-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrisk.py
400 lines (317 loc) · 15.1 KB
/
risk.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
import pandas as pd
import numpy as np
import yfinance as yf
from datetime import datetime, timedelta
from scipy.optimize import minimize
class KalmanFilter:
def __init__(self, dim_state, dim_obs):
self.dim_state = dim_state
self.dim_obs = dim_obs
# 初始化状态估计和协方差
self.state = np.zeros(dim_state)
self.P = np.eye(dim_state)
# 系统参数
self.F = np.eye(dim_state) # 状态转移矩阵
self.H = np.zeros((dim_obs, dim_state)) # 观测矩阵
self.Q = np.eye(dim_state) * 0.001 # 过程噪声协方差
self.R = np.eye(dim_obs) * 0.01 # 测量噪声协方差
def predict(self):
# 预测步骤
self.state = np.dot(self.F, self.state)
self.P = np.dot(np.dot(self.F, self.P), self.F.T) + self.Q
return self.state
def update(self, measurement):
# 更新步骤
if measurement is None: # 处理缺失数据
return self.state
y = measurement - np.dot(self.H, self.state)
S = np.dot(np.dot(self.H, self.P), self.H.T) + self.R
K = np.dot(np.dot(self.P, self.H.T), np.linalg.inv(S))
self.state = self.state + np.dot(K, y)
self.P = self.P - np.dot(np.dot(K, self.H), self.P)
return self.state
def calculate_kalman_returns(price_data):
"""使用卡尔曼滤波估计收益率"""
returns = price_data.pct_change().dropna()
n_assets = returns.shape[1]
# 初始化滤波器
kf = KalmanFilter(dim_state=n_assets, dim_obs=n_assets)
kf.H = np.eye(n_assets)
# 存储滤波结果
filtered_returns = np.zeros_like(returns)
# 对每个时间点进行滤波
for t in range(len(returns)):
kf.predict()
measurement = returns.iloc[t].values
filtered_returns[t] = kf.update(measurement)
return pd.DataFrame(filtered_returns, index=returns.index, columns=returns.columns)
def calculate_kalman_volatility(returns_data):
"""使用卡尔曼滤波估计波动率"""
n_assets = returns_data.shape[1]
squared_returns = returns_data ** 2
# 初始化滤波器
kf = KalmanFilter(dim_state=n_assets, dim_obs=n_assets)
kf.H = np.eye(n_assets)
# 存储滤波结果
filtered_variance = np.zeros_like(squared_returns)
# 对每个时间点进行滤波
for t in range(len(squared_returns)):
kf.predict()
measurement = squared_returns.iloc[t].values
filtered_variance[t] = kf.update(measurement)
# 转换为年化波动率
filtered_volatility = np.sqrt(filtered_variance * 252)
return pd.DataFrame(filtered_volatility, index=returns_data.index, columns=returns_data.columns)
def calculate_beta(price_data, market_symbol='^GSPC'):
# 获取市场数据并处理时区
market = yf.download(market_symbol,
start=price_data.index[0].tz_localize(None),
end=price_data.index[-1].tz_localize(None))['Adj Close']
market_returns = market.pct_change().dropna()
betas = {}
for column in price_data.columns:
asset_returns = price_data[column].pct_change().dropna()
# 将时间索引转换为naive datetime
asset_returns.index = asset_returns.index.tz_localize(None)
common_dates = asset_returns.index.intersection(market_returns.index)
if len(common_dates) > 0:
asset_returns_aligned = asset_returns[common_dates]
market_returns_aligned = market_returns[common_dates]
beta = np.cov(asset_returns_aligned, market_returns_aligned)[0,1] / np.var(market_returns_aligned)
betas[column] = beta
portfolio_beta = sum(betas[asset] * weights_dict[asset]
for asset in betas.keys()
if asset in weights_dict)
return betas, portfolio_beta
def calculate_kalman_beta(price_data, market_symbol='^GSPC'):
"""使用卡尔曼滤波估计时变beta"""
# 获取市场数据
market = yf.download(market_symbol,
start=price_data.index[0].tz_localize(None),
end=price_data.index[-1].tz_localize(None))['Adj Close']
market_returns = market.pct_change().dropna()
asset_returns = price_data.pct_change().dropna()
asset_returns.index = asset_returns.index.tz_localize(None)
# 对齐数据
common_dates = asset_returns.index.intersection(market_returns.index)
asset_returns = asset_returns.loc[common_dates]
market_returns = market_returns.loc[common_dates]
n_assets = len(asset_returns.columns)
# 初始化滤波器 (状态向量包括beta和alpha)
kf = KalmanFilter(dim_state=2*n_assets, dim_obs=n_assets)
kf.H = np.zeros((n_assets, 2*n_assets))
# 存储滤波结果
filtered_betas = np.zeros((len(asset_returns), n_assets))
filtered_alphas = np.zeros((len(asset_returns), n_assets))
# 对每个时间点进行滤波
for t in range(len(asset_returns)):
# 更新观测矩阵
for i in range(n_assets):
kf.H[i, 2*i:2*i+2] = [1, market_returns.iloc[t]]
kf.predict()
measurement = asset_returns.iloc[t].values
state = kf.update(measurement)
# 提取beta和alpha
for i in range(n_assets):
filtered_alphas[t, i] = state[2*i]
filtered_betas[t, i] = state[2*i+1]
# 转换为DataFrame
betas_df = pd.DataFrame(filtered_betas,
index=asset_returns.index,
columns=asset_returns.columns)
alphas_df = pd.DataFrame(filtered_alphas,
index=asset_returns.index,
columns=asset_returns.columns)
return betas_df, alphas_df
def calculate_kalman_risk(weights, price_data):
"""计算基于卡尔曼滤波的组合风险指标"""
# 估计收益率
filtered_returns = calculate_kalman_returns(price_data)
# 估计波动率
filtered_volatility = calculate_kalman_volatility(filtered_returns)
# 估计beta
filtered_betas, filtered_alphas = calculate_kalman_beta(price_data)
# 计算最新风险指标
latest_returns = filtered_returns.iloc[-1]
latest_volatility = filtered_volatility.iloc[-1]
latest_betas = filtered_betas.iloc[-1]
# 计算组合层面指标
portfolio_return = np.sum(weights * latest_returns)
portfolio_vol = np.sqrt(np.sum(weights**2 * latest_volatility**2))
portfolio_beta = np.sum(weights * latest_betas)
return {
'returns': portfolio_return,
'volatility': portfolio_vol,
'beta': portfolio_beta,
'filtered_returns': filtered_returns,
'filtered_volatility': filtered_volatility,
'filtered_betas': filtered_betas,
'filtered_alphas': filtered_alphas
}
def get_stock_data(symbols, start_date, end_date):
data = pd.DataFrame()
for symbol in symbols:
if symbol == 'B-T-6.250-15052030':
continue
ticker = yf.Ticker(symbol.replace('.L', ''))
hist = ticker.history(start=start_date, end=end_date)['Close']
if not hist.empty:
data[symbol] = hist
return data
def calculate_portfolio_risk(weights, cov_matrix):
portfolio_variance = np.dot(weights.T, np.dot(cov_matrix, weights))
return np.sqrt(portfolio_variance)
def calculate_marginal_risk_contribution(weights, cov_matrix):
portfolio_risk = calculate_portfolio_risk(weights, cov_matrix)
marginal_contrib = np.dot(cov_matrix, weights) / portfolio_risk
return marginal_contrib
def calculate_expected_returns(price_data):
returns = price_data.pct_change(fill_method=None)
return returns.mean() * 252
def calculate_gradient(weights, cov_matrix, expected_returns, target_return):
n = len(weights)
first_derivatives = np.zeros(n + 2)
for i in range(n):
sum_term = 0
for j in range(n):
sum_term += weights[j] * cov_matrix[i,j]
first_derivatives[i] = 2 * sum_term
first_derivatives[n] = np.sum(weights) - 1
first_derivatives[n+1] = np.sum(weights * expected_returns) - target_return
second_derivatives = np.zeros((n+2, n+2))
second_derivatives[:n,:n] = 2 * cov_matrix
second_derivatives[:n,n] = 1
second_derivatives[n,:n] = 1
second_derivatives[:n,n+1] = expected_returns
second_derivatives[n+1,:n] = expected_returns
return first_derivatives, second_derivatives
def portfolio_objective(weights, cov_matrix, expected_returns, target_return):
portfolio_risk = calculate_portfolio_risk(weights, cov_matrix)
portfolio_return = np.sum(weights * expected_returns)
return portfolio_risk - 0.1 * (portfolio_return - target_return)**2
def optimize_portfolio(expected_returns, cov_matrix, target_return):
n_assets = len(expected_returns)
def lagrangian(x, lambda1, lambda2):
return (portfolio_objective(x, cov_matrix, expected_returns, target_return) +
lambda1 * (np.sum(x) - 1) +
lambda2 * (np.sum(x * expected_returns) - target_return))
constraints = [
{'type': 'eq', 'fun': lambda x: np.sum(x) - 1},
{'type': 'eq', 'fun': lambda x: np.sum(x * expected_returns) - target_return}
]
bounds = tuple((0, 1) for _ in range(n_assets))
initial_weights = np.array([1/n_assets] * n_assets)
result = minimize(
portfolio_objective,
initial_weights,
args=(cov_matrix, expected_returns, target_return),
method='SLSQP',
bounds=bounds,
constraints=constraints
)
return result.x, result.fun, lagrangian
def calculate_var(weights, returns, confidence_level=0.95, periods=252):
portfolio_returns = returns.dot(weights)
var_daily = -np.percentile(portfolio_returns, (1-confidence_level)*100)
var_annual = var_daily * np.sqrt(periods)
return var_annual
def calculate_risk_metrics(weights, cov_matrix):
total_risk = calculate_portfolio_risk(weights, cov_matrix)
component_risks = np.zeros(len(weights))
for i in range(len(weights)):
for j in range(len(weights)):
component_risks[i] += weights[i] * weights[j] * cov_matrix[i,j]
risk_decomp = component_risks / total_risk
total_individual_risk = np.sqrt(np.sum(weights**2 * np.diag(cov_matrix)))
diversification_effect = 1 - total_risk/total_individual_risk
return risk_decomp, diversification_effect
# 主程序
if __name__ == "__main__":
portfolio_df = pd.read_csv('portfolio-简化.csv')
all_symbols = portfolio_df['Symbol'].tolist()
stock_symbols = [s for s in all_symbols if s != 'B-T-6.250-15052030']
weights_dict = dict(zip(portfolio_df['Symbol'],
portfolio_df['weights'].str.rstrip('%').astype(float) / 100))
full_cov_symbols = all_symbols
current_weights = np.array([weights_dict[s] for s in full_cov_symbols])
end_date = datetime.now()
start_date = end_date - timedelta(days=365)
price_data = get_stock_data(stock_symbols, start_date, end_date)
# 使用卡尔曼滤波计算风险指标
kalman_risk = calculate_kalman_risk(current_weights[:len(price_data.columns)], price_data)
print("\n=== 卡尔曼滤波估计结果 ===")
print(f"组合预期收益率: {kalman_risk['returns']:.2%}")
print(f"组合波动率: {kalman_risk['volatility']:.2%}")
print(f"组合Beta: {kalman_risk['beta']:.2f}")
print("\n=== 各资产Kalman Filter估计结果 ===")
print("\n个股Beta估计:")
latest_betas = kalman_risk['filtered_betas'].iloc[-1]
for symbol in price_data.columns:
print(f"{symbol}: {latest_betas[symbol]:.2f}")
print("\n个股波动率估计:")
latest_vols = kalman_risk['filtered_volatility'].iloc[-1]
for symbol in price_data.columns:
print(f"{symbol}: {latest_vols[symbol]:.2%}")
# 传统方法计算
stock_returns = price_data.pct_change().dropna()
stock_cov = stock_returns.cov() * 252
full_cov = np.zeros((len(full_cov_symbols), len(full_cov_symbols)))
treasury_idx = full_cov_symbols.index('B-T-6.250-15052030')
non_treasury_idx = [i for i, s in enumerate(full_cov_symbols)
if s != 'B-T-6.250-15052030']
for i, row_idx in enumerate(non_treasury_idx):
for j, col_idx in enumerate(non_treasury_idx):
full_cov[row_idx, col_idx] = stock_cov.iloc[i, j]
stock_expected_returns = calculate_expected_returns(price_data)
full_expected_returns = np.zeros(len(full_cov_symbols))
for i, symbol in enumerate(full_cov_symbols):
if symbol != 'B-T-6.250-15052030':
full_expected_returns[i] = stock_expected_returns[symbol]
else:
full_expected_returns[i] = 0.0625
current_portfolio_risk = calculate_portfolio_risk(current_weights, full_cov)
marginal_contributions = calculate_marginal_risk_contribution(current_weights, full_cov)
risk_contributions = current_weights * marginal_contributions
current_return = np.sum(current_weights * full_expected_returns)
optimal_weights, optimal_value, lagrangian_func = optimize_portfolio(
full_expected_returns, full_cov, current_return)
# 计算并打印一阶和二阶导数
first_derivatives, second_derivatives = calculate_gradient(
current_weights, full_cov, full_expected_returns, current_return)
print("\n=== 传统方法 vs Kalman Filter对比 ===")
print("风险估计:")
print(f"传统方法: {current_portfolio_risk:.2%}")
print(f"Kalman Filter: {kalman_risk['volatility']:.2%}")
print("\n收益率估计:")
print(f"传统方法: {current_return:.2%}")
print(f"Kalman Filter: {kalman_risk['returns']:.2%}")
# Beta对比
traditional_betas, traditional_portfolio_beta = calculate_beta(price_data)
print("\nBeta估计:")
print(f"传统方法组合Beta: {traditional_portfolio_beta:.2f}")
print(f"Kalman Filter组合Beta: {kalman_risk['beta']:.2f}")
# 计算VaR
portfolio_var = calculate_var(current_weights[:len(stock_returns.columns)],
stock_returns)
# 风险分解
risk_decomp, div_effect = calculate_risk_metrics(current_weights, full_cov)
print("\n=== 风险指标汇总 ===")
print(f"VaR (95%): {portfolio_var:.2%}")
print(f"风险分散效应: {div_effect:.2%}")
# 输出结果到CSV
print("\n=== 保存结果到CSV ===")
# 保存Kalman Filter估计结果
kalman_results = pd.DataFrame({
'Symbol': price_data.columns,
'KF_Beta': latest_betas,
'KF_Volatility': latest_vols,
'Traditional_Beta': [traditional_betas.get(s, np.nan)
for s in price_data.columns],
'Weight': [weights_dict.get(s, np.nan) for s in price_data.columns]
})
kalman_results.to_csv('kalman_filter_results.csv')
# 保存时间序列数据
kalman_risk['filtered_betas'].to_csv('kalman_betas_ts.csv')
kalman_risk['filtered_volatility'].to_csv('kalman_volatility_ts.csv')
kalman_risk['filtered_returns'].to_csv('kalman_returns_ts.csv')
print("结果已保存到CSV文件。")