-
Notifications
You must be signed in to change notification settings - Fork 9
/
main.py
118 lines (103 loc) · 4.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import argparse
import os
import time
import numpy as np
from tqdm import tqdm
import open3d as o3d
from openfusion.slam import build_slam, BaseSLAM
from openfusion.datasets import Dataset
from openfusion.utils import (
show_pc, save_pc, get_cmap_legend
)
from configs.build import get_config
def stream_loop(args, slam:BaseSLAM):
if args.save:
slam.export_path = f"{args.data}_live/{args.algo}.npz"
slam.start_thread()
if args.live:
slam.start_monitor_thread()
slam.start_query_thread()
try:
while True:
time.sleep(1)
except KeyboardInterrupt:
slam.stop_thread()
if args.live:
slam.stop_query_thread()
slam.stop_monitor_thread()
def dataset_loop(args, slam:BaseSLAM, dataset:Dataset):
if args.save:
slam.export_path = f"{args.data}_{args.scene}_{args.algo}.npz"
if args.live:
slam.start_monitor_thread()
slam.start_query_thread()
i = 0
for rgb_path, depth_path, extrinsics in tqdm(dataset):
rgb, depth = slam.io.from_file(rgb_path, depth_path)
slam.io.update(rgb, depth, extrinsics)
slam.vo()
slam.compute_state(encode_image=i%10==0)
i += 1
if args.live:
slam.stop_query_thread()
slam.stop_monitor_thread()
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--algo', type=str, default="vlfusion", choices=["default", "cfusion", "vlfusion"])
parser.add_argument('--vl', type=str, default="seem", help="vlfm to use")
parser.add_argument('--data', type=str, default="kobuki", help='Path to dir of dataset.')
parser.add_argument('--scene', type=str, default="icra", help='Name of the scene in the dataset.')
parser.add_argument('--frames', type=int, default=-1, help='Total number of frames to use. If -1, use all frames.')
parser.add_argument('--device', type=str, default="cuda:0", choices=["cpu:0", "cuda:0"])
parser.add_argument('--live', action='store_true')
parser.add_argument('--stream', action='store_true')
parser.add_argument('--save', action='store_true')
parser.add_argument('--load', action='store_true')
parser.add_argument('--host_ip', type=str, default="YOUR IP") # for stream
args = parser.parse_args()
if args.stream:
args.scene = "live"
if not os.path.exists(f"sample/{args.data}"):
os.mkdir(f"sample/{args.data}")
raise ValueError(f"[*] please place the intrinsic.txt inside `sample/{args.data}/`.")
if not os.path.exists(f"sample/{args.data}/live"):
os.mkdir(f"sample/{args.data}/live")
params = get_config(args.data, args.scene)
dataset:Dataset = params["dataset"](params["path"], args.frames, args.stream)
intrinsic = dataset.load_intrinsics(params["img_size"], params["input_size"])
slam = build_slam(args, intrinsic, params)
# NOTE: real-time semantic map construction
if not os.path.exists(f"{args.data}_{args.scene}"):
os.makedirs(f"{args.data}_{args.scene}")
if args.load:
if os.path.exists(f"{args.data}_{args.scene}/{args.algo}.npz"):
print("[*] loading saved state...")
slam.point_state.load(f"{args.data}_{args.scene}/{args.algo}.npz")
else:
print("[*] no saved state found, skipping...")
else:
if args.stream:
stream_loop(args, slam)
else:
dataset_loop(args, slam, dataset)
if args.save:
slam.save(f"{args.data}_{args.scene}/{args.algo}.npz")
# NOTE: save point cloud
points, colors = slam.point_state.get_pc()
save_pc(points, colors, f"{args.data}_{args.scene}/color_pc.ply")
# NOTE: save colorized mesh
mesh = slam.point_state.get_mesh()
o3d.io.write_triangle_mesh(f"{args.data}_{args.scene}/color_mesh.ply", mesh)
o3d.io.write_triangle_mesh(f"{args.data}_{args.scene}/color_mesh.glb", mesh)
# NOTE: modify below to play with query
if args.algo in ["cfusion", "vlfusion"]:
# points, colors = slam.query("Window", topk=3)
# points, colors = slam.query("there is a stainless steel fridge in the ketchen", topk=3)
points, colors = slam.semantic_query([
"vase", "table", "tv shelf", "curtain", "wall", "floor", "ceiling", "door", "tv",
"room plant", "light", "sofa", "cushion", "wall paint", "chair"
])
show_pc(points, colors, slam.point_state.poses)
save_pc(points, colors, f"{args.data}_{args.scene}/semantic_pc.ply")
if __name__ == "__main__":
main()