-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKMeans_CUDA.cu
497 lines (394 loc) · 13.3 KB
/
KMeans_CUDA.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
// KMeans in CUDA
#ifndef __KMEANS_CU__
#define __KMEANS_CU__
#include "KMeans_CUDA.h"
#include <cuda_runtime.h>
#include <stdio.h>
#include <stdexcept>
#include <ctime>
#include <random>
#include <float.h>
//// GPU Kernels //////////////////////////////////////////////////////////////
#define CUDA_CHECK(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort=true)
{
if (code != cudaSuccess)
{
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}
// Computes the sum (d_sum) and count (d_count) for each of the k clusters labeled in d_centroids.
// n: number of data points
// d: number of dimensions
// k: number of clusters
// Uses shared memory of 3*k*d
__global__ void sum_and_count(
const float *d_data,
const float *d_centroids,
float *d_sum,
int *d_count,
int n,
int d,
int k
) {
// Shared memory:
// 0 to k*d: centroids,
// k*d to 2*k*d: sum,
// 2*k*d to 3*k*d: count
extern __shared__ float s_shared[];
float *s_centroids = s_shared; // Shared memory for centroids
float *s_sum = &s_centroids[k*d]; // Shared memory for sum
float *s_count = &s_sum[k*d]; // Shared memory for count
int tid = threadIdx.x;
int idx = blockIdx.x * blockDim.x + tid;
// Initialize shared memory
if (tid < k * d) {
s_centroids[tid] = d_centroids[tid];
}
if (tid < k) {
s_count[tid] = 0;
}
if (tid < k * d) {
s_sum[tid] = 0.0f;
}
__syncthreads(); // Ensure all shared memory is initialized
if (idx < n) {
const int idxd = idx * d;
// Find closest centroid
int min_class = -1;
float dist;
float min_dist = FLT_MAX;
for (int c = 0; c < k; c++) {
dist = 0;
for (int i = 0; i < d; i++) {
dist += pow(d_data[i+idxd] - s_centroids[i+c*d], 2);
}
if (dist < min_dist) {
min_dist = dist;
min_class = c;
}
}
// Update sum and count
atomicAdd(&s_count[min_class], 1);
for (int i = 0; i < d; i++) {
atomicAdd(&s_sum[i+min_class*d], d_data[i+idxd]);
}
}
__syncthreads(); // Ensure all threads have finished updating sum and count
// Write shared memory results to global memory (only one thread per centroid)
if (tid < k) {
atomicAdd(&d_count[tid], (int)s_count[tid]);
}
if (tid < k * d) {
atomicAdd(&d_sum[tid], s_sum[tid]);
}
}
// Updates each centroid using d_sum and d_count where the index is d * centroid number (out of K).
// d: number of dimensions
// k: number of clusters
__global__ void update_centroids(
float *d_centroids,
const float *d_sum,
const int *d_count,
int d,
int k
) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
// Update centroids
if (idx < k) {
const int idxd = idx * d;
for (int i = 0; i < d; i++) {
if (d_count[idx] != 0) {
d_centroids[i+idxd] = d_sum[i+idxd] / d_count[idx];
}
}
}
}
// Updates each centroid using d_sum and d_count where the index is d * centroid number (out of K).
// `converged` will be true if there are no updates to the centroids.
// d: number of dimensions
// k: number of clusters
__global__ void update_centroids_and_check_for_convergence(
float* d_centroids,
bool* converged,
const float* d_sum,
const int* d_count,
int d,
int k
) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
bool updated = false;
// Update centroids
if (idx < k) {
const int idxd = idx * d;
for (int i = 0; i < d; i++) {
if (d_count[idx] != 0) {
float new_centroid = d_sum[i+idxd] / d_count[idx];
if (new_centroid != d_centroids[i+idxd]) {
updated = true;
d_centroids[i+idxd] = new_centroid;
}
}
}
}
// Update the converged flag
if (updated) {
*converged = false;
}
}
// Computes error and updates d_error
// Note this is currently only for debugging purposes as it recomputes work done in sum_and_count
// n: number of data points
// d: number of dimensions
// k: number of clusters
__global__ void calculate_error(
const float *d_data,
const float *d_centroids,
float *d_error,
int n,
int d,
int k
) {
int tid = threadIdx.x;
int idx = blockIdx.x * blockDim.x + tid;
if (idx < n) {
const int idxd = idx * d;
// Find closest centroid
float dist;
float min_dist = FLT_MAX;
for (int c = 0; c < k; c++) {
dist = 0;
for (int i = 0; i < d; i++) {
dist += pow(d_data[i+idxd] - d_centroids[i+c*d], 2);
}
if (dist < min_dist) {
min_dist = dist;
}
}
// Add error
atomicAdd(d_error, min_dist);
}
}
//// Constructors / Destructors //////////////////////////////////////////////
KMeans_CUDA::KMeans_CUDA(
float *data,
int n,
int d,
int k
) {
// Seed the random number generator
srand(static_cast<unsigned int>(time(0)));
// CPU stack memory
this->n = n;
this->d = d;
this->k = k;
// CPU heap memory
// Normalize data
float *mins = new float[d];
float *maxs = new float[d];
for (int i = 0; i < d; i++) {
mins[i] = data[i];
maxs[i] = data[i];
}
for (int i = 0; i < n*d; i++) {
mins[i%d] = min(mins[i%d], data[i]);
maxs[i%d] = max(maxs[i%d], data[i]);
}
h_data = new float[n*d];
for (int i = 0; i < n*d; i++) {
float range = (maxs[i%d]-mins[i%d]);
if (range == 0) {
range = maxs[i%d];
}
h_data[i] = (data[i] - mins[i%d]) / range;
}
delete[] mins;
delete[] maxs;
// Centroids
h_centroids = new float[d*k];
for (int i = 0; i < k; i++) { // Select a datapoint for each centroid initalization
int data_index = rand() % n;
for (int j = 0; j < d; j++) { // Select a dimension
h_centroids[i*d+j] = h_data[data_index*d+j];
}
}
// GPU memory
CUDA_CHECK( cudaMalloc(&d_data, n*d*sizeof(float)) );
CUDA_CHECK( cudaMalloc(&d_centroids, k*d*sizeof(float)) );
CUDA_CHECK( cudaMalloc(&d_count, k*sizeof(int)) );
CUDA_CHECK( cudaMalloc(&d_sum, k*d*sizeof(float)) );
CUDA_CHECK( cudaMemcpy(d_data, h_data, n*d*sizeof(float), cudaMemcpyHostToDevice) );
CUDA_CHECK( cudaMemcpy(d_centroids, h_centroids, k*d*sizeof(float), cudaMemcpyHostToDevice) );
}
KMeans_CUDA::~KMeans_CUDA() {
delete[] h_data;
delete[] h_centroids;
CUDA_CHECK( cudaFree(d_data) );
CUDA_CHECK( cudaFree(d_centroids) );
CUDA_CHECK( cudaFree(d_count) );
CUDA_CHECK( cudaFree(d_sum) );
}
//// CPU Compute Functions ////////////////////////////////////////////////////
// Runs one epoch of KMeans
void KMeans_CUDA::one_epoch() {
fit(1);
}
// Runs `epochs` number of iterations
void KMeans_CUDA::fit(int epochs) {
// GPU setup
CUDA_CHECK( cudaMemset(d_count, 0, k*sizeof(int)) );
CUDA_CHECK( cudaMemset(d_sum, 0, k*d*sizeof(float)) );
int threads_per_block = 32;
int blocks1 = (n + threads_per_block - 1) / threads_per_block;
size_t shared_mem_size = 3*k*d*sizeof(float);
// Run kernel to get sums and counts
for (int i = 0; i < epochs; ++i) {
sum_and_count<<<blocks1, threads_per_block, shared_mem_size>>>(d_data, d_centroids, d_sum, d_count, n, d, k);
CUDA_CHECK( cudaPeekAtLastError() );
CUDA_CHECK( cudaDeviceSynchronize() );
// Run kernel to update centroids (calculate average)
int blocks2 = (k + threads_per_block - 1) / threads_per_block;
update_centroids<<<blocks2, threads_per_block>>>(d_centroids, d_sum, d_count, d, k);
CUDA_CHECK( cudaPeekAtLastError() );
CUDA_CHECK( cudaDeviceSynchronize() );
}
// Copy data back to host
CUDA_CHECK( cudaMemcpy(h_centroids, d_centroids, k*d*sizeof(float), cudaMemcpyDeviceToHost) );
}
// Run until either the centroids converge or max_epochs is reached
// Returns if model has converged (meaning running more iterations doesn't impact clusters)
bool KMeans_CUDA::run_until_convergence(int max_epochs) {
if (max_epochs < 1) {
return false;
}
// GPU setup
CUDA_CHECK( cudaMemset(d_count, 0, k*sizeof(int)) );
CUDA_CHECK( cudaMemset(d_sum, 0, k*d*sizeof(float)) );
int threads_per_block = 32;
int blocks1 = (n + threads_per_block - 1) / threads_per_block;
size_t shared_mem_size = 3*k*d*sizeof(float);
bool h_converged = true;
bool* d_converged;
CUDA_CHECK( cudaMalloc(&d_converged, sizeof(bool)) );
// Run kernel to get sums and counts
for (int i = 0; i < max_epochs; ++i) {
// Run kernel to get sum and count
sum_and_count<<<blocks1, threads_per_block, shared_mem_size>>>(d_data, d_centroids, d_sum, d_count, n, d, k);
CUDA_CHECK( cudaPeekAtLastError() );
CUDA_CHECK( cudaDeviceSynchronize() );
// Run kernel to update centroids (calculate average)
CUDA_CHECK( cudaMemcpy(d_converged, h_data, sizeof(bool), cudaMemcpyHostToDevice) ); // For checking if convergence
int blocks2 = (k + threads_per_block - 1) / threads_per_block;
update_centroids_and_check_for_convergence<<<blocks2, threads_per_block>>>(d_centroids, d_converged, d_sum, d_count, d, k);
CUDA_CHECK( cudaPeekAtLastError() );
CUDA_CHECK( cudaDeviceSynchronize() );
// Check if centroids have been updated
CUDA_CHECK( cudaMemcpy(&h_converged, d_converged, sizeof(bool), cudaMemcpyDeviceToHost) );
if (h_converged) {
break;
}
}
// Copy data back to host
CUDA_CHECK( cudaMemcpy(h_centroids, d_centroids, k*d*sizeof(float), cudaMemcpyDeviceToHost) );
// Free GPU memory
CUDA_CHECK(cudaFree(d_converged));
// Return
return h_converged;
}
// Return clusters for the current data. It is recommended that you run one_epoch() at least once first.
vector<int> KMeans_CUDA::predictions() {
vector<int> predictions;
for (int p = 0; p < n; p++) {
// Find closest centroid
int min_class = 0;
float dist = 0;
for (int i = 0; i < d; i++) {
dist += pow(h_data[i+p*d] - h_centroids[i], 2);
}
float min_dist = dist;
for (int c = 1; c < k; c++) {
dist = 0;
for (int i = 0; i < d; i++) {
dist += pow(h_data[i+p*d] - h_centroids[i+c*d], 2);
}
if (dist < min_dist) {
min_dist = dist;
min_class = c;
}
}
predictions.push_back(min_class);
}
return predictions;
}
// Error of the current clusters with the current data. It is recommended that you run one_epoch() at least once first.
float KMeans_CUDA::compute_error() {
printf ("Note: The compute error function isn't optimized currently and is only used for debugging\n");
// GPU setup
float *d_error;
float h_error = 0;
CUDA_CHECK( cudaMalloc(&d_error, sizeof(float)) );
CUDA_CHECK( cudaMemset(d_error, 0, sizeof(float)) );
int threads_per_block = 32;
int blocks1 = (n + threads_per_block - 1) / threads_per_block;
// Run kernel to get sums and counts
calculate_error<<<blocks1, threads_per_block>>>(d_data, d_centroids, d_error, n, d, k);
CUDA_CHECK( cudaPeekAtLastError() );
CUDA_CHECK( cudaDeviceSynchronize() );
// Copy data back to host
CUDA_CHECK( cudaMemcpy(&h_error, d_error, sizeof(float), cudaMemcpyDeviceToHost) );
// Free memory
CUDA_CHECK( cudaFree(d_error) );
return h_error;
}
//// Print Functions //////////////////////////////////////////////////////////
// Prints out the centroids
void KMeans_CUDA::print_centroids() {
for (int i = 0; i < k; i++) {
string s = "";
for (int j = 0; j < d; j++) {
s += to_string(h_centroids[i*d + j]);
s += " ";
}
s += "\n";
printf (s.c_str());
}
}
// Prints out predictions
// TODO - just use the predictions() method
void KMeans_CUDA::print_predictions() {
for (int p = 0; p < n; p++) {
// Find closest centroid
int min_class = 0;
float dist = 0;
for (int i = 0; i < d; i++) {
dist += pow(h_data[i+p*d] - h_centroids[i], 2);
}
float min_dist = dist;
for (int c = 1; c < k; c++) {
dist = 0;
for (int i = 0; i < d; i++) {
dist += pow(h_data[i+p*d] - h_centroids[i+c*d], 2);
}
if (dist < min_dist) {
min_dist = dist;
min_class = c;
}
}
printf ("%i ", min_class);
}
printf ("\n");
}
// Prints out the normalized data (the data is normalized in the constructor).
void KMeans_CUDA::print_normalized_data() {
for (int i = 0; i < n; i++) {
string s = "";
for (int j = 0; j < d; j++) {
s += to_string(h_data[i*d + j]);
s += " ";
}
s += "\n";
printf (s.c_str());
}
}
#endif // __KMEANS_CU__