-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGeneticAlgorithm.py
269 lines (248 loc) · 10.7 KB
/
GeneticAlgorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# -*- coding: UTF-8 -*-
from Level import Player, Button
import random
import copy
import config as cnf
config = cnf.read()
class GenAI(object):
def __init__(self, map):
self.map = map
old_or_new = ((self.old_fitness, Player.PlayerOld),
(self.new_fitness, Player.PlayerNew))
self.fitness, self.PlayerClass, = old_or_new[self.map.new_fitness]
self.constant_moves = list()
self.players = list()
self.generation = 1
self.done = False
self.learning_rate = config['learning_rate']
self.learning_rate_2 = config['learning_rate2']
self.learning_rate_finished = self.learning_rate * 2
self.population = config['population']
self.move_count = config['move_count']
for count in range(self.population):
self.players.append(self.PlayerClass(self.map))
if type(self) == GenAI:
for player in self.players:
for count in range(self.move_count):
player.moves.append(random.choice((0, 1, 2, 3)))
self.map.players = self.players
self.highest_exploration = int
self.mutation_rate = config['mutation_rate']
self.mutation_rate = 1 / self.mutation_rate
self.stop = False
self.max_moves = 0
def finished(self):
Button.restart(self.map)
self.highest_exploration = 0
for player in self.players:
if self.map.new_fitness:
player_progresses = player.progress
else:
player_progresses = player.new_fields
if player_progresses > self.highest_exploration:
self.highest_exploration = player_progresses
highest = 0
for player in self.players:
if player.progress > highest:
highest = player.progress
for player in self.players:
player.fitness = self.fitness(player, highest)
highest = 0
for player in self.players:
if player.fitness > highest:
highest = player.fitness
highest_players = list()
for player in self.players:
if player.fitness == highest:
highest_players.append(player)
highest_players.sort(key=lambda x: -x.move_at_last_new)
if not self.map.new_fitness:
for player in highest_players:
player.fitness += 2 * ((highest_players.index(player)+1)/len(highest_players))**self.learning_rate_2
print(len(highest_players))
for _ in highest_players[-10:]:
print(_.fitness, _.move_at_last_new)
self.evolve()
def old_fitness(self, player, x):
fit = 0
if not player.goal_reached:
fit += (player.new_fields/self.highest_exploration)**self.learning_rate * 2.5
else:
if not self.done:
self.done = True
self.max_moves = len(player.moves)
self.constant_moves = list()
self.moves_to_make = self.move_count
fit += 5 + 15 * (1/player.time_in_seconds)
# TODO: Nicht alle tiles werden erkannt? Oder ist der Weiteste nicht immer der Beste?
# TODO: Scheint allerdings erst nach einem Neuladen eines Algorithmus der Fall zu sein...
if player.failed:
fit *= 0.5
return fit
def new_fitness(self, player, highest):
fit = 0
if not player.goal_reached:
fit += (player.progress/highest) ** (self.learning_rate) * 5
else:
if not self.done:
print(player)
self.done = True
self.max_moves = len(player.moves)
print('\nMax moves: %s\n' % self.max_moves)
self.constant_moves = list()
self.moves_to_make = self.move_count
self.success(player.time)
fit += 10 + 15 * (1 / player.time_in_seconds)
if player.failed:
fit *= 0.5
return fit
def evolve(self):
highest_fitness_player = self.players[0]
for player in self.players:
if player.fitness >= highest_fitness_player.fitness:
highest_fitness_player = player
print(highest_fitness_player.visited)
new_players = list()
best_player = self.PlayerClass(self.map)
best_player.visible = True
best_player.moves = highest_fitness_player.moves
new_players.append(best_player)
all_score = 0
for player in self.players:
all_score += player.fitness
for i in range(self.population - 1):
a = random.random() * all_score
b = random.random() * all_score
player_a = self.search(a)
player_b = self.search(b)
new_players.append(self.breed(player_a, player_b, self.move_count))
self.generation += 1
self.players = new_players
self.map.players = self.players
def search(self, score):
for player in self.players:
if score < player.fitness:
return player
else:
score -= player.fitness
def breed(self, player_1, player_2, new_genes, rand=False):
new_player = self.PlayerClass(self.map)
new_player.moves = copy.copy(self.constant_moves)
for i in range(new_genes):
if random.random() > self.mutation_rate and not rand:
if random.random() > 0.5:
new_player.moves.append(player_2.moves[len(self.constant_moves)+i])
else:
new_player.moves.append(player_1.moves[len(self.constant_moves)+i])
else:
new_player.moves.append(random.choice((0, 1, 2, 3)))
return new_player
def success(self, time):
self.map.goal_reached = True
text1 = 'Solved in %d days and ' % time[0]
text1 += '%d:%d:%d:%d' % (time[1], time[2], time[3], time[4])
text2 = 'Interrupt trough a restart or continue running to improve results'
self.map.done_text = (text1, 225, 150)
self.map.help_text = (text2, 1, 800)
self.learning_rate = self.learning_rate_finished
class GenAI_2(GenAI):
def __init__(self, map):
GenAI.__init__(self, map)
self.moves_per_change = config['moves_every_change']
self.moves_to_make = self.moves_per_change
self.generations_per_change = config['generations_between_changes']
self.move_count = self.moves_per_change
for player in self.players:
player.moves = list()
for count in range(self.move_count):
player.moves.append(random.choice((0, 1, 2, 3)))
def evolve(self):
new_chance = False
for player in self.players:
if not player.failed:
highest_fitness_player = player
break
for player in self.players:
if player.fitness >= highest_fitness_player.fitness:
highest_fitness_player = player
print(str(highest_fitness_player.visited)+'\n')
new_players = list()
best_player = self.PlayerClass(self.map)
best_player.visible = True
best_player.moves = copy.copy(highest_fitness_player.moves)
if (self.generation % self.generations_per_change) == 0 and not self.done:
self.constant_moves = highest_fitness_player.moves
self.move_count += self.moves_per_change
for i in range(self.moves_per_change):
best_player.moves.append(random.choice((0, 1, 2, 3)))
new_chance = True
new_players.append(copy.copy(best_player))
all_score = 0
for player in self.players:
all_score += player.fitness
for i in range(self.population - 1):
a = random.random() * all_score
b = random.random() * all_score
player_a = self.search(a)
player_b = self.search(b)
new_players.append(self.breed(player_a, player_b, self.moves_to_make, new_chance))
self.generation += 1
self.players = new_players
self.map.players = self.players
class GenAI_3(GenAI):
def __init__(self, map):
GenAI.__init__(self, map)
self.new_constants = config['new_constant_moves']
self.moves_in_advance = config['moves_in_advance'] # Bewegungen im Voraus die dynamisch sind
self.move_count = self.moves_in_advance
self.generations_before_begin = config['generations_before_begin']
self.generations_per_change = config['generations_between_changes']
self.new_chance = bool
for player in self.players:
for count in range(self.move_count):
player.moves.append(random.choice((0, 1, 2, 3)))
def evolve(self):
self.new_chance = False
highest_fitness_player = self.players[0]
for player in self.players:
if player.fitness >= highest_fitness_player.fitness:
highest_fitness_player = player
if self.done:
print('Goal reached!')
else:
if self.map.new_fitness:
print(str(round(highest_fitness_player.progress*100, 4))+'%')
else:
print(highest_fitness_player.visited)
new_players = list()
best_player = self.PlayerClass(self.map)
best_player.visible = True
best_player.moves = highest_fitness_player.moves
new_players.append(best_player)
if not self.done and self.generation >= self.generations_before_begin:
if ((self.generation-self.generations_before_begin) % self.generations_per_change) == 0:
self.move_count += self.new_constants
for ind in range(self.new_constants):
best_player.moves.append(random.choice((0, 1, 2, 3)))
move = best_player.moves[len(self.constant_moves)]
self.constant_moves.append(move)
self.new_chance = True
print('%d constant moves' % len(self.constant_moves))
all_score = 0
for player in self.players:
all_score += player.fitness
for i in range(self.population - 1):
a = random.random() * all_score
b = random.random() * all_score
player_a = self.search(a)
player_b = self.search(b)
if not self.done:
new_player = self.breed(player_a, player_b, self.moves_in_advance, self.new_chance)
else:
new_player = self.breed(player_a, player_b, self.max_moves, False)
if self.new_chance:
new_player.moves.append(random.choice((0, 1, 2, 3)))
new_players.append(new_player)
self.generation += 1
self.players = new_players
self.map.players = self.players