forked from alex-ritchie/LSPCA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
klspca_MLE_sub.m
129 lines (113 loc) · 3.87 KB
/
klspca_MLE_sub.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
function [Z, L, B, K] = klspca_MLE_sub(X, Y, sigma, k, L0, Kinit)
% Inputs:
% X: (n x p) data matrix columns are features rows are
% observations
%
% Y: (n x q) Response Variables
%
% sigma: kernel bandwidth
%
% k: desired number of reduced dimensions
%
% L0: (p x k) initial guess at a subspace
% -default: pass in L0 = 0 and first k principle
% components will be used
%
% Kinit: (n x n) optional kernel matrix initialization, pass in 0 if you want the program to construct the kernel matrix
%
% Outputs:
%
% Z: (n x k) dimension reduced form of X; A = X*L'
%
% L: (k x p) matrix with rowspan equal to the desired subspace
%
% B: (k x q) regression coefficients mapping reduced X to Y
% i.e. Y = X*L'*B
%
% K: (n x n) kernel matrix
%create kernel matrix
if sigma == 0 && sum(abs(Kinit),'all') == 0 %to specify using a linear kernel (faster if n < p)
X = X*X';
X = X - mean(X); X = (X' - mean(X'))'; %centered kernel matrix
elseif sum(abs(Kinit),'all') == 0
X = gaussian_kernel(X, X, sigma);
else
X = Kinit;
end
%store dimensions:
[n, p] = size(X);
[~, q] = size(Y);
%norms
Xnorm = norm(X, 'fro');
Ynorm = norm(Y, 'fro');
%anonymous function for calculating Bi from Li and X
calc_B = @(X, L) (X*L) \ Y;
% initialize L0 by PCA of X, and B0 by L0
if (sum(sum(L0 ~=0)) == 0)
L = pca(X,'NumComponents',k);
else
L = L0;
end
% initialize the other optimization variables
B = calc_B(X, L);
var_x = (n*(p-k))^-1 * ((norm(X, 'fro')^2-norm(X*L, 'fro')^2));
alpha = max((n*k)^-1 * norm(X*L, 'fro')^2 - var_x, 0);
eta = sqrt(var_x + alpha) - sqrt(var_x);
gamma = (var_x + eta) / eta;
var_y = (n*q)^-1 * norm(Y - X*(L*B), 'fro')^2;
niter = 0;
notConverged = true;
fstar = inf;
while notConverged
% Update old vars
Lprev = L;
fstarprev = fstar;
% set up the optimization subproblem in manopt
warning('off', 'manopt:getHessian:approx')
warning('off', 'manopt:getgradient:approx')
manifold = grassmannfactory(p, k, 1);
problem.M = manifold;
problem.cost = @(L) 0.5*( (1/Ynorm^2)*((1/var_y)*norm(Y - X*(L*(X*L \ Y)), 'fro')^2 + + n*q*log(var_y)) + (1/Xnorm^2)*((1/var_x)*((norm(X, 'fro')^2-(alpha/(var_x+alpha))*norm(X*L, 'fro')^2)) + n*(p-k)*log(var_x) + n*k*log(var_x+alpha)));
problem.egrad = @(L) -(1/var_y)*(1/Ynorm^2)*(X'*(Y-X*(L*(X*L \ Y))))*(X*L \ Y)' - 2*(1/var_x)*(1/Xnorm^2)*(1/gamma)*(X'*(X*L)) + (1/var_x)*(1/Xnorm^2)*(1/gamma^2)*((L*((L'*X')*X))*L + (((X')*X)*L)*L'*L);
options.verbosity = 0;
options.stopfun = @mystopfun;
options.maxiter = 2000;
% solve the subproblem for a number of iterations over the steifel
% manifold
%[L, fstar, info, ~] = barzilaiborwein(problem, L, options);
[L, fstar, info, ~] = conjugategradient(problem, L, options);
%[L, fstar, info, ~] = trustregions(problem, L, options);
% info(end).iter;
% info(end).gradnorm;
% fstar;
%update B
B = calc_B(X, L);
%update var_x
if alpha>0
var_x = (n*(p-k))^-1 * ((norm(X, 'fro')^2-norm(X*L, 'fro')^2));
else
var_x = (n*p)^-1 * norm(X, 'fro')^2;
end
%update alpha
alpha = max((n*k)^-1 * norm(X*L, 'fro')^2 - var_x, 0);
eta = sqrt(var_x + alpha) - sqrt(var_x);
gamma = (var_x + eta) / eta;
%update var_y
var_y = (n*q)^-1 * norm(Y - X*(L*B), 'fro')^2;
%% test for overall convergence
niter = niter+1;
subspace_discrepancy = 1 - detsim(Lprev', L');
if subspace_discrepancy < sstol || niter>500 || (fstar - fstarprev)^2 < sstol
notConverged = false;
end
end
% set the output variables
Z = X*L;
K = X;
end
function stopnow = mystopfun(problem, x, info, last)
stopnow1 = (last >= 3 && info(last-2).cost - info(last).cost < 1e-6);
stopnow2 = info(last).gradnorm <= 1e-6;
stopnow3 = info(last).stepsize <= 1e-8;
stopnow = (stopnow1 && stopnow3) || stopnow2;
end