-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer.py
239 lines (190 loc) · 9.24 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import argparse
import time
import os
import cv2
import numpy as np
import torch
from models.with_mobilenet import PoseEstimationWithMobileNet
from modules.keypoints import extract_keypoints, group_keypoints
from modules.load_state import load_state
from modules.pose import Pose, track_poses
from val import normalize, pad_width
class ImageReader(object):
def __init__(self, file_names):
self.file_names = file_names
self.max_idx = len(file_names)
def __iter__(self):
self.idx = 0
return self
def __next__(self):
if self.idx == self.max_idx:
raise StopIteration
img = cv2.imread(self.file_names[self.idx], cv2.IMREAD_COLOR)
if img.size == 0:
raise IOError('Image {} cannot be read'.format(self.file_names[self.idx]))
self.idx = self.idx + 1
return img
class VideoReader(object):
def __init__(self, file_name):
self.file_name = file_name
try: # OpenCV needs int to read from webcam
self.file_name = int(file_name)
except ValueError:
pass
def __iter__(self):
self.cap = cv2.VideoCapture(self.file_name)
if not self.cap.isOpened():
raise IOError('Video {} cannot be opened'.format(self.file_name))
return self
def __next__(self):
was_read, img = self.cap.read()
if not was_read:
raise StopIteration
return img
def infer_fast(net, img, net_input_height_size, stride, upsample_ratio, cpu,
pad_value=(0, 0, 0), img_mean=np.array([128, 128, 128], np.float32), img_scale=np.float32(1/256)):
height, width, _ = img.shape
scale = net_input_height_size / height
scaled_img = cv2.resize(img, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_LINEAR)
scaled_img = normalize(scaled_img, img_mean, img_scale)
min_dims = [net_input_height_size, max(scaled_img.shape[1], net_input_height_size)]
padded_img, pad = pad_width(scaled_img, stride, pad_value, min_dims)
tensor_img = torch.from_numpy(padded_img).permute(2, 0, 1).unsqueeze(0).float()
if not cpu:
tensor_img = tensor_img.cuda()
stages_output = net(tensor_img)
stage2_heatmaps = stages_output[-2]
heatmaps = np.transpose(stage2_heatmaps.squeeze().cpu().data.numpy(), (1, 2, 0))
heatmaps = cv2.resize(heatmaps, (0, 0), fx=upsample_ratio, fy=upsample_ratio, interpolation=cv2.INTER_CUBIC)
stage2_pafs = stages_output[-1]
pafs = np.transpose(stage2_pafs.squeeze().cpu().data.numpy(), (1, 2, 0))
pafs = cv2.resize(pafs, (0, 0), fx=upsample_ratio, fy=upsample_ratio, interpolation=cv2.INTER_CUBIC)
return heatmaps, pafs, scale, pad
def get_output_filename(output_dir, base_filename):
# 检查输出目录是否存在,如果不存在则创建
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# 检查文件名是否已经存在,如果存在则添加后缀
output_path = os.path.join(output_dir, base_filename)
base_name, extension = os.path.splitext(base_filename)
counter = 2
while os.path.exists(output_path):
output_path = os.path.join(output_dir, base_name + '_' + str(counter) + extension)
counter += 1
return output_path
def run_demo(net, image_provider, height_size, cpu, track, smooth, show_fps, save, output_dir, disable_board):
net = net.eval()
if not cpu:
net = net.cuda()
stride = 8
upsample_ratio = 4
num_keypoints = Pose.num_kpts
previous_poses = []
delay = 1
fps = 0
start_time = time.time()
frame_count = 0
output_video = None
video_writer = None
for img in image_provider:
frame_count += 1
orig_img = img.copy()
heatmaps, pafs, scale, pad = infer_fast(net, img, height_size, stride, upsample_ratio, cpu)
total_keypoints_num = 0
all_keypoints_by_type = []
for kpt_idx in range(num_keypoints): # 19th for bg
total_keypoints_num += extract_keypoints(heatmaps[:, :, kpt_idx], all_keypoints_by_type, total_keypoints_num)
pose_entries, all_keypoints = group_keypoints(all_keypoints_by_type, pafs)
for kpt_id in range(all_keypoints.shape[0]):
all_keypoints[kpt_id, 0] = (all_keypoints[kpt_id, 0] * stride / upsample_ratio - pad[1]) / scale
all_keypoints[kpt_id, 1] = (all_keypoints[kpt_id, 1] * stride / upsample_ratio - pad[0]) / scale
current_poses = []
for n in range(len(pose_entries)):
if len(pose_entries[n]) == 0:
continue
pose_keypoints = np.ones((num_keypoints, 2), dtype=np.int32) * -1
for kpt_id in range(num_keypoints):
if pose_entries[n][kpt_id] != -1.0: # keypoint was found
pose_keypoints[kpt_id, 0] = int(all_keypoints[int(pose_entries[n][kpt_id]), 0])
pose_keypoints[kpt_id, 1] = int(all_keypoints[int(pose_entries[n][kpt_id]), 1])
pose = Pose(pose_keypoints, pose_entries[n][18])
current_poses.append(pose)
if track:
track_poses(previous_poses, current_poses, smooth=smooth)
previous_poses = current_poses
for pose in current_poses:
pose.draw(img)
img = cv2.addWeighted(orig_img, 0.6, img, 0.4, 0)
for pose in current_poses:
if not disable_board:
cv2.rectangle(img, (pose.bbox[0], pose.bbox[1]),
(pose.bbox[0] + pose.bbox[2], pose.bbox[1] + pose.bbox[3]), (0, 255, 0))
if track:
cv2.putText(img, 'id: {}'.format(pose.id), (pose.bbox[0], pose.bbox[1] - 16),
cv2.FONT_HERSHEY_COMPLEX, 0.5, (0, 0, 255))
# if show_fps:
# fps = frame_count / (time.time() - start_time)
# cv2.putText(img, 'FPS: {:.2f}'.format(fps), (8, 16), cv2.FONT_HERSHEY_COMPLEX, 0.5, (0, 0, 255), 1)
if show_fps:
# 计算帧率
frame_count += 1
elapsed_time = time.time() - start_time
if elapsed_time >= 1.0:
fps = frame_count / elapsed_time
frame_count = 0
start_time = time.time()
# 在画面上显示实时帧率
cv2.putText(img, f"FPS: {fps:.2f}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
if save:
if output_video is None:
output_filename = get_output_filename(output_dir, 'output.avi')
output_video = cv2.VideoWriter(output_filename, cv2.VideoWriter_fourcc(*'MJPG'), 25,
(img.shape[1], img.shape[0]))
output_video.write(img)
cv2.imshow('Lightweight Human Pose Estimation Python Demo', img)
if cv2.waitKey(delay) == ord('q') or cv2.waitKey(delay) == 27:
break
if save and output_video is not None:
output_video.release()
print("result saved in {}".format(output_filename))
cv2.destroyAllWindows()
def parse_args():
parser = argparse.ArgumentParser(description='OpenPose Demo')
parser.add_argument('--model', type=str, default='models/checkpoint_iter_370000.pth', help='model path')
parser.add_argument('--height_size', type=int, default=256, help='network input layer height size')
parser.add_argument('--source', type=str, default='1', help='video source')
parser.add_argument('--disable_track', action='store_false', help='track pose id')
parser.add_argument('--cpu', action='store_true', help='run network inference on cpu')
parser.add_argument('--smooth', type=bool, default=True, help='smooth pose keypoints')
parser.add_argument('--show_fps', action='store_true', help='show FPS')
parser.add_argument('--save', type=bool, default=True, help='save output video')
parser.add_argument('--output_dir', type=str, default='runs', help='output directory')
parser.add_argument('--disable_board', action='store_true', help='Disable board')
return parser.parse_args()
if __name__ == '__main__':
parser_opt = parse_args()
parser_opt.video = False
if not os.path.exists(parser_opt.model):
print(f"Model file '{parser_opt.model}' does not exist.")
exit()
net = PoseEstimationWithMobileNet()
checkpoint = torch.load(parser_opt.model, map_location='cpu')
load_state(net, checkpoint)
source = parser_opt.source
if source.isdigit():
source = int(source)
if isinstance(source, int) or source.endswith('.txt'): # video or webcam
image_provider = VideoReader(source)
elif os.path.isdir(source): # image files
image_files = []
valid_image_extensions = ('.jpg', '.jpeg', '.png', '.bmp')
for file_name in os.listdir(source):
extension = os.path.splitext(file_name)[1].lower()
if extension in valid_image_extensions:
image_files.append(os.path.join(source, file_name))
image_provider = ImageReader(image_files)
else: # single image
image_provider = ImageReader([source])
run_demo(net, image_provider, parser_opt.height_size, cpu=parser_opt.cpu, track=parser_opt.disable_track,
smooth=parser_opt.smooth, show_fps=parser_opt.show_fps, save=parser_opt.save,
output_dir=parser_opt.output_dir, disable_board=parser_opt.disable_board)