue
# Set hyperparameters and configure model
try:
args = load_tuned_hyperparameters(args, tuned_params, model_type)
except:
print(f'****** {model_type} hyperparameters not found ******')
continue
model_config = configure_model(args, feature_size, device)
model_dir = os.path.join(run_dir, f'{model_type}/{dataset}')
os.makedirs(model_dir, exist_ok=True)
# Train model if not already trained or if training time is not recorded
loss_log_exist = os.path.exists(f'{model_dir}/loss_log.csv')
if loss_log_exist:
eval_results = read_saved_results()
training_time = eval_results.loc[(model_type, dataset), 'training_time']
training_epochs = eval_results.loc[(model_type, dataset), 'training_epochs']
if loss_log_exist and (training_time > 0):
print(f'--- {model_type} {dataset} has been trained, skip training ---')
else:
# Create model
model_config['after_epoch_callback'] = save_checkpoint_callback(model_dir, 0, unit='epoch')
model = spclt(args.loader, **model_config)
scheduler = 'reduced'
print(f'--- {args.loader}_{model_type}_{dataset} training with ReduceLROnPlateau scheduler ---')
soft_assignments = datautils.assign_soft_labels(sim_mat, args.tau_inst)
start_time = systime.time()
loss_log = model.fit(dataset, train_data, soft_assignments, args.epochs, args.iters, scheduler, verbose=verbose)
training_time = systime.time() - start_time
training_epochs = model.epoch_n
# Save loss log
save_loss_log(loss_log, model_dir, regularizer=args.regularizer)
print(f'Training time elapsed: ' + systime.strftime('%H:%M:%S', systime.gmtime(training_time)))
# Reserve the latest model and remove the rest
existing_models = glob.glob(f'{model_dir}/*_net.pth')
if len(existing_models)>1:
existing_models.sort(key=os.path.getmtime, reverse=True)
for model_epoch in existing_models[1:]:
os.remove(model_epoch)
if model_type in ['topo-ts2vec', 'ggeo-ts2vec', 'topo-softclt', 'ggeo-softclt']:
os.remove(model_epoch.replace('_net.pth', '_loss_log_vars.npy'))
best_model = 'model' + existing_models[0].split('model')[-1].split('_net')[0]
# Save evaluation results per dataset and model
eval_results = read_saved_results()
print(f'Best model {best_model} will be evaluated in downstream tasks on {dataset}')
eval_results.loc[(model_type, dataset), 'training_time'] = training_time
eval_results.loc[(model_type, dataset), 'training_epochs'] = training_epochs
eval_results.loc[(model_type, dataset), 'training_time_per_epoch'] = training_time/training_epochs
eval_results.loc[(model_type, dataset), 'model_used'] = best_model
eval_results.to_csv(results_dir)
print('--- Total time elapsed: ' + systime.strftime('%H:%M:%S', systime.gmtime(systime.time() - initial_time)) + ' ---')
sys.exit(0)
if __name__ == '__main__':
sys.stdout.reconfigure(line_buffering=True)
args = parse_args()
main(args)