You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hello Vikas,
I've been running into the following error when trying to train my yolov7 model on google colab. Have you dealt with a similar issue/gotten this process to work in colab?
Thanks,
Chris
github: skipping check (not a git repository)
requirements: /root/requirements.txt not found, check failed.
/usr/local/lib/python3.10/dist-packages/torch/serialization.py in find_class(self, mod_name, name)
1122 pass
1123 mod_name = load_module_mapping.get(mod_name, mod_name)
-> 1124 return super().find_class(mod_name, name)
1125
1126 # Load the data (which may in turn use persistent_load to load tensors)
ModuleNotFoundError: No module named 'models'
The text was updated successfully, but these errors were encountered:
Hello Vikas,
I've been running into the following error when trying to train my yolov7 model on google colab. Have you dealt with a similar issue/gotten this process to work in colab?
Thanks,
Chris
github: skipping check (not a git repository)
requirements: /root/requirements.txt not found, check failed.
ModuleNotFoundError Traceback (most recent call last)
in <cell line: 1>()
----> 1 tiny_yolo.create_optimized_model()
5 frames
/usr/local/lib/python3.10/dist-packages/modoptima-0.1.0-py3.10.egg/modoptima/MasterTrainer.py in create_optimized_model(self)
83
84 def create_optimized_model(self):
---> 85 self.main_class.create_optimized_model()
86
87 def export_model(self,weights='./optmodel/exp/best.pt',
/usr/local/lib/python3.10/dist-packages/modoptima-0.1.0-py3.10.egg/modoptima/Train/yolov7tiny/Trainer.py in create_optimized_model(self)
949 total_batch_size=self.total_batch_size,save_dir=self.save_dir,world_size=self.world_size,global_rank=self.global_rank,img_size=self.img_size)
950
--> 951 self.start_training(hyp,self.opt,device, tb_writer)
952
953 # Evolve hyperparameters (optional)
/usr/local/lib/python3.10/dist-packages/modoptima-0.1.0-py3.10.egg/modoptima/Train/yolov7tiny/Trainer.py in start_training(self, hyp, opt, device, tb_writer)
398 if rank in [-1, 0]:
399 opt.hyp = hyp # add hyperparameters
--> 400 run_id = torch.load(weights, map_location=device).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None
401 wandb_logger = WandbLogger(opt, Path(opt.save_dir).stem, run_id, data_dict)
402 loggers['wandb'] = wandb_logger.wandb
/usr/local/lib/python3.10/dist-packages/torch/serialization.py in load(f, map_location, pickle_module, weights_only, **pickle_load_args)
787 except RuntimeError as e:
788 raise pickle.UnpicklingError(UNSAFE_MESSAGE + str(e)) from None
--> 789 return _load(opened_zipfile, map_location, pickle_module, **pickle_load_args)
790 if weights_only:
791 try:
/usr/local/lib/python3.10/dist-packages/torch/serialization.py in _load(zip_file, map_location, pickle_module, pickle_file, **pickle_load_args)
1129 unpickler = UnpicklerWrapper(data_file, **pickle_load_args)
1130 unpickler.persistent_load = persistent_load
-> 1131 result = unpickler.load()
1132
1133 torch._utils._validate_loaded_sparse_tensors()
/usr/local/lib/python3.10/dist-packages/torch/serialization.py in find_class(self, mod_name, name)
1122 pass
1123 mod_name = load_module_mapping.get(mod_name, mod_name)
-> 1124 return super().find_class(mod_name, name)
1125
1126 # Load the data (which may in turn use
persistent_load
to load tensors)ModuleNotFoundError: No module named 'models'
The text was updated successfully, but these errors were encountered: