-
Notifications
You must be signed in to change notification settings - Fork 70
/
regulizedFineTuneLiDARTagPose.m
76 lines (72 loc) · 4.34 KB
/
regulizedFineTuneLiDARTagPose.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
%{
* Copyright (C) 2013-2020, The Regents of The University of Michigan.
* All rights reserved.
* This software was developed in the Biped Lab (https://www.biped.solutions/)
* under the direction of Jessy Grizzle, [email protected]. This software may
* be available under alternative licensing terms; contact the address above.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* The views and conclusions contained in the software and documentation are those
* of the authors and should not be interpreted as representing official policies,
* either expressed or implied, of the Regents of The University of Michigan.
*
* AUTHOR: Bruce JK Huang (bjhuang[at]umich.edu)
* WEBSITE: https://www.brucerobot.com/
%}
function [X, bag_data] = regulizedFineTuneLiDARTagPose(tag_size_array, X, Y, H_LT, P, correspondance_per_pose, display, bag_data)
theta_x = optimvar('theta_x', 1, 1,'LowerBound',-5,'UpperBound',5); % 1x1
theta_y = optimvar('theta_y', 1, 1,'LowerBound',-5,'UpperBound',5); % 1x1
theta_z = optimvar('theta_z', 1, 1,'LowerBound',-5,'UpperBound',5); % 1x1
T = optimvar('T', 1, 3,'LowerBound',-0.1,'UpperBound',0.1);
prob = optimproblem;
num_pose = size(X, 2)/correspondance_per_pose; % 4 correspondance per pose
for i = 1 : num_pose
target_size = tag_size_array(i);
pose_num = correspondance_per_pose * (i-1) + 1;
f = fcn2optimexpr(@regulizedCostOfFineTuneLiDARTagPose, theta_x, theta_y, theta_z, T, ...
X(:,pose_num:pose_num+correspondance_per_pose-1), ...
Y(:,pose_num:pose_num+correspondance_per_pose-1), ...
H_LT(:, pose_num:pose_num+correspondance_per_pose-1), P, target_size);
prob.Objective = f;
x0.theta_x = 0;
x0.theta_y = 0;
x0.theta_z = 0;
x0.T = [0 0 0];
options = optimoptions('fmincon', 'MaxIter',5e2, 'Display','off', ...
'TolX', 1e-12, 'FunctionTolerance', 1e-8, ...
'MaxFunctionEvaluations', 3e4, 'StepTolerance', 1e-20);
[sol, fval, ~, ~] = solve(prob, x0, 'Options', options);
R_final = rotx(sol.theta_x) * roty(sol.theta_y) * rotz(sol.theta_z);
H_fine_tune = eye(4);
H_fine_tune(1:3, 1:3) = R_final;
H_fine_tune(1:3, 4) = sol.T';
if checkDisplay(display)
disp('new H_LT: ')
disp(H_fine_tune)
disp('cost:')
disp(fval)
end
% dbstop in regulizedFineTuneLiDARTagPose at 40 if fval>=100
% dbstop in regulizedFineTuneLiDARTagPose at 40 if det(H_fine_tune)==1
%regulizedCostOfFineTuneLiDARTagPose(sol.theta_x, sol.theta_y, sol.theta_z, sol.T, X(:,pose_num:pose_num+correspondance_per_pose-1), Y(:,pose_num:pose_num+correspondance_per_pose-1), H_LT(:, pose_num:pose_num+correspondance_per_pose-1), P, target_size)
X(:,pose_num:pose_num+correspondance_per_pose-1) = H_fine_tune * X(:,pose_num:pose_num+correspondance_per_pose-1);
if nargout == 2 && nargin == 8
bag_data.baseline(which_tag).scan(scan_number).corners = cross_big_3d;
end
end
end