forked from canyilu/LibADMM-toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_lowrankmatrix_models.m
143 lines (125 loc) · 2.08 KB
/
test_lowrankmatrix_models.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
addpath(genpath(cd))
clear
%% data
d = 10;
na = 200;
nb = 100;
A = randn(d,na);
X = randn(na,nb);
B = A*X;
b = B(:,1);
opts.tol = 1e-6;
opts.max_iter = 1000;
opts.rho = 1.2;
opts.mu = 1e-3;
opts.max_mu = 1e10;
opts.DEBUG = 1;
%% test LRR
lambda = 0.001;
opts.loss = 'l21';
tic
[X,E,obj,err,iter] = lrr(A,A,lambda,opts);
toc
obj
err
iter
%% test Low-Rank and Sparse Representation
lambda1 = 0.1;
lambda2 = 4;
opts.loss = 'l21';
tic
[X,E,obj,err,iter] = lrsr(A,B,lambda1,lambda2,opts);
toc
obj
err
iter
%% test Latent LRR
lambda = 0.1;
opts.loss = 'l1';
tic
[Z,L,obj,err,iter] = latlrr(A,lambda,opts);
toc
obj
err
iter
%% test RPCA
n = 100;
r = 5;
X = rand(n,r)*rand(r,n);
lambda = 1/sqrt(n);
opts.loss = 'l1';
opts.DEBUG = 1;
tic
[L,S,obj,err,iter] = rpca(X,lambda,opts);
toc
recoveryerror = norm(L-X,'fro')
err
iter
%% test IGC, improved graph clustering
n = 100;
r = 5;
X = rand(n,r)*rand(r,n);
C = rand(size(X));
lambda = 1/sqrt(n);
opts.loss = 'l1';
opts.DEBUG = 1;
tic
[L,S,obj,err,iter] = igc(X,C,lambda,opts);
toc
err
iter
%% test Multi-task Low-rank Affinity Pursuit
n1 = 100;
n2 = 200;
K = 10;
X = rand(n1,n2,K);
lambda = 0.1;
alpha = 0.2;
opts.loss = 'l1';
tic
[Z,E,obj,err,iter] = mlap(X,lambda,alpha,opts);
toc
err
iter
%% test RMSC
n = 100;
r = 5;
m = 10;
X = rand(n,n,m);
lambda = 1/sqrt(n);
opts.loss = 'l1';
opts.DEBUG = 1;
tic
[L,S,obj,err,iter] = rmsc(X,lambda,opts);
toc
err
iter
%% test sparse spectral clustering
lambda = 0.001;
n = 100;
X = rand(n,n);
W = abs(X'*X);
I = eye(n);
D = diag(sum(W,1));
L = I - sqrt(inv(D))*W*sqrt(inv(D));
k = 5;
[P,obj,err,iter] = sparsesc(L,lambda,k,opts);
obj
err
iter
%% test LRMC and LRMCR
n1 = 100;
n2 = 200;
r = 5;
X = rand(n1,r)*rand(r,n2);
p = 0.6;
omega = find(rand(n1,n2)<p);
M = zeros(n1,n2);
M(omega) = X(omega);
[Xhat,obj,err,iter] = lrmc(M, omega, opts);
norm(Xhat-X,'fro')
E = randn(n1,n2)/100;
M = X+E;
lambda = 0.1;
[Xhat,obj,err,iter] = lrmcR(M, omega, lambda, opts);
norm(Xhat-X,'fro')