-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathagent.py
304 lines (246 loc) · 10.6 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import torch
import torch.nn as nn
from torch import Tensor, LongTensor
from torch.autograd import Variable
import numpy as np
import matplotlib.pyplot as plt
import random
from tqdm import trange, tqdm
tqdm.monitor_interval = 0
from copy import deepcopy
import os
TERM = {'y' : "\33[33m",
'g' : "\33[32m",
'c' : "\33[36m",
'clr': "\33[m"}
def while_range(n, start=0):
"""
like range(n), if n scalar
like while(True), in f None
"""
if n is None:
n = float("inf")
i = start
while i < n:
yield i
i += 1
class Memory:
def __init__(self, size, eps=1e-5, alpha=1):
self.size = size
self.mem = []
self.pri = []
self.pos = 0
self.eps = eps
self.alpha = alpha
def store(self, S, a, r, Sp, game_over, err=0):
game_over = int(game_over)
if len(self.mem) < self.size:
self.mem.append((S, a, r, Sp, game_over))
self.pri.append((err + self.eps) ** self.alpha)
else:
self.mem[self.pos] = (S, a, r, Sp, game_over)
self.pos = (self.pos + 1) % self.size
def sample(self, batch_size):
p = np.array(self.pri)
p /= p.sum()
idx = np.random.choice(len(self.mem), size=batch_size, p=p, replace=False)
return np.array(self.mem)[idx]
def pickle(self):
import pickle
pickle.dump(self.mem, open("./memory.p", "wb"))
def __len__(self):
return len(self.mem)
class Agent:
def __init__(self, model, cuda=True, view=None, memory_size=1000, opti_state=None, lr=None, model2=None):
# generate or load model for DDQN
if model2 is None:
self.target_model = deepcopy(model)
else:
self.target_model = model2
# move models to CUDA device
self.cuda = cuda
if cuda:
self.model = model.cuda()
self.target_model = self.target_model.cuda()
else:
self.model = model
# init and load optimizer
self.opti = torch.optim.RMSprop(model.parameters(), lr=(lr if lr else 0.001))
self.t_opti = torch.optim.RMSprop(self.target_model.parameters(), lr=(lr if lr else 0.001))
if opti_state:
self.opti.load_state_dict(opti_state['optimizer'])
self.t_opti.load_state_dict(opti_state['optimizer2'])
self.memory = Memory(memory_size)
self.view = bool(view)
if view:
import pygame as pg
self.screen = pg.display.set_mode(view)
def train(self, game, n_epochs=None, batch_size=256, gamma=0.85, epsilons=None, max_steps=None, save_interval=10, move_pen=1, observe=0, start_epoch=0):
n_actions = game.n_actions()
self.model.eval()
self.target_model.eval()
if epsilons is None:
epsilons = (0.9, 0.05, 1000)
eps = lambda s:epsilons[1] + (epsilons[0] - epsilons[1]) * np.exp(-s / epsilons[2])
for epoch in while_range(n_epochs, start=start_epoch):
epsilon = eps(epoch)
print("### Starting Game-Epoch {} \w eps={:.2f} ###".format(epoch, epsilon))
last_score = game.get_score()
S = game.get_visual(hud=False)
loss = 0
n_lo = 0
#while not game.you_lost:
for steps in trange(max_steps, ncols=50):
# stop epoch if game is lost
if game.you_lost:
break
# choose action via epsilon greedy:
self.switch_models()
Q_val = self.model(self.to_var(S))
if np.random.rand() < epsilon:
a = np.random.randint(n_actions)
else:
a = Q_val.max(1)[1].data[0]
# move player, calculate reward
moved = game.move_player(a)
score = game.get_score()
r = score - last_score - move_pen
last_score = score
# penalize invalid movements
if moved == False:
r -= 10
# get next state
Sp = game.get_visual(hud=False)
# calc error for priority
Q_val = Q_val.max(1)[0].data[0]
Q_max = self.target_model(self.to_var(Sp)).max(1)[0].data[0]
err = np.abs(Q_val - (r + gamma * Q_max * (1 - int(game.you_lost))))
# save transition
self.memory.store(S, a, r, Sp, game.you_lost, err)
S = Sp
# render view for spectating
if self.view:
pg.surfarray.blit_array(self.screen, game.get_visual())
pg.display.flip()
# train if memory is sufficiently full
if len(self.memory) >= max(batch_size, observe):
loss += self.train_on_memory(gamma, batch_size)
n_lo += 1
#[end] for steps in trange(max_steps, ncols=50)
game.game_over()
loss = (loss / n_lo if n_lo > 0 else -1)
print(" --> end of round, {}score: {}{}, {}loss:{:.4f}{}\n".format(TERM['y'], game.get_score(), TERM['clr'],
TERM['g'], loss, TERM['clr'],))
if (epoch % save_interval == 0 and len(self.memory) >= observe) or epoch + 1 == n_epochs:
print(TERM['c'] + " --> starting testing...")
sc = [self.play(game, max_steps) for __ in trange(20, ncols=44)]
sc = [x for x in sc if x is not None]
print(" --> best: {}, avg: {:.2f}".format(max(sc), sum(sc)/len(sc)))
print(" --> writing model to file...\n" + TERM['clr'])
self.save(epoch)
# self.memory.pickle()
game.move_player(None) #restart game
#[end] for epoch in while_range(n_epochs)
def switch_models(self, force=False):
if force or np.random.randint(0,2):
self.model, self.target_model = self.target_model, self.model
self.opti, self.t_opti = self.t_opti, self.opti
def play(self, game, max_steps):
game.game_over()
game.move_player(None)
steps = 0
self.model.eval()
self.target_model.eval()
while steps < max_steps and not game.you_lost:
self.switch_models()
S = game.get_visual(hud=False)
a = self.model(self.to_var(S)).data[0] # Tensor dim=(4)
m = False
while not m:
aa = a.max(0)[1][0] # argmax as scalar
if a.max() == -np.inf:
#this should never happen!
print(" no valid moves...")
return None
m = game.move_player(aa)
a[aa] = -np.inf
steps += 1
game.game_over()
return game.get_score()
def train_on_memory(self, gamma, batch_size):
(S, a, r, Sp, go) = zip(*(self.memory.sample(batch_size)))
S = self.to_var(np.stack(S))
a = Variable(LongTensor(a).cuda() if self.cuda else LongTensor(a)).view(-1, 1)
r = Tensor(r).cuda() if self.cuda else Tensor(r)
Sp = self.to_var(np.stack(Sp))
go = Tensor(go).cuda() if self.cuda else Tensor(go)
self.switch_models()
self.target_model.eval()
Q_max = self.target_model(Sp).data.max(1)[0] # Variable containing maximum Q-value per S'
target = Variable(r + Q_max * gamma * (1 - go))
self.model.train()
self.opti.zero_grad()
pred = self.model(S).gather(1, a)
loss = nn.functional.l1_loss(pred, target)
loss.backward()
for param in self.model.parameters():
param.grad.data.clamp_(-1, 1)
self.opti.step()
self.model.eval()
return loss.data[0]
def to_var(self, x):
"""
converts one sample (3dim) to a variable (4dim)
or a batch of samples (3dim) to variable (4dim)
"""
if x.ndim == 3:
x = Tensor(x.transpose(2,0,1)[np.newaxis])
elif x.ndim == 4:
x = Tensor(x.transpose(0,3,1,2))
else:
raise RuntimeError("wrong input dimensions")
x = Variable(x / 127.5 - 1)
if self.cuda:
return x.cuda()
else:
return x
def save(self, epoch):
#TODO: save meta data to recreate model (inp_size, n_actions, network type)
# maybe also store Game information (which would include some model meta data)
d = {'epoch' : epoch,
'state_dict' : self.model.state_dict(),
'state_dict2': self.target_model.state_dict(),
'optimizer' : self.opti.state_dict(),
'optimizer2' : self.t_opti.state_dict()}
torch.save(d, "snapshot_{}.nn".format(epoch))
if __name__ == "__main__":
from mechanics import Game
from model import NetworkSmallDuell
import argparse
parser = argparse.ArgumentParser(description='Train the agent')
parser.add_argument("--cuda", "-c", help="use CUDA", action="store_true")
parser.add_argument("--resume", "-r", help="resume from snapshot", action="store", type=str, default="")
parser.add_argument("--epsilon", "-e", help="fixed epsilon", action="store", type=float, default=None)
parser.add_argument("--epoch", help="starting epoch", action="store", type=int, default=0)
parser.add_argument("--lr", help="learning rate for RMSProp", action="store", type=float, default=None)
parser.add_argument("--size", "-s", help="size of game", action="store", type=int, default=28)
args = parser.parse_args()
game = Game(size=args.size)
inp = game.get_visual(hud=False).shape[0]
net = NetworkSmallDuell(inp, 4)
ostate = None
net2 = None
if args.resume:
if os.path.isfile(args.resume):
print("Loading networks from {}".format(args.resume))
cp = torch.load(args.resume, map_location={'cuda:0': 'cpu'})
net.load_state_dict(cp['state_dict'])
net2 = NetworkSmallDuell(inp, 4)
net2.load_state_dict(cp['state_dict2'])
ostate = cp
else:
raise FileNotFoundError("File {} not found.".format(args.resume))
if args.epsilon is not None:
args.epsilon = (args.epsilon, args.epsilon, 1)
agent = Agent(net, model2=net2, cuda=args.cuda, memory_size=50000, lr=args.lr)
agent.train(game, batch_size=128, max_steps=2000, save_interval=5, observe=10000, epsilons=args.epsilon, start_epoch=args.epoch)