-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
57 lines (43 loc) · 1.76 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import os
import cv2
import numpy as np
from pymongo import MongoClient
from flask import Flask, request, jsonify
import requests
from PIL import Image
from facenet_pytorch import InceptionResnetV1
from torchvision import transforms
uri = "mongodb+srv://simranyadav464:[email protected]/?retryWrites=true&w=majority"
client = MongoClient(uri)
test_db = client.test
user_data = test_db.users
def find_by_adhaar(aadhar_no):
people = user_data.find_one({"AadharNumber": aadhar_no})
return people["userImage"]
app = Flask(__name__)
resnet = InceptionResnetV1(pretrained='vggface2').eval()
@app.route('/verify', methods=['POST'])
def verify_faces():
try:
image1 = request.files['image1']
url = find_by_adhaar(request.form['aadhar_no'])
img1_pil = Image.open(image1)
img2_pil = Image.open(requests.get(url, stream=True).raw)
if img1_pil is not None and img2_pil is not None:
img1_tensor = transforms.functional.to_tensor(img1_pil).unsqueeze(0)
img2_tensor = transforms.functional.to_tensor(img2_pil).unsqueeze(0)
img1_embedding = resnet(img1_tensor)
img2_embedding = resnet(img2_tensor)
distance = np.linalg.norm(np.array(img1_embedding.detach().numpy()) - np.array(img2_embedding.detach().numpy()))
threshold = 0.7
if distance < threshold:
result = "These faces are the same."
else:
result = "These faces are different."
else:
result = "No face detected in one or both images."
return jsonify({"result": result})
except Exception as e:
return jsonify({"error": str(e)})
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000)