-
Notifications
You must be signed in to change notification settings - Fork 60
/
model.py
executable file
·375 lines (330 loc) · 16.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import torch
import random
import numpy as np
from config import global_config as cfg
from reader import CamRest676Reader, get_glove_matrix
from reader import KvretReader
from tsd_net import TSD, cuda_, nan
from torch.optim import Adam, RMSprop
from torch.autograd import Variable
from reader import pad_sequences
import argparse, time
from metric import CamRestEvaluator, KvretEvaluator
import logging
class Model:
def __init__(self, dataset):
reader_dict = {
'camrest': CamRest676Reader,
'kvret': KvretReader,
}
model_dict = {
'TSD':TSD
}
evaluator_dict = {
'camrest': CamRestEvaluator,
'kvret': KvretEvaluator,
}
self.reader = reader_dict[dataset]()
self.m = model_dict[cfg.m](embed_size=cfg.embedding_size,
hidden_size=cfg.hidden_size,
vocab_size=cfg.vocab_size,
layer_num=cfg.layer_num,
dropout_rate=cfg.dropout_rate,
z_length=cfg.z_length,
max_ts=cfg.max_ts,
beam_search=cfg.beam_search,
beam_size=cfg.beam_size,
eos_token_idx=self.reader.vocab.encode('EOS_M'),
vocab=self.reader.vocab,
teacher_force=cfg.teacher_force,
degree_size=cfg.degree_size,
reader=self.reader)
self.EV = evaluator_dict[dataset] # evaluator class
if cfg.cuda: self.m = self.m.cuda()
self.optim = Adam(lr=cfg.lr, params=filter(lambda x: x.requires_grad, self.m.parameters()),weight_decay=5e-5)
self.base_epoch = -1
def _convert_batch(self, py_batch, prev_z_py=None):
u_input_py = py_batch['user']
u_len_py = py_batch['u_len']
kw_ret = {}
if cfg.prev_z_method == 'concat' and prev_z_py is not None:
for i in range(len(u_input_py)):
eob = self.reader.vocab.encode('EOS_Z2')
if eob in prev_z_py[i] and prev_z_py[i].index(eob) != len(prev_z_py[i]) - 1:
idx = prev_z_py[i].index(eob)
u_input_py[i] = prev_z_py[i][:idx + 1] + u_input_py[i]
else:
u_input_py[i] = prev_z_py[i] + u_input_py[i]
u_len_py[i] = len(u_input_py[i])
for j, word in enumerate(prev_z_py[i]):
if word >= cfg.vocab_size:
prev_z_py[i][j] = 2 #unk
elif cfg.prev_z_method == 'separate' and prev_z_py is not None:
for i in range(len(prev_z_py)):
eob = self.reader.vocab.encode('EOS_Z2')
if eob in prev_z_py[i] and prev_z_py[i].index(eob) != len(prev_z_py[i]) - 1:
idx = prev_z_py[i].index(eob)
prev_z_py[i] = prev_z_py[i][:idx + 1]
for j, word in enumerate(prev_z_py[i]):
if word >= cfg.vocab_size:
prev_z_py[i][j] = 2 #unk
prev_z_input_np = pad_sequences(prev_z_py, cfg.max_ts, padding='post', truncating='pre').transpose((1, 0))
prev_z_len = np.array([len(_) for _ in prev_z_py])
prev_z_input = cuda_(Variable(torch.from_numpy(prev_z_input_np).long()))
kw_ret['prev_z_len'] = prev_z_len
kw_ret['prev_z_input'] = prev_z_input
kw_ret['prev_z_input_np'] = prev_z_input_np
degree_input_np = np.array(py_batch['degree'])
u_input_np = pad_sequences(u_input_py, cfg.max_ts, padding='post', truncating='pre').transpose((1, 0))
z_input_np = pad_sequences(py_batch['bspan'], padding='post').transpose((1, 0))
m_input_np = pad_sequences(py_batch['response'], cfg.max_ts, padding='post', truncating='post').transpose(
(1, 0))
u_len = np.array(u_len_py)
m_len = np.array(py_batch['m_len'])
degree_input = cuda_(Variable(torch.from_numpy(degree_input_np).float()))
u_input = cuda_(Variable(torch.from_numpy(u_input_np).long()))
z_input = cuda_(Variable(torch.from_numpy(z_input_np).long()))
m_input = cuda_(Variable(torch.from_numpy(m_input_np).long()))
kw_ret['z_input_np'] = z_input_np
return u_input, u_input_np, z_input, m_input, m_input_np,u_len, m_len, \
degree_input, kw_ret
def train(self):
lr = cfg.lr
prev_min_loss, early_stop_count = 1 << 30, cfg.early_stop_count
train_time = 0
for epoch in range(cfg.epoch_num):
sw = time.time()
if epoch <= self.base_epoch:
continue
self.training_adjust(epoch)
self.m.self_adjust(epoch)
sup_loss = 0
sup_cnt = 0
data_iterator = self.reader.mini_batch_iterator('train')
optim = self.optim
for iter_num, dial_batch in enumerate(data_iterator):
turn_states = {}
prev_z = None
for turn_num, turn_batch in enumerate(dial_batch):
if cfg.truncated:
logging.debug('iter %d turn %d' % (iter_num, turn_num))
optim.zero_grad()
u_input, u_input_np, z_input, m_input, m_input_np, u_len, \
m_len, degree_input, kw_ret \
= self._convert_batch(turn_batch, prev_z)
loss, pr_loss, m_loss, turn_states = self.m(u_input=u_input, z_input=z_input,
m_input=m_input,
degree_input=degree_input,
u_input_np=u_input_np,
m_input_np=m_input_np,
turn_states=turn_states,
u_len=u_len, m_len=m_len, mode='train', **kw_ret)
loss.backward(retain_graph=turn_num != len(dial_batch) - 1)
grad = torch.nn.utils.clip_grad_norm(self.m.parameters(), 5.0)
optim.step()
sup_loss += loss.data.cpu().numpy()[0]
sup_cnt += 1
logging.debug(
'loss:{} pr_loss:{} m_loss:{} grad:{}'.format(loss.data[0],
pr_loss.data[0],
m_loss.data[0],
grad))
prev_z = turn_batch['bspan']
epoch_sup_loss = sup_loss / (sup_cnt + 1e-8)
train_time += time.time() - sw
logging.info('Traning time: {}'.format(train_time))
logging.info('avg training loss in epoch %d sup:%f' % (epoch, epoch_sup_loss))
valid_sup_loss, valid_unsup_loss = self.validate()
logging.info('validation loss in epoch %d sup:%f unsup:%f' % (epoch, valid_sup_loss, valid_unsup_loss))
logging.info('time for epoch %d: %f' % (epoch, time.time()-sw))
valid_loss = valid_sup_loss + valid_unsup_loss
self.save_model(epoch)
if valid_loss <= prev_min_loss:
self.save_model(epoch)
prev_min_loss = valid_loss
else:
early_stop_count -= 1
lr *= cfg.lr_decay
if not early_stop_count:
break
self.optim = Adam(lr=lr, params=filter(lambda x: x.requires_grad, self.m.parameters()),
weight_decay=5e-5)
logging.info('early stop countdown %d, learning rate %f' % (early_stop_count, lr))
def eval(self, data='test'):
self.m.eval()
self.reader.result_file = None
data_iterator = self.reader.mini_batch_iterator(data)
mode = 'test' if not cfg.pretrain else 'pretrain_test'
for batch_num, dial_batch in enumerate(data_iterator):
turn_states = {}
prev_z = None
for turn_num, turn_batch in enumerate(dial_batch):
u_input, u_input_np, z_input, m_input, m_input_np, u_len, \
m_len, degree_input, kw_ret \
= self._convert_batch(turn_batch, prev_z)
m_idx, z_idx, turn_states = self.m(mode=mode, u_input=u_input, u_len=u_len, z_input=z_input,
m_input=m_input,
degree_input=degree_input, u_input_np=u_input_np,
m_input_np=m_input_np, m_len=m_len, turn_states=turn_states,
dial_id=turn_batch['dial_id'], **kw_ret)
self.reader.wrap_result(turn_batch, m_idx, z_idx, prev_z=prev_z)
prev_z = z_idx
ev = self.EV(result_path=cfg.result_path)
res = ev.run_metrics()
self.m.train()
return res
def validate(self, data='dev'):
self.m.eval()
data_iterator = self.reader.mini_batch_iterator(data)
sup_loss, unsup_loss = 0, 0
sup_cnt, unsup_cnt = 0, 0
for dial_batch in data_iterator:
turn_states = {}
for turn_num, turn_batch in enumerate(dial_batch):
u_input, u_input_np, z_input, m_input, m_input_np, u_len, \
m_len, degree_input, kw_ret \
= self._convert_batch(turn_batch)
loss, pr_loss, m_loss, turn_states = self.m(u_input=u_input, z_input=z_input,
m_input=m_input,
turn_states=turn_states,
degree_input=degree_input,
u_input_np=u_input_np, m_input_np=m_input_np,
u_len=u_len, m_len=m_len, mode='train',**kw_ret)
sup_loss += loss.data[0]
sup_cnt += 1
logging.debug(
'loss:{} pr_loss:{} m_loss:{}'.format(loss.data[0], pr_loss.data[0], m_loss.data[0]))
sup_loss /= (sup_cnt + 1e-8)
unsup_loss /= (unsup_cnt + 1e-8)
self.m.train()
print('result preview...')
self.eval()
return sup_loss, unsup_loss
def reinforce_tune(self):
lr = cfg.lr
self.optim = Adam(lr=cfg.lr, params=filter(lambda x: x.requires_grad, self.m.parameters()))
prev_min_loss, early_stop_count = 1 << 30, cfg.early_stop_count
for epoch in range(self.base_epoch + cfg.rl_epoch_num + 1):
mode = 'rl'
if epoch <= self.base_epoch:
continue
epoch_loss, cnt = 0,0
data_iterator = self.reader.mini_batch_iterator('train')
optim = self.optim #Adam(lr=lr, params=filter(lambda x: x.requires_grad, self.m.parameters()), weight_decay=0)
for iter_num, dial_batch in enumerate(data_iterator):
turn_states = {}
prev_z = None
for turn_num, turn_batch in enumerate(dial_batch):
optim.zero_grad()
u_input, u_input_np, z_input, m_input, m_input_np, u_len, \
m_len, degree_input, kw_ret \
= self._convert_batch(turn_batch, prev_z)
loss_rl = self.m(u_input=u_input, z_input=z_input,
m_input=m_input,
degree_input=degree_input,
u_input_np=u_input_np,
m_input_np=m_input_np,
turn_states=turn_states,
dial_id=turn_batch['dial_id'],
u_len=u_len, m_len=m_len, mode=mode, **kw_ret)
if loss_rl is not None:
loss = loss_rl #+ loss_mle * 0.1
loss.backward()
grad = torch.nn.utils.clip_grad_norm(self.m.parameters(), 2.0)
optim.step()
epoch_loss += loss.data.cpu().numpy()[0]
cnt += 1
logging.debug('{} loss {}, grad:{}'.format(mode,loss.data[0],grad))
prev_z = turn_batch['bspan']
epoch_sup_loss = epoch_loss / (cnt + 1e-8)
logging.info('avg training loss in epoch %d sup:%f' % (epoch, epoch_sup_loss))
valid_sup_loss, valid_unsup_loss = self.validate()
logging.info('validation loss in epoch %d sup:%f unsup:%f' % (epoch, valid_sup_loss, valid_unsup_loss))
valid_loss = valid_sup_loss + valid_unsup_loss
#self.save_model(epoch)
if valid_loss <= prev_min_loss:
self.save_model(epoch)
prev_min_loss = valid_loss
else:
early_stop_count -= 1
lr *= cfg.lr_decay
if not early_stop_count:
break
logging.info('early stop countdown %d, learning rate %f' % (early_stop_count, lr))
def save_model(self, epoch, path=None, critical=False):
if not path:
path = cfg.model_path
if critical:
path += '.final'
all_state = {'lstd': self.m.state_dict(),
'config': cfg.__dict__,
'epoch': epoch}
torch.save(all_state, path)
def load_model(self, path=None):
if not path:
path = cfg.model_path
all_state = torch.load(path, map_location='cpu')
self.m.load_state_dict(all_state['lstd'])
self.base_epoch = all_state.get('epoch', 0)
def training_adjust(self, epoch):
return
def freeze_module(self, module):
for param in module.parameters():
param.requires_grad = False
def unfreeze_module(self, module):
for param in module.parameters():
param.requires_grad = True
def load_glove_embedding(self, freeze=False):
initial_arr = self.m.u_encoder.embedding.weight.data.cpu().numpy()
embedding_arr = torch.from_numpy(get_glove_matrix(self.reader.vocab, initial_arr))
self.m.u_encoder.embedding.weight.data.copy_(embedding_arr)
self.m.z_decoder.emb.weight.data.copy_(embedding_arr)
self.m.m_decoder.emb.weight.data.copy_(embedding_arr)
def count_params(self):
module_parameters = filter(lambda p: p.requires_grad, self.m.parameters())
param_cnt = sum([np.prod(p.size()) for p in module_parameters])
print('total trainable params: %d' % param_cnt)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-mode')
parser.add_argument('-model')
parser.add_argument('-cfg', nargs='*')
args = parser.parse_args()
cfg.init_handler(args.model)
cfg.dataset = args.model.split('-')[-1]
if args.cfg:
for pair in args.cfg:
k, v = tuple(pair.split('='))
dtype = type(getattr(cfg, k))
if dtype == type(None):
raise ValueError()
if dtype is bool:
v = False if v == 'False' else True
else:
v = dtype(v)
setattr(cfg, k, v)
logging.info(str(cfg))
if cfg.cuda:
torch.cuda.set_device(cfg.cuda_device)
logging.info('Device: {}'.format(torch.cuda.current_device()))
cfg.mode = args.mode
torch.manual_seed(cfg.seed)
torch.cuda.manual_seed(cfg.seed)
random.seed(cfg.seed)
np.random.seed(cfg.seed)
m = Model(args.model.split('-')[-1])
m.count_params()
if args.mode == 'train':
m.load_glove_embedding()
m.train()
elif args.mode == 'adjust':
m.load_model()
m.train()
elif args.mode == 'test':
m.load_model()
m.eval()
elif args.mode == 'rl':
m.load_model()
m.reinforce_tune()
if __name__ == '__main__':
main()