-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2023-10-08 sql-vs-rd-pattern-analysis_pilot_raw.py
1458 lines (1245 loc) · 66.9 KB
/
2023-10-08 sql-vs-rd-pattern-analysis_pilot_raw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# ---
# jupyter:
# jupytext:
# text_representation:
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.15.2
# kernelspec:
# display_name: Python 3 (ipykernel)
# language: python
# name: python3
# ---
# %% [markdown]
# # Final analysis — SQL vs. Visual Diagrams for Matching Relational Query Patterns — June 2023 Study
#
# We are preregistering this study based on the [OSF Google Docs template](https://docs.google.com/document/d/1DaNmJEtBy04bq1l5OxS4JAscdZEkUGATURWwnBKLYxk/edit), which is one of [several preregistration templates](https://osf.io/zab38/wiki/home/?view) that [OSF](https://osf.io/) provides. Our experimental setup is inspired by [Leventidis et al. (2020)](https://doi.org/10.1145/3318464.3389767).
#
# $\color{red}{\text{\textbf{See our updates post-registration}}}$ below in the [Other](#Other) section.
# %% [markdown]
# ## Study Information
#
# * **Title:**
# The effect of SQL vs. Visual Diagrams on time and correctness matching relational query patterns
#
# * **Authors:**
# *Anonymous for peer review. The online form on [osf.io](https://osf.io/) will list authors upon publication or embargo expiration.*
#
# * **Description:**
# Pilot testing has indicated that visual diagrams (RD) improve participant speed at correctly identifying relational query patterns, contrasting with formatted SQL.
# We will measure participant time and the proportion of correct answers for two conditions (RD and SQL) and 4 relational query patterns across 32 questions.
#
# * **Hypotheses:** We are testing for a total of `3` hypotheses:
# * ***Time:***
# * Let $\theta_X$ denote the median time per question in seconds for a given condition $X$ per participant. We hypothesize that (1) $\theta_{RD}$ / $\theta_{SQL} < 1$, thus participants are relatively faster using `RD` compared to `SQL`.
# * $\color{red}{\text{Corrected to match code \& original intent:}}$ Let $\theta_{X1}$ and $\theta_{X2}$ denote the median time per question in seconds for a given condition $X$ per participant in the first $X1$ or second half $X2$. We hypothesize that (2) both $\theta_{RD2} / \theta_{RD1}$ and $\theta_{SQL2} / \theta_{SQL1} < 1$, thus participants are relatively faster in the 2nd half than the 1st.
# * ***Correctness:*** Let $\delta_X$ denote the mean proportion of correct responses for a given condition $X$. We hypothesize that (3) $\delta_{RD}$ $\simeq$ $\delta_{SQL}$, i.e., participants make a comparable number of correct responses using `RD` or `SQL`.
#
# %% [markdown]
# ## Design Plan
#
# * **Study type:**
# Experiment.
#
# * **Blinding:**
# No blinding is involved in this study.
#
# * **Study design:**
# We have a within-subjects design, i.e., each participant sees questions in both of our modes: `RD` and `SQL`.
# Each participant will see a total of `32` questions: `2` modes $\times$ `4` patterns $\times$ `2` instances in each half $\times$ `2` halves.
# I.e., they will see each pattern-mode combination `2` times per half.
# For each question, the participant will be given a SQL query presented using one of the modes. They must choose the most appropriate of `4` natural-language interpretations of the query, each corresponding to one of our `4` patterns.
# Their sequence number determines the mode presented to each participant for a given question — described under the randomization bullet.
# The stimuli for each mode is:
#
# * `SQL` — A conventional SQL representation with appropriate indentation.
# The SQL text is indented and SQL keywords are color-coded appropriately.
# * `RD` — A visual diagram we created of the query.
#
# See the included `supplement/tutorial.pdf` file for a sample of the stimuli and how to read them, one page extracted here:
#
# ![Example of the four patterns and two modes.](supplement/patterns.png)
#
# * **Randomization:**
# To reduce ordering effects caused by which mode is presented first, we assign participants as they arrive to alternately start with `SQL` (sequence number `0`) or `RD` (sequence number `1`).
# We then alternate the modes the presenter sees with each question.
# I.e., `[SQL, RD, SQL, RD...]`.
# We randomize the order that patterns are presented in each half separately, ensuring that each combination appears the same number of times and that both halves have the same number of each pattern-mode combination.
# %% [markdown]
# ## Sampling Plan
#
# * **Existing data:**
# Registration before creating data: As of the date of submission of this research plan for preregistration, the data have not yet been collected, created, or realized.
# Only pilot data has been collected.
#
# * **Explanation of existing data:**
# N/A.
#
#
# * **Data collection procedures:**
# * ***Population:***
# Participants will be recruited through [Amazon Mechanical Turk (AMT)](https://www.mturk.com/), a popular crowdsourcing website used for a variety of tasks, including academic studies.
# * ***Recruitment efforts:*** A Human Intelligence Task (HIT) will be posted on AMT. We may repeatedly re-post the HIT as recruitment slows over time.
# * ***Inclusion criteria:*** Participants could accept the AMT HIT if they are all of the following:
# 1. Residing in the USA and, thus, we expect English proficiency.
# 2. Adults (over 18 years old).
# 3. Experienced SQL users, self-determined with the prompt: "Workers should be familiar with SQL at the level of an advanced undergraduate database class, in particular with nested SQL queries."
# 4. Have submitted over `500` approved HITs on AMT.
# 5. Have more than `97%` approved HIT assignments on AMT.
# * ***Exclusion criteria:*** None. Pilot study participants were collected from our institution so did not need to be excluded on AMT.
# * ***Timeline:*** Data will be collected from when we start until our **Stopping rule** below is met.
# * ***Payment:***
# * *AMT Rejection criteria:* A HIT will be accepted and the participant paid only if they correctly answered $\ge$ `16/32` questions within `50` minutes. Otherwise, the HIT will be rejected.
# * *Base pay:* `$6.00` USD.
# * *Correctness bonus:* For every correctly answered question after the `16th` the participant receive a bonus payment of `$0.20` USD for a total pay of `$9.20` USD.
# * *Time bonus:* Based on total test completion time, the participant will receive a percentage bonus on total pay (including the correctness bonus). Completion within `11` minutes awards a `5%` bonus for a maximum pay of `$9.66`. Each minute faster gets you an additional `5%` bonus up to `40%` for completing within `4` minutes, with a maximum pay of `$12.88`.
#
# * **Sample size:**
# Our target sample size is `50` participants.
#
# * **Sample size rationale:**
# As all 13 pilot participants were faster with `RD` than `SQL`, we did not use a power analysis to choose the sample size. Instead, `50` was chosen as a meaningfully large and round number that is still a multiple of 2 to ensure that we have an equal number of participants among the sequences (see **Randomization**, above)
#
# * **Stopping rule:**
# We will terminate data collection once our number of complete HITs has reached our maximum target sample size.
# Given the strict ***Inclusion criteria*** in our study, it is possible that we won't be able to hit our target sample size.
# In that case, we shall restrict our analysis to the data we can collect before paper submission.
# We will continue collecting data until we reach the maximum target sample size or the camera-ready paper submission deadline.
# %% [markdown]
# ## Variables
#
# * **Manipulated Variables:**
#
# * *Mode:* `[SQL, RD]`. See [Study Information](#Study-Information).
#
#
# * **Measured Variables:**
#
# * For each participant and each question they answer, we record:
# * ***Time (quantitative):*** The time they take to answer the question.
# * ***Pattern (categorical/integer):*** The pattern they were provided in one of the modes for that question.
# * ***Choice (integer):*** Their selected pattern from the `4`-option multiple choice question.
# * ***Correct (boolean/integer):*** Whether their answer for the `4`-option multiple choice question was correct.
#
# * For each participant, we also record:
# * ***Sequence (categorical):*** The sequence the participant was randomly assigned to (see [Design Plan](#Design-Plan)).
# * ***Free-text feedback (string):*** The participant's optional answers to a feedback prompt.
#
#
# * **Indices:** From our collected study data, we will calculate:
# * ***Indices for time***
#
# * **`Median time per mode per participant`:**
# This is calculated by taking the median of the `16` ***Time*** records for each mode for each participant.
# Using that information, we can calculate the median time across all participants.
#
# * **`Ratio of median time of RD relative to SQL per participant:`**
# Using the `Median time per mode per participant`, we will calculate `RD/SQL`.
#
# * **`Quartiles and CIs of median time per mode across all participants:`**
# Using the `Median time per mode per participant`, we will calculate the 1st, 2nd (median), 3rd quartiles.
#
# * **`Quartiles and CIs of median time of RD relative to SQL across all participants:`**
# Using the `Ratio of median time of RD relative to SQL per participant`, we will calculate the 1st, 2nd (median), 3rd quartiles as well as 95% Confidence Intervals using Bias Corrected and Accelerated (BCa) bootstrapping ([Efron (1987)](https://doi.org/10.2307%2F2289144)).
#
# * **`Per-half indices:`**
# We will compute both the `Quartiles and CIs of median time...` indices for each half.
#
# * ***Indices for correctness***
#
# * **`Proportion of correct responses per mode per participant`:**
# For each participant, calculate the proportion of correct responses per mode as: `correct responses / total questions per mode`.
#
# * **`Mean and CIs of proportion of correct responses per mode across all participants`:**
# The mean proportion of correct responses across all participants is calculated by taking the arithmetic mean of all the `Proportion of correct responses per mode per participant` values for a given mode across all participants.
# We will calculate 95% Confidence Intervals using Bias Corrected and Accelerated (BCa) bootstrapping.
# %% [markdown]
# ## Analysis Plan
#
# * **Statistical Models:**
#
# * ***Distribution testing:***
# We will examine the distributions of our data visually, including for each mode, to ensure there are no problematic distributions.
# * ***Hypothesis Testing:***
# We will visually examine the 95% BCa bootstrapped confidence intervals for each mean and median.
#
# * **Transformations:** N/A.
#
# * **Inference criteria:**
# We will interpret the results using Interval Estimation rather than dichotomous $p$-value cutoffs (e.g., we will not use *p*<.05 to determine statistical significance).
# See [Dragicevik (2016)](http://dx.doi.org/10.1007/978-3-319-26633-6_13) and [Besançon & Dragicevic (2019)](http://dx.doi.org/10.1145/3290607.3310432) for a discussion of using estimation for these types of analyses.
#
# * **Data exclusion:**
# To perform a concrete analysis of our data, we would like to minimize the set of outlier points as they will negatively affect the quality of our statistical analysis and introduce unwanted/non-existent bias.
# After collecting our data, we will examine the time distribution of each worker. In particular, we will examine how long each worker took to answer the question on a per-question basis. We expect two types of outlier points in our experiments.
# 1. **Speeders:** Workers that answered a question much faster than the vast majority of participants (usually in the order of a few seconds, i.e., workers tried to rush answering each question without thinking).
# The range could vary, but a rough indication of a speeder would be if their time per question is 2-3 standard deviations lower than the mean time per question.
# 2. **Unusually delayed answers:** This refers to workers who took unusually long to answer a question.
# This is most likely attributed to some distraction that made the worker not focus on our question while the timer was running (i.e., a phone call, text message, bathroom break, etc.).
# As an online test, we can't know exactly what was the cause of it, but usually, we can identify such data points by noticing their much larger value in time.
# Since we capture a time distribution, it is expected to be left-skewed, and thus a rough measure of an *unusually delayed answer* would be about $\geq 3$ times the mean time per question.
# 3. **Cheaters:** Previous studies have indicated that workers can leak answers to enable other workers to answer all the questions correctly and quickly. We have used technical measures to limit this possibility and give each user different sets of stimuli. However, if we identify cheaters through log analysis, we will exclude them.
# 4. **Median:** To minimize the effect of outliers for all the above reasons and to provide a statistically valid unbiased estimator for the ratio of times, we use the median instead of the mean aggregation for time analysis.
#
#
# * **Missing data:**
# We will unlikely have missing data because for a participant to submit their results, they must answer all the questions.
# However, if we have missing data points from an individual, we will remove the individual completely from our analysis.
# %% [markdown]
# ## Other
#
# * **Discrepancies between preregistration prose and analysis code:**
# The intent of our study design is explained in this section.
# In case of any discrepancy between the analysis code below and this section, what is written in this section takes precedence for the preregistration.
#
# * $\color{red}{\text{\textbf{Updates post-registration:}}}$
#
# 1. Our second hypothesis was incorrectly stated above, but our intent was clear from the below text and code. We have updated it. This result should be evaluated accordingly as it is a deviation from our prergistration.
# 2. Minor error in correctness score calculation fixed.
# 3. Anonymization of MTurk worker IDs is removed from this code and now done outside this worksheet to avoid accidental release of worker IDs.
# 4. Time spent on tutorials was erroneously collected, and should not be used. We remove this column in the anonymization code.
# 5. In total, 177 participants began the study, but many quit before finishing the tutorial or after a few questions. Only 120 participants submitted the HIT. Of those, only 58 reached the 50% correctness threshold for HIT acceptance. We only select the first 50 of those 58 that were submitted to be in accordance with our preregistration.
# 6. Added visual emphasis for ratio = 1 in figure 1b.
# 7. Added user feedback printing at the end of the worksheet.
# 8. Added "variants" for further exploratory analysis based on elevated correctness thresholds.
# 9. Added per-pattern exploratory analysis.
# 10. Simplified the code for figure 3.
# 11. Added additional figure showing difference for question 4.
#
#
#
# %% [markdown] jupyter={"outputs_hidden": false}
# # Scripts to analyze the study data
#
# (Q1) TIMING PER PARTICIPANT (SQL vs RD)
# 1. Per participant, calculate the median time in seconds spent on SQL and RD (32/2=16 per mode and participant, irrespective of correctness)
# 2. Q1a: show violin plot figure with median times per user compared via gray lines
# 3. Calculate their ratio per user (also gives fraction of users who are faster with one or the other)
# 4. Calculate the median of those fractions and the 95% CI
# 5. Q1b: show violin plot figure with fractions, and also 95% CI
#
# (Q2) TIMING PER PARTICIPANT (SQL vs RD / 1st vs. 2nd half)
# 1. Per participant, calculate the median time over all questions answered in 1st half in RD (32/2/2=8) and SQL, and in 2nd half.
# 2. Q2: show repeated measure violin plot figure, showing improvements over time, of 2 halfs
# 3. Calculate the relative ratio for timing 2nd/1st for RD, and SQL including 95% CI
#
# (Q3) TIMING PATTERNS ACROSS PARTICIPANTS
# 1. calculate the median time per pattern (4) across the two modes (2). Thus 8 values.
# 2. show repeated measure violin plot figure
#
# (Q4) CORRECTNESS (SQL vs RD)
# 1. take mean correct over all questions and all users answered in SQL (32/2*13), or in RD (2 values)
# 2. calculate 95% CI for each, and sampled p-value (perhaps with difference?)
# %% [markdown] jupyter={"outputs_hidden": false}
# ## Load packages
# %%
import pandas as pd
import numpy as np
import seaborn as sns
sns.set(style="whitegrid",font_scale=2)
import matplotlib.pyplot as plt
from scipy.stats import bootstrap as scipybootstrap
from IPython.display import display
import matplotlib.ticker as mtick # allows change to percentage
# Tell matplotlib to export svg text as text not paths
plt.rcParams['svg.fonttype'] = 'none'
plt.rcParams['axes.axisbelow'] = True # draw axes and grids behind everything else
# Set Jupyter and Pandas to show 3 decimal places, does not work for lists of numbers
# %precision 3
pd.options.display.float_format = '{:,.3f}'.format
np.set_printoptions(precision=3)
# np.set_printoptions(formatter={'float': lambda x: "{0:0.3f}".format(x)}) # TODO: does not work for lists
def print(*args):
__builtins__.print(*("%.3f" % a if isinstance(a, float) else a
for a in args))
# %% [markdown]
# ## Global Variables Setup
# %%
# A set of constant global variables used throughout the notebook
num_questions = 32
modes = ['SQL', 'RD']
mode_to_name = {0: 'SQL', 1: 'RD'}
# anonymizeddata = 'data/users-table-pilot.csv' # pilot
anonymizeddata = 'data/users-table-pilot.csv'
transformeddata = 'data/transformed_data-pilot.csv' # file with appropriately transformed data ready for analysis
BOOTSTRAPCONFIDENCE = 0.95 # confidence level used for bootstrap
BOOTSTRAPMETHOD = 'BCa' # method used for bootstrap, appears to be better than the textbook version for mean (but not for median), also available as 'percentage'
BOOTSTRAPSAMPLES = 10000 # number of resamples
VARIANT = 1 # variant 1: all participants, variant 2: only for correctness = 1.0, variant 3: only for correctness = 0.9, variant 4: only for correctness >= 0.66
# %% [markdown] jupyter={"outputs_hidden": false}
# ## Define subfolder where figures are stored
#
# By default, figures will not be saved. If you want to save figures, set savefig to `True`.
# Learned from: https://github.com/jorvlan/open-visualizations/blob/master/Python/tutorial_2/repeated_measures_python_2.ipynb
# %% jupyter={"outputs_hidden": false} pycharm={"name": "#%%\n"}
savefig = True
if savefig:
import os
from os.path import isdir
cwd = os.getcwd() # Get current working directory, but you can specify your own directory of course.
if os.path.exists(cwd + "/pilotfigs"):
print("Directory already exists")
fig_dir = cwd + "/pilotfigs" # Assign the existing directory to a variable
elif not os.path.exists(cwd + "/pilotfigs"):
print("Directory does not exist and will be created ......")
os.makedirs(cwd + "/pilotfigs")
if isdir(cwd + "/pilotfigs"):
print('Directory was created succesfully')
fig_dir = cwd + "/pilotfigs" # Assign the created directory to a variable
else:
print("Something went wrong")
# %% [markdown]
# ## Loading full data, transforming it, and saving the transformed version
#
# Loading the full data, transforming it to make available for later analysis, and saving it
#
# %%
# --- Load anonymized full study data
df = pd.read_csv(anonymizeddata)
# --- Filter on 'current_section=RESULTS'
dfresults = df.loc[(df.current_section == "RESULTS")].copy() # (7/6/2023: added filter to only focus on RESULTS)
# --- Turn string to array
from ast import literal_eval # to turn string to array
dfresults['pattern_order']= dfresults['pattern_order'].apply(literal_eval)
# display(dfresults)
# The "current page" is the section of the study the workers are doing to save their state & prevent them cheating
# --- The following code block transforms the data frame to have one question per row. That simplifies the later analysis.
# reshape dfresults (melt, pivot) to bring multiple question times (e.g. 'q7_time') per row into separate rows
# https://towardsdatascience.com/wide-to-long-data-how-and-when-to-use-pandas-melt-stack-and-wide-to-long-7c1e0f462a98
df2 = dfresults.melt(id_vars=['worker_id', 'sequence_num', 'pattern_order',
'q1', 'q2','q3', 'q4','q5', 'q6','q7', 'q8', 'q9', 'q10',
'q11', 'q12','q13', 'q14','q15', 'q16','q17', 'q18', 'q19', 'q20',
'q21', 'q22','q23', 'q24','q25', 'q26','q27', 'q28', 'q29', 'q30',
'q31', 'q32'], value_vars=['q1_time', 'q2_time', 'q3_time', 'q4_time','q5_time', 'q6_time', 'q7_time', 'q8_time', 'q9_time', 'q10_time',
'q11_time', 'q12_time', 'q13_time', 'q14_time', 'q15_time', 'q16_time', 'q17_time', 'q18_time', 'q19_time', 'q20_time',
'q21_time', 'q22_time', 'q23_time', 'q24_time', 'q25_time', 'q26_time', 'q27_time', 'q28_time', 'q29_time', 'q30_time',
'q31_time', 'q32_time'], var_name='question', value_name='time')
# replace time in msec with sec in column 'time'
df2['time'] = df2['time'] / 1000
# replace question string 'q7_time' with number '7' in column 'question'
from re import search as re_search # regular expression
new_column = []
for values in df2['question']:
new_column.append(int(re_search(r'\d+', values).group()))
df2['question'] = new_column
# choose the right pattern from the list 'pattern_order' and add as column 'pattern'
new_column = []
for (pattern_order_list, ind) in zip(df2['pattern_order'], df2['question']):
new_column.append(pattern_order_list[ind-1])
df2['pattern'] = new_column
# determine the 'mode' (SQL or RD) from 'sequence_num' and 'question'
# sequence_num = 0 means that the first question is shown in SQL, 1 means we start instead with RD. Then alternate between the two.
# Thus (sequence_num + question_num) % 2 == 1 means SQL
# Thus (sequence_num + question_num) % 2 == 0 means RD
new_column = []
for (sequence, question) in zip(df2['sequence_num'], df2['question']):
mode = 'SQL' if (sequence + question) % 2 == 1 else 'RD'
new_column.append(mode)
df2['mode'] = new_column
# determine the 'choice' (among the 4 patterns) made by the user for this question. Requires all the 32 question choices (e.g. 'q7') and index of the question at hand ('question')
questionarray = df2[['q1', 'q2','q3', 'q4','q5', 'q6','q7', 'q8', 'q9', 'q10',
'q11', 'q12','q13', 'q14','q15', 'q16','q17', 'q18', 'q19', 'q20',
'q21', 'q22','q23', 'q24','q25', 'q26','q27', 'q28', 'q29', 'q30',
'q31', 'q32']].to_numpy()
questionindex = df2[["question"]].to_numpy()
new_array = np.take_along_axis(questionarray,questionindex-1,1) # take the 'questionindex'-th entry from each row of the questionarray (notice 1-index vs 0-indexin)
df2['choice'] = new_array
# determine whether the choice was correct by comparing the ground truth ('pattern') against the choice made ('choice'). Saved as 0/1 value in new column 'correct'
new_column = []
for (pattern, choice) in zip(df2['pattern'], df2['choice']):
correct = 1 if pattern == choice else 0
new_column.append(correct)
df2['correct'] = new_column
# sort by worker and question number, and reset the inde
df2.sort_values(by=['worker_id', 'question'], inplace=True)
df2.reset_index(drop=True, inplace=True)
# display(df2)
# select only the relevant subset of columns
df_transformed_data = df2[['worker_id', 'question', 'time', 'pattern', 'mode', 'choice', 'correct']]
# display(df3)
# pd.write_csv(filename)
df_transformed_data.to_csv(transformeddata,
index=False,
)
display(dfresults)
# %% [markdown] jupyter={"outputs_hidden": false} pycharm={"name": "#%% md\n"}
# ## Loading transformed data
# %% jupyter={"outputs_hidden": false} pycharm={"name": "#%%\n"}
df_transformed_data = pd.read_csv(transformeddata)
display(df_transformed_data)
# %% [markdown] jupyter={"outputs_hidden": false}
# ## Filter users down to first 50 (VARIANT filters), and total time users took (in minutes)
# %% jupyter={"outputs_hidden": false} pycharm={"name": "#%%\n"}
# New dataframe with worker id and when they started the HITS (allowing to sort by starting time)
dfendtime = dfresults[["worker_id", "start_datetime", "sequence_num"]]
dfendtime.set_index("worker_id", inplace=True)
# New dataframe with worker ids and fraction correct (allowing to filter out those who did not pass the 0.5 correctness criterion)
dftemp = df_transformed_data.groupby(['worker_id']).agg(
time=('time', np.sum),
correct=('correct', np.mean))
dftemp['time'] = dftemp['time'] / 60
dftemp.sort_values(by=['correct'], ascending=False, inplace=True)
# display(dftemp)
# Joining the dataframes
dftemp = dftemp.join(dfendtime)
# Filtering the dataframes for those who passed the 0.5 correctness criterion
dftemp = dftemp.loc[dftemp.correct >= 0.5]
# Keep only first 50 participants (creates imbalance: 26/24 between sequence numbers)
# dftemp = dftemp.sort_values(by="start_datetime", ascending=True)
# dftemp = dftemp.head(50) # only keep the first 50 participants
# Keep only first 50 balanced participants, thus first 25 from sequence 0, and first 25 from sequence 1
dftemp0 = dftemp.loc[(dftemp.sequence_num == 0.0)].copy()
dftemp0 = dftemp0.sort_values(by="start_datetime", ascending=True)
dftemp0 = dftemp0.head(25) # only keep the first 25 participants
dftemp1 = dftemp.loc[(dftemp.sequence_num == 1.0)].copy()
dftemp1 = dftemp1.sort_values(by="start_datetime", ascending=True)
dftemp1 = dftemp1.head(25) # only keep the first 25 participants
dftemp = pd.concat([dftemp0, dftemp1])
if VARIANT == 2:
dftemp = dftemp.loc[dftemp.correct == 1.0] # 12/50
if VARIANT == 3:
dftemp = dftemp.loc[dftemp.correct >= 0.9] # up to 3 mistakes, 27/50
if VARIANT == 4:
dftemp = dftemp.loc[dftemp.correct >= 0.66] # up to 12 mistakes, thus 2/3 correct, 34/50
print('dftemp:')
display(dftemp)
print('Number of participants who started with RD first:', np.sum(dftemp.sequence_num))
df_filtered_data = df_transformed_data[df_transformed_data.worker_id.isin(dftemp.index)] # only retain those that pass the 0.5 correctness criterium
print('df_filtered_data:')
display(df_filtered_data)
# %% [markdown]
# # Question 1. Figure 1a
# %% jupyter={"outputs_hidden": false} pycharm={"name": "#%%\n"}
# create two columns mode and median, with 2 rows per worker (used for Fig 1a violines)
dfq1a = df_filtered_data.groupby(['worker_id', 'mode']).time.agg(['median'])
dfq1a.reset_index(inplace=True)
# print('dfq1a:')
# display(dfq1a)
# pivot to have one row per worker (used for Fig 1a individual points)
dfq1b = pd.pivot_table(dfq1a, values=['median'], index=['worker_id'], columns=['mode'])
dfq1b=dfq1b.droplevel(0, axis=1)
print('dfq1b:')
display(dfq1b)
modes = ['RD', 'SQL']
median_time = {}
ci = {}
ci_delta = {}
for mode in modes:
median_time[mode] = np.median(dfq1b[mode])
ci[mode] = scipybootstrap((dfq1b[mode],), statistic=np.median, n_resamples=BOOTSTRAPSAMPLES, confidence_level=BOOTSTRAPCONFIDENCE, method='percentile', axis=0).confidence_interval #convert array to sequence
ci_delta[mode] = [median_time[mode] - ci[mode].low, ci[mode].high - median_time[mode]]
print(f'Median time {mode}: {median_time[mode]:.2f}, 95% CI [{ci[mode].low:.2f}, {ci[mode].high:.2f}]')
# %% jupyter={"outputs_hidden": false} pycharm={"name": "#%%\n"}
# Define pre-settings
figwidth = 10
figheight = 6
xlab_size = 20
ylab_size = 20
figfont_size = 24
# Define consistent color maps
my_cmap_sns_light = [(0.9921568627450981, 0.8156862745098039, 0.6352941176470588), (0.7764705882352941, 0.8588235294117647, 0.9372549019607843)] # light blue, light orange
my_cmap_sns_dark = [(0.9019607843137255, 0.3333333333333333, 0.050980392156862744), (0.19215686274509805, 0.5098039215686274, 0.7411764705882353)] # dark blue, dark orange
my_cmap_dark = sns.color_palette(my_cmap_sns_dark, as_cmap=True)
my_cmap_light = sns.color_palette(my_cmap_sns_light, as_cmap=True)
# Create empty figure and plot the individual datapoints
fig, ax = plt.subplots(figsize=(figwidth,figheight))
# 1. Violinplots
axsns = sns.violinplot(x='median', y='mode', data=dfq1a,
hue=True, hue_order=[False, True], split=True, # half violinplots https://stackoverflow.com/questions/53872439/half-not-split-violin-plots-in-seaborn
inner='quartile',
cut=0, # 0 means ending sharp at end points
width=.7,
orient = 'h',
zorder=20,)
# change the medium default line to full (https://stackoverflow.com/questions/60638344/quartiles-line-properties-in-seaborn-violinplot)
for l in axsns.lines[1::3]:
l.set_linestyle('-')
l.set_linewidth(1.2)
l.set_color('black')
l.set_alpha(0.8)
# Apply colorscheme to violinplots https://stackoverflow.com/questions/70442958/seaborn-how-to-apply-custom-color-to-each-seaborn-violinplot
from matplotlib.collections import PolyCollection
for ind, violin in enumerate(axsns.findobj(PolyCollection)):
violin.set_facecolor(my_cmap_light[ind])
# 2. Plot individual points
y_tilt = -0.25 # Set some delta for the points below the violinplot
y_base = np.zeros(dfq1b.values.shape[0]) + y_tilt # base vector to which to broadcast y-tilt values
for i, col in enumerate(modes):
ax.plot(dfq1b[col],
y_base + i,
# 'o', # circles
'^', # triangles_up
alpha=1,
zorder=20, # higher means more visible
markersize=11,
markeredgewidth=0,
# markerfacecolor='none',
markerfacecolor=my_cmap_dark[i],
markeredgecolor=my_cmap_dark[i],)
ax.plot(dfq1b[col],
y_base + i,
# 'o', # circles
'^', # triangles_up
markersize=11,
markerfacecolor='white',
markeredgewidth=1,
color ='white',
linewidth = None,
zorder=1,)
# 3. Plot gray lines connecting modes
for i, idx in enumerate(dfq1b.index):
ax.plot(dfq1b.loc[idx, modes],
[y_tilt, y_tilt+1],
color ='gray', linewidth = 2, linestyle ='-', alpha = .2,
zorder=0)
# 4. Plot red line connecting medians
ax.plot(np.median(dfq1b, axis=0), [0, 1], color ='red', linewidth = 2, linestyle ='-', alpha = .4)
# 5. CI Errorbars
for i, mode in enumerate(modes):
plt.errorbar(median_time[mode], i, xerr=np.array([[ci_delta[mode][0], ci_delta[mode][1]]]).T,
fmt='o', markersize=10,
# lw = 3, # if end line for CI
lw = 5, # if no ned line for CI
alpha=1,
zorder=100, # higher means more visible
capsize = 0, # 10
# capthick = 4, # end line for CI
capthick = 0, # no end line for CI
# color = 'black',
color = my_cmap_dark[i],
) # my_cmap[1])
ax.text(median_time[mode],
# i+0.36,
i-0.16,
f'{median_time[mode]:.1f}', horizontalalignment='center',
# color='black',
color= my_cmap_dark[i],
fontsize=figfont_size)
# ax.text(ci[mode].low, i+0.1, f'{ci[mode].low:.1f}', horizontalalignment='center', color='black', fontsize=20)
# ax.text(ci[mode].high, i+0.1, f'{ci[mode].high:.1f}', horizontalalignment='center', color='black', fontsize=20)
#Additional settings
ax.set_xticks(range(0, 100, 5))
ax.set_yticks(range(len(dfq1b.columns)))
ax.set_yticklabels(modes, size= ylab_size)
ax.set_xlim(0, 40.1)
ax.set_ylim(-0.5, 1.5)
ax.set_xlabel('Median time per worker (sec)', size = xlab_size)
ax.set_ylabel(None)
ax.set_yticklabels(['DX', 'SQL', ])
# ax.set_title('Median times per worker', size = title_size)
sns.despine()
ax.legend_.remove()
plt.grid(axis = 'x', linewidth = 0.5, color = 'lightgray')
if savefig:
plt.savefig(fig_dir + f'/q1_figure1_variant{VARIANT}-pilot.pdf', bbox_inches='tight')
plt.savefig(fig_dir + f'/q1_figure1_variant{VARIANT}-pilot.svg', bbox_inches='tight')
# %% [markdown] jupyter={"outputs_hidden": false}
# # Question 1. Figure 1b
# %% jupyter={"outputs_hidden": false} pycharm={"name": "#%%\n"}
dfq1c = df_filtered_data.groupby(['worker_id', 'mode']).time.agg(['median']) # for each worker, calculate median for both modes
dfq1c = pd.pivot_table(dfq1c, values=['median'], index=['worker_id'], columns=['mode']) # pivot to have one row per worker
dfq1c['ratio median'] = dfq1c['median','RD'] / dfq1c['median','SQL'] # add the ratio between medians of the two modes
print('dfq1c:')
display(dfq1c)
sample = np.array(dfq1c['ratio median']) # extract the sample and then create the boostrapped medians
data_ratio = dfq1c['ratio median']
median_ratio = np.median(data_ratio)
ci_ratio = scipybootstrap((data_ratio,), statistic=np.median, n_resamples=BOOTSTRAPSAMPLES, confidence_level=BOOTSTRAPCONFIDENCE, method=BOOTSTRAPMETHOD, axis=0).confidence_interval #convert array to sequence
ci_ratio_delta = [median_ratio - ci_ratio.low, ci_ratio.high - median_ratio]
print(f'Median ratio: {median_ratio:.3f}, 95% CI [{ci_ratio.low:.3f}, {ci_ratio.high:.3f}]')
print(f'Number (fraction) of users faster with RD: {np.sum(data_ratio<1.0)} ({np.sum(data_ratio<1.0)/np.sum(data_ratio>0.0):.3f})')
# %% jupyter={"outputs_hidden": false} pycharm={"name": "#%%\n"}
# Define figure settings
figwidth = 10
figheight = 3
xlab_size = 20
ylab_size = 20
figfont_size = 24
# Define consistent color maps
my_cmap_sns_dark = [(0.8392156862745098, 0.15294117647058825, 0.1568627450980392)]
my_cmap_sns_light = [(0.984313725490196, 0.6039215686274509, 0.6)]
my_cmap_dark = sns.color_palette(my_cmap_sns_dark, as_cmap=True)
my_cmap_light = sns.color_palette(my_cmap_sns_light, as_cmap=True)
# Create data frame for split violinplot
dfvp = pd.DataFrame()
dfvp["values"] = sample
dfvp["all"] = "" # attribute that is shared by all entries
# print(dfvp)
# Create empty figure and plot the individual datapoints
fig, ax = plt.subplots(figsize=(figwidth,figheight))
# 1. Violinplot
axsns = sns.violinplot(x='values', y='all', # y='all' just need to group both types together
data=dfvp,
hue = True, hue_order = [False, True],
split = True, inner = 'quartile',
cut=0, # 0 means ending sharp at end points
width=.6, scale = 'width',
# dodge = False, # When using ``hue`` nesting, setting this to ``True`` will separate the strips for different hue levels along the categorical axis.
orient = 'h',
color=my_cmap_light[0],)
# change the medium default linke to full
for l in axsns.lines[1::3]:
l.set_linestyle('-')
l.set_linewidth(1.5)
l.set_color('black')
l.set_alpha(0.8)
# 2. Plot individual points
y_tilt = -0.13 # Set some delta for the points below the violinplot
y_base = np.zeros(len(data_ratio)) + y_tilt # base vector to which to broadcast y-tilt values
ax.plot(data_ratio, y_base,
# 'o',
'^',
alpha=1,
zorder=20, # higher means more visible
markersize=11,
markeredgewidth=0,
# markerfacecolor='none',
markerfacecolor=my_cmap_dark[0],
markeredgecolor=my_cmap_dark[0],
)
# 3. CI Errorbars & show numbers
axeb = plt.errorbar(median_ratio, 0, xerr=np.array([[ci_ratio_delta[0], ci_ratio_delta[1]]]).T,
fmt='o',
markersize=10, alpha=1,
# lw = 3,
lw = 5,
zorder=100, # higher means more visible
capsize = 0, # 10
# capthick = 4,
capthick = 0,
# color = 'black',
color = my_cmap_dark[0],
)
med = np.median(sample)
# ax.text(med, 0.32, f'{100*med:.1f}%', horizontalalignment='center', color='black', fontsize=20)
# ax.text(med, 0.32, f'{med:.2f}', horizontalalignment='center', color='black', fontsize=20)
ax.text(med, -0.1, f'{med:.2f}', horizontalalignment='center',
# color='black',
color = my_cmap_dark[0],
fontsize=figfont_size)
# ax.text(ci_ratio.low, 0.04, f'{100*ci_ratio.low:.1f}%', horizontalalignment='center', color='black', fontsize=20)
# ax.text(ci_ratio.high, 0.04, f'{100*ci_ratio.high:.1f}%', horizontalalignment='center', color='black', fontsize=20)
# 4. vertical bar for x-axis = 1
plt.plot([1, 1], [-10, 10], color = 'black', zorder = 0, linewidth = 2)
# Additional settings
# ax.set_ylim(-0.2, 0.4)
ax.set_xticks(np.linspace(0, 2, num=21))
ax.set_ylim(-0.25, 0.35)
ax.set_ylabel(None) # remove the 'all'
ax.set_xlim(0.2, 1.25)
if VARIANT == 1:
ax.set_xlim(0.2, 1.301)
if VARIANT == 3:
ax.set_xlim(0.499, 1.205)
# ax.set_xlabel('Ratio of median time per worker (RD / SQL)', size = xlab_size)
ax.set_xlabel('Ratio of median time per worker (DX / SQL)', size = xlab_size)
sns.despine(left=True) # remove bounding box
plt.grid(axis = 'x', linewidth = 0.5, color = 'lightgray')
ax.legend_.remove()
if savefig:
plt.savefig(fig_dir + f'/q1_figure2_variant{VARIANT}-pilot.pdf', bbox_inches='tight')
plt.savefig(fig_dir + f'/q1_figure2_variant{VARIANT}-pilot.svg', bbox_inches='tight')
# %% [markdown] jupyter={"outputs_hidden": false}
# # Question 2
# %% jupyter={"outputs_hidden": false} pycharm={"name": "#%%\n"}
# Create df6, df7
df0 = df_filtered_data[['worker_id', 'question', 'time', 'mode']].copy()
df0['H1'] = np.where(df0['question'].between(1, 16, inclusive='both'), 'H1', '')
df0['H2'] = np.where(df0['question'].between(17, 32, inclusive='both'), 'H2', '')
# display(df0)
df1 = df0[['worker_id','question','time','mode','H1']].rename(columns={'H1': 'section'}) # Two sections: 1st half (H1) and 2nd half (H2)
df2 = df0[['worker_id','question','time','mode','H2']].rename(columns={'H2': 'section'})
df4 = pd.concat([df1, df2])
df4 = df4.loc[df4['section'] != '']
df4 = df4.reset_index(inplace=False, drop=True)
# display(df4)
df5 = df4.groupby(['worker_id', 'mode', 'section']).time.agg(['median']) # for each worker, calculate median for both modes and section
df5.reset_index(inplace=True)
# display(df5)
# pivot to have one row per worker
df6 = pd.pivot_table(df5, values=['median'], index=['worker_id'], columns=['mode', 'section'])
df6=df6.droplevel(0, axis=1)
# relative improvements per user per mode
df6['RD', 'ratio'] = df6['RD', 'H2'] / df6['RD', 'H1']
df6['SQL', 'ratio'] = df6['SQL', 'H2'] / df6['SQL', 'H1']
# relative improvements of RD over SQL per user half
df6['H1', 'ratio'] = df6['RD', 'H1'] / df6['SQL', 'H1']
df6['H2', 'ratio'] = df6['RD', 'H2'] / df6['SQL', 'H2']
print('df6:')
display(df6)
# Median of median task time for each mode and section
modes = ['RD', 'SQL']
sections = ['H1', 'H2', 'ratio']
median_time = {}
ci = {}
ci_delta = {}
for mode in modes:
for section in sections:
column = (mode, section)
median_time[column] = np.median(df6[column])
ci[column] = scipybootstrap((df6[column],), statistic=np.median,
n_resamples=BOOTSTRAPSAMPLES,
confidence_level=BOOTSTRAPCONFIDENCE,
method='percentile',
axis=0).confidence_interval #convert array to sequence
ci_delta[column] = [median_time[column] - ci[column].low, ci[column].high - median_time[column]]
print(f'{mode}, {section}: {median_time[column]:.3f}, 95% CI [{ci[column].low:.3f}, {ci[column].high:.3f}]')
for half in ['H1', 'H2']:
column = half
median_time[column] = np.median(df6[column])
ci[column] = scipybootstrap((df6[column],), statistic=np.median,
n_resamples=BOOTSTRAPSAMPLES,
confidence_level=BOOTSTRAPCONFIDENCE,
method='percentile',
axis=0).confidence_interval #convert array to sequence
ci_delta[column] = [median_time[column] - ci[column].low, ci[column].high - median_time[column]]
print(f'{column}: {median_time[column]:.3f}, 95% CI [{ci[column].low[0]:.3f}, {ci[column].high[0]:.3f}]')
# uses df5 to make df7 (used for later plot)
modes = ['SQL', 'RD']
sections = ['H1', 'H2']
df7 = df5.loc[df5['section'].isin(sections)]
# display(df7)
# %% jupyter={"outputs_hidden": false} pycharm={"name": "#%%\n"}
# Plot (uses df6, df7)
# Define pre-settings
figwidth = 10
figheight = 6
if VARIANT == 1:
figheight = 8
xlab_size = 20
ylab_size = 20
figfont_size = 24
# Define consistent color maps
my_cmap_sns_light = [(0.7764705882352941, 0.8588235294117647, 0.9372549019607843), (0.9921568627450981, 0.8156862745098039, 0.6352941176470588)] # light orange, light blue
my_cmap_sns_dark = [(0.19215686274509805, 0.5098039215686274, 0.7411764705882353), (0.9019607843137255, 0.3333333333333333, 0.050980392156862744)] # dark orange, dark blue
my_cmap_dark = sns.color_palette(my_cmap_sns_dark, as_cmap=True)
my_cmap_light = sns.color_palette(my_cmap_sns_light, as_cmap=True)
# Create empty figure and plot the individual datapoints
fig, ax = plt.subplots(figsize=(figwidth,figheight))
# 1. Violinplots
axsns = sns.violinplot(x='median', y='section', data=df7,
hue='mode',
hue_order=['SQL', 'RD'],
split=True, # half violinplots https://stackoverflow.com/questions/53872439/half-not-split-violin-plots-in-seaborn
inner='quartile',
cut=0, # 0 means ending sharp at end points
width=.4,
orient = 'h',
zorder=20,
palette = my_cmap_light,)
# change the medium default line to full (https://stackoverflow.com/questions/60638344/quartiles-line-properties-in-seaborn-violinplot)
for l in axsns.lines[1::3]:
l.set_linestyle('-')
l.set_linewidth(1.2)
l.set_color('black')
# l.set_alpha(0.8)
# 2. Plot individual points
y_base = np.zeros(df6.values.shape[0]) # base vector to which to broadcast y-tilt values
y_tilt_mode = [0.3, 0.38]
y_tilt_section = [0, 1]
for i, mode in enumerate(modes):
for j, section in enumerate(sections):
column = (mode, section)
ax.plot(df6[column],
y_base + y_tilt_mode[i] + y_tilt_section[j],
# 'o',
# '|',
'^',
alpha=1,
zorder=20, # higher means more visible
markersize=11,
markeredgewidth=0,
# markerfacecolor='none',
markerfacecolor=my_cmap_sns_dark[i],
markeredgecolor=my_cmap_sns_dark[i],)
ax.plot(df6[column], # white background
y_base + y_tilt_mode[i] + y_tilt_section[j],
# 'o',
# '|',
'^',
markersize=11,
markeredgewidth=1,
markerfacecolor='white',
color ='white',
linewidth = None,
zorder=1,)
# # 3. Plot lines connecting points
# for idx in df6.index:
# for i, mode in enumerate(modes):
# for j in range(len(sections)-1):
# start = (mode, sections[j])
# end = (mode, sections[j+1])
# ax.plot(df6.loc[idx, [start, end]],
# [y_tilt_mode[i] + y_tilt_section[j], y_tilt_mode[i] + y_tilt_section[j+1]],
# color=my_cmap_sns_dark[i], linewidth=2, linestyle='-', alpha=.2, zorder=0)
# 4. CI Errorbars & numbers
y_tilt_mode = [0.5, 0.55]
# y_tilt_section_bar = [0.23, 0.8]
# y_tilt_section_number = [0.19, 0.89]
for i, mode in enumerate(modes):
for j, section in enumerate(sections):
column = (mode, section)
plt.errorbar(median_time[column], y_tilt_mode[i]+y_tilt_section[j],
xerr=np.array([[ci_delta[column][0] ,ci_delta[column][1]]]).T,
fmt='o', markersize=10,
lw = 3, alpha=1,
zorder=100, # higher means more visible
# capsize = 10, capthick = 4,
capsize = 0,
color = my_cmap_sns_dark[i] # 'black'
)
ax.text(median_time[column], y_tilt_mode[i]+y_tilt_section[j] + 0.18, f'{median_time[column]:.1f}',
horizontalalignment='center', color = my_cmap_sns_dark[i],
fontsize=figfont_size)
# 5. Plot red line connecting medians
for i, mode in enumerate(modes):
ax.plot([median_time[(mode, 'H1')], median_time[(mode, 'H2')]],
[y_tilt_mode[i]+y_tilt_section[0], y_tilt_mode[i]+y_tilt_section[1]],
color=my_cmap_sns_dark[i], linewidth = 3, linestyle ='-',
alpha=.3,
zorder=0)
# #Additional settings
ax.set_xticks(range(0, 100, 5))
ax.set_xlabel('Median time per worker and halves (sec)', size = xlab_size)
ax.set_ylabel(None)
ax.set_xlim(0, 40.1)
ax.set_ylim(1.82, -0.25)
leg = plt. legend(loc='lower right',
borderaxespad= 0.2,
frameon = True,
labelspacing = 0.1)
leg.get_frame().set_alpha(1)
leg.get_frame().set_linewidth(0.0)
for text, text2 in zip(leg.get_texts(), ['SQL', 'DX']):
text.set_text(text2)
plt.grid(axis = 'x', linewidth = 0.5, color = 'lightgray')
sns.despine() # remove bounding box
if savefig:
plt.savefig(fig_dir + f'/q2_figure_variant{VARIANT}-pilot.pdf', bbox_inches='tight')
plt.savefig(fig_dir + f'/q2_figure_variant{VARIANT}-pilot.svg', bbox_inches='tight')
# %% [markdown] jupyter={"outputs_hidden": false}
# # Question 3: four patterns
#
# (1) calculate the median time per pattern (4) across the two modes (2). Thus 8 values.
# (2) show repeated measure violin plot figure
# %% jupyter={"outputs_hidden": false} pycharm={"name": "#%%\n"}
# Create df8, df9
df0 = df_filtered_data[['worker_id', 'pattern', 'time', 'mode']]
# print(df)
df8 = df0.groupby(['worker_id', 'mode', 'pattern']).time.agg(['median']) # for each worker, calculate median for both modes
df8.reset_index(inplace=True)
# print('df8:')
# display(df8)
# Pivot to have one row per worker
df9 = pd.pivot_table(df8, values=['median'], index=['worker_id'], columns=['mode', 'pattern'])
df9=df9.droplevel(0, axis=1)
print('df9:')
display(df9)
# Median of median task time for each mode and section (for error plots)
modes = ['RD', 'SQL']
patterns = [1, 2, 3, 4]
median_time = {}
ci = {}
ci_delta = {}
for mode in modes:
for pattern in patterns:
column = (mode, pattern)
median_time[column] = np.median(df9[column])
ci[column] = scipybootstrap((df9[column],), statistic=np.median,
n_resamples=BOOTSTRAPSAMPLES,
confidence_level=BOOTSTRAPCONFIDENCE,
method='percentile',
axis=0).confidence_interval #convert array to sequence
ci_delta[column] = [median_time[column] - ci[column].low, ci[column].high - median_time[column]]
print(f'{mode}, {pattern}: {median_time[column]:.3f}, 95% CI [{ci[column].low:.3f}, {ci[column].high:.3f}]')
# Median ratio RD/SQL per pattern
for pattern in patterns:
column = ('ratio', pattern)
df9['ratio', pattern] = df9['RD', pattern] / df9['SQL', pattern]
median_time[column] = np.median(df9[column])
ci[column] = scipybootstrap((df9[column],), statistic=np.median,
n_resamples=BOOTSTRAPSAMPLES,
confidence_level=BOOTSTRAPCONFIDENCE,
method='percentile',
axis=0).confidence_interval #convert array to sequence
ci_delta[column] = [median_time[column] - ci[column].low, ci[column].high - median_time[column]]
print(f'ratio, {pattern}: {median_time[column]:.3f}, 95% CI [{ci[column].low:.3f}, {ci[column].high:.3f}]')