-
Notifications
You must be signed in to change notification settings - Fork 146
/
Copy pathenjoy_husky_gibson_flagrun_ppo1.py
106 lines (80 loc) · 3.62 KB
/
enjoy_husky_gibson_flagrun_ppo1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
# add parent dir to find package. Only needed for source code build, pip install doesn't need it.
import os, inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(os.path.dirname(currentdir))
os.sys.path.insert(0, parentdir)
import tensorflow as tf
import gym, logging
from mpi4py import MPI
from gibson.envs.husky_env import HuskyNavigateEnv, HuskyGibsonFlagRunEnv
from baselines.common import set_global_seeds
import baselines.common.tf_util as U
from gibson.utils import cnn_policy, fuse_policy
from gibson.utils import utils
import datetime
from baselines import logger
from baselines import bench
import os.path as osp
import random
## Training code adapted from: https://github.com/openai/baselines/blob/master/baselines/ppo1/run_atari.py
def enjoy(num_timesteps, seed):
sess = utils.make_gpu_session(1)
sess.__enter__()
if args.meta != "":
saver = tf.train.import_meta_graph(args.meta)
saver.restore(sess, tf.train.latest_checkpoint('./'))
workerseed = seed + 10000 * MPI.COMM_WORLD.Get_rank()
set_global_seeds(workerseed)
config_file = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..', 'configs',
'husky_gibson_flagrun_train.yaml')
env = HuskyGibsonFlagRunEnv(gpu_idx=0, config=config_file)
#env = bench.Monitor(env, logger.get_dir() and
# osp.join(logger.get_dir(), str(rank)))
env.seed(workerseed)
# policy = cnn_policy.CnnPolicy(name='pi', ob_space=env.observation_space, ac_space=env.action_space, save_per_acts=10000, session=sess)
def policy_fn(name, ob_space, sensor_space, ac_space):
return fuse_policy.FusePolicy(name=name, ob_space=ob_space, sensor_space = sensor_space, ac_space=ac_space, save_per_acts=10000, session=sess)
policy = policy_fn("pi", env.observation_space, env.sensor_space, env.action_space) # Construct network for new policy
reload_name = '/home/fei/Development/gibson/examples/train/models/flagrun_RGBD2_50.model'
if reload_name:
saver = tf.train.Saver()
saver.restore(tf.get_default_session(), reload_name)
print("Loaded model successfully.")
def execute_policy(env):
ob, ob_sensor = env.reset()
stochastic = False
while True:
# with Profiler("agent act"):
ac, vpred = policy.act(stochastic, ob, ob_sensor)
ob, rew, new, meta = env.step(ac)
ob_sensor = meta['sensor']
if new:
ob, ob_sensor = env.reset()
gym.logger.setLevel(logging.WARN)
#sess.run(init_op)
execute_policy(env)
env.close()
def callback(lcl, glb):
# stop training if reward exceeds 199
total = sum(lcl['episode_rewards'][-101:-1]) / 100
totalt = lcl['t']
is_solved = totalt > 2000 and total >= -50
return is_solved
def main():
# with tf.Session(graph=tf.Graph()) as sess:
# tf.saved_model.loader.load(sess, 'cnn_policy', args.dir)
# all_vars = tf.get_collection('vars')
# for v in all_vars:
# v_ = sess.run(v)
# print(v_)
enjoy(num_timesteps=1000000, seed=5)
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--mode', type=str, default="DEPTH")
parser.add_argument('--num_gpu', type=int, default=1)
parser.add_argument('--gpu_idx', type=int, default=0)
parser.add_argument('--disable_filler', action='store_true', default=False)
parser.add_argument('--meta', type=str, default="")
args = parser.parse_args()
main()