-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain_retriever.py
458 lines (430 loc) · 21.3 KB
/
main_retriever.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
import torch
from retriever import UnifiedRetriever
from data_retriever import ZeshelDataset, transform_entities, load_data, \
get_all_entity_hiddens, get_hard_negative, \
Data
from util import Logger
import argparse
import numpy as np
import os
import random
import torch.nn as nn
from transformers import BertTokenizer, BertModel, AdamW, \
get_linear_schedule_with_warmup, get_constant_schedule, RobertaTokenizer, \
RobertaModel
from torch.utils.data import DataLoader
from tqdm import tqdm
def set_seeds(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
def configure_optimizer(args, model, num_train_examples):
# https://github.com/google-research/bert/blob/master/optimization.py#L25
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters()
if not any(nd in n for nd in no_decay)],
'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters()
if any(nd in n for nd in no_decay)],
'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.lr,
eps=args.adam_epsilon)
num_train_steps = int(num_train_examples / args.B /
args.gradient_accumulation_steps * args.epochs)
num_warmup_steps = int(num_train_steps * args.warmup_proportion)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=num_warmup_steps,
num_training_steps=num_train_steps)
return optimizer, scheduler, num_train_steps, num_warmup_steps
def configure_optimizer_simple(args, model, num_train_examples):
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
num_train_steps = int(num_train_examples / args.B /
args.gradient_accumulation_steps * args.epochs)
num_warmup_steps = 0
scheduler = get_constant_schedule(optimizer)
return optimizer, scheduler, num_train_steps, num_warmup_steps
def evaluate(mention_loader, model, all_candidates_embeds, k, device,
len_en_loader,
too_large=False, en_hidden_path=None):
model.eval()
if not too_large:
if hasattr(model, 'module'):
model.module.evaluate_on = True
model.module.candidates_embeds = all_candidates_embeds
else:
model.evaluate_on = True
model.candidates_embeds = all_candidates_embeds
nb_samples = 0
r_k = 0
acc = 0
with torch.no_grad():
for i, batch in tqdm(enumerate(mention_loader)):
if not too_large:
scores = model(batch[0], batch[1], None, None)
else:
scores = []
for j in range(len_en_loader):
file_path = os.path.join(en_hidden_path,
'en_hiddens_%s.pt' % j)
en_embeds = torch.load(file_path)
if hasattr(model, 'module'):
model.module.evaluate_on = True
model.module.candidates_embeds = en_embeds
else:
model.evaluate_on = True
model.candidates_embeds = en_embeds
score = model(batch[0], batch[1], None,
None).detach()
scores.append(score)
scores = torch.cat(scores, dim=1)
labels = batch[2].to(device)
top_k = scores.topk(k, dim=1)[1]
preds = top_k[:, 0]
r_k += (top_k == labels.to(device)).sum().item()
nb_samples += scores.size(0)
acc += (preds == labels.squeeze(1).to(device)).sum().item()
r_k /= nb_samples
acc /= nb_samples
if hasattr(model, 'module'):
model.module.evaluate_on = False
model.module.candidates_embeds = None
else:
model.evaluate_on = False
model.candidates_embeds = None
return r_k, acc
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def main(args):
set_seeds(args)
# configure logger
logger = Logger(args.model + '.log', True)
logger.log(str(args))
# load data and initialize model and dataset
samples_train, samples_heldout_train_seen, \
samples_heldout_train_unseen, samples_val, samples_test, \
train_doc, heldout_train_doc, heldout_train_unseen_doc, \
heldout_train_unseen_doc, val_doc, test_doc = load_data(
args.data_dir)
num_rands = int(args.num_cands * args.cands_ratio)
num_hards = args.num_cands - num_rands
# get model and tokenizer
if args.pre_model == 'Bert':
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
encoder = BertModel.from_pretrained('bert-base-uncased')
elif args.pre_model == 'Roberta':
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
encoder = RobertaModel.from_pretrained('roberta-base')
else:
raise ValueError('wrong encoder type')
# encoder=MLPEncoder(args.max_len)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if args.type_model == 'poly':
attention_type = 'soft_attention'
else:
attention_type = 'hard_attention'
if args.type_model == 'dual':
num_mention_vecs = 1
num_entity_vecs = 1
elif args.type_model == 'multi_vector':
num_mention_vecs = 1
num_entity_vecs = args.num_entity_vecs
else:
num_mention_vecs = args.num_mention_vecs
num_entity_vecs = args.num_entity_vecs
model = UnifiedRetriever(encoder, device, num_mention_vecs, num_entity_vecs,
args.mention_use_codes, args.entity_use_codes,
attention_type, None, False)
if args.resume_training:
cpt = torch.load(args.model) if device.type == 'cuda' \
else torch.load(args.model, map_location=torch.device('cpu'))
model.load_state_dict(cpt['sd'])
dp = torch.cuda.device_count() > 1
if dp:
logger.log('Data parallel across {:d} GPUs {:s}'
''.format(len(args.gpus.split(',')), args.gpus))
model = nn.DataParallel(model)
model.to(device)
logger.log('transform train entities')
all_train_entity_token_ids, all_train_masks = transform_entities(train_doc,
args.max_len,
tokenizer)
logger.log('transform valid and test entities')
all_val_entity_token_ids, all_val_masks = transform_entities(val_doc,
args.max_len,
tokenizer)
all_test_entity_token_ids, all_test_masks = transform_entities(test_doc,
args.max_len,
tokenizer)
data = Data(train_doc, val_doc, test_doc, tokenizer,
all_train_entity_token_ids, all_train_masks,
all_val_entity_token_ids, all_val_masks,
all_test_entity_token_ids, all_test_masks, args.max_len,
samples_train, samples_val, samples_test)
train_en_loader, val_en_loader, test_en_loader, train_men_loader, \
val_men_loader, test_men_loader = data.get_loaders(args.mention_bsz,
args.entity_bsz)
model.train()
# configure optimizer
num_train_samples = len(samples_train)
if args.simpleoptim:
optimizer, scheduler, num_train_steps, num_warmup_steps \
= configure_optimizer_simple(args, model, num_train_samples)
else:
optimizer, scheduler, num_train_steps, num_warmup_steps \
= configure_optimizer(args, model, num_train_samples)
if args.resume_training:
optimizer.load_state_dict(cpt['opt_sd'])
scheduler.load_state_dict(cpt['scheduler_sd'])
# train
logger.log('***** train *****')
logger.log('# train samples: {:d}'.format(num_train_samples))
logger.log('# epochs: {:d}'.format(args.epochs))
logger.log(' batch size: {:d}'.format(args.B))
logger.log(' gradient accumulation steps {:d}'
''.format(args.gradient_accumulation_steps))
logger.log(
' effective training batch size with accumulation: {:d}'
''.format(args.B * args.gradient_accumulation_steps))
logger.log(' # training steps: {:d}'.format(num_train_steps))
logger.log(' # warmup steps: {:d}'.format(num_warmup_steps))
logger.log(' learning rate: {:g}'.format(args.lr))
logger.log(' # parameters: {:d}'.format(count_parameters(model)))
# start_time = datetime.now()
step_num = 0
tr_loss, logging_loss = 0.0, 0.0
if args.resume_training:
step_num = cpt['step_num']
tr_loss, logging_loss = cpt['tr_loss'], cpt['logging_loss']
model.zero_grad()
best_val_perf = float('-inf')
start_epoch = 1
if args.resume_training:
start_epoch = cpt['epoch'] + 1
for epoch in range(start_epoch, args.epochs + 1):
logger.log('\nEpoch {:d}'.format(epoch))
if args.type_cands == 'hard_adjusted_negative':
distribution_sampling = True
adjust_logits = True
num_cands = args.num_cands
elif args.type_cands == 'hard_negative':
distribution_sampling = True
adjust_logits = False
num_cands = args.num_cands
elif args.type_cands == 'mixed_negative':
distribution_sampling = False
adjust_logits = False
num_cands = num_hards
else:
raise ValueError('type candidates wrong')
if args.type_cands == 'mixed_negative' and num_hards == 0:
candidates = None
else:
all_train_cands_embeds = get_all_entity_hiddens(train_en_loader,
model,
args.store_en_hiddens,
args.en_hidden_path)
candidates = get_hard_negative(train_men_loader, model, num_cands,
len(train_en_loader), device,
distribution_sampling,
args.exclude_golds,
args.store_en_hiddens,
all_train_cands_embeds,
args.en_hidden_path,
adjust_logits, args.smoothing_value)
train_set = ZeshelDataset(tokenizer, samples_train, train_doc,
args.max_len,
candidates, device, num_rands,
args.type_cands,
all_train_entity_token_ids,
all_train_masks)
train_loader = DataLoader(train_set, args.B, shuffle=True,
drop_last=False)
for step, batch in enumerate(train_loader):
model.train()
loss = model(*batch)[0]
if len(args.gpus) > 1:
loss = loss.mean()
loss.backward()
tr_loss += loss.item()
# print('loss is %f' % loss.item())
if (step + 1) % args.gradient_accumulation_steps == 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
optimizer.step()
scheduler.step()
model.zero_grad()
step_num += 1
if step_num % args.logging_steps == 0:
avg_loss = (tr_loss - logging_loss) / args.logging_steps
logger.log('Step {:10d}/{:d} | Epoch {:3d} | '
'Batch {:5d}/{:5d} | '
'Average Loss {:8.4f}'
''.format(step_num, num_train_steps,
epoch, step + 1,
len(train_loader), avg_loss))
logging_loss = tr_loss
# eval_train_result = evaluate(train_loader, model, args.k,device)[0]
all_val_cands_embeds = get_all_entity_hiddens(val_en_loader, model,
args.store_en_hiddens,
args.en_hidden_path)
eval_result = evaluate(val_men_loader, model, all_val_cands_embeds,
args.k, device, len(val_en_loader),
args.store_en_hiddens, args.en_hidden_path)
logger.log('Done with epoch {:3d} | train loss {:8.4f} | '
'validation recall {:8.4f}'
'|validation accuracy {:8.4f}'.format(
epoch,
tr_loss / step_num,
eval_result[0],
eval_result[1]
))
save_model = (eval_result[0] >= best_val_perf) if args.eval_criterion \
== 'recall' else \
(eval_result[1] >= best_val_perf)
if save_model:
logger.log('------- new best val perf: {:g} --> {:g} '
''.format(best_val_perf, eval_result[0]))
best_val_perf = eval_result[0]
torch.save({'opt': args,
'sd': model.module.state_dict() if dp else model.state_dict(),
'perf': best_val_perf, 'epoch': epoch,
'opt_sd': optimizer.state_dict(),
'scheduler_sd': scheduler.state_dict(),
'tr_loss': tr_loss, 'step_num': step_num,
'logging_loss': logging_loss},
args.model)
else:
logger.log('')
# update dataset and dataloader
# torch.cuda.empty_cache()
# torch.cuda.empty_cache()
# test model on test dataset
package = torch.load(args.model) if device.type == 'cuda' \
else torch.load(args.model, map_location=torch.device('cpu'))
new_state_dict = package['sd']
# encoder=MLPEncoder(args.max_len)
if args.pre_model == 'Bert':
encoder = BertModel.from_pretrained('bert-base-uncased')
elif args.pre_model == 'Roberta':
encoder = RobertaModel.from_pretrained('roberta-base')
else:
raise ValueError('wrong encoder type')
model = UnifiedRetriever(encoder, device, num_mention_vecs, num_entity_vecs,
args.mention_use_codes, args.entity_use_codes,
attention_type, None, False)
model.load_state_dict(new_state_dict)
if dp:
logger.log('Data parallel across {:d} GPUs {:s}'
''.format(len(args.gpus.split(',')), args.gpus))
model = nn.DataParallel(model)
model.to(device)
model.eval()
all_test_cands_embeds = get_all_entity_hiddens(test_en_loader, model,
args.store_en_hiddens,
args.en_hidden_path)
test_result = evaluate(test_men_loader, model, all_test_cands_embeds,
args.k, device, len(test_en_loader),
args.store_en_hiddens, args.en_hidden_path)
logger.log(' test recall@{:d} : {:8.4f}'
'| test accuracy : {:8.4f}'.format(args.k, test_result[0],
test_result[1]))
# test_train_result = evaluate(train_loader, model,args)
# logger.log('test train acc {:f}'.format(test_train_result))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str,
help='model path')
parser.add_argument('--resume_training', action='store_true',
help='resume training from checkpoint?')
parser.add_argument('--max_len', type=int, default=128,
help='max length of the mention input '
'and the entity input')
parser.add_argument('--num_hards', type=int, default=10,
help='the number of the nearest neighbors we use to '
'construct hard negatives')
parser.add_argument('--type_cands', type=str,
default='mixed_negative',
choices=['mixed_negative',
'hard_negative',
'hard_adjusted_negative'],
help='the type of negative we use during training')
parser.add_argument('--data_dir', type=str,
help='the data directory')
parser.add_argument('--B', type=int, default=128,
help='the batch size')
parser.add_argument('--lr', type=float, default=2e-5,
choices=[5e-6, 1e-5, 2e-5, 5e-5, 2e-4, 5e-4, 0.002,
0.001],
help='the learning rate')
parser.add_argument('--epochs', type=int, default=3,
help='the number of training epochs')
parser.add_argument('--k', type=int, default=64,
help='recall@k when evaluate')
parser.add_argument('--warmup_proportion', type=float, default=0.1,
help='proportion of training steps to perform linear '
'learning rate warmup for [%(default)g]')
parser.add_argument('--weight_decay', type=float, default=0.01,
help='weight decay [%(default)g]')
parser.add_argument('--adam_epsilon', type=float, default=1e-6,
help='epsilon for Adam optimizer [%(default)g]')
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help='num gradient accumulation steps [%(default)d]')
parser.add_argument('--seed', type=int, default=42,
help='random seed [%(default)d]')
parser.add_argument('--num_workers', type=int, default=0,
help='num workers [%(default)d]')
parser.add_argument('--simpleoptim', action='store_true',
help='simple optimizer (constant schedule, '
'no weight decay?')
parser.add_argument('--clip', type=float, default=1,
help='gradient clipping [%(default)g]')
parser.add_argument('--logging_steps', type=int, default=1000,
help='num logging steps [%(default)d]')
parser.add_argument('--gpus', default='', type=str,
help='GPUs separated by comma [%(default)s]')
parser.add_argument('--eval_criterion', type=str, default='recall',
choices=['recall', 'accuracy'],
help='the criterion for selecting model')
parser.add_argument('--pre_model', default='Bert',
choices=['Bert', 'Roberta'],
type=str, help='the encoder for train')
parser.add_argument('--cands_ratio', default=1.0, type=float,
help='the ratio between random candidates and hard '
'candidates')
parser.add_argument('--num_cands', default=128, type=int,
help='the total number of candidates')
parser.add_argument('--smoothing_value', default=1, type=float,
help=' smoothing factor when sampling negatives '
'according to model distribution')
parser.add_argument('--eval_batchsize', type=int, default=512,
help='the batch size')
parser.add_argument('--mention_bsz', type=int, default=512,
help='the batch size')
parser.add_argument('--entity_bsz', type=int, default=512,
help='the batch size')
parser.add_argument('--exclude_golds', action='store_true',
help='exclude golds when sampling?')
parser.add_argument('--type_model', type=str,
default='dual',
choices=['dual',
'sum_max',
'multi_vector',
'poly'],
help='the type of model')
parser.add_argument('--num_mention_vecs', type=int, default=8,
help='the number of mention vectors ')
parser.add_argument('--num_entity_vecs', type=int, default=8,
help='the number of entity vectors ')
parser.add_argument('--mention_use_codes', action='store_true',
help='use codes for mention embeddings?')
parser.add_argument('--entity_use_codes', action='store_true',
help='use codes for entity embeddings?')
parser.add_argument('--en_hidden_path', type=str,
help='all entity hidden states path')
parser.add_argument('--store_en_hiddens', action='store_true',
help='store entity hiddens?')
args = parser.parse_args()
# Set environment variables before all else.
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpus # Sets torch.cuda behavior
main(args)