-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdrowisness_streamlit.py
81 lines (67 loc) · 2.84 KB
/
drowisness_streamlit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import streamlit as st
import cv2
import numpy as np
from keras.models import load_model
from tensorflow.keras.preprocessing.image import img_to_array
from playsound import playsound
from threading import Thread
def start_alarm(sound):
"""Play the alarm sound"""
playsound(sound)
classes = ["yawn", "no_yawn", "close", "open", "drinking", "looking_at_passenger", "reaching_behind", "talking_on_phone_left", "talking_on_phone_right"]
face_cascade = cv2.CascadeClassifier("haarcascade_frontalface_default.xml")
left_eye_cascade = cv2.CascadeClassifier("haarcascade_lefteye_2splits.xml")
right_eye_cascade = cv2.CascadeClassifier("haarcascade_righteye_2splits.xml")
model = load_model("drowiness_main.h5")
alarm_on = False
alarm_sound = "alarm.mp3"
def sharpen_image(image, factor):
kernel = np.array([[-1, -1, -1], [-1, 9+factor, -1], [-1, -1, -1]])
sharpened = cv2.filter2D(image, -1, kernel)
return sharpened
def process_frame(frame, sharpen_factor):
height = frame.shape[0]
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
status1 = ''
status2 = ''
for (x, y, w, h) in faces:
roi_color = frame[y:y+h, x:x+w]
left_eye = left_eye_cascade.detectMultiScale(roi_color)
right_eye = right_eye_cascade.detectMultiScale(roi_color)
for (x1, y1, w1, h1) in left_eye:
eye1 = roi_color[y1:y1+h1, x1:x1+w1]
eye1 = cv2.resize(eye1, (145, 145))
eye1 = eye1.astype('float') / 255.0
eye1 = img_to_array(eye1)
eye1 = np.expand_dims(eye1, axis=0)
pred1 = model.predict(eye1)
status1 = np.argmax(pred1)
break
for (x2, y2, w2, h2) in right_eye:
eye2 = roi_color[y2:y2 + h2, x2:x2 + w2]
eye2 = cv2.resize(eye2, (145, 145))
eye2 = eye2.astype('float') / 255.0
eye2 = img_to_array(eye2)
eye2 = np.expand_dims(eye2, axis=0)
pred2 = model.predict(eye2)
status2 = np.argmax(pred2)
break
if status1 == 2 and status2 == 2:
return "Eyes Closed"
else:
sharpened_image = sharpen_image(frame, sharpen_factor)
return "Eyes Open", sharpened_image
# Streamlit app
def main():
st.title("Drowsiness Detection")
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png", "gif"])
sharpen_factor = st.slider("Adjust Sharpness", 0.0, 5.0, 1.0, 0.1)
if uploaded_file is not None:
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
image = cv2.imdecode(file_bytes, 1)
result, sharpened_image = process_frame(image, sharpen_factor)
st.image(sharpened_image, channels="BGR", caption="Sharpened Image")
st.write(result)
if __name__ == "__main__":
main()