-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcode1-1.py
164 lines (121 loc) · 5.76 KB
/
code1-1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import numpy as np
import operator
import seaborn as sns
import matplotlib.pyplot as plt
def get_price(prev_price=0,
price__elasticity=1,
energy_transferred_t_1=0,
energy_transferred_t_2=0
):
new_price = prev_price + price__elasticity*(energy_transferred_t_1- energy_transferred_t_2)
return new_price
class Player():
def __init__(self,name,
renewable_boundaries=(0.1,1),
mean_consumption=0.7,
battery_capacity = 1. , #max energy that can be stored
energy_threshold = .30, #min energy needed to work
):
self.name = name
self.battery_status = 0.5
self.mean_consumption = mean_consumption # mean energy needed
self.energy_consumption = np.random.normal(self.mean_consumption, scale=0.05) # energy consumption is normal distributed
self.battery_capacity = battery_capacity
self.battery_min = energy_threshold
self.uniform_boundaries = renewable_boundaries # boundaries for uniform probability for of renewable energy
self.renewable_energy = np.random.uniform(*self.uniform_boundaries)
self.utility = 0
self.delta = self.renewable_energy - self.energy_consumption
def energy_supply(self):
energy_supply = self.renewable_energy - self.energy_consumption
self.battery_status += energy_supply
return self.battery_status
def new_day(self):
self.energy_consumption = np.random.normal(self.mean_consumption, scale=0.05)
self.renewable_energy = np.random.uniform(*self.uniform_boundaries)
def do_nothing(self):
self.utility = 0
def buy_energy(self, energy_to_buy, energy_transfer, price):
self.utility=0
self.battery_status += energy_to_buy
if energy_transfer > 0:
if energy_to_buy >= energy_transfer:
self.utility = -price*(b*energy_transfer + (energy_to_buy - energy_transfer))
else:
self.utility = -price*b*energy_to_buy
elif energy_transfer < 0:
self.utility = -price*energy_to_buy
else:
self.utility = -price*energy_to_buy
def sell_energy(self, energy_to_sell, energy_transfer, price):
self.utility = 0
self.battery_status -= energy_to_sell
if energy_transfer > 0:
if energy_to_sell >= energy_transfer:
self.utility = price* (s*energy_transfer + (energy_to_sell - energy_transfer))
else:
self.utility = price*s*energy_to_sell
elif energy_transfer < 0:
self.utility = price*energy_to_sell
else:
self.utility = price*energy_to_sell
def static_game(players = [], days=100, start_price=1, price_elasticity=1, grid_sell=1.5, grid_buy=1.5):
global s
s = grid_sell
global b
b = grid_buy
num_players = len(players) # number of players
utility = np.zeros(shape=(num_players, days)) # utility of every player on every day
game_state = np.zeros(shape=(num_players, days)) # battery of every player on every day
price_series = np.zeros(shape=(1, days)) # price of every day
temp1 = 0
temp2 = 0
price = get_price(start_price, price_elasticity, 0, 0)
for w in range(days):
utility[:,w] = [x.utility for x in players]
game_state[:,w] = [x.battery_status for x in players]
price_series[0, w] = price
seller = np.array([]) # list of players that want to sell today
buyer = np.array([]) # list of players that want to buy today
idle = np.array([]) # list of players that want to stay idle
for i in players:
if (i.delta + i.battery_status) <= i.battery_min and i.delta < 0 :
i.want_buy = True
buyer = np.append(buyer, i)
elif (i.delta + i.battery_status) > i.battery_min and i.delta < 0 :
seller = np.append(seller, i)
elif (i.delta + i.battery_status) < i.battery_capacity and i.delta >= 0 :
if np.random.randint(2) == True:
i.want_sell = True
seller = np.append(seller, i)
else:
idle = np.append(idle, i)
elif (i.delta + i.battery_status) >= i.battery_capacity and i.delta >= 0 :
i.want_sell = True
seller = np.append(seller, i)
else:
idle = np.append(idle, i)
buyer = sorted(buyer, key=operator.attrgetter('battery_status')) # the buyer with the highest need buys first
energy_transfer_a = 0
energy_transfer_b = 0
for i in idle:
i.do_nothing
for i in buyer:
for j in seller:
energy_transfer_a = j.delta + j.battery_status - j.battery_min
i.buy_energy(i.battery_capacity - i.battery_status -i.delta, energy_transfer_a, price)
for i in seller:
for j in buyer:
energy_transfer_b = -j.delta - j.battery_status + j.battery_capacity
i.sell_energy(j.delta + j.battery_status - j.battery_min, energy_transfer_b, price)
temp2 = temp1
temp1 = energy_transfer_a + energy_transfer_b
price = get_price(prev_price=price,
price__elasticity=price_elasticity,
energy_transferred_t_1=temp1,
energy_transferred_t_2=temp2
)
for x in players: # start a new day -> new random variables for consumption and renewable energy
x.new_day()
x.energy_supply()
return utility, game_state, price_series