-
-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathcreate_input_images_from_labelme.py
68 lines (51 loc) · 2.5 KB
/
create_input_images_from_labelme.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import os
import glob
import json
from PIL import Image, ImageDraw
from io import BytesIO
import base64
import numpy as np
from shapely.geometry import Polygon
def extract_objects_from_labelme_data(input_dir, output_dir):
# Create output directory if it doesn't exist yet
os.makedirs(output_dir, exist_ok=True)
# Get path to all json files in the input directory
labelme_json_paths = glob.glob(os.path.join(input_dir, "*.json"))
label_counts = dict()
for json_file in labelme_json_paths:
# Open json file
with open(json_file, 'r') as f:
data = json.load(f)
# Load base64 image
im = Image.open(BytesIO(base64.b64decode(data['imageData']))).convert('RGBA')
im_array = np.asarray(im)
# Loop through all the annotations
for annotation in data['shapes']:
label = annotation['label']
if label not in label_counts:
label_counts[label] = 0
os.makedirs(os.path.join(output_dir, label), exist_ok=True)
# extract object from image
# based on https://stackoverflow.com/questions/22588074/polygon-crop-clip-using-python-pil
mask_im = Image.new('L', (im_array.shape[1], im_array.shape[0]), 0)
ImageDraw.Draw(mask_im).polygon(tuple(map(tuple, annotation['points'])), outline=1, fill=1)
mask = np.array(mask_im)
# assemble new image (uint8: 0-255)
new_img_array = np.empty(im_array.shape, dtype='uint8')
# colors (three first columns, RGB)
new_img_array[:, :, :3] = im_array[:, :, :3]
# transparency (4th column)
new_img_array[:, :, 3] = mask * 255
# convert to image, crop and save
new_im = Image.fromarray(new_img_array, "RGBA")
x_min, y_min, x_max, y_max = Polygon(annotation['points']).bounds
new_im = new_im.crop((x_min, y_min, x_max, y_max))
new_im.save(os.path.join(output_dir, label, f'{label_counts[label]}.png'))
label_counts[label] += 1
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='Extract objects from data labeled with labelme')
parser.add_argument('--input_dir', type=str, required=True, help='Path to input images and labels')
parser.add_argument('--output_dir', type=str, required=True, help='Path where output images will be saved')
args = parser.parse_args()
extract_objects_from_labelme_data(args.input_dir, args.output_dir)