-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathrgraph.py
306 lines (267 loc) · 11.3 KB
/
rgraph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
#!/usr/bin/env python3
##########################################################################
#
# This file is part of Proverbot9001.
#
# Proverbot9001 is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Proverbot9001 is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with Proverbot9001. If not, see <https://www.gnu.org/licenses/>.
#
# Copyright 2019 Alex Sanchez-Stern and Yousef Alhessi
#
##########################################################################
import json
import argparse
from pathlib_revised import Path2
from dataclasses import dataclass
from typing import (List, Optional, Dict, Any, Tuple, cast)
import pygraphviz as pgv
import torch
from util import unwrap, nostderr
from coq_serapy.contexts import (TacticContext, ProofContext,
truncate_tactic_context)
import predict_tactic
from models import (features_polyarg_predictor, features_q_estimator,
polyarg_q_estimator, tactic_predictor)
from models.q_estimator import QEstimator
@dataclass
class LabeledTransition:
relevant_lemmas: List[str]
prev_tactics: List[str]
before: ProofContext
after: ProofContext
action: str
original_certainty: float
reward: float
graph_node: Optional['LabeledNode']
@property
def after_context(self) -> TacticContext:
return TacticContext(self.relevant_lemmas,
self.prev_tactics,
self.after.focused_hyps,
self.after.focused_goal)
@property
def before_context(self) -> TacticContext:
return TacticContext(self.relevant_lemmas,
self.prev_tactics,
self.before.focused_hyps,
self.before.focused_goal)
def to_dict(self) -> Dict[str, Any]:
return {"relevant_lemmas": self.relevant_lemmas,
"prev_tactics": self.prev_tactics,
"before": self.before.to_dict(),
"after": self.after.to_dict(),
"action": self.action,
"original_certainty": self.original_certainty,
"reward": self.reward}
@classmethod
def from_dict(cls, data) -> 'LabeledTransition':
return LabeledTransition(data["relevant_lemmas"],
data["prev_tactics"],
ProofContext.from_dict(data["before"]),
ProofContext.from_dict(data["after"]),
data["action"],
data["original_certainty"],
data["reward"],
None)
@dataclass(init=True)
class LabeledNode:
node_id: int
transition: Optional[LabeledTransition]
parent: Optional["LabeledNode"]
children: List["LabeledNode"]
@property
def action(self) -> str:
return unwrap(self.transition).action
@property
def reward(self) -> float:
return unwrap(self.transition).reward
class ReinforceGraph:
__next_node_id: int
start_node: LabeledNode
lemma_name: str
graph_nodes: List[Tuple[int, Dict[str, str]]]
graph_edges: List[Tuple[int, int, Dict[str, str]]]
def __init__(self, lemma_name: str) -> None:
self.__next_node_id = 0
self.lemma_name = lemma_name
self.graph_nodes = []
self.graph_edges = []
self.start_node = self.mkNode(None, None)
pass
def addTransition(self, src: LabeledNode, transition: LabeledTransition,
**kwargs) -> LabeledNode:
for child in src.children:
if child.action == transition.action:
assert child.reward == transition.reward
child.transition = transition
return child
return self.mkNode(transition, src, **kwargs)
def addGhostTransition(self, src: LabeledNode,
transition: LabeledTransition,
**kwargs) -> LabeledNode:
for child in src.children:
if child.action == transition.action:
return child
return self.mkNode(transition, src, fillcolor="grey", **kwargs)
def mkNode(self, transition: Optional[LabeledTransition],
previous_node: Optional[LabeledNode],
**kwargs) -> LabeledNode:
if 'fillcolor' not in kwargs and transition:
if transition.reward > 0:
color = "palegreen"
elif transition.reward < 0:
color = "indianred1"
else:
color = "white"
self.graph_nodes.append((self.__next_node_id,
{"label": transition.action,
"fillcolor": color,
"style": "filled",
**kwargs}))
elif transition:
self.graph_nodes.append((self.__next_node_id,
{"label": transition.action,
**kwargs}))
else:
self.graph_nodes.append((self.__next_node_id,
{"label": self.lemma_name,
**kwargs}))
self.__next_node_id += 1
newNode = LabeledNode(self.__next_node_id-1,
transition,
previous_node, [])
if previous_node:
assert transition
self.graph_edges.append((previous_node.node_id, newNode.node_id,
{"label": f"{transition.reward:.2f}"}))
previous_node.children.append(newNode)
return newNode
def mkQED(self, src: LabeledNode):
for existing_node in src.children:
if existing_node.transition is None:
return
self.graph_nodes.append((self.__next_node_id,
{"label": "QED"}))
self.graph_edges.append((src.node_id, self.__next_node_id, {}))
newNode = LabeledNode(self.__next_node_id,
None, src, [])
src.children.append(newNode)
self.__next_node_id += 1
cur_node = src
while cur_node != self.start_node:
self.setNodeOutlineColor(cur_node, "palegreen1")
assert cur_node.parent
cur_node = cur_node.parent
pass
def setNodeColor(self, node: LabeledNode, color: str) -> None:
for (nidx, props) in self.graph_nodes:
if nidx == node.node_id:
props["fillcolor"] = color
props["style"] = "filled"
continue
def setNodeOutlineColor(self, node: LabeledNode, color: str) -> None:
for (nidx, props) in self.graph_nodes:
if nidx == node.node_id:
props["color"] = color
continue
def setNodeApproxQScore(self, node: LabeledNode, score: float) -> None:
for (nidx, props) in self.graph_nodes:
if nidx == node.node_id:
props["label"] = f"{node.action} (~{score:.2f})"
def save(self, filename: str) -> None:
def node_to_dict(node: LabeledNode):
return {"id": node.node_id,
"transition": node.transition.to_dict()
if node.transition else None,
"children": [node_to_dict(child) for child in
node.children]}
with open(filename, 'w') as f:
json.dump({"nodes": self.graph_nodes,
"edges": self.graph_edges,
"lemma": self.lemma_name,
"data": node_to_dict(self.start_node)},
f)
@classmethod
def load(cls, filename: str) -> 'ReinforceGraph':
def node_from_dict(d: Dict[str, Any],
parent: Optional[LabeledNode] = None):
node = LabeledNode(d["id"],
LabeledTransition.from_dict(d["transition"])
if d["transition"] else None,
parent,
[])
node.children = [node_from_dict(child, parent=node)
for child in d["children"]]
return node
with open(filename, 'r') as f:
d = json.load(f)
graph = ReinforceGraph(d["lemma"])
graph.graph_nodes = d["nodes"]
graph.graph_edges = d["edges"]
graph.start_node = node_from_dict(d["data"])
return graph
def draw(self, filename: str) -> None:
graph = pgv.AGraph(directed=True)
for (nidx, props) in self.graph_nodes:
graph.add_node(nidx, **props)
for (a, b, props) in self.graph_edges:
graph.add_edge(a, b, **props)
with nostderr():
graph.draw(filename, prog="dot")
def assignApproximateQScores(graph: ReinforceGraph,
max_term_length: int,
predictor: tactic_predictor.TacticPredictor,
estimator: QEstimator,
node: Optional[LabeledNode] = None) -> None:
if node is None:
node = graph.start_node
elif node.transition:
ctxt = truncate_tactic_context(
node.transition.before_context,
max_term_length)
score = estimator([(ctxt,
node.transition.action,
node.transition.original_certainty)])[0]
graph.setNodeApproxQScore(
node, score)
for child in node.children:
assignApproximateQScores(
graph, max_term_length,
predictor, estimator, child)
def main():
parser = \
argparse.ArgumentParser(
description="A module for drawing and re-drawing reinforcement "
"learning graphs")
parser.add_argument("predictor_weights")
parser.add_argument("estimator_weights")
parser.add_argument("graph_json")
parser.add_argument("--max-term-length", default=512, type=int)
args = parser.parse_args()
predictor = predict_tactic.loadPredictorByFile(args.predictor_weights)
q_estimator_name, *saved = torch.load(str(args.estimator_weights))
if q_estimator_name == "features evaluator":
q_estimator = features_q_estimator.FeaturesQEstimator(0, 0, 0)
elif q_estimator_name == "polyarg evaluator":
q_estimator = polyarg_q_estimator.PolyargQEstimator(
0, 0, 0,
cast(features_polyarg_predictor.FeaturesPolyargPredictor,
predictor))
q_estimator.load_saved_state(*saved)
graph = ReinforceGraph.load(args.graph_json)
assignApproximateQScores(graph, args.max_term_length,
predictor, q_estimator)
path = Path2(args.graph_json).parent / Path2(args.graph_json).stem
graph.draw(path)
if __name__ == "__main__":
main()