diff --git a/core-functionality/index.qmd b/core-functionality/index.qmd index c2a51e896..400418607 100755 --- a/core-functionality/index.qmd +++ b/core-functionality/index.qmd @@ -485,9 +485,9 @@ chn = sample(model, Prior(), 10) loglikelihood(model, chn) ``` -### Maximum likelihood and maximum a posterior estimates +### Maximum likelihood and maximum a posteriori estimates -Turing also has functions for estimating the maximum aposteriori and maximum likelihood parameters of a model. This can be done with +Turing also has functions for estimating the maximum a posteriori and maximum likelihood parameters of a model. This can be done with ```{julia} mle_estimate = maximum_likelihood(model) @@ -524,7 +524,7 @@ The `Gibbs` sampler can be used to specify unique automatic differentiation back For more details of compositional sampling in Turing.jl, please check the corresponding [paper](https://proceedings.mlr.press/v84/ge18b.html). -### Working with filldist and arraydist +### Working with `filldist` and `arraydist` Turing provides `filldist(dist::Distribution, n::Int)` and `arraydist(dists::AbstractVector{<:Distribution})` as a simplified interface to construct product distributions, e.g., to model a set of variables that share the same structure but vary by group.