-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_acc_of_diff_fs_clf.py
230 lines (182 loc) · 8.9 KB
/
test_acc_of_diff_fs_clf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import warnings
warnings.filterwarnings(action='ignore', category=UserWarning, module='gensim')
warnings.filterwarnings("ignore", category=DeprecationWarning)
from itertools import compress, product
import os, glob,csv
import statistics
from collections import Counter
import numpy as np
from sklearn import metrics
from sklearn import preprocessing
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
from sklearn.metrics import classification_report, confusion_matrix
from util import label_features
import pandas as pd
import pickle as pk
from util import write_result_two_class,write_title_two_class,write_result_three_class,write_title_three_class
def combinations(items):
return (set(compress(items, mask)) for mask in product(*[[0, 1]] * len(items)))
class ML_temp_file(object):
'''
This class is aiming to save the necessary metrics and information in each cross validation loop.
The saved information could used to reproduce the experimental results, and test accuracies of combinations of
different feature sets.
'''
def __init__(self, cv_num, feature_set_name,clf_model, fs_model, best_score_in_grid_search, clf_scores, important_features,
important_features_name,doc_label,true_label):
self.cv_num=cv_num
self.feature_set_name=feature_set_name
self.clf_model = clf_model # classification model
self.fs_model = fs_model # feature selection model
self.best_score_in_grid_search = best_score_in_grid_search
self.clf_scores = clf_scores
self.important_features = important_features
self.important_features_name = important_features_name
self.doc_label=doc_label
self.true_label=true_label
def to_pickle(self,path):
fp=open(path,"wb")
pk.dump(self,fp)
def classifier_output_weight(Best_scores_pool,baseline):
weights=[]
baseline=0.5
for item in Best_scores_pool:
if item==1:
item=0.999
weight=0.5*np.log((1/baseline-1)*item/(1-item))
weights.append(weight)
return weights
def main():
Classifier_list = ['Logistic Regression', 'SVM', 'Gradient Boosting', 'AdaBoost', 'RandomForest']
imp_features_add = './result/Important_features.csv'
Random_seed = 21 # fix random seed for a fully deterministically-reproducible run
# # Load tmp files
# Load feature set names
file_addresses = glob.glob('./tmp/*pickle')
predict_item_names=[]
if file_addresses != []:
for file_address in file_addresses:
predict_item_names.append(os.path.basename(file_address).split(".")[0].split('_')[0])
predict_item_name=sorted(set(predict_item_names))
for i in range(len(predict_item_name)):
if predict_item_name[i]=='CV':
save_file_address='./result/prediction_results.csv'
else:
save_file_address ='./result/'+predict_item_name[i]+'_prediction_results.csv'
file = [s for s in file_addresses if predict_item_name[i] in s]
fr = open(file[0], 'rb')
ML_temp_file = pk.load(fr)
doc_label = ML_temp_file.doc_label
counter = Counter(doc_label)
baseline = counter.most_common(1)[0][1] / len(doc_label)
if len(set(doc_label)) == 2:
write_title_two_class(save_file_address)
elif len(set(doc_label)) == 3:
write_title_three_class(save_file_address)
feature_set_name=[]
cv_num=[]
num_feature_sets=0
if file_addresses != []:
for file_address in file_addresses:
feature_set_name.append(os.path.basename(file_address).split(".")[0].split('_')[-1])
cv_num.append(int(os.path.basename(file_address).split(".")[0].split('_')[-2]))
feature_set_names=list(set(feature_set_name))
feature_set_names.sort()
num_feature_sets=len(feature_set_names)
cv_num=max(cv_num)
print("Info: num_feature_sets is", num_feature_sets,feature_set_names,"No. CV loop is: ",cv_num)
else:
print("ERROR: No feature set input")
quit()
# # get the all the combinations of different feature sets
# if num_feature_sets < 12:
# testing_list=list(combinations(range(num_feature_sets)))[1:]
# print("Info: posible combinations: ",len(testing_list))
# else:
# print("ERROR: too many feature set, please change searching method.")
# quit()
#calculate the classification results
single_feature_sets=[[x] for x in range(0,len(feature_set_names))]
Verbal=[[1,3,4,5]]
NonVerbal=[[0,2,6]]
All=[[0,1,2,3,4,5,6]]
testing_list=single_feature_sets+Verbal+NonVerbal+All
title_name=['Conver', 'Diction', 'DisVoice', 'Doc2Vec', 'LDA', 'LIWC', 'OpenSmile','Verbal','Nonverbal','All']
Classifier_list = ['Logistic Regression', 'SVM', 'Gradient Boosting', 'AdaBoost', 'RandomForest','all classifier']
start_loop=1
acc=[]
for clf in Classifier_list:
acc_clf=[]
for item in testing_list:
#print(list(item))
acc_=read_tmp_file(file_addresses,feature_set_names,list(item),doc_label,save_file_address,[clf],baseline,start_loop,len(testing_list)*len(Classifier_list),cv_num,title_name)
start_loop=start_loop+1
acc_clf.append(acc_)
acc.append(acc_clf)
df=pd.DataFrame(acc,index=Classifier_list,columns=title_name)
df.to_csv('./result/test_all_clf_fs_results.csv')
def read_tmp_file(file_addresses,feature_set_names,feature_sets_id,doc_label,save_file_address,Classifier_list,baseline,start_loop,end_loop,cv_num,title_name):
clf_acc_pool = []
ConfuMatrix_pool = []
ClfReport_pool = []
AUC_pool, predict_label_pool, Important_features_pool, baseline_pool, num_top_pool = [], [], [], [], []
scores = []
predict_label = []
real_label = []
all_classifier_list = ['Logistic Regression', 'SVM', 'Gradient Boosting', 'AdaBoost', 'RandomForest']
for loop in range(int(cv_num)+1):
print("====CV: ",str(loop)," === Combination: ",str(start_loop),"/",str(end_loop),"==",str([feature_set_names[i] for i in feature_sets_id]),"========")
files_in_the_loop=[s for s in file_addresses if '_'+str(loop)+'_' in s]
Best_scores_pool = []
pred_prob_pool = []
#print("feature set names: ", [feature_set_names[i] for i in feature_sets_id])
for id in feature_sets_id:
file = [s for s in files_in_the_loop if '_' + feature_set_names[id] in s]
fr=open(file[0],'rb')
ML_temp_file=pk.load(fr)
Best_scores=ML_temp_file.best_score_in_grid_search[0]
pred_prob=ML_temp_file.clf_scores[0]
if not Classifier_list==['all classifier']:
classifier_id=[i for i,x in enumerate(all_classifier_list) if x in Classifier_list]
print([Best_scores[x] for x in classifier_id],[pred_prob[x] for x in classifier_id])
Best_scores_pool = Best_scores_pool + [Best_scores[x] for x in classifier_id]
pred_prob_pool = pred_prob_pool + [pred_prob[x] for x in classifier_id]
else:
Best_scores_pool = Best_scores_pool + Best_scores
pred_prob_pool = pred_prob_pool + pred_prob
voting_weight = classifier_output_weight(Best_scores_pool, baseline)
pred_prob_total = pred_prob_pool
# get comprehensive prediction scores and its predictive class
pred_score = np.array(pred_prob_total[0])
pred_score.fill(0)
for item in range(len(voting_weight)):
add = voting_weight[item] * np.array(pred_prob_total[item])
pred_score = pred_score + add
pred_score = pred_score / pred_score.sum(axis=1, keepdims=1)
pred = [list(sorted(set(doc_label)))[item.index(max(item))] for item in pred_score.tolist()]
print('True: ', ML_temp_file.true_label, 'Predict: ', pred)
print(pred_score.tolist())
scores=scores+pred_score.tolist()
predict_label=predict_label+pred
real_label=real_label+ML_temp_file.true_label
predict_label = np.array(predict_label)
acc_result = accuracy_score(real_label, predict_label)
if len(set(predict_label)) == 2:
scores = np.array(scores)
# print(scores)
fpr, tpr, thresholds = metrics.roc_curve(real_label, scores[:, 1])
auc = metrics.auc(fpr, tpr)
auc1 = max(auc, 1 - auc)
elif len(set(predict_label)) == 3:
auc1 = 0
CM = confusion_matrix(real_label, predict_label).ravel()
CR_print = classification_report(real_label, predict_label)
CR = precision_recall_fscore_support(real_label, predict_label)
print("classification accuracy:", acc_result)
print("Confusion Matrix: ", CM)
print(CR_print)
print(CR)
print(auc1)
return acc_result
if __name__ == "__main__":
main()