|
| 1 | +#!/usr/bin/env python3 |
| 2 | + |
| 3 | +import json |
| 4 | +import sys |
| 5 | +import argparse |
| 6 | +import numpy as np |
| 7 | + |
| 8 | +from dataclasses import dataclass |
| 9 | + |
| 10 | +from ptsa.models.arima import ARIMA |
| 11 | +from ptsa.models.distance import Euclidean |
| 12 | +from ptsa.models.distance import Mahalanobis |
| 13 | +from ptsa.models.distance import Garch |
| 14 | +from ptsa.models.distance import SSA |
| 15 | +from ptsa.models.distance import Fourier |
| 16 | +from ptsa.models.distance import DTW |
| 17 | +from ptsa.models.distance import EDRS |
| 18 | +from ptsa.models.distance import TWED |
| 19 | + |
| 20 | + |
| 21 | +@dataclass |
| 22 | +class CustomParameters: |
| 23 | + window_size: int = 20 |
| 24 | + max_lag: int = 30000 |
| 25 | + p_start: int = 1 |
| 26 | + q_start: int = 1 |
| 27 | + max_p: int = 5 |
| 28 | + max_q: int = 5 |
| 29 | + differencing_degree: int = 0 |
| 30 | + distance_metric: str = "Euclidean" |
| 31 | + random_state: int = 42 # seed for randomness |
| 32 | + |
| 33 | + |
| 34 | +class AlgorithmArgs(argparse.Namespace): |
| 35 | + @staticmethod |
| 36 | + def from_sys_args() -> 'AlgorithmArgs': |
| 37 | + if len(sys.argv) != 2: |
| 38 | + raise ValueError("Wrong number of arguments specified! Single JSON-string pos. argument expected.") |
| 39 | + args: dict = json.loads(sys.argv[1]) |
| 40 | + custom_parameter_keys = dir(CustomParameters()) |
| 41 | + filtered_parameters = dict(filter(lambda x: x[0] in custom_parameter_keys, args.get("customParameters", {}).items())) |
| 42 | + args["customParameters"] = CustomParameters(**filtered_parameters) |
| 43 | + return AlgorithmArgs(**args) |
| 44 | + |
| 45 | + |
| 46 | +def set_random_state(config: AlgorithmArgs) -> None: |
| 47 | + seed = config.customParameters.random_state |
| 48 | + import random |
| 49 | + random.seed(seed) |
| 50 | + np.random.seed(seed) |
| 51 | + |
| 52 | + |
| 53 | +def distance_to_measure(distance_metric): |
| 54 | + switcher = { |
| 55 | + "euclidean": Euclidean(), |
| 56 | + "mahalanobis": Mahalanobis(), |
| 57 | + "garch": Garch(), |
| 58 | + "ssa": SSA(), |
| 59 | + "fourier": Fourier(), |
| 60 | + "dtw": DTW(), |
| 61 | + "edrs": EDRS(), |
| 62 | + "twed": TWED() |
| 63 | + } |
| 64 | + return switcher.get(distance_metric.lower(), "missing") |
| 65 | + |
| 66 | + |
| 67 | +def main(): |
| 68 | + config = AlgorithmArgs.from_sys_args() |
| 69 | + ts_filename = config.dataInput # "/data/dataset.csv" |
| 70 | + score_filename = config.dataOutput # "/results/anomaly_window_scores.ts" |
| 71 | + |
| 72 | + print(f"Configuration: {config}") |
| 73 | + |
| 74 | + if config.executionType == "train": |
| 75 | + print("No training required!") |
| 76 | + exit(0) |
| 77 | + |
| 78 | + if config.executionType != "execute": |
| 79 | + raise ValueError("Unknown executionType specified!") |
| 80 | + |
| 81 | + set_random_state(config) |
| 82 | + |
| 83 | + # read only single "value" column from dataset |
| 84 | + print(f"Reading data from {ts_filename}") |
| 85 | + da = np.genfromtxt(ts_filename, skip_header=1, delimiter=",") |
| 86 | + data = da[:, 1] |
| 87 | + labels = da[:, -1] |
| 88 | + length = len(data) |
| 89 | + contamination = labels.sum() / length |
| 90 | + # Use smallest positive float as contamination if there are no anomalies in dataset |
| 91 | + contamination = np.nextafter(0, 1) if contamination == 0. else contamination |
| 92 | + |
| 93 | + # run ARIMA |
| 94 | + print("Executing ARIMA ...") |
| 95 | + model = ARIMA( |
| 96 | + window=config.customParameters.window_size, |
| 97 | + max_lag=config.customParameters.max_lag, |
| 98 | + p_start=config.customParameters.p_start, |
| 99 | + q_start=config.customParameters.q_start, |
| 100 | + max_p=config.customParameters.max_p, |
| 101 | + max_q=config.customParameters.max_q, |
| 102 | + d=config.customParameters.differencing_degree, |
| 103 | + contamination=contamination, |
| 104 | + neighborhood="all") |
| 105 | + model.fit(data) |
| 106 | + |
| 107 | + # get outlier scores |
| 108 | + measure = distance_to_measure(config.customParameters.distance_metric) |
| 109 | + if measure == "missing": |
| 110 | + raise ValueError(f"Distance measure '{config.customParameters.distance_metric}' not supported!") |
| 111 | + measure.detector = model |
| 112 | + measure.set_param() |
| 113 | + model.decision_function(measure=measure) |
| 114 | + scores = model.decision_scores_ |
| 115 | + |
| 116 | + #from ptsa.utils.metrics import metricor |
| 117 | + #grader = metricor() |
| 118 | + #preds = grader.scale(scores, 0.1) |
| 119 | + |
| 120 | + print(f"Input size: {len(data)}\nOutput size: {len(scores)}") |
| 121 | + print("ARIMA result:", scores) |
| 122 | + |
| 123 | + print(f"Writing results to {score_filename}") |
| 124 | + np.savetxt(score_filename, scores, delimiter=",") |
| 125 | + |
| 126 | + |
| 127 | +if __name__ == "__main__": |
| 128 | + main() |
0 commit comments