|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "f04dd603-a2d1-48ce-8c17-9f1dba8de1ee", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "Chapter 07\n", |
| 9 | + "\n", |
| 10 | + "# 鸡兔同笼-矩阵乘法\n", |
| 11 | + "《线性代数》 | 鸢尾花书:数学不难" |
| 12 | + ] |
| 13 | + }, |
| 14 | + { |
| 15 | + "cell_type": "markdown", |
| 16 | + "id": "ccafb456-2453-4c82-8a65-b1963a370cb2", |
| 17 | + "metadata": {}, |
| 18 | + "source": [ |
| 19 | + "该代码使用线性代数的方法解决经典的“鸡兔同笼”问题。本质上,该问题可以被建模为一个 $2 \\times 2$ 线性方程组,并通过矩阵求逆的方法进行求解。\n", |
| 20 | + "\n", |
| 21 | + "---\n", |
| 22 | + "\n", |
| 23 | + "### **1. 设定线性方程组**\n", |
| 24 | + "设鸡的数量为 $x_1$,兔的数量为 $x_2$,我们得到如下两个方程:\n", |
| 25 | + "$$\n", |
| 26 | + "x_1 + x_2 = 35\n", |
| 27 | + "$$\n", |
| 28 | + "$$\n", |
| 29 | + "2x_1 + 4x_2 = 94\n", |
| 30 | + "$$\n", |
| 31 | + "这个方程组可以用矩阵的形式表示为:\n", |
| 32 | + "$$\n", |
| 33 | + "A \\mathbf{x} = \\mathbf{b}\n", |
| 34 | + "$$\n", |
| 35 | + "其中:\n", |
| 36 | + "$$\n", |
| 37 | + "A = \\begin{bmatrix} 1 & 1 \\\\ 2 & 4 \\end{bmatrix}, \\quad\n", |
| 38 | + "\\mathbf{x} = \\begin{bmatrix} x_1 \\\\ x_2 \\end{bmatrix}, \\quad\n", |
| 39 | + "\\mathbf{b} = \\begin{bmatrix} 35 \\\\ 94 \\end{bmatrix}\n", |
| 40 | + "$$\n", |
| 41 | + "矩阵 $A$ 是系数矩阵,向量 $\\mathbf{x}$ 是未知数,向量 $\\mathbf{b}$ 是右侧的常数列向量。\n", |
| 42 | + "\n", |
| 43 | + "---\n", |
| 44 | + "\n", |
| 45 | + "### **2. 计算矩阵 $A$ 的逆**\n", |
| 46 | + "解方程 $\\mathbf{x} = A^{-1} \\mathbf{b}$ 需要先计算矩阵 $A$ 的逆:\n", |
| 47 | + "$$\n", |
| 48 | + "A^{-1} = \\frac{1}{\\det(A)} \\operatorname{adj}(A)\n", |
| 49 | + "$$\n", |
| 50 | + "行列式 $\\det(A)$ 计算如下:\n", |
| 51 | + "$$\n", |
| 52 | + "\\det(A) = 1 \\cdot 4 - 1 \\cdot 2 = 2\n", |
| 53 | + "$$\n", |
| 54 | + "伴随矩阵(余子式矩阵的转置):\n", |
| 55 | + "$$\n", |
| 56 | + "\\operatorname{adj}(A) = \\begin{bmatrix} 4 & -1 \\\\ -2 & 1 \\end{bmatrix}\n", |
| 57 | + "$$\n", |
| 58 | + "因此,矩阵 $A$ 的逆为:\n", |
| 59 | + "$$\n", |
| 60 | + "A^{-1} = \\frac{1}{2} \\begin{bmatrix} 4 & -1 \\\\ -2 & 1 \\end{bmatrix}\n", |
| 61 | + "= \\begin{bmatrix} 2 & -0.5 \\\\ -1 & 0.5 \\end{bmatrix}\n", |
| 62 | + "$$\n", |
| 63 | + "\n", |
| 64 | + "---\n", |
| 65 | + "\n", |
| 66 | + "### **3. 验证逆矩阵**\n", |
| 67 | + "代码通过计算 $A^{-1} A$ 和 $A A^{-1}$ 来验证矩阵 $A$ 的逆是否正确:\n", |
| 68 | + "$$\n", |
| 69 | + "A^{-1} A = \\begin{bmatrix} 2 & -0.5 \\\\ -1 & 0.5 \\end{bmatrix}\n", |
| 70 | + "\\begin{bmatrix} 1 & 1 \\\\ 2 & 4 \\end{bmatrix} = \n", |
| 71 | + "\\begin{bmatrix} 1 & 0 \\\\ 0 & 1 \\end{bmatrix}\n", |
| 72 | + "$$\n", |
| 73 | + "$$\n", |
| 74 | + "A A^{-1} = \\begin{bmatrix} 1 & 1 \\\\ 2 & 4 \\end{bmatrix}\n", |
| 75 | + "\\begin{bmatrix} 2 & -0.5 \\\\ -1 & 0.5 \\end{bmatrix} = \n", |
| 76 | + "\\begin{bmatrix} 1 & 0 \\\\ 0 & 1 \\end{bmatrix}\n", |
| 77 | + "$$\n", |
| 78 | + "这表明 $A^{-1}$ 计算正确。\n", |
| 79 | + "\n", |
| 80 | + "---\n", |
| 81 | + "\n", |
| 82 | + "### **4. 计算最终解**\n", |
| 83 | + "最终,使用 $A^{-1} b$ 计算未知数 $\\mathbf{x}$:\n", |
| 84 | + "$$\n", |
| 85 | + "\\mathbf{x} = A^{-1} \\mathbf{b} = \n", |
| 86 | + "\\begin{bmatrix} 2 & -0.5 \\\\ -1 & 0.5 \\end{bmatrix}\n", |
| 87 | + "\\begin{bmatrix} 35 \\\\ 94 \\end{bmatrix}\n", |
| 88 | + "$$\n", |
| 89 | + "进行矩阵乘法:\n", |
| 90 | + "$$\n", |
| 91 | + "x_1 = 2 \\times 35 + (-0.5) \\times 94 = 70 - 47 = 23\n", |
| 92 | + "$$\n", |
| 93 | + "$$\n", |
| 94 | + "x_2 = -1 \\times 35 + 0.5 \\times 94 = -35 + 47 = 12\n", |
| 95 | + "$$\n", |
| 96 | + "因此,鸡的数量是 **23**,兔的数量是 **12**。\n", |
| 97 | + "\n", |
| 98 | + "---\n", |
| 99 | + "\n", |
| 100 | + "### **总结**\n", |
| 101 | + "本代码基于矩阵运算求解 $2 \\times 2$ 线性方程组,核心步骤如下:\n", |
| 102 | + "1. 设定矩阵方程 $A \\mathbf{x} = \\mathbf{b}$。\n", |
| 103 | + "2. 计算 $A$ 的逆矩阵 $A^{-1}$。\n", |
| 104 | + "3. 验证 $A^{-1}$ 是否正确。\n", |
| 105 | + "4. 计算 $A^{-1} b$ 得到未知数的值,即 **鸡 23 只,兔 12 只**。\n", |
| 106 | + "\n", |
| 107 | + "这个方法是利用矩阵求逆来解线性方程组的一种常见方式,但在高维情况下,通常采用高斯消元法或 LU 分解等更高效的数值方法。" |
| 108 | + ] |
| 109 | + }, |
| 110 | + { |
| 111 | + "cell_type": "markdown", |
| 112 | + "id": "f98f12f8-64c9-4907-9910-7534106881b7", |
| 113 | + "metadata": {}, |
| 114 | + "source": [ |
| 115 | + "## 初始化" |
| 116 | + ] |
| 117 | + }, |
| 118 | + { |
| 119 | + "cell_type": "code", |
| 120 | + "execution_count": 1, |
| 121 | + "id": "d530bc5e-a5b5-41cf-92e4-461541be8fc2", |
| 122 | + "metadata": {}, |
| 123 | + "outputs": [], |
| 124 | + "source": [ |
| 125 | + "import numpy as np" |
| 126 | + ] |
| 127 | + }, |
| 128 | + { |
| 129 | + "cell_type": "markdown", |
| 130 | + "id": "dcea75fb-c19a-4f90-a0e9-b8556344174b", |
| 131 | + "metadata": {}, |
| 132 | + "source": [ |
| 133 | + "## 鸡兔同笼系数矩阵" |
| 134 | + ] |
| 135 | + }, |
| 136 | + { |
| 137 | + "cell_type": "code", |
| 138 | + "execution_count": 3, |
| 139 | + "id": "f1044cb0-92c2-4e07-8b42-b5571dfc9101", |
| 140 | + "metadata": {}, |
| 141 | + "outputs": [], |
| 142 | + "source": [ |
| 143 | + "A = np.array([[1, 1], \n", |
| 144 | + " [2, 4]])\n", |
| 145 | + "# a_1, chicken \n", |
| 146 | + "# a_2, rabbit" |
| 147 | + ] |
| 148 | + }, |
| 149 | + { |
| 150 | + "cell_type": "markdown", |
| 151 | + "id": "6d759117-5643-4b86-a795-1ebf15aa254b", |
| 152 | + "metadata": {}, |
| 153 | + "source": [ |
| 154 | + "## 常数列向量" |
| 155 | + ] |
| 156 | + }, |
| 157 | + { |
| 158 | + "cell_type": "code", |
| 159 | + "execution_count": 5, |
| 160 | + "id": "954b7525-dcef-47cb-af13-40c741ca3891", |
| 161 | + "metadata": {}, |
| 162 | + "outputs": [], |
| 163 | + "source": [ |
| 164 | + "b = np.array([[35],\n", |
| 165 | + " [94]])" |
| 166 | + ] |
| 167 | + }, |
| 168 | + { |
| 169 | + "cell_type": "markdown", |
| 170 | + "id": "7799aec4-4734-49f7-b0c4-2d34344aa7be", |
| 171 | + "metadata": {}, |
| 172 | + "source": [ |
| 173 | + "## 矩阵A的逆" |
| 174 | + ] |
| 175 | + }, |
| 176 | + { |
| 177 | + "cell_type": "code", |
| 178 | + "execution_count": 9, |
| 179 | + "id": "aa3dd5d6-6437-4775-9611-64e4fbb5ef65", |
| 180 | + "metadata": {}, |
| 181 | + "outputs": [ |
| 182 | + { |
| 183 | + "data": { |
| 184 | + "text/plain": [ |
| 185 | + "array([[ 2. , -0.5],\n", |
| 186 | + " [-1. , 0.5]])" |
| 187 | + ] |
| 188 | + }, |
| 189 | + "execution_count": 9, |
| 190 | + "metadata": {}, |
| 191 | + "output_type": "execute_result" |
| 192 | + } |
| 193 | + ], |
| 194 | + "source": [ |
| 195 | + "A_inv = np.linalg.inv(A)\n", |
| 196 | + "A_inv" |
| 197 | + ] |
| 198 | + }, |
| 199 | + { |
| 200 | + "cell_type": "code", |
| 201 | + "execution_count": 11, |
| 202 | + "id": "dd3bd71d-93b6-480f-bdbd-2b5bc85c8143", |
| 203 | + "metadata": {}, |
| 204 | + "outputs": [ |
| 205 | + { |
| 206 | + "data": { |
| 207 | + "text/plain": [ |
| 208 | + "array([[1., 0.],\n", |
| 209 | + " [0., 1.]])" |
| 210 | + ] |
| 211 | + }, |
| 212 | + "execution_count": 11, |
| 213 | + "metadata": {}, |
| 214 | + "output_type": "execute_result" |
| 215 | + } |
| 216 | + ], |
| 217 | + "source": [ |
| 218 | + "# 验证\n", |
| 219 | + "A_inv @ A" |
| 220 | + ] |
| 221 | + }, |
| 222 | + { |
| 223 | + "cell_type": "code", |
| 224 | + "execution_count": 13, |
| 225 | + "id": "c6cdbfed-8757-4050-b184-844f094ccb31", |
| 226 | + "metadata": {}, |
| 227 | + "outputs": [ |
| 228 | + { |
| 229 | + "data": { |
| 230 | + "text/plain": [ |
| 231 | + "array([[1., 0.],\n", |
| 232 | + " [0., 1.]])" |
| 233 | + ] |
| 234 | + }, |
| 235 | + "execution_count": 13, |
| 236 | + "metadata": {}, |
| 237 | + "output_type": "execute_result" |
| 238 | + } |
| 239 | + ], |
| 240 | + "source": [ |
| 241 | + "A @ A_inv" |
| 242 | + ] |
| 243 | + }, |
| 244 | + { |
| 245 | + "cell_type": "markdown", |
| 246 | + "id": "eb3be1b7-aad6-4a90-b890-06d7213c4edb", |
| 247 | + "metadata": {}, |
| 248 | + "source": [ |
| 249 | + "## 求解" |
| 250 | + ] |
| 251 | + }, |
| 252 | + { |
| 253 | + "cell_type": "code", |
| 254 | + "execution_count": 15, |
| 255 | + "id": "ef4cdee3-8577-47e4-af0f-a2a78aec7401", |
| 256 | + "metadata": {}, |
| 257 | + "outputs": [ |
| 258 | + { |
| 259 | + "data": { |
| 260 | + "text/plain": [ |
| 261 | + "array([[23.],\n", |
| 262 | + " [12.]])" |
| 263 | + ] |
| 264 | + }, |
| 265 | + "execution_count": 15, |
| 266 | + "metadata": {}, |
| 267 | + "output_type": "execute_result" |
| 268 | + } |
| 269 | + ], |
| 270 | + "source": [ |
| 271 | + "A_inv @ b" |
| 272 | + ] |
| 273 | + }, |
| 274 | + { |
| 275 | + "cell_type": "code", |
| 276 | + "execution_count": null, |
| 277 | + "id": "03232b1c-9ff6-41a6-8eb9-b5f98c289f77", |
| 278 | + "metadata": {}, |
| 279 | + "outputs": [], |
| 280 | + "source": [] |
| 281 | + }, |
| 282 | + { |
| 283 | + "cell_type": "markdown", |
| 284 | + "id": "070c3389-8048-43a3-baa7-6666009bce96", |
| 285 | + "metadata": {}, |
| 286 | + "source": [ |
| 287 | + "作者\t**生姜DrGinger** \n", |
| 288 | + "脚本\t**生姜DrGinger** \n", |
| 289 | + "视频\t**崔崔CuiCui** \n", |
| 290 | + "开源资源\t[**GitHub**](https://github.com/Visualize-ML) \n", |
| 291 | + "平台\t[**油管**](https://www.youtube.com/@DrGinger_Jiang)\t\t\n", |
| 292 | + "\t\t[**iris小课堂**](https://space.bilibili.com/3546865719052873)\t\t\n", |
| 293 | + "\t\t[**生姜DrGinger**](https://space.bilibili.com/513194466) " |
| 294 | + ] |
| 295 | + } |
| 296 | + ], |
| 297 | + "metadata": { |
| 298 | + "kernelspec": { |
| 299 | + "display_name": "Python [conda env:base] *", |
| 300 | + "language": "python", |
| 301 | + "name": "conda-base-py" |
| 302 | + }, |
| 303 | + "language_info": { |
| 304 | + "codemirror_mode": { |
| 305 | + "name": "ipython", |
| 306 | + "version": 3 |
| 307 | + }, |
| 308 | + "file_extension": ".py", |
| 309 | + "mimetype": "text/x-python", |
| 310 | + "name": "python", |
| 311 | + "nbconvert_exporter": "python", |
| 312 | + "pygments_lexer": "ipython3", |
| 313 | + "version": "3.12.7" |
| 314 | + } |
| 315 | + }, |
| 316 | + "nbformat": 4, |
| 317 | + "nbformat_minor": 5 |
| 318 | +} |
0 commit comments